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Abstract

An adjacent vertex-distinguishing edge coloring (AVD-coloring) of a graph is a proper edge
coloring such that no two neighbors are adjacent to the same set of colors. Zhang et al. [17]
conjectured that every connected graph on at least 6 vertices is AVD (∆ + 2)-colorable, where
∆ is the maximum degree.

In this paper, we prove that (∆ + 1) colors are enough when ∆ is su�ciently larger than
the maximum average degree, denoted mad. We also provide more precise lower bounds for
two graph classes: planar graphs, and graphs with mad < 3. In the �rst case, ∆ ≥ 12 su�ces,
which generalizes the result of Edwards et al. [7] on planar bipartite graphs. No other results
are known in the case of planar graphs. In the second case, ∆ ≥ 4 is enough, which is optimal
and completes the results of Wang and Wang [14] and of Hocquard and Montassier [9].

1 Introduction

In the following, a graph is a connected simple graph on at least three vertices. A (proper) edge
k-coloring of a graph is a coloring of its edges using at most k colors, where any two incident
edges receive distinct colors. The chromatic index of a graph G, denoted by χ′(G), is the smallest
integer k such that G admits an edge k-coloring. Let ∆(G) be the maximum degree of G. Since
incident edges receive distinct colors in an edge coloring, every graph G satis�es χ′(G) ≥ ∆(G).
The Vizing's theorem ensures that the reverse inequality is nearly true, more precisely:

Theorem 1 [12] Every graph G satis�es ∆(G) ≤ χ′(G) ≤ ∆(G) + 1.

An adjacent vertex-distinguishing edge k-coloring (AVD k-coloring for short) is a proper edge
k-coloring such that, for any two adjacent vertices u and v, the set of colors assigned to edges
incident to u di�ers from the set of colors assigned to edges incident to v. The AVD-chromatic
index of G, denoted by χ′avd(G), is the smallest integer k such that G admits an AVD k-coloring. It
should be noted that, while an isolated edge admits no AVD coloring, the AVD-chromatic index is
�nite for all connected graphs on at least three vertices. AVD colorings are also known as adjacent
strong edge colorings [17] and 1-strong edge colorings [1]. Note that AVD colorings are special cases
of vertex-distinguishing proper edge colorings. Such colorings are proper edge colorings such that
no two (not necessarily adjacent) vertices are adjacent to the same set of colors. The corresponding
chromatic index is called the observability and was studied for di�erent graph classes [3, 5, 6, 8].

Since an AVD coloring is a proper edge coloring, every graph G satis�es χ′avd(G) ≥ ∆(G). In
addition, every graph G with two adjacent vertices of degree ∆(G) satis�es χ′avd(G) ≥ ∆(G) + 1.
Zhang et al. [17] completely determined the AVD-chromatic index of paths, cycles, trees, complete
graphs, and complete bipartite graphs. They noted that a cycle of length �ve requires �ve colors,
but conjectured that it is the only graph with such a gap between χ′avd(G) and ∆(G).
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Conjecture 2 [17] Every graph G on at least 6 vertices satis�es χ′avd(G) ≤ ∆(G) + 2.

Balister et al. [2] proved Conjecture 2 for graphs with ∆(G) = 3 and for bipartite graphs.
For edge coloring, Theorem 1 ensures that the chromatic index of a graph can only have two values:
∆(G) or ∆(G)+1, and the classi�cation of graphs depending on this received considerable interest
(for instance [11]). For AVD coloring, if Conjecture 2 holds then the AVD chromatic index of a
graph can only have three values: ∆(G), ∆(G) + 1 or ∆(G) + 2. When considering a given graph
class that allows two vertices of maximum degree to be adjacent, there are only two possible upper
bounds: ∆(G) + 1 or ∆(G) + 2. Similarly, the classi�cation of graph classes depending on this
received subsequent interest, for instance:

Theorem 3 [7] Every (connected) bipartite planar graph G with ∆(G) ≥ 12 satis�es χ′avd(G) ≤
∆(G) + 1.

