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Challenges of querying data

data @

patient data user query
“Alex has listeriosis” “Find all patients with
“Kim has Lyme disease” bacterial infections”

Why is 1t hard to query data?
» Need to know how database(s) are structured
e Can be to

* Query terms not present nor easily mapped to database (e.g. different granularity)
 Need to exploit
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- domain knowledge that can be exploited during query answering
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Ontology provides:
- convenlent vocabulary for users to formulate queries

- domain knowledge that can be exploited during query answering

Mapping: can be used to bridge ontology + database vocabularies
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data

<>

ontology .
answers: Alex, Kim
patient data medical knowledge user query
“Alex has listeriosis” “Listeriosis & Lyme disease “Find all patients with
“Kim has Lyme disease” are bacterial infections” bacterial infections”

Ontology provides: ,’ -

focus on ontologies,

- convenient vocabulary for users to formulate queries |
imostly ignore mappings}

- domain knowledge that can be exploited during query answering

Mapping: can be used to bridge ontology + database vocabularies
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Support analysis of health
data for medical research
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Entreprise information systems

Easy and flexible access to data to support decision-making
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« symptoms, diagnoses, medical procedures, body structures,

laboratory tests, organisms, pharmaceutical products




Ontologies in healthcare: SNOMED

Large-scale comprehensive medical ontology
» more than covering all aspects of clinical healthcare
« symptoms, diagnoses, medical procedures, body structures,

laboratory tests, organisms, pharmaceutical products

Widely adopted standard for healthcare terminology
» in use in > 80 countries (including U.S., Canada, UK)

- used in health IT systems (e.g. IBM Watson Health, Babylon Health)
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Ontologies In life sciences: Gene Ontology

Aim: to describe the role of genes across organisms

Annotations: evidence-based statements relating a particular gene product to ontology terms
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Ontologies In life sciences: Gene Ontology

Aim: to describe the role of genes across organisms

Annotations: evidence-based statements relating a particular gene product to ontology terms

— Biological
process

\ Cellular

components

Molecular
function

signal transduction

Very successful endeavour:
« > 100K published scientific articles with keyword “Gene Ontology”

« > 700K experimentally-supported annotations
/
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Goal: aid geologists SEEE S ;‘_%gg
i ing | i fEsi s 58Sk
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- | CLi-qESSRES

for analysis e =5 [ E23NB
i . S EESES

Relevant data stored across > 3000 database tables
» geologist question = complex query (thousands of terms, 50-200 joins)

OMQA approach:
 ontology provides familiar vocabulary for query formulation

* mappings used to connect database tables to ontology terms
» use reasoning to automatically transform ontology query into DB query



Overview of today's talk

Ontology-Mediated Query Answering
» ontologies, queries, certain answers

Complexity & Algorithms

- query rewriting, materialization approaches

Research Directions
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Ontologies

a of the of a particular domain,
thereby making it

Such a specification consists of:
» terminology (or vocabulary) of the domain

» semantic relationships between terms

* relations of specificity or generality, equivalence, disjointness, ...

Desiderata for ontology language: . .
Sy langtias First-order logic?

+ useful expressivity .+ highly expressive v/

« well-defined semantics . clear semantics /

» decidable / efficient reasoning . undecidable
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LOTS of ontology languages!

Description SROIQ € Dllites DL-Liter  RSA  DLFD
. s Horn- ALC
Logics (DLs) ALCHOT EL ALC
i EL + +
cru ALCF Horn-SHZO DL-Lites...

sticky MFA

existential rules

Datalog™ / weakly acyclic

teds guarded

Rule-Based agrd Datalog

Languages

OWL2QL OWLZ2EL OWL 2 RL RDF Schema (RDFS)
OWL / RDFS OWL 2 Web Ontology Language \ e
Document Overview (Second Edition) L, OWL DL OWL Full

W3C Recommendation 11 December 2012 OWL Lite
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Logics (DLS) Only unary and binary relations (classes, properties) |

| Each DL defined by modelling constructs it offers
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Document Overview (Second Edition) st OWL DL OWL Full

W3C Recommendation 11 December 2012 OWL Lite
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LOTS of ontology languages!

