Graphs with mad< 3 and $\Delta \geq 17$ are list 2-distance $(\Delta + 2)$ -colorable

Marthe Bonamy Benjamin Lévêque Alexandre Pinlou

November 21, 2012

Vertex coloring

Vertex coloring

 χ : Minimum number of colors to ensure that

$$a \longrightarrow b \Rightarrow a \neq b$$
.

Vertex coloring

 χ : Minimum number of colors to ensure that

$$\textcircled{a}$$
 \Rightarrow $a \neq b$.

 χ_{ℓ} : Minimum size of every L(v) such that

$$\underbrace{a}_{x} \longrightarrow \underbrace{b}_{y} \Rightarrow \begin{cases}
a \neq b \\
a \in L(x) \\
b \in L(y)
\end{cases}$$

2-distance coloring

 χ^2 : Minimum number of colors to ensure that

a or a \Rightarrow $a \neq b$.

2-distance coloring

 χ^2 : Minimum number of colors to ensure that

$$\textcircled{a}$$
 or \textcircled{a} \Rightarrow $a \neq b$.

 χ_{ℓ}^2 : Minimum size of every L(v) such that

$$\begin{array}{ccc}
\textcircled{3} & \textcircled{b} \text{ or } \textcircled{3} & \textcircled{---} \textcircled{b} \\
x & y & x
\end{array}
\Rightarrow \begin{cases}
a \neq b \\
a \in L(x) \\
b \in L(y)
\end{cases}$$

2-distance coloring

 χ^2 : Minimum number of colors to ensure that

$$\textcircled{a}$$
 or \textcircled{a} \rightarrow $a \neq b$.

 χ_{ℓ}^2 : Minimum size of every L(v) such that

Two conjectures

Conjecture (Kostochka and Woodall 2001)

$$\chi^2=\chi^2_\ell.$$

Two conjectures

Conjecture (Kostochka and Woodall 2001)

$$\chi^2 = \chi^2_\ell$$
.

Conjecture (Wegner 1977)

For planar graphs, $\chi^2 \leq \lfloor \frac{3\Delta}{2} \rfloor + 1$ if $\Delta \geq 8$.

 ${\it g}$: girth = minimum length of a cycle.

 ${\it g}$: girth = minimum length of a cycle.

Question (Wang and Lih 2001)

For planar graphs, $g \ge k$, $\Delta \ge d \Rightarrow \chi^2 = \Delta + 1$.

g: girth = minimum length of a cycle.

Question (Wang and Lih 2001)

What is the minimal $k \mid \exists d$,

For planar graphs, $g \ge k$, $\Delta \ge d \Rightarrow \chi^2 = \Delta + 1$.

g: girth = minimum length of a cycle.

Question (Wang and Lih 2001)

What is the <u>minimal</u> $k \mid \exists d$, For planar graphs, $g \ge k$, $\Delta \ge d \Rightarrow \chi^2 = \Delta + 1$.

Answer: k = 7. (Borodin, Ivanova and Noestroeva 2008)

g: girth = minimum length of a cycle.

Question (Wang and Lih 2001)

What is the <u>minimal</u> $k \mid \exists d$, For planar graphs, $g \ge k$, $\Delta \ge d \Rightarrow \chi^2 = \Delta + 1$.

Answer: k = 7. (Borodin, Ivanova and Noestroeva 2008)

- For planar graphs, $\exists d, g \geq 7, \Delta \geq d \Rightarrow \chi^2 = \Delta + 1$.
- $\exists (G_n)_{n \in \mathbb{N}}$, planar, g = 6, $\Delta \nearrow$, $\chi^2 > \Delta + 1$.

g: girth = minimum length of a cycle.

Question (Wang and Lih 2001)

What is the <u>minimal</u> $k \mid \exists d$, For planar graphs, g > k, $\Delta > d \Rightarrow \chi^2 = \Delta + 1$.

Answer: k = 7. (Borodin, Ivanova and Noestroeva 2008)

- For planar graphs, $\exists d, g \geq 7, \Delta \geq d \Rightarrow \chi^2 = \Delta + 1$.
- $\exists (G_n)_{n \in \mathbb{N}}$, planar, g = 6, $\Delta \nearrow$, $\chi^2 > \Delta + 1$.

Theorem (Dvořák, Král, Nejedlý and Sǩrekovski 2008)

For planar graphs, $\exists d, g \geq 6, \Delta \geq d \Rightarrow \chi^2 \leq \Delta + 2$.

g: girth = minimum length of a cycle.