Let mad(G) = max
{

2|E(H)|
|V (H)| , H ⊆ G

}
be the maximum average degree of the graph G, where

V (H) and E(H) are the sets of vertices and edges of H, respectively. Wang and Wang [14] made
the link between maximum average degree and AVD-chromatic index and proved Conjecture 2 for
graphs with ∆(G) ≥ 3 and mad(G) < 3.

Theorem 4 [14] Every (connected) graph G with ∆(G) ≥ 3 and mad(G) < 3 satis�es χ′avd(G) ≤
∆(G) + 2.

They also gave su�cient conditions for graphs of bounded maximum average degree to be AVD
(∆(G) + 1)-colorable. Combined with results of Hocquard and Montassier [9], we have:

Theorem 5 [9, 14] Every (connected) graph G with ∆(G) ≥ 3 and mad(G) < 3 − 2
∆(G) satis�es

χ′avd(G) ≤ ∆(G) + 1.

Two main questions arise from these partial results: can this threshold of 3 as an upper-bound
on mad(G) be reached with a su�ciently large lower-bound on ∆(G) in the case of Theorem 5,
and broken in the case of Theorem 4? We answer positively to these questions with Theorem 6:
there is no threshold in the case of Theorem 5 (and thus in the case of Theorem 4).

Theorem 6 Every graph G with ∆(G) > 3× (mad(G))2 satis�es χ′avd(G) ≤ ∆(G) + 1.

In the case of edge coloring, the best lower bound is due to Woodall [15]: every graph G with

∆(G) > 3×mad(G)
2 satis�es χ′(G) = ∆(G). There is a very large gap between this bound and its

AVD counterpart, but this is essentially due to the fact that most methods on edge coloring are not
transposable to AVD coloring. On the other hand, the gap between the bound for AVD coloring
and its list edge counterpart is a mere constant factor [4] (note that list edge coloring is similarly
conjectured to be always possible with ∆(G) + 1 colors [13]).

By Theorem 6, planar graphs with su�ciently large maximum degree are AVD (∆(G) + 1)-
colorable. We provide a more re�ned lower-bound, and prove here that the bipartite hypothesis in
Theorem 3 is unnecessary.

Theorem 7 Every planar graph G with ∆(G) ≥ 12 satis�es χ′avd(G) ≤ ∆(G) + 1.

In the case of graphs with maximum average degree at most 3, we improve Theorem 5 by
showing that ∆(G) ≥ 4 is enough to reach the threshold of 3, as follows.

Theorem 8 Every graph G with ∆(G) ≥ 4 and mad(G) < 3 satis�es χ′avd(G) ≤ ∆(G) + 1.

Note that Theorem 8 is best possible since Figure 1 provides a subcubic graph with mad(G) =
11
4 < 3 that is not AVD (∆ + 1)-colorable.
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Figure 1: A graph G with ∆(G) = 3 and mad(G) = 11
4 < 3 such that χ′avd(G) = 5.

2 Method

We prove Theorems 6, 7 and 8 using a discharging method. We �rst choose a partial order on
graphs. It depends on the theorem to prove but is basically a customization of the lexicographic
order on the number of vertices of each degree. In a �rst time, we consider by contradiction a
�minimal� counter-example, and prove that it has some strong structural properties. We then prove
that a graph with those structural properties cannot satisfy the assumptions of the theorem, which
provides a contradiction. Due to the limited number of pages, the complete proofs of Theorems 6,
7 and 8 are omitted. We nevertheless sketch the proof of Theorem 8.

The four following lemmas provide the most relevant examples of structural properties that
we proved on a minimal counter-example of any of Theorems 6, 7 and 8, where the number of
colors is k+ 1, for k ≥ 4. In each case, we assume by contradiction that the graph contains such a
con�guration, we color by minimality a smaller graph and prove that the coloring can be extended
to the whole graph.

Lemma 9 No vertex v2 is adjacent to two vertices v1 and v3, with d(v1), d(v2) and d(v3) ≤ k
2 .

