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Abstract

The aim of this internship was to try a variation of the discharging method on some coloring problems
and see whether it could yield more powerful results. We concentrated mainly on the 2-distance coloring
of sparse graphs, and were able to improve known results by Dolama and Sopena, and Borodin et al.
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1 Introduction

There are two main aspects to this internship: the problem we study, and the methods we use to solve it.
In Section 2, we shall introduce the 2-distance coloring, state our main results and put them in context. In
Section 3, we shall present the discharging method, give some simple examples, then sketch our proofs.

All the graphs we consider here are simple, finite and undirected. Let G = (V,E) be a graph. For any
subgraph H of G, we denote V (H) and E(H) the vertices and edges of H . For any vertex v ∈ V , the degree
of v in G, denoted d(v), is the number of neighbors of v in G. The maximum degree of G, denoted ∆(G), is
max
v∈V

d(v).

2 2-distance coloring

Definition 1. A 2-distance coloring of a graph G is a coloring of the vertices of G such that two vertices that are
adjacent or have a common neighbor receive distinct colors. We define χ2(G) as the smallest k such that G admits a
2-distance k-coloring.

This is equivalent to a proper vertex-coloring of the square of G, which is defined as a graph with the
same set of vertices as G, where two vertices are adjacent if and only if they are adjacent or have a common
neighbor in G. For example, a cycle of length 5 cannot be 2-distance colored with less than 5 colors as any
two vertices are either adjacent or have a common neighbor.

2.1 State of the Art

The study of χ2(G) on planar graphs was initiated by Wegner in 1977 [12], and has been actively studied
because of his conjecture.

Conjecture 1 (Wegner [12]). If G is a planar graph, then:

• χ2(G) ≤ 7 if ∆(G) = 3

• χ2(G) ≤ ∆(G) +5 if 4 ≤ ∆(G) ≤ 7

• χ2(G) ≤ b 3 ∆(G)
2 c+ 1 if ∆(G) ≥ 8

This conjecture remains open, except in the case of ∆(G) = 3, which was proved by Thomassen [10].

Note that any graph G satisfies χ2(G) ≥ ∆(G) +1. Indeed, if we consider a vertex of maximal degree
and its neighbors, they form a set of ∆(G) +1 vertices, any two of which are adjacent or have a common
neighbor. Hence at least ∆(G) +1 colors are needed for a 2-distance coloring of G. It is therefore natural
to ask when this lower bound is reached. For that purpose, we can study, as suggested by Wang and
Lih [11], what conditions on the sparseness of the graph can be sufficient to ensure the equality holds. The
sparseness of a graph can for example be measured by its girth, as defined below.

Definition 2. The girth of a graph G, denoted g(G), is the length of a shortest cycle.

Conjecture 2 (Wang and Lih [11]). For any integer k ≥ 5, there exists an integer M(k) such that for every planar
graph G verifying g(G) ≥ k and ∆(G) ≥M(k), χ2(G) = ∆(G) +1.

Conjecture 2 was proved by Borodin, Ivanova and Noestroeva [4] to be true for k ≥ 9 and false for
k ∈ {5, 6}, but they left the cases k ∈ {7, 8} open. More precisely, they proved the following.
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Theorem 1 (Borodin et al [4]). There exist planar graphs G with g(G) = 6 such that χ2(G) > ∆(G) +1 for
arbitrarily large ∆(G).
For any planar graph G, χ2(G) = ∆(G) +1 in each of the following cases:

(1) ∆(G) ≥ 3 and g(G) ≥ 24

(2) ∆(G) ≥ 4 and g(G) ≥ 15

(3) ∆(G) ≥ 5 and g(G) ≥ 13

(4) ∆(G) ≥ 6 and g(G) ≥ 12

(5) ∆(G) ≥ 7 and g(G) ≥ 11

(6) ∆(G) ≥ 9 and g(G) ≥ 10

(7) ∆(G) ≥ 16 and g(G) ≥ 9

An extension of 2-distance k-coloring is the 2-distance k-list-coloring, where instead of having the same
set of k colors for the whole graph, every vertex is assigned some set of k colors and has to be colored
from it. Given a graph G, we call χ2

`(G) the minimal integer k such that a 2-distance k-list-coloring exists.
Obviously, 2-distance coloring is a subcase of 2-distance list-coloring (where the same color list is assigned
to every vertex), so for any graph G, χ2

`(G) ≥ χ2(G). Kostochka and Woodall [8] even conjectured that it is
actually an equality.

Conjecture 3 (Kostochka and Woodall [8]). Any graph G verifies χ2
`(G) = χ2(G).

This conjecture is still open.

Borodin, Ivanova and Noestroeva [5] strengthened Theorem 1 by extending it to list-coloring, and clos-
ing the gap between 6 and 9.

Theorem 2 (Borodin et al [5]). There exist planar graphs G with g(G) ≤ 6 such that χ2
`(G) > ∆(G) +1 for

arbitrarily large ∆(G).
If G is a planar graph, then χ2

`(G) = ∆(G) +1 in each of the following cases:

(1) ∆(G) ≥ 3 and g(G) ≥ 24

(2) ∆(G) ≥ 4 and g(G) ≥ 15

(3) ∆(G) ≥ 5 and g(G) ≥ 13

(4) ∆(G) ≥ 6 and g(G) ≥ 12

(5) ∆(G) ≥ 7 and g(G) ≥ 11

(6) ∆(G) ≥ 9 and g(G) ≥ 10

(7) ∆(G) ≥ 16 and g(G) ≥ 9

(8) ∆(G) ≥ 15 and g(G) = 8

(9) ∆(G) ≥ 30 and g(G) = 7

Another way to measure the sparseness of a graph is through its maximum average degree as defined
below. The average degree of a graph G, denoted ad(G), is

∑
v∈V d(v)

|V | = 2|E|
|V | .

Definition 3. The maximum average degree of a graph G, denoted mad(G), is the maximum on every subgraph
H of ad(H).

Intuitively, this measures the sparseness of a graph because it states how great the concentration of
edges in a same area can be. For example, stating that mad(G) has to be smaller than 2 means that G cannot
be anything but a tree. Dolama and Sopéna [6] used this measure of sparseness and proved the following
result:

Theorem 3 (Dolama and Sopéna [6]). Every graph with ∆(G) ≥ 4 and mad(G) < 16
7 verifies χ2(G) = ∆(G) +1.

Fortunately, we have a very handy formula, derived from Euler’s formula, which links these two notions
of sparseness in the case of planar graphs.

Lemma 1. For every planar graph G, (mad(G)− 2)(g(G)− 2) < 4.
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Proof (Folklore). Let H be a subgraph of G such that mad(G) = ad(H) = 2|E(H)|
|V (H)| .

Euler’s formula states that: |E(H)| − |V (H)| + 2 = |F (H)|, where |F (H)| is the number of faces of H . But
|F (H)| ≤ 2|E(H)|

g(H) .

So |E(H)| − |V (H)| < 2|E(H)|
g(H)

2|E(H)|g(H)
|V (H)| < 4|E(H)|

|V (H)| + 2g(H)
2|E(H)|g(H)
|V (H)| − 4|E(H)|

|V (H)| − 2g(H) + 4 < 4

(mad(G)− 2)(g(H)− 2) < 4

Since g(H) ≥ g(G), (mad(G)− 2)(g(G)− 2) < 4.