Descri pti()n Family of decidable fragments of first-order logic

Logics (DLS) { Only unary and binary relations (classes, properties)

| Each DL defined by modelling constructs it offers

Rule-Based f' Classes of logical rules, expressible in first-order logic '
| Admit relations of arbitrary arity

Languages

Defined by shape of rules or properties of ruleset

OWL2QL OWL2EL OWL 2 RL RDF SChema (RDFS)
OWL / RDFS OWL 2 Web Ontology Language \ "
W3T  owLoe

Document Overview (Second Edition)
W3C Recommendation 11 December 2012 OWL Lite

OWL Full
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LOTS of ontology languages!

Description
Logics (DLs)

Rule-Based
Languages

OWL / RDFS

’f Classes of logical rules, expressible in first-order logic

W3C standards for ontologies & terminologies

Family of decidable fragments of first-order logic
Only unary and binary relations (classes, properties)

| Each DL defined by modelling constructs it offers

»i Admit relations of arbitrary arity

{ Defined by shape of rules or properties of ruleset

— — — : = e T ez P e e,

OWL based upon DLs, but designed for use in practice ‘

{ Additional features, e.g. annotations, meta-modelling }
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LOTS of ontology languages!

Description
Logics (DLs)

Course C dtaughtBy. T

GradCourse C Course 'l VtaughtBy.Professor

Rule-Based Course(z) — Jy taughtBy(z, y)

Languages

GradCourse(x) A taughtBy(x, v) — Professor(y)

<SubClassO0f>

<Class IRI="Course"/> Class: GradCourse
<0ObjectSomeValuesFrom> SubClassOf:
OWI— / RDFS <0ObjectProperty IRI="taughtBy"/> Course
<Class abbreviatedIRI="owl:Thing"/> ’
</0bjectSomeValuesFrom> taughtBy only Professor
</SubClassO0f>
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Ontologies as sets of rules

Most ontology axioms can be expressed using some forms of <body>— <head>

if <body>, then <head>
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Ontologies as sets of rules

Most ontology axioms can be expressed using some forms of <body>— <head>

if <body>, then <head>
Simple (Datalog) rules  head vars C body vars & all vars are universally quantified

Prof(x) — PhDHolder(x) GradCourse(x) A taughtBy(z,y) — Prof(y)

Existential rules may have existentially quantified vars in head (reason on unknown individuals)

PhDHolder(x) — 3y hasSupervisor(z,y) A PhDHolder(y)  Course(x) — Jy taughtBy(z, v)

Disjunctive rules may have disjunction in ruleheads (reasoning by cases)

Course(x) — UndergradCourse(x) V GradCourse

Negative constraints forbid contradictory situations functionality / cardinality

UndergradCourse(x) A GradCourse(z) — L hasMainSupervisor(z, y) A hasMainSupervisor(z,z) — y = 2
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Queries

Consist of a single atom, used to find all tuples in relation

Atomic Queries find all PhD holders  find all pairs of a course and who teaches it
q1(x) = PhDHolder(x) q2(x,y) = taughtBy(x, y)
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Queries

Consist of a single atom, used to find all tuples in relation

Atomic Queries find all PhD holders  find all pairs of a course and who teaches it
q1(x) = PhDHolder(x) q2(x,y) = taughtBy(x, y)

Consist of a conjunctive of atoms, some of the variables
may be existentially quantified (projected away)

Conjunctive find all courses that are taught by a PhD holder

Queriles

q3(x) = Jdy taughtBy(x,y) A PhDHolder(y)

Related to: select-project-join in SQL, basic graph patterns in SPARQL

14



Certain answers

Know how to define answers to queries on (plain) datasets:
(finite set of facts)
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Know how to define answers to queries on (plain) datasets: E 9 9 -}
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(finite set of facts

ans(q, D)

To define answers In OMQA setting, we consider the models of ontology + dataset:
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Beoi- ¢ A&e¢

Mods(O, D) : interpretations satisfying (O, D) [ states of the world compatible with (O, D)
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To define answers In OMQA setting, we consider the models of ontology + dataset:

S

ans(q, D)

Beoi- ¢ A&e¢

Mods(O, D) : interpretations satisfying (O, D) [ states of the world compatible with (O, D)
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In each model, can define answers like for datasets: L@) 9 » =)
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Certaln answers