Lemma 9 follows from a recoloring algorithm. The proof is quite involved, when a simple proof
exists when k

2 is replaced by k
4 , but this bound is decisive for Theorems 6 and 7.

Lemma 10 No vertex has at least k
2 neighbors of degree 1.

Lemma 11 No vertex of degree 2 is adjacent to two vertices of degree at most k
2 + 1.

Lemmas 10 and 11 follow from a simple combinatorial argument, except in the case of a vertex
of degree 2 adjacent to a vertex of degree exactly k

2 +1, where the result is derived from a recoloring
argument and from the 2-connectivity of a minimal counter-example.

Lemma 12 No vertex is adjacent to two vertices u, v with d(u) = 2 and d(v) ≤ 2.

Lemma 12 follows from a simple reduction to a smaller graph, where the choice of the partial
order is decisive. Those four lemmas are not enough for Theorems 6 and 7. Lemma 9 is decisive
for Theorems 6 and 7, and Lemmas 10 to 12 su�ce for Theorem 8.

We consider a graph G with ∆(G) ≤ k that satis�es Lemmas 10, 11 and 12, and assign to each
vertex its degree as weight. We then design discharging rules to rearrange the weight along the
graph so as to derive that mad(G) ≥ 3. The following observation is instrumental in the proofs of
Theorems 6 and 8.

Observation 1 For any vertex partition (V1, V2) of a graph G, if every vertex v has an initial
weight of d(v), and the weight can be rearranged along the graph so that every vertex v1 of V1 has a
weight of at least 2×d(v1) and every vertex v2 of V2 has a weight of at least m, then mad(G) ≥ m.

Thus, to prove Theorem 8, we design a single discharging rule stating that a vertex u with
d(u) ≥ 3 that has a neighbor v of degree 1 or 2 gives a weight of 1 to v. We consider V1 to be the
set of vertices of degree 1, and V2 the set of vertices of degree at least 2. By Lemma 10, the vertices
incident to a vertex of degree 1 are of degree at least 4, and in particular V1 is an independent
set. Let u be a vertex of G. If u ∈ V1, since V1 is an independent set, the vertex u gives nothing
and receives d(u), so it has a �nal weight of 2 × d(u). If u ∈ V2 with d(u) = 2, by Lemma 11,
the vertex u is adjacent to at least one vertex of degree at least 3, and receives 1 from it. Since it
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gives nothing, it has a �nal weight of at least 3. If u ∈ V2 with d(u) ≥ 3 and u has a neighbor of
degree 2, by Lemmas 11 and 12, the vertex u is adjacent to no other vertex of degree at most 2,
and d(u) ≥ 4, so u has a �nal weight of at least 3. If u ∈ V2 and has no neighbor of degree 2 with
d(u) ≥ 3, by Lemma 10, the vertex u has at most d(u)− 3 neighbors of degree 1, so u has a �nal
weight of at least 3. By Observation 1, mad(G) ≥ 3.

For Theorem 7, we use a combinatorial argument to prove that a vertex cannot have too
many small vertices, with an optimal bound (optimal for a combinatorial argument not involving
any recoloring algorithm) depending on the respective degrees and on the number of colors. For
Theorem 6, we use a method from a beautiful proof by Borodin, Kostochka and Woodall [4] (later
simpli�ed in [15]) of a similar result on list edge coloring.

3 Conclusion and perspectives

With Theorem 6, we made a signi�cant step towards Conjecture 2, by proving that there are many
graphs that need one less color. Our methods will however not be su�cient for the conjecture itself,
as they require sparsity hypotheses. However, we could aim at proving that all planar graphs are
AVD (∆(G) + 2)-colorable, by further developing the proof of Theorem 7. We conclude with two
conjectures.

Conjecture 13 For any graph G, if the set of vertices of maximum degree in G forms an inde-
pendent set, then χ′avd(G) ≤ ∆(G) + 1.

Conjecture 14 For any graph G, if G admits a subgraph H such that χ′avd(H) > χ′avd(G), then
either H is not connected or ∆(H) = 2.
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