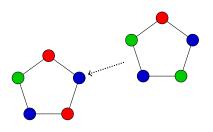
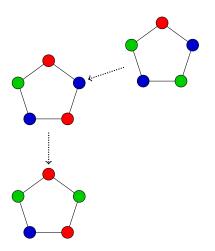
On the diameter of reconfiguration graphs for vertex colourings

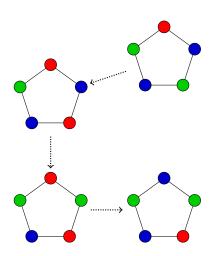
Marthe Bonamy

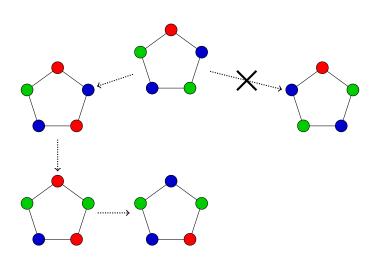
Matthew Johnson Ioannis Lignos Viresh Patel Daniël Paulusma

2 September 2011



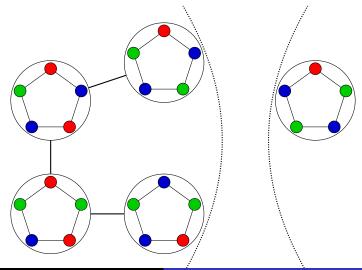






Graph recolouring ⇒ Reconfiguration graph

Solutions // Nodes. Most similar solutions // Neighbours.



Reconfiguration graphs

- Two solutions:
 - In the same connected component?
 - What distance between them?

Reconfiguration graphs

- Two solutions:
 - In the same connected component?
 - What distance between them?
- Reconfiguration graph:
 - Connected?
 - Maximal diameter of a component?

Definition

k-mixing: Reconfiguration graph of the k-colourings is connected

Definition

k-mixing: Reconfiguration graph of the *k*-colourings is connected

Definition

k-mixing in $\mathcal{O}(A(n))$: Diameter of the reconfiguration graph: bounded by $C \times A(n)$, n: number of vertices.

Definition

k-mixing: Reconfiguration graph of the k-colourings is connected

Definition

k-mixing in $\mathcal{O}(A(n))$: Diameter of the reconfiguration graph: bounded by $C \times A(n)$, n: number of vertices.

Theorem (Cereda, van den Heuvel, Johnson '07)

Bipartite graph: 3-mixing? \Rightarrow coNP-hard

Definition

k-mixing: Reconfiguration graph of the *k*-colourings is connected

Definition

k-mixing in $\mathcal{O}(A(n))$: Diameter of the reconfiguration graph: bounded by $C \times A(n)$, n: number of vertices.

Theorem (Cereda, van den Heuvel, Johnson '07)

Bipartite graph: 3-mixing? ⇒ coNP-hard

About perfect graphs?

• $k = \chi(G) = \omega(G) \Rightarrow G$ not k-mixing

Definition

k-mixing: Reconfiguration graph of the *k*-colourings is connected

Definition

k-mixing in $\mathcal{O}(A(n))$: Diameter of the reconfiguration graph: bounded by $C \times A(n)$, n: number of vertices.

Theorem (Cereda, van den Heuvel, Johnson '07)

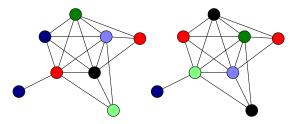
Bipartite graph: 3-mixing? ⇒ coNP-hard

About perfect graphs?

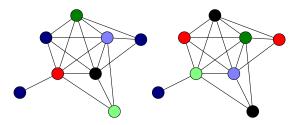
- $k = \chi(G) = \omega(G) \Rightarrow G$ not k-mixing
- $k = \chi(G) + 1$?

• Cliques are k-mixing in $\mathcal{O}(n)$.

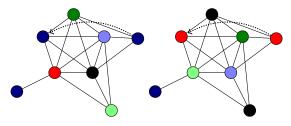
- Cliques are k-mixing in $\mathcal{O}(n)$.
- So split graphs are k-mixing in $\mathcal{O}(n)$.



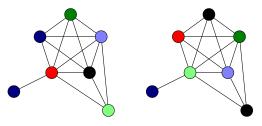
- Cliques are k-mixing in $\mathcal{O}(n)$.
- So split graphs are k-mixing in $\mathcal{O}(n)$.



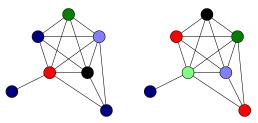
- Cliques are k-mixing in $\mathcal{O}(n)$.
- So split graphs are k-mixing in $\mathcal{O}(n)$.