Know how to define answers to queries on (plain) datasets:

(finite set of facts)

To define answers In OMQA setting, we consider the models of ontology + dataset:

BeoU- A G606 -

Mods(O, D) : interpretations satisfying (O, D) [ states of the world compatible with (O, D)

X —
In each model, can define answers like for datasets: L@) 9 » =)

anS(Q7M)
Certain answers: tuples that are answers |n N every model (| e. entalled / derlvable from (0,D))

(O D) — q( ) @ a E ans(q,./\/l) for every /\/l e Mods((’) D)

15



Example: Certain answers

Consider the following ontology and dataset:

O = Prof(x) — PhDHolder(x) GradCourse(x) — Course(x)  Course(z) — dytaughtBy(x, y)
Postdoc(x) — PhDHolder(x)  GradCourse(x) A taughtBy(x,y) — Prof(y)

‘D = taughtBy(cs50,paolo) Postdoc(paolo) GradCourse(cs87)

and reconsider the query ¢3(x) = Jy taughtBy(z,y) A PhDHolder(y)
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Example: Certain answers

Consider the following ontology and dataset:

O = Prof(x) — PhDHolder(x) GradCourse(x) — Course(x)  Course(z) — dytaughtBy(x, y)
Postdoc(x) — PhDHolder(x)  GradCourse(x) A taughtBy(x,y) — Prof(y)

‘D = taughtBy(cs50,paolo) Postdoc(paolo) GradCourse(cs87)

and reconsider the query ¢3(x) = Jy taughtBy(z,y) A PhDHolder(y)

Two certain answers to ¢3(x) w.rt. (D, D): cs50 and cs87

O,D = q3(csb0) due to taughtBy(cs50,paolo) Postdoc(paolo) Postdoc(x) — PhDHolder(x)

O,D = q3(cs87) due to GradCourse(cs87) GradCourse(x) — Course(x) Course(x) — JdytaughtBy(z, y)
GradCourse(x) A taughtBy(x,y) — Prof(y) Prof(x) — PhDHolder(z)
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Pointers to OMQA literature

Early paper

Poggi et al. Linking Data to Ontologies. Journal of Data Semantics, 2008.

Tutorial chapters

Bienvenu & Ortiz. Ontology-Mediated Query Answering with Data-Tractable Description Logics. Reasoning Web, 2015.

Mugnier & Thomazo. An Introduction to Ontology-Based Query Answering with Existential Rules. Reasoning Web, 2014.

Short survey

Xiao et al. Ontology-Based Data Access: A Survey. IJCAI 2018.
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Complexity of OMQA

OMQA decision problem: identify certain answers, i.e. decide whether(O,D) = q(a)

Extensive complexity analysis covering wide range of ontology & query languages, restrictions

query answering CONP Class ar ity ar ity Data / 1 [ 1 1 [
= instance ;hed“;‘g auery ansering Legend unbounded bounded Complexity e
ol ol ol ol satisfiability gbts in 3ExpTME * 2ExpTmMe-c * | ExpPTIME-c*
S . combined complexity wig 2ExpTmME-c * 2ExpTiME-c * | ExpTmME-c* 271
o
SRR RN o EXPTIME fg 2ExPTmME-c * 2ExpTmMe-c * | PTmmE-c * 3 NL
with/without UNA o 4~ | VRN | o NP frl 2ExpTIME-C * 2ExpTiME-c * | PTmME-c *
role inclusions . o o ‘ R
o 0 o .9 L wg 2ExPTIME-C ExpTIME-C ExpTIME-C -
. o ! I 1% NLOGSPACE guarded | 2ExpTimME-C ExpTmME-C PTmME-c g1
UNA ol ol o d Il ba-fg 2ExpTME-Cc * ExpTmme-c * | PTmMe-c * - : :
o I A G , S N i N Mt o st i AN st el A (R o s s s s s s——
wo roleinchusions 1o T i Compleity ba-frl | ExeTovue-hard *O [ ExrTovec * | PTive-c * . H{__LogCFL ). 4
o | | | 1
| O CONP T T ! T T
i ?i i o 2 { trees 2 e 8 arb.
UNA ot o ol iy o ACO I1Qs CQs number of leaves (b) treewidth
NA e o F
no role inclusions S . \l data combined data combined
& & & & complexity complexity  complexity complexity -
SEXPLIME — combined
Figure 6: Complexity of basic DL-Lite logics. DL-Lite ) ) L [gl)‘\* ~ 2ExpTiME complexity
DL-Liter in ACo NLOGSPACE in ACy NP (arity unbounded)
) _2EXPTIME  compined
CQ C(2)RPQ EC.ELH p p p NP wig \//*/ EXPTIME E::rrirt\plsxity
. . - y bounded)
data combined data combined ;¢
’ we ExpTIME
. . 0 SﬁI, gLHI_L, // ...................... ssesssanannns data
DL-Literprs in AC NP-c NL-c NP-c Horn-SHOZO P Exp P Exp . : PTIME complexity
> (B) < Thm 6.8 < Thm 6.8 vl
ALC, . . /
DL-Lite(g) in ACY NP-c NL-c PSpace-c ALCHO coNP EXP coNP Exp A
< (D) < (D) < Thm 6.8 > Prop 4.5, < Thm 6.8 Rl
. . " Dba-fg
ALCT, SH, coNP Exp coNP 2EXP - -
EL(H) P-c NP-c P-c PSpace-c SHIQ / N
< (F) < (F) < Thm 6.8 > Prop 4.5, < Thm 6.8 SHOIO coNP coNEXP coNP-hard! coN2Exp-hard? © 2EXPTIME

