Bounded spectrum list coloring

Marthe Bonamy
19/09/2013

Joint work with Ross Kang
Vertex coloring

A graph is k-colorable if:

$$a \neq b, \quad a \in L(x), \quad b \in L(y)$$

A graph is k-choosable if:

For every L with $|L(v)| \geq k$,
Graph k-colorable if:

$$a \not= b \quad a, b \in [1, \ldots, k]$$
Vertex coloring

Graph k-colorable if:

\[
(a) \not\equiv (b) \Rightarrow \begin{cases}
 a \neq b \\
 a, b \in [1, \ldots, k]
\end{cases}
\]

Graph k-choosable if:

For every L with $|L(v)| \geq k$,

\[
(a) \not\equiv (b) \Rightarrow \begin{cases}
 a \neq b \\
 a \in L(x) \\
 b \in L(y)
\end{cases}
\]
Graph \((k, p)\)-choosable if:

For every \(L\) with \(|L(v)| \geq k\) and \(|\bigcup L(v)| \leq p\),

\[
\begin{align*}
\begin{array}{c}
 a \\
 x
\end{array} \quad \begin{array}{c}
 b \\
 y
\end{array} & \Rightarrow \\
\quad & \begin{cases}
 a \neq b \\
 a \in L(x) \\
 b \in L(y)
\end{cases}
\end{align*}
\]
Graph \((k, p)\)-choosable if:

For every \(L\) with \(|L(v)| \geq k\) and \(|\bigcup L(v)| \leq p\),

\[
\begin{align*}
\begin{cases}
 a \neq b \\
 a \in L(x) \\
 b \in L(y)
\end{cases}
\end{align*}
\]
Bounded spectrum list coloring

Graph \((k, p)\)-choosable if:

For every \(L\) with \(|L(v)| \geq k\) and \(|\bigcup L(v)| \leq p\),

\begin{align*}
\exists \begin{cases}
a \neq b \\
a \in L(x) \\
b \in L(y)
\end{cases}
\end{align*}

\((k, k)\)-choosable \iff k-colorable.
\((k, p + 1)\)-choosable \Rightarrow (k, p)\)-choosable.
\((k, \infty)\)-choosable \iff k-choosable.
Not (2, 4)-choosable, but (2, 3)-choosable.
Bipartite graphs

Not (2, 4)-choosable, but (2, 3)-choosable.

Not (2, 3)-choosable.
Bipartite graphs (2)

Lemma (Easy)

Any bipartite graph is \((k + 1, 2k)\)-choosable.
Bipartite graphs (2)

Lemma (Easy)

Any bipartite graph is \((k + 1, 2k)\)-choosable.

Lemma (Easy)

Some bipartite graphs are not \((k + 1, 2k + 1)\)-choosable.
Lemma (Easy)

Any bipartite graph is \((k + 1, 2k)\)-choosable.

Lemma (Easy)

Some bipartite graphs are not \((k + 1, 2k + 1)\)-choosable.

Lemma (Easy)

\((2, 3)\)-choosable \(\Rightarrow\) 2-choosable.
\((2, 4)\)-choosable \(\Rightarrow\) 2-choosable.
Lemma (Easy)

Any χ-colorable graph is $(k(\chi - 1) + 1, k\chi)$-choosable.

Lemma (Easy)

Some bipartite graphs are not $(k + 1, 2k + 1)$-choosable.

Lemma (Easy)

$(2, 3)$-choosable $\not\Rightarrow$ 2-choosable.
$(2, 4)$-choosable \Rightarrow 2-choosable.
Lemma (Easy)

Any \(\chi \)-colorable graph is \((k(\chi - 1) + 1, k\chi)\)-choosable.

Lemma (Easy)

Some \(\chi \)-colorable graphs are not \((k(\chi - 1) + 1, k\chi + 1)\)-choosable.

Lemma (Easy)

\((2, 3)\)-choosable \(\not\Rightarrow\) 2-choosable.
\((2, 4)\)-choosable \(\Rightarrow\) 2-choosable.
Questions

Question

\[\exists \, C_k, (k, C_k)\text{-choosable} \Rightarrow k\text{-choosable}. \]

Theorem (Král' Sgall 2005)

- For \(k \geq 3 \) and any \(p \geq k \), \((k, p)\)-choosable \(\Rightarrow k\)-choosable.

- And not \((k, p+1)\)-choosable.

