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Vertex coloring

1 2

1 2

1 2

1 2

χ: Minimum number of colors to ensure that

a b ⇒ a 6= b.

A graph is planar if it can be drawn in a plane without crossing
edges.
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Discharging, the origins

Introduced by Wernicke in 1904.

Goal:

Conjecture (Guthrie 1852)

For every planar graph, χ ≤ 4.

Successful?X
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Discharging, the outline

1 Every planar graph contains some C ∈ {C1,C2, . . . ,Cp}.

Euler’s formula:

4+
1

. . .

⇒ ∀v , f , w ′(v) ≥ 0,w ′(f ) ≥ 0 Contradiction!

2 For the 4-coloring of planar graphs, a graph that contains a Ci

can be reduced to a smaller graph.

3 Thus every planar graph is 4-colorable.

(Proof)
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Edge coloring

1 2

1 2

1 2

1 2

χ′: Minimum number of colors to ensure that
a b ⇒ a 6= b.

χ′
`: Minimum size of every L(e) such that

u v w

a b ⇒


a 6= b

a ∈ L(u, v)

b ∈ L(v ,w)
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Edge Coloring (2)

Vertex coloring of Line graphs.

Conjecture (List Coloring Conjecture ’85)

For any graph, χ′
` = χ′.

Theorem (Kahn ’93)

χ′
` − χ′ = o(χ′) when χ′ →∞.

Theorem (Vizing ’64)

For any graph, χ′ ≤ ∆ + 1.
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Global discharging

On planar graphs:

Theorem (Borodin ’90)

For any planar graph with ∆ ≥ 9, χ′
` ≤ ∆ + 1.

Simplified in 2008 by Cohen and Havet. (Proof)

Theorem (B. ’13+)

For any planar graph with ∆ ≥ 8, χ′
` ≤ ∆ + 1.

(Should be true for every single graph)
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More Global discharging

Key lemma to the previous proof (and many other):

Lemma

Even cycles are 2-choosable.

Theorem (Borodin, Kostochka, Woodall ’97)

For any bipartite multigraph G, if L is an edge list assignment
such that |L(u, v)| ≥ d(u), d(v) for every (u, v),
then G is L-edge-choosable.

Theorem (Borodin, Kostochka, Woodall ’97)

For any graph, ∆ > mad2 ⇒ χ′
` = ∆.

Can also be used in many similar settings.
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Who’s afraid of discharging?

It’s fun to do (not so much to read...)

and can be very elegant (I said ”can”).

It typically yields a polynomial algorithm (usually linear or
quadratic).

You can make a linear program out of it.

There are some hopes of partial automatization.

It’s extremely powerful in some settings (planar graphs,
bounded density graphs).

...Completely useless in others (?).

But we should keep in mind it’s just a counting argument
(the world is not divided into discharging and non-discharging
proofs).
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Some directions though

FPT meets discharging (but not enough).

Examples of global discharging on planar graphs that cannot
be made local?

How to automatize?

Thanks!
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