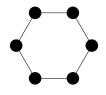
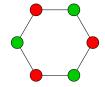
Colorier à distance 2 des graphes peu denses

Marthe Bonamy Benjamin Lévêque Alexandre Pinlou

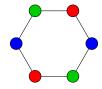
16 novembre 2011





x: Nombre minimum de couleurs nécessaires pour que

$$a \longrightarrow b \Rightarrow a \neq b$$
.

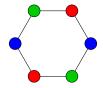


 χ : Nombre minimum de couleurs nécessaires pour que

$$a \longrightarrow b \Rightarrow a \neq b.$$

 χ^2 : Nombre minimum de couleurs nécessaires pour que

a b ou a b $\Rightarrow a \neq b$.



 χ : Nombre minimum de couleurs nécessaires pour que

$$a \longrightarrow b \Rightarrow a \neq b$$
.

 χ^2 : Nombre minimum de couleurs nécessaires pour que

$$\textcircled{a}$$
 \textcircled{b} ou \textcircled{a} \textcircled{b} $\Rightarrow a \neq b$.

Δ: Degré maximum du graphe.

$$\chi^2 \ge \Delta + 1$$
.

Un graphe est planaire s'il peut être représenté sur le plan sans croisement d'arête.

Conjecture (Wegner 1977)

Si G est un graphe planaire, alors :

- $\chi^2 \leq 7$ si $\Delta = 3$
- $\chi^2 \leq \Delta + 5$ si $4 \leq \Delta \leq 7$
- $\chi^2 \leq \lfloor \frac{3\Delta}{2} \rfloor + 1 \text{ si } \Delta \geq 8$

Un graphe est planaire s'il peut être représenté sur le plan sans croisement d'arête.

Conjecture (Wegner 1977)

Si G est un graphe planaire, alors :

•
$$\chi^2 \leq 7$$
 si $\Delta = 3$

√ C. Thomassen

•
$$\chi^2 \leq \Delta + 5$$
 si $4 \leq \Delta \leq 7$

•
$$\chi^2 \leq \lfloor \frac{3\Delta}{2} \rfloor + 1$$
 si $\Delta \geq 8$

ad : degré moyen =
$$\frac{\sum d(v)}{|V|} = \frac{2|E|}{|V|}$$
.

```
ad : degré moyen = \frac{\sum d(v)}{|V|} = \frac{2|E|}{|V|}.
```

 mad : degré moyen $\operatorname{maximum} = \operatorname{max} \frac{2|E(H)|}{|V(H)|}$.

```
ad : degré moyen = \frac{\sum d(v)}{|V|} = \frac{2|E|}{|V|}.
```

mad: degré moyen $maximum = max \frac{2|E(H)|}{|V(H)|}$.

g: maille = longueur minimum d'un cycle.

ad : degré moyen =
$$\frac{\sum d(v)}{|V|} = \frac{2|E|}{|V|}$$
.

mad : degré moyen maximum =
$$\max \frac{2|E(H)|}{|V(H)|}$$
.

g: maille = longueur minimum d'un cycle.

Lemme (Corollaire de la Formule d'Euler)

Pour tout graphe planaire, (mad -2)(g - 2) < 4

ad : degré moyen =
$$\frac{\sum d(v)}{|V|} = \frac{2|E|}{|V|}$$
.

mad : degré moyen maximum = $\max \frac{2|E(H)|}{|V(H)|}$.

g: maille = longueur minimum d'un cycle.

Lemme (Corollaire de la Formule d'Euler)

Pour tout graphe planaire, (mad -2)(g - 2) < 4

$$g \ge k$$
, $\Delta \ge d \Rightarrow \chi^2 = \Delta + 1$.

ad : degré moyen =
$$\frac{\sum d(v)}{|V|} = \frac{2|E|}{|V|}$$
.

mad : degré moyen maximum = $\max \frac{2|E(H)|}{|V(H)|}$.

g: maille = longueur minimum d'un cycle.

Lemme (Corollaire de la Formule d'Euler)

Pour tout graphe planaire, (mad -2)(g - 2) < 4

Dans le cas des graphes planaires,

$$\exists ? k_0, \ \forall \ k \ge k_0, \ \exists \ d,$$
$$g \ge k, \ \Delta \ge d \Rightarrow \chi^2 = \Delta + 1.$$

État de l'Art

Théorème (Borodin, Ivanova, Neustroeva '08 & Ivanova '11)

Pour tout graphe planaire, $\chi^2 = \Delta + 1$ dans chacun des cas suivants :

- $g \ge 24$ et $\Delta \ge 3$
- $g \ge 15$ et $\Delta \ge 4$
- $g \ge 12$ et $\Delta \ge 5$