Marthe Bonamy

Bounded spectrum list coloring

6/11
Questions

Question

$\exists \ C_k, (k, C_k)$-choosable \Rightarrow k-choosable.

$k = 1 \checkmark$

$k = 2 \checkmark$
Questions

<table>
<thead>
<tr>
<th>Question</th>
<th>$\exists \ C_k, (k, C_k)$-choosable $\implies k$-choosable.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$k = 1$</td>
<td>\checkmark</td>
</tr>
<tr>
<td>$k = 2$</td>
<td>\checkmark</td>
</tr>
</tbody>
</table>

Theorem (Král’ Sgall 2005)

For $k \geq 3$ and any $p \geq k$, (k, p)-choosable $\Rightarrow k$-choosable.
Questions

Question

∃? C_k, (k, C_k)-choosable ⇒ k-choosable.

k = 1 ✓

k = 2 ✓

Theorem (Král’ Sgall 2005)

For k ≥ 3 and any p ≥ k, there is a graph (k, p)-choosable and not (k, p + 1)-choosable.
Questions

<table>
<thead>
<tr>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>∃? (C_k, (k, C_k))-choosable (\Rightarrow k)-choosable.</td>
</tr>
</tbody>
</table>

\[k = 1 \checkmark \]
\[k = 2 \checkmark \]

<table>
<thead>
<tr>
<th>Theorem (Král’ Sgall 2005)</th>
</tr>
</thead>
<tbody>
<tr>
<td>For (k \geq 3) and any (p \geq k), there is a graph ((k, p))-choosable and not ((k, p + 1))-choosable.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Question (Král’ Sgall 2005)</th>
</tr>
</thead>
<tbody>
<tr>
<td>∃? (D_k, (k, D_k))-choosable (\Rightarrow (k + 1))-choosable.</td>
</tr>
</tbody>
</table>
Questions

Question

∃? \(C_k, (k, C_k)\)-choosable \(\Rightarrow \) \(k\)-choosable.

\(k = 1 \checkmark \)
\(k = 2 \checkmark \)

Theorem (Král’ Sgall 2005)

For \(k \geq 3 \) and any \(p \geq k \), there is a graph \((k, p)\)-choosable and not \((k, p + 1)\)-choosable.

Question (Král’ Sgall 2005)

∃? \(D_k, (k, D_k)\)-choosable \(\Rightarrow \) \((k + 1)\)-choosable.

True for \(k = 2 \) (then \(D_2 = 3 \)).
Questions (2)

Question

∃? \(C_{k,p}, (k, p) \)-choosable \(\Rightarrow \) \(C_{k,p} \)-choosable.
∃? $C_{k,p}$, (k, p)-choosable $\Rightarrow C_{k,p}$-choosable.

$p \leq 2k - 2 : \text{NO}$
Questions (2)

<table>
<thead>
<tr>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\exists \ ? \ C_{k,p}, (k, p)$-choosable $\Rightarrow C_{k,p}$-choosable.</td>
</tr>
</tbody>
</table>

$p \leq 2k - 2 : \text{NO}$

<table>
<thead>
<tr>
<th>Theorem (Král’ Sgall 2005)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C_{k,2k-1} = O(k \cdot \ln k \cdot 2^{4k})$.</td>
</tr>
</tbody>
</table>

Sketch of the proof (blackboard).
Questions (2)

<table>
<thead>
<tr>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\exists , C_{k,p}, (k, p))-choosable (\Rightarrow) (C_{k,p})-choosable.</td>
</tr>
</tbody>
</table>

\(p \leq 2k - 2 : \text{NO} \)

<table>
<thead>
<tr>
<th>Theorem (Král’ Sgall 2005)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_{k,2k-1} = \mathcal{O}(k \cdot \ln k \cdot 2^{4k})).</td>
</tr>
</tbody>
</table>

Sketch of the proof (blackboard).

<table>
<thead>
<tr>
<th>Question (Král’ Sgall 2005)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Must (C_{k,2k-1}) grow exponentially in (k)?</td>
</tr>
<tr>
<td>Question</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Theorem</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Sketch</td>
</tr>
<tr>
<td>Question</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Theorem</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Sketch</td>
</tr>
</tbody>
</table>
Theorem (B. Kang 2013)

For any $p \geq 2k - 1$, $C_{k,p} > \exp\left(\frac{(k-1)^2}{p}\right)$.

