arXiv:1504.07443v1 [cs.Al] 28 Apr 2015

Jean-Francois Baget

1

Univ. Montpellier Il

Combining Existential Rules and Transitivity: Next Steps

Meghyn Bienvenu
CNRS &
Univ. Paris-Sud
Orsay, France

INRIA &

Montpellier, France

Abstract

We consider existential rules (aka Datalggas

a formalism for specifying ontologies. In recent
years, many classes of existential rules have been
exhibited for which conjunctive query (CQ) entail-
ment is decidable. However, most of these classes
cannot express transitivity of binary relations, a fre-
qguently used modelling construct. In this paper,
we address the issue of whether transitivity can be
safely combined with decidable classes of existen-
tial rules. First, we prove that transitivity is incom-
patible with one of the simplest decidable classes,
namely aGRD (acyclic graph of rule dependen-
cies), which clarifies the landscape of ‘finite expan-
sion sets’ of rules. Second, we show that transitiv-
ity can be safely added to linear rules (a subclass
of guarded rules, which generalizes the description
logic DL-Liteg) in the case of atomic CQs, and also
for general CQs if we place a minor syntactic re-
striction on the rule set. This is shown by means
of a novel query rewriting algorithm that is spe-
cially tailored to handle transitivity rules. Third, for
the identified decidable cases, we pinpoint the com-
bined and data complexities of query entailment.
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[Calvaneset al, 2007; Baader, 2003; Lu&t al, 2009 and
Horn DLs[Krotzschet al, 2007.

The fundamental decision problem related to OBDA is
the following: is a Boolean conjunctive query (CQ) entailed
from a KB? This problem has long been known to be unde-
cidable for general existential rules (this follows e.gqnfi
[Beeri and Vardi, 19&}). Consequently, a significant amount
of research has been devoted to the issue of finding decidable
subclasses with a good expressivity / tractability trafielof
has been observed that most exhibited decidable classes ful
fill one of the three following propertigBagetet al, 20114:
finiteness of a forward chaining mechanism known as the
chase, which allows inferences to be materialized in thea dat
(we call such rule setfinite expansion setdeq; finiteness
of query rewriting into a union of CQs, which allows to the
rules to be compiled into the querfir(ite unification sets,
fug); tree-like shape of the possibly infinite chase, which al-
lows one to finitely encode the resuttqunded-treewidth sets,
bts). The class ofjuarded rules|[Caliet al, 200 is a well-
known class satisfying the latter property.

Known decidable classes are able to express many useful
properties of binary relations (e.g., inverses / symmeiny)
most of them lack the ability to define a frequently required
property, namelytransitivity. This limits their applicability
in key application areas like biology and medicine, for vihic
transitivity of binary relations (especially the ubiquit‘'part
of’ relation) is an essential modelling construct. The impo

Ontology-based data access (OBDA) is a new paradignidnce of transitivity has long been acknowledged in the DL
in data management, which exploits the semantic informacommunity [Horrocks and Sattler, 1999; Sattler, 2p0@and
tion provided by ontologies when querying data. Briefly, many DLs support transitive binary relations. While adding
the notion of a database is replaced by that of a knowltransitivity to a DL often does not increase the complexity
edge base (KB), composed of a dataset and an ontoPf CQ entailment (se¢Eiteret al, 2009 for some excep-

ogy.

Existential rules aka Datalog-, have been pro-

tions), it is known to complicate the design of query answer-

posed to represent ontological knowledge in this coning procedurefiGlimm etal, 2008/ Eiteret al, 2013, due to
text[Caliet al,, 2009{ Bagegt al, 2009{ Bagett al, 2011b;
Krotzsch and Rudolph, 2011 These rules are an extension Which DL reasoning algorithms typically rely. In contrast t
of function-free first-order Horn rules (aka Datalog), thatthe extensive literature on transitivity in DLs, rathetlditis
allows for existentially quantified variables in rule heads known about the compatibility of transitivity with decidab
The addition of existential quantification allows one to as-Classes of existential rules. A notable exception is themec
sert the existence of yet unknown entities and to reasofesult of[Gottlobetal, 2013 on the incompatibility of tran-
about them, an essential feature of ontological languagesitivity with guarded rules, which holds even under strong
which is also at the core of description logics (DLs). Ex- Syntactic restrictions (see Section 3).