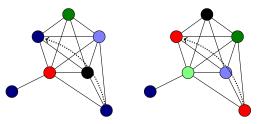
- Cliques are k-mixing in $\mathcal{O}(n)$.
- So split graphs are k-mixing in $\mathcal{O}(n)$.



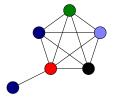
- Cliques are k-mixing in $\mathcal{O}(n)$.
- So split graphs are k-mixing in $\mathcal{O}(n)$.

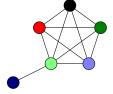


- Cliques are k-mixing in $\mathcal{O}(n)$.
- So split graphs are k-mixing in $\mathcal{O}(n)$.

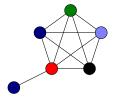


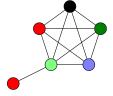
- Cliques are k-mixing in $\mathcal{O}(n)$.
- So split graphs are k-mixing in $\mathcal{O}(n)$.



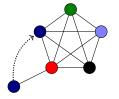


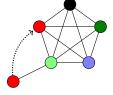
- Cliques are k-mixing in $\mathcal{O}(n)$.
- So split graphs are k-mixing in $\mathcal{O}(n)$.





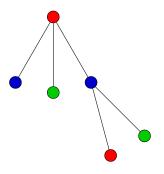
- Cliques are k-mixing in $\mathcal{O}(n)$.
- So split graphs are k-mixing in $\mathcal{O}(n)$.



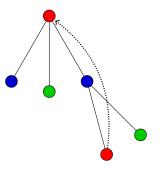


- Cliques are k-mixing in $\mathcal{O}(n)$.
- So split graphs are k-mixing in $\mathcal{O}(n)$.

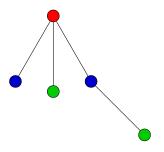
Theorem



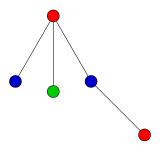
Theorem



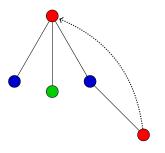
Theorem



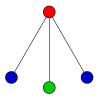
Theorem



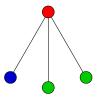
Theorem



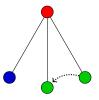
Theorem



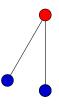
Theorem



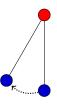
Theorem



Theorem



Theorem



Trees

Theorem

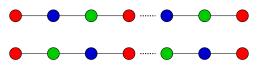
Trees are k-mixing in $\mathcal{O}(n^2)$.

Trees

Theorem

Trees are k-mixing in $\mathcal{O}(n^2)$.

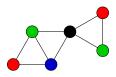
And this is optimal.



A chordal graph is a graph without chordless cycle of size ≥ 4 .

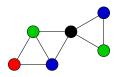
A chordal graph is a graph without chordless cycle of size ≥ 4 .

Theorem



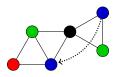
A chordal graph is a graph without chordless cycle of size ≥ 4 .

Theorem



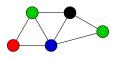
A chordal graph is a graph without chordless cycle of size ≥ 4 .

Theorem



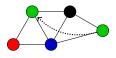
A chordal graph is a graph without chordless cycle of size ≥ 4 .

Theorem



A chordal graph is a graph without chordless cycle of size ≥ 4 .

Theorem



A chordal graph is a graph without chordless cycle of size ≥ 4 .

Theorem

A chordal graph is a graph without chordless cycle of size ≥ 4 .

Theorem

A chordal graph is a graph without chordless cycle of size ≥ 4 .

Theorem

General tool

Given a graph in a certain class, pinch two vertices s.t. the resulting graph:

- belongs to the same class.
- has the same chromatic number.

General tool

Given a graph in a certain class, pinch two vertices s.t. the resulting graph:

- belongs to the same class.
- has the same chromatic number.

On other graph classes:

- Cographs (linear)
- Distance-hereditary graphs (quadratic)
- Bounded treewidth graphs (???)
- Weakly chordal graphs (???)
- And when $k = \chi(G)$?

General tool

Given a graph in a certain class, pinch two vertices s.t. the resulting graph:

- belongs to the same class.
- has the same chromatic number.

On other graph classes:

- Cographs (linear)
- Distance-hereditary graphs (quadratic)
- Bounded treewidth graphs (???)
- Weakly chordal graphs (???)
- And when $k = \chi(G)$?

Thanks for your attention!