- $g \ge 10$ et $\Delta \ge 6$
- $g \ge 8$ et $\Delta \ge 10$
- $g \ge 7$ et $\Delta \ge 16$

État de l'Art

Théorème (Borodin, Ivanova, Neustroeva '08 & Ivanova '11)

Pour tout graphe planaire, $\chi^2 = \Delta + 1$ dans chacun des cas suivants :

- $g \ge 24$ et $\Delta \ge 3$
- $g \ge 15$ et $\Delta \ge 4$
- $g \ge 12$ et $\Delta \ge 5$

- $g \ge 10$ et $\Delta \ge 6$
- $g \ge 8$ et $\Delta \ge 10$
- $g \ge 7$ et $\Delta \ge 16$

Théorème (Dolama, Sopena '05)

Pour tout graphe, si $\Delta \ge 4$ et mad $< \frac{16}{7}$, alors $\chi^2 = \Delta + 1$.

État de l'Art

Théorème (Borodin, Ivanova, Neustroeva '08 & Ivanova '11)

Pour tout graphe planaire, $\chi^2 = \Delta + 1$ dans chacun des cas suivants :

- $g \ge 24$ et $\Delta \ge 3$
- $g \ge 15$ et $\Delta \ge 4$
- $g \ge 12$ et $\Delta \ge 5$

- $g \ge 10$ et $\Delta \ge 6$
- $g \ge 8$ et $\Delta \ge 10$
- $g \ge 7$ et $\Delta \ge 16$

Théorème (Dolama, Sopena '05)

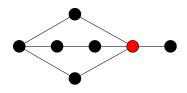
Pour tout graphe, si $\Delta \ge 4$ et mad $< \frac{16}{7}$, alors $\chi^2 = \Delta + 1$. $\Rightarrow g > 16$

Théorème

Pour tout graphe, si $\Delta \ge 4$ et mad $< \frac{7}{3}$, alors $\chi^2 = \Delta + 1$.

Théorème

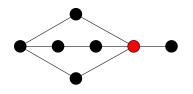
Pour tout graphe, si $\Delta \geq 4$ et mad $< \frac{7}{3}$, alors $\chi^2 = \Delta + 1$.



$$\Delta = 4$$
.

Théorème

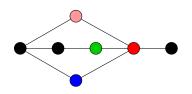
Pour tout graphe, si $\Delta \geq 4$ et mad $< \frac{7}{3}$, alors $\chi^2 = \Delta + 1$.



$$\begin{array}{l} \Delta = 4. \\ \text{mad} = \frac{7}{3}. \end{array}$$

Théorème

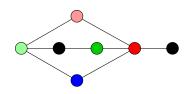
Pour tout graphe, si $\Delta \geq 4$ et mad $< \frac{7}{3}$, alors $\chi^2 = \Delta + 1$.



$$\begin{array}{l} \Delta=4.\\ \mathrm{mad}=\frac{7}{3}.\\ \chi^2=6. \end{array}$$

Théorème

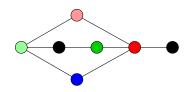
Pour tout graphe, si $\Delta \geq 4$ et mad $< \frac{7}{3}$, alors $\chi^2 = \Delta + 1$.



$$\begin{array}{l} \Delta = 4. \\ \mathrm{mad} = \frac{7}{3}. \\ \chi^2 = 6. \end{array}$$

Théorème

Pour tout graphe, si $\Delta \geq 4$ et mad $< \frac{7}{3}$, alors $\chi^2 = \Delta + 1$. $\Rightarrow g \geq 14$



$$\begin{array}{l} \Delta=4.\\ \mathrm{mad}=\frac{7}{3}.\\ \chi^2=6. \end{array}$$

$$mad < m, \ \Delta \ge d \Rightarrow \chi^2 = \Delta + 1.$$

$$M$$
 maximal $| \forall m < M, \exists d,$
 $mad < m, \Delta \ge d \Rightarrow \chi^2 = \Delta + 1.$

$$M \text{ maximal } | \forall m < M, \exists d,$$

 $mad < m, \Delta \ge d \Rightarrow \chi^2 = \Delta + 1.$

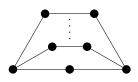
Théorème

Pour ϵ suffisamment petit, mad $<\frac{14}{5}-\epsilon$ et $\Delta \geq \mathcal{O}(\frac{1}{\epsilon}) \Rightarrow \chi^2 = \Delta + 1$.

$$M$$
 maximal $| \forall m < M, \exists d,$
 $mad < m, \Delta \ge d \Rightarrow \chi^2 = \Delta + 1.$