Question (Wang and Lih 2001)

What is the minimal $k \mid \exists d$,

For planar graphs, $g \ge k$, $\Delta \ge d \Rightarrow \chi^2 = \Delta + 1$.

Answer: k = 7. (Borodin, Ivanova and Noestroeva 2008)

- For planar graphs, $\exists d, g \geq 7, \Delta \geq d \Rightarrow \chi^2 = \Delta + 1$.
- $\exists (G_n)_{n \in \mathbb{N}}$, planar, g = 6, $\Delta \nearrow$, $\chi^2 > \Delta + 1$.

Theorem (Borodin and Ivanova 2009)

For planar graphs, $g \ge 6$, $\Delta \ge 18 \Rightarrow \chi^2 \le \Delta + 2$.

g: girth = minimum length of a cycle.

Question (Wang and Lih 2001)

What is the <u>minimal</u> $k \mid \exists d$, For planar graphs, $g \ge k$, $\Delta \ge d \Rightarrow \chi^2 = \Delta + 1$.

Answer: k = 7. (Borodin, Ivanova and Noestroeva 2008)

- For planar graphs, $\exists d, g \geq 7, \Delta \geq d \Rightarrow \chi_{\ell}^2 = \Delta + 1$.
- $\exists (G_n)_{n \in \mathbb{N}}$, planar, g = 6, $\Delta \nearrow$, $\chi^2_{\ell} > \Delta + 1$.

Theorem (Borodin and Ivanova 2009)

For planar graphs, $g \geq 6$, $\Delta \geq 18 24 \Rightarrow \chi_{\ell}^2 \leq \Delta + 2$.

g: girth = minimum length of a cycle.

Question (Wang and Lih 2001)

What is the <u>minimal</u> $k \mid \exists d$,

For planar graphs, $g \geq k$, $\Delta \geq d \Rightarrow \chi_{\ell}^2 = \Delta + 1$.

Answer: k = 7. (Borodin, Ivanova and Noestroeva 2008)

- For planar graphs, $\exists d, g \geq 7, \Delta \geq d \Rightarrow \chi_{\ell}^2 = \Delta + 1$.
- $\exists (G_n)_{n \in \mathbb{N}}$, planar, g = 6, $\Delta \nearrow$, $\chi^2_{\ell} > \Delta + 1$.

Theorem (Borodin and Ivanova 2009)

For planar graphs, $g \ge 6$, $\Delta \ge 18 24 \Rightarrow \chi_{\ell}^2 \le \Delta + 2$.

Theorem

For planar graphs, $g \geq 6$, $\Delta \geq 17 \Rightarrow \chi_{\ell}^2 \leq \Delta + 2$.

ad: average degree =
$$\frac{\sum d(v)}{|V|} = \frac{2|E|}{|V|}$$
.

ad: average degree =
$$\frac{\sum d(v)}{|V|} = \frac{2|E|}{|V|}$$
.

mad: maximum average degree = $\max \frac{2|E(H)|}{|V(H)|}$.

ad: average degree =
$$\frac{\sum d(v)}{|V|} = \frac{2|E|}{|V|}$$
.

mad: maximum average degree = $\max \frac{2|E(H)|}{|V(H)|}$.

Lemma (Derived from Euler's Formula)

For any planar graph,
$$(mad -2)(g - 2) < 4$$

ad: average degree = $\frac{\sum d(v)}{|V|} = \frac{2|E|}{|V|}$.

mad: maximum average degree = $\max \frac{2|E(H)|}{|V(H)|}$.

Lemma (Derived from Euler's Formula)

For any planar graph, (mad -2)(g - 2) < 4

For planar graphs:

- $g \ge 7 \Rightarrow \mathsf{mad} < \frac{14}{5}$.
- $g \ge 6 \Rightarrow \text{mad} < 3$.

Question

What is the <u>maximal</u> $m \mid \exists d$, For any graph, mad < m, $\Delta \ge d \Rightarrow \chi_{\ell}^2 = \Delta + 1$.

Question

What is the <u>maximal</u> $m \mid \exists d$, For any graph, mad < m, $\Delta \ge d \Rightarrow \chi_{\ell}^2 = \Delta + 1$.

Answer: $m = \frac{14}{5}$?

Question

What is the <u>maximal</u> $m \mid \exists d$, For any graph, mad < m, $\Delta \ge d \Rightarrow \chi_{\ell}^2 = \Delta + 1$.

Answer: True for any m < 3.