. o e combined
barirl ExpTIME  complexity

(arity unbounded)
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Complexity landscape: Takeaways

can lead to
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can lead to

Useful to distinguish between combined complexity and data complexity

« combined complexity: measured in terms of whole input
- data complexity: measured in terms of size of dataset (i.e. treat ontology, query as fixed)

- allows to identify more tractable fragments (e.g. can be EXPTIME combined, but PTIME for data complexity)
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Complexity landscape: Takeaways

can lead to

Useful to distinguish between combined complexity and data complexity

« combined complexity: measured in terms of whole input
- data complexity: measured in terms of size of dataset (i.e. treat ontology, query as fixed)

- allows to identify more tractable fragments (e.g. can be EXPTIME combined, but PTIME for data complexity)

PTIME data complexity only possible for languages without any form of disjunction

» reasoning by cases leads to coNP data complexity (or worse)

Most work on OMOA algorithms focuses on settings with PTIME data complexity
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Query rewriting

Reduce OMQA to standard database query evaluation

Ho®-»{ll] {Eog-

Rewriting step Evaluation step (database system)

dnNswers
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Query rewriting

Reduce OMQA to standard database query evaluation

Ho®-»{ll] {Eog-

Rewriting step Evaluation step (database system)

dnNswers

Formally: rewriting of (O, q)is a query ¢ such that for every dataset,

(0,D) = q(a) & a € ans(q,D)
certain answers to g on (O, D) answers to ¢~ on D
Usually focus on . q* 1S a (can evaluate using relational DB)

Many implemented rewriting algorithms, e.g. Ontop (DL-Lite, OWL 2 QL), Graal (existential rules)
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Example: Query rewriting

Consider the following ontology:

) - Prof(x) — PhDHolder(x) GradCourse(x) A taughtBy(x,y) — Prof(y)
Postdoc(x) — PhDHolder(x)

and reconsider the query ¢;(z) = PhDHolder(z)
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Example: Query rewriting

Consider the following ontology:

) = Prof(x) — PhDHolder(x) GradCourse(x) A taughtBy(x,y) — Prof(y)
Postdoc(x) — PhDHolder(x)

and reconsider the query ¢;(z) = PhDHolder(z)

First-order rewrltmg of (O, q1 ): "find those who are a PhD holder, or a prof, or a postdoc, or teach some grad course"

' ¢"(x) = PhDHolder(z) V Prof(z)  Postdoc(z) \ (32 taughtBy(z, z) A GradCourse(2)) |

Evaluating the rewriting over the dataset

Prof(kim) Postdoc(paolo) taughtBy(cs87,ann)  GradCourse(cs87)

gives us the three certain answers:
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Example: Query rewriting

Consider the following ontology:

) = Prof(x) — PhDHolder(x) GradCourse(x) A taughtBy(x,y) — Prof(y)
Postdoc(x) — PhDHolder(x)
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gives us the three certain answers: kim paolo ann
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Query Rewriting: Limits and Possibilities

Rewriting algorithms can produce huge rewritings - is this unavoidable?