As a consequence, we can transpose any theorem holding for an upper bound on mad(G) into a theorem
holding for a lower bound on g(G) under the condition that G be planar. In particular, Theorem 3 implies
that for every planar graph G with g(G) ≥ 16 and ∆(G) ≥ 4, χ2(G) = ∆(G) +1. This lower bound on the
girth is not as good as the one stated in Theorem 1.(2) by Borodin et al, and the first goal of this internship
was to try to improve Theorem 3.

2.2 Our results

We managed to improve Theorem 3 into the following.

Theorem 4. Every graph G with ∆(G) ≥ 4 and mad(G) < 7
3 verifies χ2(G) = ∆(G) +1.

Theorem 4 happens to be optimal, as Montassier [9] pointed out that there exists a graph G with
mad(G) = 7

3 , ∆(G) = 4 and χ2(G) = 6 > ∆(G) +1 (see Figure 1).

Figure 1: A graph G with mad(G) = 7
3 , ∆(G) = 4 and χ2(G) = 6.

We can transpose it to planar graphs with a lower bound on the girth using Lemma 1, and it is then an
improvement of Theorem 1.(2).

Corollary 1. Every planar graph G with ∆(G) ≥ 4 and g(G) ≥ 14 verifies χ2(G) = ∆(G) +1.

However, it is not comparable to the more general result in Theorem 2 since we are not considering
list-coloring.

This being done, we wanted to know whether we could improve similarly the other cases of Theorem 2.
More precisely, we wanted to find a function f and a constant M such that any graph G with mad(G) < M
and ∆(G) ≥ f(M) would verify χ2

`(G) = ∆(G) +1: M being as big as possible. We obtained the following
result, which shows that M can be arbitrarily close to 8

3 .

Theorem 5. For every ε > 0, any graph G with mad(G) < 8
3 − ε and ∆(G) ≥ max(5, 4

3ε ) verifies χ2
`(G) =

∆(G) +1.

We can, once again, transpose it to planar graphs with a lower bound on the girth using Lemma 1, and
it is then an improvement of the cases (3) to (7) of Theorem 2.

Corollary 2. For any planar graph G, χ2
`(G) = ∆(G) +1 in each of the following cases:

• ∆(G) ≥ 5 and g(G) ≥ 12
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• ∆(G) ≥ 6 and g(G) ≥ 11

• ∆(G) ≥ 8 and g(G) ≥ 10

• ∆(G) ≥ 15 and g(G) ≥ 9

We know that M < 3 due to the family of graphs presented in Figure 2.

Figure 2: A graph Gp with mad(Gp) = 3− 5
2p+1 , ∆(Gp) = p and χ2(Gp) = ∆(Gp) + 2.

We do not know yet what happens between 8
3 and 3. Is the planarity hypothesis necessary to provide

lower bounds on ∆(G) such that mad(G) can be arbitrarily close to 3? It seems anyway that the method we
used (see Section 3) cannot be extended to fill the gap. We also know that if there exists a family of graphs
Gp of increasing maximal degree, where mad(Gp) tends to 8

3 and χ2
`(G) > ∆(Gp) + 1, then it is not planar,

and has a huge number of vertices compared to its maximal degree.
More generally, we wondered if we could get similar results when adding a constant number of colors,

ie if we could find a function h and a constant N such that for any graph G such that mad(G) < N would
verify χ2

`(G) ≤ ∆(G) +h(N): N being as big as possible. We obtained the following result, which shows
that N can be arbitrarily close to 4.

Theorem 6. Every graph G with mad(G) < 4− ε verifies χ2
`(G) ≤ ∆(G) +h(ε), where h(ε) ∼ 40

ε when ε→ 0.

The bound on N cannot be improved; the family of graphs presented in Figure 3 proves that N < 4.

Figure 3: A graph Gp with mad(Gp) = 4− 4
p , ∆(Gp) = p and χ2(G) =

3∆(Gp)
2 .

The existence of this family also justifies that h(ε) cannot be smaller than 2
ε . We do not know whether

this lower bound is actually the optimal value, but we are aware of the fact that we could probably get a
more refined function h.

Those are the main results we were able to get about the 2-distance coloring of sparse graphs (others in-
volved an improvement of Theorem 1.(1), whose proof is disproportionately long, and more precise results
for χ2

`(G) ≤ ∆(G) +2 and ∆(G) +3, which are not quite relevant yet). We will now explain the principle of
a discharging method and sketch the proofs of the above-cited results.

3 Discharging methods

3.1 A brief introduction

The discharging method was introduced in the early 20st century, and is essentially known for being used
by Appel and Haken in 1976 in order to prove the 4-color theorem.
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Theorem 7 (Appel et al [1, 2]). Every planar graph can be colored with 4 colors.

It can be relevant to point out that so far, every proof of Theorem 7 uses the discharging method.
Very roughly, here are the main steps of a discharging proof. The forbidden configurations are faculta-

tive.

• Have a conjecture.

• Consider a minimal counter-example G to this conjecture (minimal according to some order, for ex-
ample in terms of number of vertices, or in terms of subgraph).

– Prove there are a few configurations G cannot contain. A configuration is a pattern in the graph,
like two vertices of degree 2 that are adjacent, or a clique of size 4. This means assume by contra-
diction G contains a given configuration, apply the minimality hypothesis to solve the problem
on a smaller graph ("smaller" according to the same order that was used for the definition of
"minimal") and derive from this solution a solution to the problem on G.

– Attribute weights to elements of G (vertices, edges, faces, incidences...).

– Design discharging rules (under which conditions weight transfers can take place).

– Apply them to G.

– Use the forbidden configurations and weight conservation to derive a contradiction from the
final weights in G (traditionnally, G is planar and the contradiction is derived from Euler’s for-
mula, but this is only one out of many possibilities).

• Hence no counter-example exists.

This is the order in which the proofs are presented, but it is of course not the order in which the proofs
are found. In practice, it is more of a constant readjustment, by trial and error.

To get a more practical notion of how we used this discharging method, let us consider a very simple
example. Assume we want to study what conditions on a graphG are sufficient to ensure χ2

`(G) ≤ ∆(G) +2.
Let us look more precisely for an upper bound on mad(G).

• The conjecture is: "Any graph G such that mad(G) < a verifies χ2
`(G) ≤ ∆(G) +2".

• What weights could we attribute in order to get a contradiction at the end?

– Knowing that we have an upper bound on mad(G), we could attribute to each vertex its degree
as a weight, then try to prove that at the end, every vertex has a weight of at least a, hence the
contradiction (

∑
d(v)
|V | = 2|E|

|V | ≤ mad(G) < a, and by conservation of weight, if every vertex has
at the end a weight of at least a, then

∑
d(v) ≥ a× |V |).

• What configurations can we forbid?

– We can for example forbid that there be a vertex of degree 1. Indeed, assume that in a minimal
counter-example G (minimal meaning that all its proper subgraphs verify the property), there
exists a vertex v of degree 1. We use the minimality of G to 2-distance color G \ {v}with at most
∆(G) +2 colors. Then, there are at most ∆(G) vertices that are adjacent to or have a common
neighbor with v. Consequently, there are two free colors for v, and there exists a 2-distance
(∆(G) +2)-coloring of G.

– We can also forbid that there is a path x-u-v-w-y where u, v, w are of degree 2. Assume G
contains such a path. We use the minimality of G to color G \ {v, w}. Vertex w has at most
|N(y)\{w}∪{y, u}| ≤ ∆(G) +1 constraints, so there is a free color forw (the number of constraints
of w is the number of different colors used on vertices that are adjacent to or have a common
neighbour with w). Vertex v has at most 4 constraints, hence there is a free color for v if we
assume the size of the color lists is at least 5.
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• The conjecture is now: "Any graph G such that mad(G) < a verifies χ2
`(G) ≤ max(∆(G) +2, 5)".