Only interesting if $p = o(k^2)$.
Theorem (B. Kang 2013)

For any \(p \geq 2k - 1 \), \(C_{k,p} > \exp\left(\frac{(k-1)^2}{p}\right) \).

Only interesting if \(p = o(k^2) \).

Definition (Berstein 1908)

A family of sets \(\mathcal{F} \subseteq \binom{[p]}{k} \) has property B if there is an intersecting set \(S \) of \(\mathcal{F} \) with \(F \not\subseteq S \) for all \(F \in \mathcal{F} \).
Theorem (B. Kang 2013)

For any $p \geq 2k - 1$, $C_{k,p} > \exp\left(\frac{(k-1)^2}{p}\right)$.

Only interesting if $p = o(k^2)$.

Definition (Berstein 1908)

A family of sets $\mathcal{F} \subseteq \binom{[p]}{k}$ has property B if there is an intersecting set S of \mathcal{F} with $F \not\subseteq S \quad \forall F \in \mathcal{F}$.

(2-colorable k-uniform p-hypergraphs).
Properties B and K

Theorem (B. Kang 2013)

For any $p \geq 2k - 1$, $C_{k,p} > \exp\left(\frac{(k-1)^2}{p}\right)$.

Only interesting if $p = o(k^2)$.

Definition (Berstein 1908)

A family of sets $\mathcal{F} \subseteq \binom{[p]}{k}$ has property B if there is an intersecting set S of \mathcal{F} with $F \not\subseteq S \ \forall F \in \mathcal{F}$.

(2-colorable k-uniform p-hypergraphs).

Definition (B. Kang 2013)

A family of sets $\mathcal{F} \subseteq \binom{[p]}{k}$ has property K if there is a set $S \in \binom{[p]}{p-k+1}$ with $F \not\subseteq S \ \forall F \in \mathcal{F}$.
Properties B and K

<table>
<thead>
<tr>
<th>Theorem (B. Kang 2013)</th>
</tr>
</thead>
<tbody>
<tr>
<td>For any $p \geq 2k - 1$, $C_{k,p} > \exp\left(\frac{(k-1)^2}{p}\right)$.</td>
</tr>
</tbody>
</table>

Only interesting if $p = o(k^2)$.

<table>
<thead>
<tr>
<th>Definition (Berstein 1908)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A family of sets $\mathcal{F} \subseteq \binom{[p]}{k}$ has property B if there is an intersecting set S of \mathcal{F} with $F \not\subseteq S \quad \forall F \in \mathcal{F}$.</td>
</tr>
</tbody>
</table>

(2-colorable k-uniform p-hypergraphs).

<table>
<thead>
<tr>
<th>Definition (B. Kang 2013)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A family of sets $\mathcal{F} \subseteq \binom{[p]}{k}$ has property K if there is a set $S \in \binom{[p]}{p-k+1}$ with $F \not\subseteq S \quad \forall F \in \mathcal{F}$.</td>
</tr>
</tbody>
</table>

Hypergraphs?
Property B

<table>
<thead>
<tr>
<th>Definition (Berstein 1908)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A family of sets \mathcal{F} has property B if there is an intersecting set S of \mathcal{F} with $F \not\subseteq S \quad \forall F \in \mathcal{F}$.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Definition (Erdős 1963)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M_{k,p} = \text{size of the smallest } \mathcal{F} \subseteq \binom{[p]}{k} \text{ that does not have property B (i.e. every intersecting set of } \mathcal{F} \text{ belongs to } \mathcal{F}).$</td>
</tr>
</tbody>
</table>
Property B

Definition (Berstein 1908)
A family of sets \mathcal{F} has property B if there is an intersecting set S of \mathcal{F} with $F \not\subseteq S \quad \forall F \in \mathcal{F}$.

Definition (Erdös 1963)
$M_{k,p}$ = size of the smallest $\mathcal{F} \subseteq \binom{[p]}{k}$ that does not have property B (i.e. every intersecting set of \mathcal{F} belongs to \mathcal{F}).

$M_{k,2k-1} = \binom{2k-1}{k}$
Property B

Definition (Berstein 1908)
A family of sets \mathcal{F} has property B if there is an intersecting set S of \mathcal{F} with $F \not\subseteq S \ \forall F \in \mathcal{F}$.