Setting: OWL 2 QL (DL-Lite) ontology + conjunctive query
Dimensions: query + ont. structure, form of rewriting

query » Exponential size blowup unavoidable in general

Cost of Study succinctness of rewritings

rewriting  Tractable classes: guaranteed short rewritings, efficient evaluation

Novel, non-trivial connections to circuit complexity

Bienvenu et al. Ontology-Mediated Queries: Combined Complexity and Succinctness of Rewritings via Circuit Complexity. JACM 2018
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Dimensions: query + ont. structure, form of rewriting

query » Exponential size blowup unavoidable in general

Cost of Study succinctness of rewritings

rewriting » Tractable classes: guaranteed short rewritings, efficient evaluation

Novel, non-trivial connections to circuit complexity

Bienvenu et al. Ontology-Mediated Queries: Combined Complexity and Succinctness of Rewritings via Circuit Complexity. JACM 2018

In many ontology languages, FO-rewritings need not exist. End of story?

Task: decide If rewriting exists for a particular ontology & query
 Characterizations, precise complexity, algorithms for various DLs

(In)existence
of rewritings

» Basis for extending the reach of query rewriting approach

Bienvenu et al. First Order-Rewritability and Containment of Conjunctive Queries in Horn Description Logics. |JCAI 2016
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Materialization-based approaches

Complete the data with implicit information from the ontology
answers

< —— -
N Bl g o~
Materialization step Fvaluation step

(e.s. using database system)
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Materialization-based approaches

Complete the data with implicit information from the ontology

2.8-8 @00

Materialization step Fvaluation step

(e.s. using database system)

Illustration with running example:

£3%

Prof(x) — PhDHolder(z) Postdoc(z) — PhDHolder(x) ¢1(x) = PhDHolder(z)

GradCourse(x) A taughtBy(z, y) — Prof(y)
| °

. Prof(kim) Postdoc(paolo) taughtBy(cs87,ann) GradCourse(cs87)
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Chase: Handling Unnamed Individuals

Materialization can also be employed for existential rules, using chase procedure:

Introduce to serve as witnesses for
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Chase: Handling Unnamed Individuals

Materialization can also be employed for existential rules, using chase procedure:

« apply rules exhaustively, introduce fresh elements to serve as witnesses for existential vars

£T3 Prof(xz) — PhDHolder(x) PhDHolder(z) — 3z HasDegree(x, z) A PhD(z)
Course(x) — Jdy taughtBy(x,y) GradCourse(x) — Course(z) GradCourse(x) A taughtBy(x,y) — Prof(y)

>
. GradCourse(cs87)
\\Ciourse(cs87) taughtBy(cs87,a) Prof(a) PhDHolder(«t) hasDegree(«,5) PhD(p)

Chaseo(D) €

q3(x) = dy taughtBy(z, y) A PhDHolder(y)
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Chase: Handling Unnamed Individuals

Materialization can also be employed for existential rules, using chase procedure:

« apply rules exhaustively, introduce fresh elements to serve as witnesses for existential vars

£T3 Prof(xz) — PhDHolder(x) PhDHolder(z) — 3z HasDegree(x, z) A PhD(z)
Course(x) — Jdy taughtBy(x,y) GradCourse(x) — Course(z) GradCourse(x) A taughtBy(x,y) — Prof(y)

>
. GradCourse(cs87)
\\Ciourse(cs87) taughtBy(cs87,a) Prof(a) PhDHolder(«t) hasDegree(«,5) PhD(p)

Chaseo(D) €

g3(x) = Jy taughtBy(z, y) A PhDHolder(y) »

Key property: (O, D) — Q(C_i) @ a € anS(Q,ChaSGO (D)) applies to conjunctive queries,
certain answer answer on chased dataset ontologies given by existential rules
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. °
Lutz et al. CQ Answering in the Description Logic Carral et al. The Combined Approach to
O I I I I n e p p rO a C EL Using a Relational Database System. [JCAI'09 Query Answering in Horn-ALCHOIQ. KR"18

When the chase Is finite, 1t provides a method for computing certain answers
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%\S\ ° °
PhD'go'derhassueervis(f?hD'go'derQ%% » evaluate original query over compact chase
min > % .
g xlo = superset of certain answers
A e rewriting / filtering phase to block incorrect answers
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Closer looks at materialization

Which classes of existential rules guarantee chase termination?