• What discharging rules can we design so that every vertex get a weight of at least a at the end?

– According to our forbidden configurations, there is no vertex of degree 1, and every vertex of
degree 2 has a neighbor that is of degree at least 3. Consequently, all we have to ensure is that
every vertex of degree at least 3 can afford to give a−2 to all its neighbors and still have a weight
of at least a after that. In other words, we only need 3− a ≥ 3(a− 2), ie a ≤ 9

4 .

• The conjecture is now: "Any graph G such that mad(G) < 9
4 verifies χ2

`(G) ≤ max(∆(G) +2, 5)".

• We have a single discharging rule to design : every vertex of degree at least 3 gives 1
4 to each of its

neighbors of degree 2.

• Qed. Any graph G such that ∆(G) ≥ 3 and mad(G) < 9
4 verifies χ2

`(G) ≤ ∆(G) +2.

This is obviously far from being an optimal result, but it is a simple illustration of the discharging
method.

Another interest of the discharging method, beside the fact that it is a powerful tool to prove things
about the structure of graphs, is that a polynomial algorithm can generally be derived from a discharging
proof. Indeed, we actually prove that every graph verifying the hypotheses of the theorem contains one of
the forbidden configurations. Since the hypotheses are hereditarily verified, at each step, we spot a config-
uration, remove the corresponding vertices, color inductively the rest of the graph, and extend the coloring
to the removed vertices. Besides, spotting a configuration can be sped up by applying the discharging
rules: near those configurations, some weights do not have the expected value (in our case, a vertex will
have a weight smaller than the upper bound on the maximum average degree). Usually, it is even a small
polynomial.

3.2 Using local discharging

We say a discharging proof is local when the configurations and the discharging rules are all of finite size.
Historically, all discharging proofs are local, and the notion of global discharging (See Section 3.3) was only
introduced in 2005, by Borodin, Ivanova and Kostochka [3]. Only one of our proofs is local.

We say a graph G is minimal for a property when G verifies it but none of its proper subgraphs does.

Proof of Theorem 6

Let 2 > ε > 0.

We call h(ε) = max(5M − 6, 2M + 3), where M is defined as the solution to M − (4− ε) = M × (1− ε
2 ),

ie M = 8
ε − 2. (So h(ε) = max( 40

ε − 16, 16
ε − 1).)

We want to prove that every graph G with mad(G) < 4 − ε admits a 2-distance (∆(G) +h(ε))-list-
coloring. We do that by a discharging method.

Assume the above is false. TakeG a minimal graph withmad(G) < 4−ε that does not admit a 2-distance
(∆(G) +h(ε))-list-coloring. We can assume without loss of generality that G is connected.

We call weak a vertex of degree 2 or 3 that has at most one neighbor of degree M+.
In the figures, we draw in black a vertex that has no other neighbor than the ones already represented,

in white a vertex that might have other neighbors than the ones represented. When there is a label inside a
white vertex, it is an indication on the number of neighbors it has. The label ’i’ means "exactly i neighbors",

8



the label ’i+’ (resp. ’i−’) means that it has at least (resp. at most) i neighbors. The label ’w’ means the vertex
is weak. Note that the white vertices may coincide with other vertices.

We first prove that G cannot contain any of the configurations (C1) and (C2) depicted in Figure 4. Con-
figuration (C1) is a vertex u of degree 1. Configuration (C2) is a vertex u of degree M− that has a weak
neighbor x, and at most 3 neighbors of degree 4+, among which at most one is of degree M+.

1
u

(C1)
w
x

M−
u

3−

(C2)
3−

M−

M−

Figure 4: Forbidden configurations for Theorem 6.

Lemma 2. G cannot contain Configurations (C1) nor (C2).

Proof. (C1) We color G \ {u} using the minimality of G. Vertex u has at most ∆(G) constraints, so there is
a free color for u, a contradiction.

(C2) We remove the (u, x) edge, and use the minimality ofG to color the resulting graph. We discolor u and
x, restore the edge (u, x) and extend the coloring as follows: u has at most ∆(G) +2M +max(3(M −
3), 0) + 2 constraints, so there is a free color for u, and x has at most ∆(G) +M + M constraints, so
there is a free color for x, a contradiction.

We then attribute to each vertex a weight equal to its degree. We design two discharging rules R1, R2

and prove that each vertex of G enjoys a weight of at least 4− ε at the end of the discharging.

Discharging rule R1 (see Figure 5) states that a vertex of degree at least M gives 1 − ε
2 to each of its

neighbors. Discharging rule R2 states that a vertex of degree less than M gives 1 − ε
2 to each of its weak

neighbors.

M+R1 :

1− ε
2

M−R2 : w

1− ε
2

Figure 5: Discharging rules R1, R2 for Theorem 6.

Lemma 3. Each vertex of G has a weight of at least 4− ε after application of the discharging rules.

Proof. Let u be a vertex of G. Thanks to Configuration (C1), we have d(u) ≥ 2.

• u gives some weight away.

– If d(u) ≥M , (R1) is applied, and by definition of M , vertex u gives 1− ε
2 to each of its neighbors

and still has a weight of at least 4− ε.
– If d(u) < M , (R2) is applied and u has a weak neighbor x. Since (C2) is forbidden, u is in one of

these two situations:

∗ u has at least two neighbors of degree M+. According to R1, they each give 1− ε
2 to u. Then

u has at most d − 2 weak neighbors, and d − (4 − ε) + 2(1 − ε
2 ) ≥ (d − 2)(1 − ε

2 ), so u has a
weight of at least 4− ε after application of the discharging rules.
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∗ u has at least four neighbors of degree 4+. So u has at most d − 4 weak neighbors, and
d − (4 − ε) ≥ (d − 4)(1 − ε

2 ), hence u has a weight of at least 4 − ε after application of the
discharging rules.

• u gives no weight away.

– d(u) ≥ 4. Then u still has a weight of at least 4− ε after application of the discharging rules.

– u is a weak vertex. Then, according to (C2), it can’t be adjacent to another weak vertex, so it gives
nothing away and receives 1− ε

2 from each of its neighbors. After application of the discharging
rules, it has a weight at least 2 + 2× (1− ε

2 ) = 4− ε
– d(u) ≤ 3 and u is not weak. Then, u has at least two neighbors of degree at least M , so u receives

at least 2× (1− ε
2 ). It had initially a weight of at least 2 and gave nothing away, meaning that it

has a weight of at least 4− ε after application of the discharging rules.

As a conclusion, every vertex in G enjoys a weight of at least 4 − ε after application of the discharging
rules.

Since the weight is conserved, this means
∑
d(v) ≥ (4−ε)×|V |, hence 4−ε ≤

∑
d(v)
|V | = 2|E|

|V | ≤ mad(G) <

4− ε, a contradiction.

3.3 Using semi-local discharging

As mentioned earlier, the notion of global discharging was introduced by Borodin, Ivanova and Kos-
tochka [3]. A discharging method is global when we consider arbitrarily large configurations and make
some weight travel arbitrarily far along those configurations. We use a sort of semi-local discharging,
where the weight always stays in a finite area, but where both the forbidden configurations and the dis-
charging rules take into account structures of arbitrarily large size. We have two proofs of this kind: Proofs
of Theorems 4 and 5, but we will only sketch the main ideas and leave the technical parts to the Appendix.