Definition (Erdős 1963)

$M_{k,p}$ = size of the smallest $\mathcal{F} \subseteq \binom{[p]}{k}$ that does not have property B (i.e. every intersecting set of \mathcal{F} belongs to \mathcal{F}).

$$M_{k,2k-1} = \binom{2k-1}{k}$$

Theorem (Král’ Sgall 2005)

$$\delta \geq 110 \cdot M(k, p)^2 \cdot \ln(M(k, p)) \Rightarrow \text{not } (k, p)\text{-choosable.}$$

Kang 2012: generalization to improper choosability.
Definition (Berstein 1908)
A family of sets \mathcal{F} has property B if there is an intersecting set S of \mathcal{F} with $F \not\subseteq S \ \forall F \in \mathcal{F}$.

Definition (Erdős 1963)
$M_{k,p}$ = size of the smallest $\mathcal{F} \subseteq \binom{[p]}{k}$ that does not have property B (i.e. every intersecting set of \mathcal{F} belongs to \mathcal{F}).

$$M_{k,2k-1} = \binom{2k-1}{k}$$

Theorem (Král’ Sgall 2005)
$$\delta \geq 110 \cdot M(k, p)^2 \cdot \ln(M(k, p)) \Rightarrow \text{not } (k, p)\text{-choosable}.$$
Kang 2012: generalization to improper choosability.
Property K

Definition (B. Kang 2013)

A family of sets $\mathcal{F} \subseteq \left(\binom{[p]}{k}\right)$ has property K if there is a set $S \in \binom{[p]}{p-k+1}$ with $F \not\subseteq S \ \forall F \in \mathcal{F}$.

Definition

$R_{k,p} = \text{size of the smallest } \mathcal{F} \subseteq \left(\binom{[p]}{k}\right) \text{ that does not have property K (i.e. every set } S \in \binom{[p]}{p-k+1} \text{ contains an element of } \mathcal{F})$.

Theorem (B. Kang 2013)

$R_{k,p} \geq \exp\left(\left(\frac{k-1}{2p}\right)^2\right)$.

Sketch of the proof (blackboard).

$R_{k,p} \geq k^2 = k$.

Marthe Bonamy
Bounded spectrum list coloring
10/11
Definition (B. Kang 2013)

A family of sets $\mathcal{F} \subseteq \binom{[p]}{k}$ has **property K** if there is a set $S \in \binom{[p]}{p-k+1}$ with $F \nsubseteq S \ \forall F \in \mathcal{F}$.

$$R_{k,2k-1} = \binom{2k-1}{k}.$$
Property K

Definition (B. Kang 2013)

A family of sets $\mathcal{F} \subseteq \binom{[p]}{k}$ has property K if there is a set $S \in \binom{[p]}{p-k+1}$ with $F \not\subseteq S \ \forall F \in \mathcal{F}$.

$R_{k,2k-1} = \binom{2k-1}{k}$.

Lemma

Any bipartite graph (A, B) is (k, p)-choosable if $|A| < R(k, p)$.

Theorem (B. Kang 2013)

$$R_{k,p} \geq \exp\left(\frac{(k-1)^2}{p}\right).$$

Sketch of the proof (blackboard).

$R_{k,\geq k^2} = k$.
Conclusion

Question (Král’ Sgall 2005)

∃? \(D_k, (k, D_k) \)-choosable \(\Rightarrow (k + 1)\)-choosable.

\[D_k \overset{?}{=} k^2. \]
Conclusion

Question (Král’ Sgall 2005)

∃? \(D_k, (k, D_k) \)-choosable \(\Rightarrow (k + 1) \)-choosable.

- \(D_k \overset{?}{=} k^2 \).
- \(\delta \geq f(R_{k,p}) \overset{?}{\Rightarrow} \text{not } (k, p) \)-choosable.
Conclusion

Question (Král’ Sgall 2005)

∃? \(D_k, (k, D_k) \)-choosable \(\Rightarrow (k + 1) \)-choosable.

- \(D_k \stackrel{?}{=} k^2 \).
- \(\delta \geq f(R_k, p) \Rightarrow \) not \((k, p) \)-choosable.
- \((k, p) \)-choosability of complete bipartite graphs?
Question (Král’ Sgall 2005)

\[\exists? D_k, (k, D_k)\text{-choosable} \Rightarrow (k + 1)\text{-choosable}. \]

- \(D_k \stackrel{?}{=} k^2 \).
- \(\delta \geq f(R_k, p) \stackrel{?}{\Rightarrow} \) not \((k, p)\text{-choosable}\).
- \((k, p)\text{-choosability of complete bipartite graphs}\).