- $\forall \epsilon > 0$, $mad < 3 \epsilon$, $\Delta \ge \mathcal{O}(\frac{1}{\epsilon^2}) \Rightarrow \chi_{\ell}^2 = \Delta + 1$.
- \exists $(G_n)_{n\in\mathbb{N}}$, mad < 3, $\Delta \nearrow$, $\chi^2_{\ell} > \Delta + 1$.

Question

What is the <u>maximal</u> $m \mid \exists d$, For any graph, mad < m, $\Delta \ge d \Rightarrow \chi_{\ell}^2 = \Delta + 1$.

Answer: True for any m < 3.

- $\forall \epsilon > 0$, $mad < 3 \epsilon$, $\Delta \ge \mathcal{O}(\frac{1}{\epsilon^2}) \Rightarrow \chi_{\ell}^2 = \Delta + 1$.
- $\exists (G_n)_{n\in\mathbb{N}}$, mad < 3, $\Delta \nearrow$, $\chi^2_{\ell} > \Delta + 1$.

Theorem

For any graph, mad < 3, $\Delta \ge 17 \Rightarrow \chi_{\ell}^2 \le \Delta + 2$.

• Every graph with mad < 3 contains some C $\in \{C_1, C_2, \ldots, C_p, \}$.

• Every graph with mad < 3 contains some C $\in \{C_1, C_2, \dots, C_p, \}$.

② For the problem, a graph that contains a C_i can be reduced to a smaller graph.

• Every graph with mad < 3 contains some C $\in \{C_1, C_2, \ldots, C_p, \}$.

- ② For the problem, a graph that contains a C_i can be reduced to a smaller graph.
- **③** Thus every graph with mad < 3, $\Delta \ge 17$ is list 2-distance $(\Delta + 2)$ -colorable.

Every graph with mad < 3 contains some C
 ∈ {C₁, C₂,..., C_p, }.
 Mad formula: mad(G) < 3

- ② For the problem, a graph that contains a C_i can be reduced to a smaller graph.
- **③** Thus every graph with mad < 3, $\Delta \ge 17$ is list 2-distance $(\Delta + 2)$ -colorable.

Every graph with mad < 3 contains some C
 ∈ {C₁, C₂,..., C_p, }.
 Mad formula: ad(G) < 3

- ② For the problem, a graph that contains a C_i can be reduced to a smaller graph.
- **③** Thus every graph with mad < 3, $\Delta \ge 17$ is list 2-distance $(\Delta + 2)$ -colorable.

• Every graph with mad < 3 contains some $C \in \{C_1, C_2, \dots, C_p, \}$. Mad formula: $\sum_{\nu} (d(\nu) - 3) < 0$

- ② For the problem, a graph that contains a C_i can be reduced to a smaller graph.
- **③** Thus every graph with mad < 3, $\Delta \ge 17$ is list 2-distance $(\Delta + 2)$ -colorable.

• Every graph with mad < 3 contains some \mathcal{C} $\in \{C_1, C_2, \dots, C_p, \}$.

Mad formula: $\sum_{v} (d(v) - 3) < 0$

. . .

- ② For the problem, a graph that contains a C_i can be reduced to a smaller graph.
- **③** Thus every graph with mad < 3, $\Delta \ge 17$ is list 2-distance $(\Delta + 2)$ -colorable.

• Every graph with mad < 3 contains some $C \in \{C_1, C_2, \dots, C_p, \}$. Mad formula: $\sum_{v} (d(v) - 3) < 0$

. . .

$$\Rightarrow \forall v, w'(v) \ge 0 \Rightarrow \text{Contradiction!}$$

- ② For the problem, a graph that contains a C_i can be reduced to a smaller graph.
- Thus every graph with mad < 3, $\Delta \ge 17$ is list 2-distance $(\Delta + 2)$ -colorable.

Structure induced by O in the graph:

Structure induced by O in the graph:

No induced cycle with even number of

Structure induced by O in the graph:

- No induced cycle with even number of
- $\bullet \Rightarrow$ multigraph on O:

Structure induced by O—O in the graph:

- No induced cycle with even number of
- $\bullet \Rightarrow$ multigraph on O:
 - No intersecting cycles (Cactus)
 - Multiplicity at most 2
 - On every cycle, at least two edges of multiplicity 1

Structure induced by O—O in the graph:

- No induced cycle with even number of
- $\bullet \Rightarrow$ multigraph on \circ :
 - No intersecting cycles (Cactus)
 - Multiplicity at most 2
 - On every cycle, at least two edges of multiplicity 1
 - ad < 4
- $|\{\bullet\}| \le 2 \times |\{O\}|$

Conclusion

Conclusion

Thanks for your attention. Any questions?