Proof of Theorem 4

We want to prove that every graph G with mad(G) < 7
3 admits a 2-distance (max(5,∆(G) +1))-coloring. We

do that by a discharging method, whose main steps we present here (see Section A for the details).

Assume the above is false. Take G a minimal graph with mad(G) < 7
3 that does not admit a 2-distance

(max(5,∆(G) +1))-coloring.

In the figures of this proof, a label T (v, a4) inside a vertex means that T (v, a4) exists, as defined below.
A configuration T (v, a4) (see Figure 6) is inductively defined as a vertex v of degree 4 with neighbors

a1, a2, a3, a4, where for i ∈ {1, 2, 3}, vertex v is 2-linked by a path v-ai-bi-wi either to a vertex wi of degree
at most 3 or to a configuration T (wi, bi).

Now we define configurations (C1) to (C5) (see Figure 7).

• (C1) is a vertex of degree 0 or 1.

• (C2) is a vertex 3-linked to a vertex not of maximal degree.

• (C3) is a vertex of degree 3 that is 2-linked to two vertices of degree 3, and 1-linked to a vertex of
degree at most 3.

• (C4) is a vertex u of degree at most 3 that is 2-linked by a path u-y-x-v to a vertex v such that T (v, x)
exists.
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T (v, a4)

v

a1

b1

3− or T (w1, b1)

w1

a2

b2

3− or T (w2, b2)

w2

a3

b3

3− or T (w3, b3)

w3

a4

Figure 6: A T (v, u4).

• (C5) is a vertex u of degree 3 that is 2-linked to two vertices, and 1-linked by a path u-x-v to a vertex
v such that T (v, x) exists.

(C2)

1−u

(C1) (∆(G)−1)−

w1

u1

v
u2

w2

v
u3

x3

w3

u2

x2

w2

(C3)

u1

3−

x1

T (v, x) v

(C4)

x

y

3− u

T (v, x) v

(C5)

x

u

y2

z2

a2

y1

z1

a1

Figure 7: Forbidden configurations for Theorem 4.

Lemma 4. The graph G does not contain any of Configurations (C1) to (C5).

The following lemma will ensure that the discharging rules we introduce later are well-defined.

Lemma 5. In a graph H where (C4) is forbidden, and x and y are two vertices of degree 4 such that a path x-a-b-y
(with a and b of degree 2) exists, T (x, a) and T (y, b) cannot both exist.

We design discharging rules R1, R2, R3 (see Figure 8). We use them in the proof of Lemma 6, where
the initial weight of a vertex equals its degree, and its final weight is shown to be at least 7

3 . For any two
vertices x and y of degree at least 3, with d(x) ≥ d(y),

• Rule R1 is when x and y are 1-linked by a path x− a− y.

– (R1.1) If d(x) = d(y), then both x and y give 1
6 to a.

– (R1.2) If d(x) > d(y) and T (x, a) exists, then both x and y give 1
6 to a.

– (R1.3) If d(x) > d(y) and T (x, a) does not exist, then x gives 1
3 to a.

• Rule R2 is when x and y are 2-linked by a path x− a− b− y.

– (R2.1) If d(x) = d(y) and neither T (x, a) nor T (y, b) exist, then x (resp. y) gives 1
3 to a (resp. b).
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– (R2.2) If d(x) = d(y) and T (y, b) exists, then x gives 1
3 to a and both x and y give 1

6 to b.

– (R2.3) If d(x) > d(y), then x gives 1
3 to a and both x and y give 1

6 to b.

• Rule R3 is when x and y, both of degree at least 4, are 3-linked by a path x − a − b − c − y. Then x
gives 1

3 to a and 1
6 to b, and symmetrically for y.

x

a

y

d(x) = d(y) d(x) > d(y) d(x) > d(y) d(x) = d(y) d(x) = d(y) d(x) > d(y)

R1.1 R1.2 R1.3 R2.1 R2.2 R2.3

Rule 1: x and y are 1-linked Rule 2: x and y are 2-linked

1
6

1
6

T (x, a)x

a

3y

1
6

1
6

¬T (x, a)x

a

y

1
3

¬T (x, a) x

a

b

¬T (y, b) y

1
3

1
3

4 x

a

b

T (y, b) y

1
3

1
6

1
6

x

a

b

y

1
3

1
6

1
6

Rule 3: x and y are 3-linked.

4+
x

R3 :
a b c

4+

y1
3

1
6

1
6

1
3

Figure 8: Discharging rules R1, R2, R3 for Theorem 4.

We use these discharging rules to prove the following lemma:

Lemma 6. A graph H that does not contain Configurations (C1) to (C5) verifies mad(G) ≥ 7
3 .

Lemmas 4 and 6 imply that mad(G) ≥ 7
3 , a contradiction. Hence the theorem holds. �

The limitation in transposing the above proof to list-coloring lies in Configuration (C4): while proving
this configuration is forbidden, we often affect the same colour to different vertices in order to complete the
coloring, which is hard to transpose to list-coloring as the color lists can differ.

Also, the bound on 7
3 is tight (see Figure 1), and in our proof, the limitation of 7

3 lies in the structure of
T (v, u4): if we aim at an upper bound of 2 + a on the maximum average degree, v has to ’feed’ 3

2a to all its
branches except u4, and to be able to give 1

2a to u4 if it is part of a bigger T (w, x4), so that the induction can
be applied. Hence, we need 4− (2 + a) ≥ 3 ∗ ( 3

2a) + 1
2a, ie 2 + a ≤ 7

3 .

Proof of Theorem 5

Let k be a constant integer, k > 4.

In the figures of this proof, the label ’T (v, a)’ inside a vertex v means that T (v, a) exists, as defined below.
The structure is quite close to the one defined in Proof of Theorem 4, though it is not a generalization of it.
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A configuration T (v, a1) (see Figure 9), is inductively defined as a vertex v of degree k with neighbors
a1, a2,. . .,ak, where for i ∈ {2, . . . , k}, vertex v is 2-linked by a path v-ai-bi-wi either to a vertex wi of degree
at most k − 2 or to a configuration T (wi, bi).

T (v, a1)

v

a2

b2

(k − 2)− or T (w2, b2)

w2

ak

bk

(k − 2)− or T (wk, bk)

wk

a1

Figure 9: T (v, a1).

We define configurations (C1) to (C6) (see Figure 10).

• (C1) is a vertex of degree 0 or 1.

• (C2) is some vertex 3-linked to a vertex not of maximal degree.

• (C3) is a vertex of degree at most k − 1 that is 2-linked to a vertex of degree at most k − 2.

• (C4) is a vertex w2 of degree at most k− 1 that is 2-linked (by a path w2 − u2 − u1 −w1) to a vertex w1

such that T (w1, u1) exists.

• (C5) is a vertex v of degree 3 that is 1-linked to two vertices, and 1-linked (by a path v − u1 − w1) to a
vertex w1 that is of degree at most 4 or such that T (w1, u1) exists.

• (C6) is a vertex v of degree 3 that is 1-linked (by two paths v−u2−w2, v−u3−w3) to two vertices w2,
w3, where w2 is of degree at most 7 or such that T (w2, u2) exists, and whose third neighbor is a vertex
w1 that is of degree at most 3.

In the following lemma, we actually use k instead of ∆(G) in order to ensure that any subgraph of G
admits a (k + 1)-list-coloring even though ∆(G) can decrease.

Lemma 7. If G is a minimal graph such that ∆(G) ≤ k and G admits no 2-distance (k + 1)-list-coloring, then G
cannot contain any of Configurations (C1) to (C4), nor (C5) if k ≥ 6, nor (C6) if k ≥ 9.