istential rules generalize the DLs most often considered In this paper, we investigate the issue of whether transi-
in the OBDA setting, like the DL-Lite and& L families

the fact that it destroys the tree structure of the chase upon

tivity can be safely added to some well-known rule classes
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and provide three main contributions. First, we show that  from P,;
adding transitivity to one of the simplef#gsandfus classes
(namelyaGRD makes atomic CQ entailment undecidable, C : /
which clarifies the issue fdies classes (Theorefd 1). Sec- E)hc?:l?rtri]r? (rée\rg%n& are variables front)" that do not
ond, we investigate the impact of adding transitivityitear '

rules, a natural subclass of guarded rules which genesalizéVe say tha)’ is apiece(andy is a single-piece unifier) if
the well-known description logic DL-Lite. We introduce a there is no non-empty subsgt’ of ' such thatP, restricted
query rewriting procedure that is sound and complete for alto Q" satisfies Condition 2. From now on, we consider only
rule sets consisting of linear and transitivity rules (Tiego  single-piece unifiers, which we simply caihifiers The(di-

2), and which is guaranteed to terminate for atomic CQs, antect) rewriting of @ with R w.r.t. 4 is o(Q \ Q') U o(B)

for arbitrary CQs if the rule set contains only unary and bi-whereos is a substitution obtained fro8,. A rewriting of
nary predicates or satisfies a certain safety conditioidiyig () w.r.t. a set of rulesk is a CQ obtained by a sequence
decidability for these cases (Theorem 3). Third, based on & = Qo,...,Q@» (n > 0) where for alli > 0, @, is a di-
careful analysis of our algorithm, we establish tight bagind rect rewriting ofQ);_; with a rule fromR. For any fact base
on the combined and data complexities of query entailmen#, we have thafF, R |= Q iff there is a rewritingQ,, of Q

for the identified decidable cases. The obtained compéexiti w.r.t. R such thatF = @,, [Konig et al, 2013.

are the lowest that could be expected, namely, NL in dat% .
; ; ; xample 1 Consider the ruleR = h(xz) — p(z,y) and CQ
complexity and P8ACE in combined. Q = g(u) A plu,v) A plw,v) A r(w). If p(u,v) is unified
with p(x, y), thenv is unified with the existential variablg

2. if a classC; in P, contains an existential variable, then

2 Preliminaries hencep(w, v) has to be part of the unifier. The triple =
A termis a variable or a constant. Aatomis of the form  ({p(u, v), p(w,v)}, {p(x,y)}, {{z, v, w}{v,y}} is a unifier.
p(t1,...,t,) wherep is a predicate of arity:, and thet; are The direct rewriting of) associated with the substitutien=

terms. We considefunions of) Boolean conjunctive queries {7 — u, w — u,y = v}is h(u) A q(u) Ar(u).
((U)CQs) which are (disjunctions of) existentially closed
conjunctions of atoms. Note however that all results can b
extended to non-Boolean queries. A CQ is often viewed a
thesetof atoms. Amatomic CQis a CQ consisting of a single
atom. Afactis an atom without variables. fact bases a
finite set of facts.

We now define some important kinds of rule sets (see e.g.,
Mugnier, 201] for an overview). A modelM of a KB K
calleduniversalif for any CQ @, M is a model ofQ) iff
K | Q. Arule setR is afinite expansion set (fef)any KB
(F,R) has afinite universal model. It ig®unded-treewidth
. ; . : set (bts)if any KB (F,R) has a (possibly infinite) universal
An existential rule(hereafter abbreviated tle) Zis a 4| of bounded(treevaidth. It isfanite unification set (fus)
formulavavy(B(7, y] — 32 H[7,2]) whereB andH are ¢ any CQ (), there is a finite sef of rewritings of Q

conjunctions of atoms, resp. called thedyand theheadof :
R. The variables’ (resp. %), which occur only inH (resp. }[/;/].g:é?sglljceh;hs&éﬁrtﬁgygité;?%, we haver, R = Q iff