Théorème

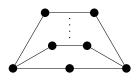
Pour ϵ suffisamment petit, mad $< \frac{14}{5} - \epsilon$ et $\Delta \ge \mathcal{O}(\frac{1}{\epsilon}) \Rightarrow \chi^2 = \Delta + 1$.



$$\begin{split} \Delta &= p.\\ \text{mad} &= 3 - \frac{5}{2p+1}.\\ \chi^2 &= \Delta + 2. \end{split}$$

Théorème

Pour ϵ suffisamment petit, mad $< \frac{14}{5} - \epsilon$ et $\Delta \ge \mathcal{O}(\frac{1}{\epsilon}) \Rightarrow \chi^2 = \Delta + 1$.



$$\Delta = p.$$

$$mad = 3 - \frac{5}{2p+1}.$$

$$\chi^2 = \Delta + 2.$$

Que se passe-t-il entre $\frac{14}{5}$ et 3 ?

Corollaire

Pour tout graphe planaire, $\chi^2 = \Delta + 1$ dans chacun des cas suivants:

- $g(G) \ge 12 \text{ et } \Delta(G) \ge 5$
- $g(G) \ge 10$ et $\Delta(G) \ge 6$
- $g(G) \ge 9$ et $\Delta(G) \ge 10^{\circ}$

$$mad < m \Rightarrow \chi^2 \leq \Delta + C$$
.

$$M \text{ maximal } | \forall m < M, \exists C,$$

 $mad < m \Rightarrow \chi^2 \leq \Delta + C.$

$$M \text{ maximal } | \forall m < M, \exists C,$$

 $mad < m \Rightarrow \chi^2 \leq \Delta + C.$

<u>Th</u>éorème

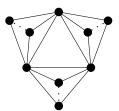
Pour tout $\epsilon > 0$, mad $< 4 - \epsilon \Rightarrow \chi^2 \leq \Delta + \mathcal{O}(\frac{1}{\epsilon})$.

$$M \text{ maximal } | \forall m < M, \exists C,$$

 $mad < m \Rightarrow \chi^2 \leq \Delta + C.$

Théorème

Pour tout $\epsilon > 0$, mad $< 4 - \epsilon \Rightarrow \chi^2 \leq \Delta + \mathcal{O}(\frac{1}{\epsilon})$.



$$\Delta = 2p.$$

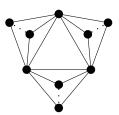
$$\text{mad} = 4 - \frac{2}{p}.$$

$$\chi^2 = \frac{3\Delta}{2}.$$

$$M$$
 maximal $| \forall m < M, \exists C,$
 $mad < m \Rightarrow \chi^2 \leq \Delta + C.$

Théorème

Pour tout $\epsilon > 0$, mad $< 4 - \epsilon \Rightarrow \chi^2 \leq \Delta + \mathcal{O}(\frac{1}{\epsilon})$.



$$\Delta = 2p.$$

$$mad = 4 - \frac{2}{p}.$$

$$\chi^2 = \frac{3\Delta}{2}.$$

Théorème optimal M = 4

Une méthode de déchargement "semi-globale".

• Considérons un contre-exemple minimal

- Considérons un contre-exemple minimal
- Poids initial d'un sommet : son degré

- Considérons un contre-exemple minimal
- Poids initial d'un sommet : son degré
- "Feeding areas" explicites (≃ arbres)

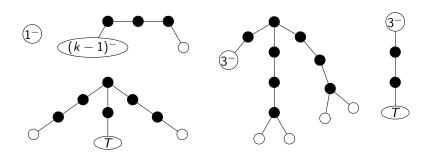
- Considérons un contre-exemple minimal
- Poids initial d'un sommet : son degré
- "Feeding areas" explicites (≃ arbres)
- Règles de déchargement et configurations interdites

- Considérons un contre-exemple minimal
- Poids initial d'un sommet : son degré
- "Feeding areas" explicites (≃ arbres)
- Règles de déchargement et configurations interdites
- Poids final d'un sommet : $\geq \frac{7}{3}$

- Considérons un contre-exemple minimal
- Poids initial d'un sommet : son degré
- "Feeding areas" explicites (≃ arbres)
- Règles de déchargement et configurations interdites
- Poids final d'un sommet : $\geq \frac{7}{3}$
- Contradiction

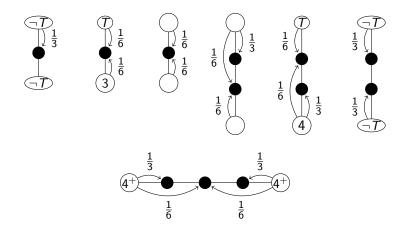
Dans la vraie vie...

Configurations interdites



Dans la vraie vie...

Règles de déchargement



Conclusion

Conclusion

Merci pour votre attention.