The following lemma will ensure that the discharging rules we introduce later are well-defined.

Lemma 8. In a graph G where (C4) is forbidden, and x and y are two vertices of degree ∆(G) that are 2-linked
through a− b (a being the closest to x), T (x, a) and T (y, b) cannot both exist.

We introduce ε = 4
3k , M1 = 8−3ε

2+3 ε2
, which verifies ∀n ≥M1, n− ( 8

3 − ε) ≥ n( 1
3 −

ε
2 ), andM2 = 8−3ε

1+3ε , which
verifies ∀n ≥M2, n− ( 8

3 − ε) ≥ n( 2
3 − ε). Note that M1 < 4, M2 < 8.

We design discharging rules R1, R2, R3 and R4 (see Figure 11). We use them in the proof of Lemma 9,
where the initial weight of a vertex equals its degree, and its final weight is shown to be at least 8

3 − ε. For
any vertex x of degree at least 3,

• Rule R1: if 3 ≤ d(x) < M1, then x gives 1
3 −

ε
2 to every neighbor a of degree 2 that is adjacent to a

vertex y of degree less than M2 or such that T (y, a) exists.

• Rule R2: if M1 ≤ d(x) < M2, then x gives 1
3 −

ε
2 to each of its neighbors.
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(k − 1)−
w2

u2

v

u1

w1

(C2)

(k − 1)− w1

(C3)

u1

u2

(k − 2)−
w2

T (w1, u1) w1

(C4)

u1

u2

(k − 1)−
w2

T (w1, u1) or 4− w1

(C5)

u1

v

u3

w3

u2

w2

1− u

(C1)
3− w1

(C6)

v u3

w3

u2

7− or T (w2, u2)

w2

Figure 10: Forbidden configurations for Theorem 5.

• Rule R3: if M2 ≤ d(x) < k, then x gives 2
3 − ε to each of its neighbors.

• Rule R4: if d(x) = k, then for a neighbor a of x, x gives 2
3 − ε to a if T (x, a) does not exist (R4(i)), 1

3 −
ε
2

if it does (R4(i)′). For a vertex y of degree 2 that is 1-linked (by a path y − b − a − x) to x, if T (x, a)
does not exist and either T (y, b) does or d(y) ≤ k − 2, then x gives 1

3 −
ε
2 to b (R4(ii)).

Rule 1: 3 ≤ d(x) < M1

x

a

M−−
2 or T (y, a)y

1
3 −

ε
2

Rule 2: M1 ≤ d(x) < M2

x

a

1
3 −

ε
2

Rule 3: M2 ≤ d(x) < k

x

a

2
3 − ε

Rule 4: d(x) = k

T (x, a)x

R4(i)′

a

1
3 −

ε
2

¬T (x, a)x

R4(i)

a

2
3 − ε

¬T (x, a)x

R4(ii)

a

b

(k − 2)− or T (y, b)y

1
3 −

ε
2

Figure 11: Discharging rules R1, R2, R3 and R4 for Theorem 5.
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We use these discharging rules to prove the following lemma:

Lemma 9. A graph G with ∆(G) ≤ k that does not contain Configurations (C1) to (C4), nor (C5) if k ≥ 6, nor (C6)
if k ≥ 9 verifies mad(G) ≥ 8

3 − ε.

We prove Theorem 5 by contradiction. Let G be a minimal graph with ∆(G) ≤ k and mad(G) < 8
3 −

4
3k

such that G does not admit a (k+ 1)-list-coloring. Graph G is also a minimal graph such that ∆(G) ≤ k and
G does not admit a (k + 1)-list-coloring (all its proper subgraphs verify ∆ ≤ k and mad < 8

3 −
4
3k , so they

admit a (k + 1)-list-coloring). By Lemma 7, graph G cannot contain (C1) to (C4) (nor (C5) if k ≥ 6, nor (C6)
if k ≥ 9). Lemma 9 implies that mad(G) ≥ 8

3 − ε, a contradiction. �

Just as in the proof of Theorem 4, the limitation on the upper bound of the maximum average degree lies
in the structure of the T (v, a1). This does not say that our proof is optimal, all we can claim is that this proof
cannot be trivially modified to improve the bounds (both on ∆(G) and on the maximum average degree).

4 Future work

As we pointed out all along this report, there are a few questions that emerge naturally from this internship
and should be studied in order to make this work as coherent as possible. Can we extend Theorem 4 to list-
coloring? Is the upper bound of 8

3 optimal in Theorem 5? What is the optimal value of h(ε) in Theorem 6?

There are also a few less direct questions: what about 2-distance O(∆(G))-coloring? It is known that
for any graph G, (2 mad(G) ∆(G)) colors are enough: can this bound be improved? But the deepest ques-
tions are about the method, not about the results. What else can we do with this global (or semi-global)
discharging method? Is there some general approach for this? Are there results that can be obtained with a
global discharging method, but not with a semi-global discharging method? With a semi-global discharging
method, but not with a local discharging method?

Addendum

Ivanova published online on May, 30th 2011 a paper [7] that improves Corollary 2 for ∆(G) > 5 and matches
it for ∆(G) = 5. Since these results are restricted to planar graphs, this does not affect Theorem 5.

Theorem 8 (Ivanova [7]). If G is a planar graph, then χ2
`(G) = ∆(G) +1 in each of the following cases:

(1) ∆(G) = 5 and g(G) ≥ 12

(2) ∆(G) ≥ 6 and 11 ≥ g(G) ≥ 10

(3) ∆(G) ≥ 10 and 8 ≤ g(G) ≤ 9

(4) ∆(G) ≥ 16 and g(G) = 7
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Appendix

A Proof of Theorem 4

A.1 Proof of Lemma 4

Proof. We prove Lemma 4 by assuming G contains one of the configurations (C1) to (C5), using the mini-
mality of G to color one of its subgraphs, and extending the coloring to the whole graph, hence obtaining a
contradiction. In the following proofs, a constraint of a vertex u is an already colored vertex that is adjacent
to or has a common neighbor with u. Two constraints with the same color count as one.

We follow the notations introduced on Figure 7.

Claim 1. G cannot contain (C1).

Proof. Using the minimality of G, we color G \ {u}. Since d(u) ≤ 1, vertex u has at most ∆(G) constraints.
There are at least ∆(G) +1 colors, so the coloring of G \ {u} can be extended to G. ♦

Claim 2. G cannot contain (C2).

Proof. Using the minimality of G, we color G \ {v, u1}. Vertex u1 has at most |{w1, u2}| + d(w1) − 1 =
d(w1) + 1 ≤ ∆(G) constraints. Hence we can color u1. Then v has at most 4 constraints, so we can extend
the coloring of G \ {v, u1} to G. ♦

Claim 3. G cannot contain (C3).

Proof. Using the minimality of G, we color G \ {v, u1, u2, u3, x2, x3}. We color x2 in a different color of that
of w3 (this is possible since it has at most 3 constraints), u3 with the same color as x2 (the only constraint is
w3, and it verifies it), u1 (at most 4 constraints), x3 (at most 4 constraints), v (at most 4 constraints), u2 (at
most 4 constraints). Thus, we can extend the coloring of G \ {v, u1, u2, u3, x2, x3} to G. ♦

Given a vertex u, the neighborhood N(u) is the set of vertices that are adjacent to u.
We define a "branch" of v as a p-link from v to another vertex.