in B and inH) are callecexistentialvariables (respfrontier
variables). Hereafter, we omit quantifiers in rules and $imp
denote a rule byB — H. For examplep(x,y) — p(z, 2)
stands fovzVy(p(z,y) — Jz(p(z, 2))). A knowledge base
(KB) K = (F,R) consists of a fact basé and a finite set
of rulesR. The(atomic) CQ entailmenproblem consists in
deciding whethekK = @, whereK is a KB viewed as a first-
order theory( is an (atomic) CQ, an¢= denotes standard

logical entailment. rules of the formp(z,y) A p(y,z) — p(x, z), which are
Query rewriting relies on a unification operation between, ¢\ " yredicate is calletransitiveif it appears in a tran-

the query and a rule head. Care must be taken when handl"ggtivity rule. If C is a class of rule setg,+transdenotes the

existential variables: when a tertnof the query is unified . . S
with an existential variable in a rule head, all atoms in vihic class obtained by adding transitivity rules to rule setenftb

t occurs must also be part of the unification, otherwise the o .
result is unsound. Thus, instead of unifying one query atom3 Combining fes/ fusand Transitivity
at a time, we have to unify subsets (“pieces”) of the query,
hence the notion of a piece-unifier defined next. A partition
P of a set of terms is said to bedmissibleif no class of
P contains two constants; a substitutiorcan be obtained
from P by selecting an element; in each clasg’; of P,
with priority given to constants, and settiagt) = ¢; for all
t € C;. A piece-unifieof a CQQ witharuleR = B — H
is atriplep = (Q',H', P,), whereQ’ C Q, H' C H andP,
is an admissible partition on the terms@fU H’ such that:

A Datalogrule has no existential variables, hence Datalog
rule sets arées Other kinds ofesrules are considered in the
next section. A ruleB — H is guardedif there is an atom
in B that contains all the variables occurringfih Guarded
rules arebts A linear rule has a body composed of a sin-
gle atom and does not contain any constant. Linear rules are
guarded, henclets moreover they artus

As a special case of Datalog rules, we haransitivity

large hierarchy offes classes is known (see e.g.,
[Cuenca Graet al, 2013 for an overview). Beside Datalog,
the simplest classes aneakly-acyclic (wakets, which pre-
vent cyclic propagation of existential variables alongdpre
cate positions, andGRD (acyclic Graph of Rule Dependen-
cies) sets, which prevent cyclic dependencies betweeas.rule
Datalog is generalized hwa, whilewaandaGRDare incom-
parable. Some classes generalizby a finer analysis of
variable propagation (up wuper-weakly acyclic (swagts).

1. o(H') = 0(Q'), whereo is any substitution obtained Most otherfesclasses generalize botta andaGRD.



We show thaGRD+transis undecidable even for atomic well as for general CQs if we place a minor safety condi-

CQs. SincaaGRDis bothfesandfus this negative result also
transfers tdesttransandfusttrans

Theorem 1 Atomic CQ entailment ovexGRD+ transkKBs is
undecidable, even with a single transitivity rule.

tion on the rule set. Such an outcome was not obvious in the
light of existing results. Indeed, atomic CQ entailmentrove
guardedrtransrules was recently shown undecidable, even
when restricted to rule sets that belong to the two-variable
fragment, use only unary and binary predicates, and contain

Proof: The proof is by reduction from atomic CQ entailment only two transitive predicatefGottlobet al, 2013. More-
with general existential rules (which is known to be undecid over, inclusion dependencies (a subclass of linear rules) a

able). LetR be a set of rules. We first translai into an

functional dependencies (a kind of rule known to destrog tre

aGRDset of rulesR®. We consider the following new predi- structures, as do transitivity rules) are known to be incamp
cates:p (which will be the transitive predicate) and, for each ible [Chandra and Vardi, 1935

rule R; € R, predicates; andb;. Each ruleR; = B; — H;
is translated into the two following rules:

° Rzl =B, — ai(f7 Zl) /\p(Zl, 22) /\p(22,23) A b1(23)
° R? = ai(@, 21) Ap(z1,22) Abi(z2) = H;

wherez,z5 andzs are existential variables aathre the vari-
ables inB;.

LetR* = {R}, R? | R; € R}, and letGRD(R®) be the
graph of rule dependencies &“, defined as follows: the
nodes ofGRD(R®) are in bijection withR?, and there is an
edge from a nod&; to a nodeR; if the rule R, depends on
the ruleR;, i.e., if there is a piece-unifier of the body &%
(seen as a CQ) with the head Bf.

