Reconfiguring Independent Sets in Cographs

Marthe Bonamy
Nicolas Bousquet

July 3, 2014
Independent Set Reconfiguration

Reconfiguration Graph

\[\text{TAR} \]

\[k(G) = 1 \]
Independent Set Reconfiguration

TAR(k(G)) = 1

Marthe Bonamy, Nicolas Bousquet
Reconfiguring Independent Sets in Cographs
Independent Set Reconfiguration

$T\gamma_k(G)$
Independent Set Reconfiguration

$\text{TAR}_k(G)$

Marthe Bonamy, Nicolas Bousquet
Reconfiguring Independent Sets in Cographs
Independent Set Reconfiguration \Rightarrow Reconfiguration Graph

$TAR_k(G)$

$k = 1$
Independent Set Reconfiguration \Rightarrow Reconfiguration Graph

$TAR_k(G)$

$k = 2$
Reconfiguration Graphs

- **Two solutions:**
 - In the same connected component?
 - What distance between them?
Reconfiguration Graphs

- **Two solutions:**
 - In the same connected component?
 - What distance between them?

- **Reconfiguration graph:**
 - Connected?
 - Maximal diameter of a connected component?
Two solutions:
- In the same connected component?
- What distance between them?

Reconfiguration graph:
- Connected?
- Maximal diameter of a connected component?

Colorings, Dominating sets, Vertex covers...
Two solutions:
- In the same connected component?
- What distance between them?

Reconfiguration graph:
- Connected?
- Maximal diameter of a connected component?

Colorings, Dominating sets, Vertex covers...
Token Addition & Removal, Token Jumping, Token Sliding...
Theorem (Hearn, Demaine ’05, Kamiński, Medvedev, Milanič ’12)

| G known to be **perfect** or **subcubic planar**: |
| Are α, β in the **same connected component** of $TAR_k(G)$? |
| **PSPACE-complete**. |
State of the Art

Theorem (Hearn, Demaine ‘05, Kamiński, Medvedev, Milanič ’12)

\[G \text{ known to be perfect or subcubic planar:} \]

Are \(\alpha, \beta \) in the same connected component of \(\text{TAR}_k(G) \)?

PSPACE-complete.

Efficient algorithms for:

- claw-free graphs,
- line graphs,
- chordal graphs...
Cographs: P_4-free graphs.
Cographs: P_4-free graphs.
Our Results

Theorem (Bonsma ’14)

\[G \text{ cograph, } \alpha, \beta \in TAR_k(G) \Rightarrow \text{Decide in } O(n^2) \text{ whether } \alpha \text{ and } \beta \text{ in the same connected component.} \]

Question (Bonsma ’14)

\[G \text{ cograph } \Rightarrow \text{Decide in } \text{Poly}(n) \text{ whether } TAR_k(G) \text{ is connected.} \]
Our Results

Theorem (Bonsma ’14)

\[G \text{ cograph}, \alpha, \beta \in TAR_k(G) \Rightarrow \text{Decide in } O(n^2) \text{ whether } \alpha \text{ and } \beta \text{ in the same connected component.} \]

Question (Bonsma ’14)

\[G \text{ cograph} \Rightarrow \text{Decide in } \text{Poly}(n) \text{ whether } TAR_k(G) \text{ is connected.} \]

Theorem (B., Bousquet ’14+)

\[G \text{ cograph} \Rightarrow \text{Decide in } O(n^3) \text{ whether } TAR_k(G) \text{ is connected.} \]
Our Results

Theorem (Bonsma '14)

\(G \) cograph, \(\alpha, \beta \in TAR_k(G) \) \(\Rightarrow \) Decide in \(\mathcal{O}(n^2) \) whether \(\alpha \) and \(\beta \) are in the same connected component.

Question (Bonsma '14)

\(G \) cograph \(\Rightarrow \) Decide in \(\text{Poly}(n) \) whether \(TAR_k(G) \) is connected.

Theorem (B., Bousquet '14+)

\(G \) cograph, \(\alpha, \beta \in TAR_k(G) \) \(\Rightarrow \) Decide in \(\mathcal{O}(n) \) whether \(\alpha \) and \(\beta \) are in the same connected component.

Theorem (B., Bousquet '14+)

\(G \) cograph \(\Rightarrow \) Decide in \(\mathcal{O}(n^3) \) whether \(TAR_k(G) \) is connected.
Proof

- Take your favorite G and k.

$\begin{align*}
\text{Maximal stable set in } G \setminus (B \cup N(B)) \text{ of size } k - \alpha(B) \leq \alpha(B) - 1
\end{align*}$
Proof

- Take your favorite G and k.
- Build the decomposition tree in $O(n)$.

Maximal stable sets \iff "Stable-searches".

Maximal stable set in $G \setminus (B \cup N(B))$ of size $k - \alpha(B) \leq k + \alpha(B) - 1$?
Proof

- Take your favorite G and k.
- Build the decomposition tree in $O(n)$.
- Pick good and bad sides.

Maximal stable sets $⇔$ "Stable-searches".
Proof

- Take your favorite G and k.
- Build the decomposition tree in $O(n)$.
- Pick good and bad sides.
- Maximal stable sets \Leftrightarrow "Stable-searches".
Proof

- Take your favorite G and k.
- Build the decomposition tree in $O(n)$.
- Pick good and bad sides.
- Maximal stable sets \iff "Stable-searches".
- Find bad side B with smallest $\alpha(B)$.
Proof

- Take your favorite G and k.
- Build the decomposition tree in $O(n)$.
- Pick good and bad sides.
- Maximal stable sets \Leftrightarrow ”Stable-searches”.
- Find bad side B with smallest $\alpha(B)$.
- Maximal stable set in $G \setminus (B \cup N(B))$ of size $k - \alpha(B) \leq \cdot \leq k + \alpha(B) - 1$?
Proof

- Take your favorite G and k.
- Build the decomposition tree in $O(n)$.
- Pick good and bad sides.
- Maximal stable sets \Leftrightarrow "Stable-searches".
- Find bad side B with smallest $\alpha(B)$.
- Maximal stable set in $G \setminus (B \cup N(B))$ of size $k - \alpha(B) \leq \cdot \leq k + \alpha(B) - 1$?
Conclusion

Question (Bonsma’14)

\[G \text{ cograph}, \alpha, \beta \in TAR_k(G) \quad \Rightarrow \quad \text{Decide in } Poly(n) \text{ whether } \alpha \text{ and } \beta \text{ at distance at most } \ell. \]
Conclusion

Question (Bonsma’14)

\[G \text{ cograph, } \alpha, \beta \in TAR_k(G) \implies \text{Decide in Poly}(n) \text{ whether } \alpha \text{ and } \beta \text{ at distance at most } \ell. \]

Thanks for your attention!