Claim 4. Let H be a graph that contains some T (v, u4). For any 2-distance 5-coloring α of H \ (T (v, u4) ∪N(u4))
such that two vertices that have a common neighbor in H have distinct colors, the coloring α can be extended to
(H \N(u4)) ∪ {v}.

In the description of a coloring procedure, we note "x ← c" as a shortcut for "We assign color c to x",
"u4

T←− c" as a shortcut for "We color u4 in c and apply Claim 4 to color T (v, u4)", and we note also "x" as a
shortcut for "We color arbitrarily x with one of the colors available".
Proof. We name v− ui− xi−wi the vertices along a branch (ui and xi are of degree 2), and bi and ci the two
other neighbors of wi (if d(wi) = 3) (see Figure 12). All along this proof, a denotes α(u4).

Since (C2) is forbidden, there is no (i, j) such that wi = xj and wj = xi, nor such that wi = wj . However,
there can be a couple (i, j) such that wi = uj , wj = ui, xi = xj . In that case, we pretend they are distinct
(we assign arbitrary colors to the virtual wi and wj and their alleged other neighbors bi, ci, bj , cj), apply
the procedure described below, get a coloring α of the resulting graph, then derive from it a coloring of the
initial graph by matching α on every common vertex except xi and then coloring xi in one of the available
colors (indeed α(ui) 6= α(uj) as v is a common neighbor, and xi has exactly three vertices at distance 2 or
less). Therefore we can assume without loss of generality that no vertex ui, xi superposes with another. The
case wi = wj is not a problem in the following procedure (note that wi = wj can only happen if d(wi) ≤ 3).
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1. Vertex v is the only vertex of degree 4 in T (v, u4).
We deal with the worst-case situation, i.e. the three branches from v end with a vertex of degree 3 (if
we can extend the coloring in that case, then we would be able to do the same if one or more were of
degree only 2), and wi, bi, ci ∈ G.

T (v, u4) v

u1

x1

w1

b1
c1

u2

x2

w2

b2c2

u3

x3

w3

b3

c3

u4

Figure 12: v is the only vertex of degree 4 in T (v, u4).

So, α is not defined on v, ui, xi and T (wi, xi) if it exists, for i ∈ {1, 2, 3}. Since we have only 5 colors,
we are always in one of the following five cases (up to permutations):

. α(w1) = α(w2) = α(w3), α(b1) = α(b2).

- a = α(w1). Then apply: v ← α(b1), x3, u3, u2, u1, x2, x1.
- a 6= α(w1). Then apply: v ← α(w1), u1, u2, u3, x1, x2, x3.

. α(w1) = α(w2) 6= α(w3), α(b1) = α(w3).

- a = α(w1). Then apply: v ← α(w3), x2, u2, u1, x1, u3, x3.
- a 6= α(w1). Then apply: v ← α(w1), x3, u3, u2, u1, x2, x1.

. α(w1) = α(w2) 6= α(w3), α(b1) = α(b2) (and we are not in the previous case).

- a = α(w1). Then apply: v ← α(w3), u2 ← α(b2), u1 ← α(c1), x1, x2, u3, x3.
- a 6= α(w1). Then apply: v ← α(w1), x3, u3, u2, u1, x2, x1.

. α(w1), α(w2) and α(w3) are pairwise different, α(w1) = α(b2).

- a = α(w1). Then apply: v ← α(w3), x2, u2, x1, u1, u3, x3.
- a 6= α(w1). Then apply: v ← α(w1), x3, u3, u2, x2, u1, x1.

. α(w1), α(w2) and α(w3) are pairwise different, α(b1) = α(b2) = α(b3), α(c1) = α(c2) = α(c3).

- a = α(w1) (up to permutation). Then apply: v ← α(b1), u2 ← α(w3), u3 ← α(w2), x2, x3, u1, x1.
- a = α(b1). Then apply: v ← α(c1), u1 ← α(w2), u2 ← α(w3), u3 ← α(w1), x1, x2, x3.
- a = α(c1). Then apply: v ← α(b1), u1 ← α(w2), u2 ← α(w3), u3 ← α(w1), x1, x2, x3.

2. Vertex v is 2-linked to exactly one vertex w3 of degree 4 in T (v, u4) (see Figure 13).

Again, we deal with the worst-case situation. So, in this drawing, α is defined only on the wi, bi and
ci, for i = 1 or 2. Again, because there are only 5 colors, we are in one of the following three cases;

. α(w1) = α(w2).

- a = α(w1). Then apply: x3
T←− a, v ← α(b1), u3, x2, u2, u1, x1.

- a 6= α(w1). Then apply: x3
T←− a, v ← α(w1), u3, u1, u2, x1, x2.
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T (v, u4)

v

u1

x1

w1

b1
c1

u2

x2

w2

b2c2

u3

x3

T (w3, x3)

w3

u4

Figure 13: v is 2-linked to exactly one vertex of degree 4 in T (v, u4).

. α(w1) = α(b2).

- a = α(w1). Then apply: x3
T←− a, v ← α(w2), u3, x1, u1, u2, x2.

- a 6= α(w1). Then apply: x3
T←− a, v ← α(w1), u3, x2, u2, u1, x1.

. α(b1) = α(b2) (and α(w1) 6= α(w2)).

- a = α(b1). Then apply: x3
T←− a, v ← α(w1), x2, u2, u3, u1, x1.

- a 6= α(b1). Then apply: x3
T←− a, v ← α(b1), u1, u2, u3, x1, x2.

3. Vertex v is 2-linked in T (v, u4) to exactly two vertices w2 and w3 of degree 4. If a = α(w1), then
apply: v ← α(b1), if a 6= α(w1), then apply: v ← α(w1). In both cases, we then color x3

T←− a, x2
T←−

a, u2, u3, u1, x1.

4. Vertex v is 2-linked in T (v, u4) to three vertices w1, w2 and w3 of degree 4. Apply: x1
T←− a, x2

T←−
a, x3

T←− a, v ← (the color of w1), u2, u3, u1.

♦

Note that this claim can be extended to any coloring with more than 5 colors: we simply disregard the
vertices that are colored by α outside a range C of 5 colors which contains a and α(wi) (for i = 1, 2, 3).
We apply the claim to the subgraph induced by the vertices colored within C: the extended coloring is
compatible with the disregarded vertices.

Claim 5. G cannot contain (C4).

Proof. We deal with the worst-case situation, i.e. d(u) = 3: see Figure 14 for notations.

T (v, x)

v

x y u
z1

z2

Figure 14: Worst case for claim (5).

Using the minimality of G, we have a coloring α of G \ (T (v, x) ∪ {x, y}). We use claim (4) to extend it
to the whole graph through: x T←− α(z1), y. ♦
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Claim 6. G cannot contain (C5).

Proof. Using the minimality of G, we get a coloring α of G \ (T (v, x) ∪ {x, u, y1, y2}). Then we extend the
coloring as follows:

• α(z1) = α(a2). Then apply: x T←− α(z1), u, y1, y2.

• α(z1) 6= α(a2). Then apply: x T←− α(z1), u← α(a2), y1, y2.

This provides us with a coloring of the whole graph. ♦

A.2 Proof of Lemma 5

Proof. Assume by contradiction that there is a path x− a− b− y such that both T (x, a) and T (y, b) exist. We
consider without loss of generality that x and y are chosen such that |T (y, b)| is minimum. By construction,
|T (y, b)| > 6. Let b′ be a neighbor of y. Then T (y, b′) exists (by definition, using the existence of T (y, b)).
If there is no vertex w 6= y of degree 4 that is 2-linked (with w − c − b′ − y) to y, then the existence of
T (y, b′) implies that the graph contains (C4), a contradiction. If such a w exists, T (w, c) exists (by definition,
using the existence of T (y, b)). Consequently, y − b′ − c − w is a path such that T (y, b′) and T (w, c) exist.
Additionally, |T (w, c)| < |T (y, b)|, a contradiction.

