Planar graphs with  $\Delta \geq 8$  are  $(\Delta + 1)$ -edge-choosable.

Marthe Bonamy

#### LIRMM, Montpellier, France



Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier

September 11, 2013

# Vertex coloring



# Vertex coloring



 $\chi$ : Minimum number of colors to ensure that

$$a - b \Rightarrow a \neq b.$$



 $\chi$ : Minimum number of colors to ensure that

$$a \rightarrow b \Rightarrow a \neq b.$$

 $\chi_{\ell}$ : Minimum size of every L(v) such that

$$\textcircled{a \neq b}_{x \quad y} \Rightarrow \begin{cases} a \neq b \\ a \in L(x) \\ b \in L(y) \end{cases}$$



 $\chi$ : Minimum number of colors to ensure that

$$a - b \Rightarrow a \neq b.$$

 $\chi_{\ell}$ : Minimum size of every L(v) such that



 $\chi$ : Minimum number of colors to ensure that

$$a \rightarrow a \neq b.$$

 $\chi_{\ell}$ : Minimum size of every L(v) such that

$$\underbrace{a \neq b}_{x} \quad \underbrace{b}_{y} \Rightarrow \begin{cases} a \neq b \\ a \in L(x) \\ b \in L(y) \end{cases}$$

 $\Delta$ : Maximum degree.

$$\omega \leq \chi \leq \chi_{\ell} \leq \Delta + 1.$$

# Edge coloring



 $\chi'$ : Minimum number of colors to ensure that  $\bigcirc a \bigcirc b \bigcirc \Rightarrow a \neq b.$ 



 $\chi'$ : Minimum number of colors to ensure that  $\bigcirc a \bigcirc b \bigcirc \Rightarrow a \neq b.$ 

 $\chi'_{\ell}$ : Minimum size of every L(e) such that

$$\bigcirc_{u} \xrightarrow{a} \bigcup_{v} \xrightarrow{b} \bigcirc_{w} \Rightarrow \begin{cases} a \neq b \\ a \in L(u, v) \\ b \in L(v, w) \end{cases}$$

Vertex coloring of Line graphs.



### $\Delta \leq \chi' \leq \chi'_\ell \leq 2\Delta - 1.$

Vertex coloring of Line graphs.



$$\Delta \leq \chi' \leq \chi'_\ell \leq 2\Delta - 1.$$

Theorem (Beineke '70)

Characterized by nine forbidden induced subgraphs.

Vertex coloring of Line graphs.



$$\Delta \leq \chi' \leq \chi'_\ell \leq 2\Delta - 1.$$

Theorem (Beineke '70)

Characterized by nine forbidden induced subgraphs.

Conjecture (List Coloring Conjecture '85)

For any graph,  $\chi'_{\ell} = \chi'$ .

# Knowing $\chi^\prime$ is useful

On some subclasses:

Theorem (König '16)

For any bipartite graph,  $\chi' = \Delta$ .

Theorem (Sanders Zhao '01)

For any planar graph with  $\Delta \geq 7$ ,  $\chi' = \Delta$ .

#### Asymptotically true:

Theorem (Erdös Wilson '77)

For almost every graph,  $\chi' = \Delta$ .

# Knowing $\chi'$ is useful

On some subclasses:

#### Theorem (Galvin '95)

For any bipartite graph,  $\chi'_{\ell} = \Delta$ .

Theorem (Sanders Zhao '01)

For any planar graph with  $\Delta \geq 7$ ,  $\chi' = \Delta$ .

#### Asymptotically true:

Theorem (Erdös Wilson '77)

For almost every graph,  $\chi' = \Delta$ .

# Knowing $\chi^\prime$ is useful

On some subclasses:

#### Theorem (Galvin '95)

For any bipartite graph,  $\chi'_{\ell} = \Delta$ .

#### Theorem (Borodin Kostochka Woodall '97)

For any planar graph with  $\Delta \ge 12$ ,  $\chi'_{\ell} = \Delta$ .

#### Asymptotically true:

Theorem (Erdös Wilson '77)

For almost every graph,  $\chi' = \Delta$ .

# Knowing $\chi'$ is useful

On some subclasses:

#### Theorem (Galvin '95)

For any bipartite graph,  $\chi'_{\ell} = \Delta$ .

#### Theorem (Borodin Kostochka Woodall '97)

For any planar graph with  $\Delta \ge 12$ ,  $\chi'_{\ell} = \Delta$ .

#### Asymptotically true:

Theorem (Kahn '93)

 $\chi'_{\ell} - \chi' = o(\chi')$  when  $\chi' \to \infty$ .

# Knowing $\chi'$ is useful

On some subclasses:

#### Theorem (Galvin '95)

For any bipartite graph,  $\chi'_{\ell} = \Delta$ .

#### Theorem (Borodin Kostochka Woodall '97)

For any planar graph with  $\Delta \ge 12$ ,  $\chi'_{\ell} = \Delta$ .

#### Asymptotically true:

Theorem (Kahn '93)

 $\chi'_{\ell} - \chi' = o(\chi')$  when  $\chi' \to \infty$ .

#### Theorem (Holyer '81)

It is NP-complete to compute  $\chi'$ .

Theorem (Vizing '64)

For any graph,  $\chi' \leq \Delta + 1$ .

Conjecture (Vizing '76)

For any graph,  $\chi'_{\ell} \leq \Delta + 1$ .

Theorem (Borodin '90)

For any planar graph with  $\Delta \geq 9$ ,  $\chi'_{\ell} \leq \Delta + 1$ .

#### Theorem (Vizing '76, Juvan Mohar Škrekovski '99)

For any planar graph with  $\Delta \leq 4$ ,  $\chi'_{\ell} \leq \Delta + 1$ .

+ Many results for planar graphs with restrictions on cycles (no 4-cycle,  $\Delta\geq 6$  and no chordal 5-cycle,  $\Delta\geq 6$  and no chordal 4-cycle...)

Theorem (Borodin '90)

For any planar graph with  $\Delta \ge 9$ ,  $\chi'_{\ell} \le \Delta + 1$ .

Theorem (B. '13)

For any planar graph with  $\Delta \geq 8$ ,  $\chi'_{\ell} \leq \Delta + 1$ .

Theorem (Vizing '76, Juvan Mohar Škrekovski '99)

For any planar graph with  $\Delta \leq 4$ ,  $\chi'_{\ell} \leq \Delta + 1$ .

+ Many results for planar graphs with restrictions on cycles (no 4-cycle,  $\Delta\geq 6$  and no chordal 5-cycle,  $\Delta\geq 6$  and no chordal 4-cycle...)





# Key idea





Goal: recolor any of  $\{e_1, f_1, e_2, f_2\}$ .

Consider the digraph of constraints on  $\{e_1, f_1, e_2, f_2, g, h\}$ .







No.



- No.
- For any planar graph with  $\Delta \ge 12$  11,  $\chi'_{\ell} = \Delta$ .



No.

• For any planar graph with  $\Delta \ge 12$  11,  $\chi'_{\ell} = \Delta$ .

# Thanks!