We check that for any?; € R, R} has no outgoing edge
and R? has no incoming edge (indeed theare existential
variables). Hence, iizRD(R*) all (directed) paths are of
length less or equal to one. It follows thaR D(R*) has no
cycle, i.e.,R* is aGRD.

Let R! be the rule stating that is transitive. LetR’ =
R U {R'}. The idea is thaf?’ allows to “connect” rules
in R that correspond to the same rule7f® For any fact

4 Linear Rules and Transitivity

To obtain finite representations of sets of rewritings imvol
ing transitive predicates, we define a framework based on the
notion of pattern

4.1 Framework

To each transitive predicate we assigpaitern name Each
pattern name has an associagmattern definition P :=
ai]...lak, where eachy; is an atom that contains the spe-
cial variables#1 and#2. A patternis either astandard pat-
tern P[t1, to] or arepeatable patter®*[t,, 5], whereP is a
pattern name antl andt. are terms. Aunion of patterned
conjunctive queriegUPCQ) is a paifQ,P), whereQ is a
disjunction of conjunctions of atoms and patterns, Brisl a
set of pattern definitions that gives a unique definition thea
pattern name occurring i@. A patterned conjunctive query
(PCQ)Qis a UPCQ without disjunction. For the sake of sim-
plicity, we will often denote a (U)PCQ by its first component
Q, leaving the pattern definitions implicit.

baseF (on the original vocabulary), for any sequence of rule  An instantiation7T" of a UPCQ(Q, P) is a node-labelled

applications fromF using rules inR, one can build a se-
quence of rule applications frotf using rules fronR’, and

reciprocally, such that both sequences produce the sarhe fac ®
base (restricted to atoms on the original vocabulary). denc
for any F and @ (on the original vocabulary), we have that

FREQIff F,R E Q. O

Corollary 1 Atomic CQ entailment overfusttrans or
festtransKBs is undecidable.

Most knownfesclasses that do not generale@RDrange

between Datalog arslva(inclusive). It can be easily checked

that anyswaset of rules remainswawhen transitivity rules

are added (and this is actually true for all known classes be-

tween Datalog andwa).

Proposition 1 The classesswa and swa+rans coincide.
Hence swa+transis decidable.

Proof: It suffices to note that the addition of transitivity rules
does not create new edges in the ‘SWA position graph’ fro

[Cuenca Graet al., 2019.

tree that satisfies the following conditions:
the root ofT is labelled byQ € Q;

o the children of the root are labelled by the patterns and
atoms occurring irQ;

e each node that is labelled by a repeatable pattern
PT[ty,tz] may be expanded into > 1 children labelled
respectively byP[t1, 1], Plx1,x2],..., Plrg—_1,t2],
where ther; are fresh variables;

e each node labelled by a standard pattBfiy, t2] may
be expanded into a single child whose label is obtained
from an atoma in the pattern definition o’ in P by
substituting#1 (resp.#2) by t; (resp.t2), and freshly
renaming the other variables.

For brevity, we will often refer to nodes in an instantiation
using their labels.
The instanceassociated with an instantiation is the PCQ

Mbbtained by taking the conjunction of the labels of its lesave

An instance of a UPCQ is an instance associated with one

It follows that the effect of transitivity on the currently of jts instantiations. An instance is callédll if it does not
known fes landscape is now quite clear, which is not the contain any pattern, and we denote byii(Q, P) the set of

case forfus classes. In the following, we focus on a well- fy|| instances ofQ, P)
knownfusclass, nameljinear rules. We show by means of

a query rewriting procedure that query entailment direr

Example 2 Let (Q,P) be a PCQ, where® = P;'[a, 2] A

ear+transKBs is decidable in the case of atomic CQs, asP; [z,b] A s1(a,b) and P contains the pattern definitions:



o) 4.2 Overview of the Algorithm
| Our query rewriting algorithm takes as input a @and a set
Pifla, 2] Pyf[z,b] s1(a,b) of rulesR = R URy, with R, a set of linear rules an@r
\ VRN a set of transitivity rules, and produces a finite set of atal
P la, 2| Pz, 2] Pz, b

rules and a (possibly infinite) set of CQs. The main steps of
| | | the algorithm are outlined below.

sa(a,y0,2)  s2(w1,y1,2)  pa(21,b) . .
Step 1For each predicate that appears iR r, create a pat-
tern definitionP := p(#1, #2), whereP is a fresh pattern
Figure 1: Instantiations of a PCQ name. Call the resulting set of definitioBg.