A.3 Proof of Lemma 6

Proof. We attribute to each vertex a weight equal to its degree, and apply discharging rules R1, R2 and R3.
We show that all the vertices have a weight of at least 7

3 in the end.
There are no vertices of degree 0 or 1 in the graph, due to the fact that (C1) is forbidden, so we study

only the vertices of degree 2 or more.

Claim 7. All the vertices of degree 2 have a weight of at least 7
3 after application of the rules.

Proof. Consider any vertex of degree 2 and let x-s1-. . .-sp-y, with d(x), d(y) ≥ 3, be the unique branch that
contains it. There is no Configuration (C2), so p ≤ 3. According to the discharging rules, a vertex of degree
2 never gives away weight. We prove that it receives at least 1

3 . There are three cases depending on the
value of p, each corresponding to Rule Rp:

• If p = 1, then Rule R1 applies to x-s1-y, and s1 receives 1
3 .

• If p = 2, then Rule R2 applies to x-s1-s2-y, and both s1 and s2 receive 1
3 .

• If p = 3, then since G does not contain Configuration (C2), d(x), d(y) ≥ 4. Then, Rule R3 applies to
x-s1-s2-s3-y, and s1, s2, s3 receive 1

3 each.

Consequently, each vertex of degree 2 starts with a weight of 6
3 , gives nothing away and receives at least

1
3 during the discharging, which makes it end with a weight of at least 7

3 . ♦

Claim 8. All the vertices of degree 3 have a weight of at least 7
3 after application of the rules.

Proof. We prove that a vertex v of degree 3 never gives away more than 2
3 . To each branch, it gives either

1
3 [Rule R2.1] or 1

6 [Rules R1.1, R1.2, R2.3] (or nothing). We prove that if v gives 1
3 to two branches, then it

gives nothing to the third. Assume, by contradiction, that v gives 1
3 to two branches, and that the third one

receives something from v. Since R2.1 is the only rule that makes v give 1
3 to a branch, it is applied twice.

Then the third branch has to induce:
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• A configuration for which R1.1, R2.1 or R2.3 applies, i.e. a vertex of degree 2 followed by a vertex of
degree at most 3. But then the graph contains (C3), a contradiction.

• A configuration for which R1.2 applies. Then the graph contains (C5), a contradiction.

If v gives 1
3 at most once, then v gives at most 2

3 on the whole. So, in both cases, vertex v starts with a weight
of 9

3 , and gives at most 2
3 away, so it still has a weight of at least 7

3 after application of the rules. ♦

Claim 9. All the vertices of degree 4 have a weight of at least 7
3 after application of the rules.

Proof.
We prove that a vertex v of degree 4 never gives more than 5

3 away. To each branch, it gives either 1
2

[Rules R2.3, R2.2, R3], 1
3 [Rules R1.3, R2.1] or 1

6 [Rules R1.1, R1.2,R2.3,R2.2] (or nothing). We prove that if v
gives 1

2 thrice, then it gives at most 1
6 to the fourth branch. Assume that v gives 1

2 to three branches. The
only case when v gives thrice 1

2 is when for u4 the other neighbor of v, T (v, u4) exists (we applied R2.3, R3

or R2.2 on each of the three branch). Let us enumerate the cases for the branch starting from u4:

• Vertex u4 is of degree at least 3. No rule applies, so v does not give anything to this branch.

• Vertex v is 1-linked to a vertex u of degree at least 3. If u is of degree ≥ 4, then R1.1 or R1.3 applies. If
u is of degree 3, then R1.2 applies. In both cases, v does not give more than 1

6 .

• Vertex v is 2-linked to a vertex of degree at most 3. Then the graph contains (C4). Hence this case
never occurs.

• Vertex v is 2-linked to a vertex u of degree at least 4. If u is of degree at least 5, then R2.3 is applied. If
u is of degree 4, then R2.2 is applied (remember that due to Lemma 5, there is no ambiguity). In both
cases, v does not give away more than 1

6 .

If v does not give 1
2 more than twice, then v gives at most 5

3 on the whole. So, in both cases, v starts with
a weight of 12

3 , and gives at most 5
3 away, so it still has a weight of at least 7

3 after application of the rules. ♦

Claim 10. All the vertices of degree ≥ 5 have a weight of at least 7
3 after application of the rules.

Proof. Each vertex gives at most 1
2 to each branch. Hence, a vertex v gives at most d(v) × 1

2 on the whole.
And for d(v) ≥ 5, we have d(v)− 1

2 × d(v) ≥ 7
3 . ♦

Hence every vertex of G has a weight of at least 7
3 after application of the discharging rules. Conse-

quently,
∑
v∈V d(v)

|V | ≥ 7
3 , which implies mad(G) ≥ 7

3 .

B Proof of Theorem 5

B.1 Proof of Lemma 7

Before proving the lemma, we need the following useful claim about the structure of a T (v, u1).

Claim 11. Let H be a graph that contains a T (v, u1). For any 2-distance (k + 1)-list-coloring α of H \ (T (v, u1) ∪
N(u1)) such that two vertices that have a common neighbor in H have distinct colors, the coloring α can be extended
to (H \N(u1)) ∪ {v}.

In the description of a coloring procedure, we denote "u1
T←− c" as a shortcut for "We color u1 in c and

apply Claim 11 to color T (v, u1)", and we denote also "x" as a shortcut for "We color arbitrarily x with one
of the colors available, and apply Claim 11 if necessary".
Proof. We pick b ∈ L(v), b = α(u1) if it belongs to L(v).
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For every wi such that T (bi, wi) exists and at most (k − 2) vertices aj have already been colored, for
c ∈ L(bi) such that c = b or c 6∈ L(v), bi

T←− c, ai.
If T (bi, wi) exists for every wi, let us call b2 the one which is not colored yet. We call A the set of colors

used on the vertices aj that are already colored. Note that |A| = k − 1. If ∃c, c ∈ A, c ∈ L(b2), then b2
T←− c,

a2, v. If no such c exists, we are in one of the following situations:

• ∃c, c ∈ A, c 6∈ L(a2). b2, v, a2.

• A ⊆ L(a2).

– ∃c, c ∈ A, c 6∈ L(v). b2
T←− d 6∈ L(a2), a2, v.

– A ⊆ L(v). SinceA∩L(b2) = ∅, |A| = k−1 and |L(v)| = |L(a2)| = |L(b2)| = k+1, |L(v)∩L(b2)| ≤ 2,
|L(a2) ∩ L(b2)| ≤ 2. But k > 3, hence there exists c ∈ L(b2) such that c 6∈ L(v), c 6∈ L(a2). Then
b2

T←− c, a2, v.

Then, for every i such that T (bi, wi) exists, we color ai (at most d(v)−|{v}|+ |{wi}| ≤ k constraints). We
color v. Then we color the remaining vertices bi (at most d(wi) + 2 ≤ k constraints). ♦

Proof.