- Development of acyclicity conditions (sufficient) \GVEr any dataset)

When does . o o
» Study of decision problem: check If given ruleset has terminating chase

the chase
terminate?

» Several different chase variants (oblivious, Skolem, restricted, core, ...)

Carral & Urbani. Checking Chase Termination over Ontologies of Existential Rules with Equality. AAAI 2020.

Gogacz et al. All-Instances Restricted Chase Termination. PODS 2020.
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Closer looks at materialization

Which classes of existential rules guarantee chase termination?

- Development of acyclicity conditions (sufficient) \GVEr any dataset)

When does
the chase
terminate?

» Study of decision problem: check If given ruleset has terminating chase

» Several different chase variants (oblivious, Skolem, restricted, core, ...)

Carral & Urbani. Checking Chase Termination over Ontologies of Existential Rules with Equality. AAAI 2020.

Gogacz et al. All-Instances Restricted Chase Termination. PODS 2020.

How to efficiently compute and maintain the materialization?

Efficient

OMQA motivates need to develop efficient algorithms for Datalog, chase

chase

New techniques & optimizations: handling updates, parallelization
computation g Example systems: RDFox (Datalog, OWL 2 RL), VLog, Graal (exist. rules)
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OMQA Research




Topics In OMQA research

Which gueries can be captured using ontology-mediated queries (OMQs)?

EXp ressive p ower Bienvenu et al. Ontology-Based Data Access: A Study through Disjunctive Datalog, CSP, and MMSNP. TODS 2014 (O |

Bourgaux et al. Capturing Homomorphism-Closed Decidable Queries with Existential Rules. KR 2021
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CO m p I-eXIty Lutz & Sabellek. Ontology-Mediated Querying with the Description Logic EL: Trichotomy and Linear Datalog Rewritabilit. IJCAlI 2017

Hernich et al. Dichotomies in Ontology-Mediated Querying with the Guarded Fragment. TOCL 2020

Use approximation to handle more expressive ontology languages

Ap p rOXi 1 a'['_| on Zhou et al. PAGOdA: Pay-As-You-Go Ontology Query Answering Using a Datalog Reasoner. JAIR 2015

Haga et al. How to Approximate Ontology-Mediated Queries. KR 2021
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Topics In OMQA research

What about non-relational data? graph data, key-value stores, temporal DBs

Richer queries, What about other kinds of queries? path queries, counting queries, temporal queries

other data formats Bienvenu, Quentin Maniére, Thomazo. Cardinality Queries over DL-Lite Ontologies. IJCAl 2021

ANR CQFD (Federico Ulliana, LIRMM + 7 other French labs)
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How to cope with erroneous, Imprecise, uncertain data?
Imperfect data &
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INTENDED Al Chair (2020-2025): Intelligent Handling of Imperfect Data
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Topics In OMQA research

What about non-relational data? graph data, key-value stores, temporal DBs

Richer queries, What about other Rinds of queries? path queries, counting queries, temporal queries

other data formats Bienvenu, Quentin Maniére, Thomazo. Cardinality Queries over DL-Lite Ontologies. I)CAI 2021

ANR CQFD (Federico Ulliana, LIRMM + 7 other French labs)

How to cope with erroneous, Imprecise, uncertain data?
Imperfect data &

knowledge

Bienvenu. A Short Survey on Inconsistency Handling in Ontology-Mediated Query Answering. Kl 2020

INTENDED Al Chair (2020-2025): Intelligent Handling of Imperfect Data

Explanation How to explain / justify / trace back query results?

Learning How to learn ontologies, queries, mappings?
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CQFD - Complex ontological Queries over Federated and
heterogenous Data

lirmm.fr/cqfd

Questions?

INTENDED We're hiring!

Internships, PhD, & postdoc positions

> Intelligent handling of imperfect information intended.labri.fr/hiring
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