Claim 12. G cannot contain (C1)
Proof. Using the minimality of G, we color G \ {u}. Since ∆(G) ≤ k, and d(u) ≤ 1, vertex u has at most k
constraints. There are k + 1 colors, so the coloring of G \ {u} can be extended to G. ♦

Claim 13. G cannot contain (C2)

Proof. Using the minimality of G, we color G \ {v, u2}. Vertex u2 has at most |{w2, u1}| + d(w2) − 1 =
d(w2) + 1 ≤ k constraints. Hence we can color u2. Then v has at most 4 ≤ k constraints, so we can extend
the coloring of G \ {v, u1} to G. ♦

Claim 14. G cannot contain (C3)

Proof. Using the minimality ofG, we colorG\{u1, u2}. Vertex u1 has at most |{w2}|+d(w1) ≤ 1+(k−1) ≤ k
constraints. Hence we can color u1. Then u2 has at most |{w1, u1}|+ d(w2) ≤ 2 + (k− 2) ≤ k constraints, so
we can extend the coloring of G \ {u1, u2} to G. ♦

Claim 15. G cannot contain (C4)

Proof. Using the minimality of G, we color G \ (T (w1, u1) ∪ {u1, u2}). u1, u2. ♦

Lemma 10. For k > 5, ifG is a minimal graph such that ∆(G) ≤ k andG admits no 2-distance (k+1)-list-coloring,
then G cannot contain Configuration (C5).

Proof. Using the minimality of G, we color G \ {u1} (\T (w1, u1) if it exists). We discolor v. u1, v.

Lemma 11. For k > 8, ifG is a minimal graph such that ∆(G) ≤ k andG admits no 2-distance (k+1)-list-coloring,
then G cannot contain Configuration (C6).

Proof. Using the minimality of G, we color G \ {u2} (\T (w2, u2) if it exists). We discolor v. u1, v.
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B.2 proof of Lemma 8

Proof. Assume by contradiction that there is a path x− a− b− y such that both T (x, a) and T (y, b) exist. We
consider without loss of generality that x and y are chosen such that |T (y, b)| is minimum. By construction,
|T (y, b)| > 6. Let b′ be a neighbor of y. Then T (y, b′) exists (by definition, using the existence of T (y, b)).
If there is no vertex w 6= y of degree k that is 2-linked (with w − c − b′ − y) to y, then the existence of
T (y, b′) implies that the graph contains (C4), a contradiction. If such a w exists, T (w, c) exists (by definition,
using the existence of T (y, b)). Consequently, y − b′ − c − w is a path such that T (y, b′) and T (w, c) exist.
Additionally, |T (w, c)| < |T (y, b)|, a contradiction.

B.3 Proof of Lemma 9

Proof. We attribute to each vertex a weight equal to its degree, and apply discharging rules R1, R2, R3 and
R4. We show that all the vertices have a weight of at least 8

3 − ε in the end.

We first note that since k > 4, k − 1 ≥M2. Indeed, M2 =
8− 4

k

1+ 4
k

≤ k − 1 when k ≥ 5.
We also note that when k ≤ 8, M2 ≤ 5, and that for any k, M1 ≤ 4 and M2 ≤ 8.

• There are no vertices of degree 0 or 1.

• Let s be a maximal path of vertices of degree 2 (maximal in the sense that it does not admit a vertex
of degree 2 as a neighbor). According to the discharging rules, a vertex of degree 2 never gives away
weight. We prove that it receives at least 2

3 − ε. There are three cases depending on the size of s (s
can’t be of size greater than 3 due to Configuration (C2)):

– |s| = 1. Let a be the only vertex in s.
∗ a has a neighbor x of degree at leastM2 such that T (x, a) does not exist: then it receives 2

3 − ε
from it, according to Rule R3 or R4(i).

∗ a has two neighbors x1 and x2 of degree less than M2 or such that T (xi, a) exists: then it
receives 1

3 −
ε
2 from each, according to Rule R1, R2 or R4(i)′.

– |s| = 2. Let a and b be the vertices of s, and x (resp. y) the other neighbor of a (resp. b).
∗ d(y) < M2 (so d(y) < k − 1) or T (y, b) exists. Then, due to Configurations (C3), (C4) and

Lemma 8, d(x) = k and T (x, a) does not exist. Then b receives 1
3 −

ε
2 from y (Rule R1 or R2),

and from x (Rule R4(ii)), and a receives 2
3 − ε from x (Rule R4(i)).

∗ d(y), d(x) ≥M2 and neither T (x, a) nor T (y, b) exists. Then, according to Rule R3 or R4(i), a
(resp. b) receives 2

3 − ε from x (resp. y).
– |s| = 3. Due to Configuration (C4), for a1 − b − a2 the vertices of s and xi the other neighbor of
ai, d(x1) = d(x2) = k and no T (xi, ai) exists. Then Rules R4(i) and R4(ii) apply: ai receives 2

3 − ε
from xi and b receives 1

3 −
ε
2 from both x1 and x2.

• Let x be a vertex with 3 ≤ d(x) < M1. If such an x exists, then M1 > 3, so k > 5. And since M1 ≤ 4,
d(x) = 3. We prove that x gives at most 1

3 + ε away.

– If 6 ≤ k ≤ 8, ε ≥ 1
6 and G cannot contain Configuration (C5). Only Rule R1 can apply to x,

so x gives at most 1
3 −

ε
2 to each of its neighbors. Since ε ≥ 1

6 , 1
3 + ε ≥ 2 ∗ ( 1

3 −
ε
2 ). We prove

that if it gives 1
3 −

ε
2 to two of its neighbors, then it gives nothing to the third one. Assume, for

contradiction, that x gives 1
3 −

ε
2 to each of its three neighbors (meaning that x is 1-linked (by a1,

a2 or a3) to three vertices y1, y2, y3 of degree at most M2 − 1 or such that T (yi, ai) exists). Since
k ≤ 8, M2 ≤ 5. Consequently, this is a case of Configuration (C5), a contradiction.

– If k ≥ 9, G cannot contain Configuration (C6). Only Rule R1 can apply to x, so x gives at most
1
3 −

ε
2 to each of its neighbors. Here, 1

3 + ε ≥ 1
3 −

ε
2 . Assume that x gives 1

3 −
ε
2 to two neighbors

a1 a2 whose other neighbors are y1 and y2. Let a3 be the third neighbor of x.
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∗ d(a3) ≤ 3. Then, since M2 ≤ 8, this is a case of Configuration (C6), a contradiction.
∗ d(a3) ≥ 4. Then, due to Rule R2, R3, R4(i) or R4(i)′, a3 gives at least 1

3 −
ε
2 to x so that on

the whole, x loses a weight of at most 1
3 −

ε
2 ≤

1
3 + ε.

• Let x be a vertex with M1 ≤ d(x) < M2. By definition of M1 and R2, x gives never more than
d(x)− 8

3 + ε away.

• Let x be a vertex withM2 ≤ d(x) < k. By definition ofM2 andR3, x gives never more than d(x)− 8
3 +ε

away.

• Let x be a vertex with d(x) = k. By definition of ε, if x gives at most (k − 1) × (1 − 3ε
2 ) + 1

3 −
ε
2 =

(k − 2) × (1 − 3ε
2 ) + 2 × ( 2

3 − ε) away, then it gives at most d(x) − 8
3 + ε away. Assume that x gives

(k − 1) times (1− 3ε
2 ) (meaning that both R4(i) and R4(ii) are applied (k − 1) times). Then, for u1 the

remaining neighbor of x, T (x, u1) exists and x gives on the whole (k − 1)× (1− 3ε
2 ) + 1

3 −
ε
2 .

Consequently, after application of the discharging rules, every vertex v ofG has a weight of at least 8
3−ε,

meaning that
∑
v∈G d(v) ≥

∑
v∈G( 8

3 − ε). Therefore, mad(G) ≥ 8
3 − ε
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