Step 2Let R} be the result of considering all of the rule bod-
— — ies inR 1, and replacing every body atopft1, t2) such thap
il(#zlyj};ﬁl)i #2)s2(3# 1y, #2) and Py := po(#1, #2)] is a transitive predicate by the repeatable patfehit, ¢).

Two instantiations ofQ are displayed in Figur¢]l. The Step 3 (Internal rewriting) Initialize P to P, and repeat the
smaller instantiation (within the dotted lines) gives risghe  following operation until fixpoint: select a pattern defioit
(non-full) instancel; = Pi[a, z] A Palz,x1] A Pafz1,b] A P € PandaruleR € R} and compute the direct rewriting
s1(a,b). By expanding the three nodes labelled by patternsf P w.r.t. P andR.
accord[ng to the definitions iﬁz we may obtain the Iarggr in-  Step 4Replace in all atomsp(t, t2) such thap is a transi-
stantation (occupying the entire figure), whose associated tive predicate by the repeatable pattéth[t,, t,], and denote
stancel)z = s2(a, Yo, 2) As2(z1,y1, 2) Apa(z1,b) Asi(a,b)  the result byQ™.
is a full instance for(Q, P). Step 5 (External rewriting) Initialize Q to { @} and repeat

A UPCQ (Q,P) can be translated into a set of Data- the following operation until fixpoint: choosg; € Q, com-
log rulesIly and a UCQQq as follows. For each defi- pute a direct rewriting oQ; w.r.t. P and a rule fromR},
nition P := al(ﬂ)| . |a,€({k) in P, we create the transi- and add the result t@Q (except if it is isomorphic to some
tivity rule p*(z,y) A pt(y,2z) — pt(x,2) and the rules Q; € Q).
ai(t;) — pT(#1,#2) (1 < i < k). The UCQQq is ob-  Step 6Let T be the Datalog translation &, and letQq be
tained fromQ by replacing each repeatable pattéth(t;, ¢5] the (possibly infinite) set of CQs obtained by replacing each
by the atonp™ (1, t2). Observe thallp is non-recursive ex- repeatable patterR™ [t1, t2] in Q by p™ (¢4, t2).
cept for the transitivity rules. _T_he next proposition stteat  The rewriting process in Step 3 is always guaranteed to ter-
(Ip, Qg) can be seen as a finite representation of the set Qfjinate, and in Sectidd 6, we propose a modification to Step

fullinstances ofQ, F"). 5 that ensures termination and formulate sufficient coomliti
Proposition 2 Let F be a fact base an¢lQ, P) be a UPCQ. that preserve completeness. Wh@p is finite (i.e., it is a
ThenF,IIp = Qq iff F = Q for someQ € full(Q,P). UCQ), it can be evaluated over the fact base saturatéipby

or alternatively, translated into a set of Datalog rulesicivh
can be combined withilp and passed to a Datalog engine
for evaluation. Observe that the constructiodlgfis query-
independent and can be executed as a preprocessing step.

A unifier p = (@', H, P,) of aPCQis a unifier of one
of its (possibly non-full) instances such th@t is a set of
(usual) atoms. We distinguish two types of unifiers (intérna
and external), defined next.

LetT be an instantiatior) be its associated instance, and " : :
w = (Q',H,P,) be a unifier ofQ. AssumeT contains a 5 Rewriting Steps in Detail o
repeatable patterR+[t,, t,] that is expanded int®[ug,u,], A PCQ that contains a repeatable pattern has an infinite num-
.y Plug, up41], whereug = t; andugy; = to. We call ber of instancgs. Inst_ez;\d of conslidering all instances of a
Plu;, u;41] relevant fory if it is expanded into an atom from PCQ, we consider a finite set of ‘instances of interest’ for
Q'. Because we consider only single-piece unifiers (cf. Sec given rule. Such instances will be used for both the interna
), it follows that if such relevant patterns exist, theynfioa ~ and external rewriting steps.
sequence’(u;, wiy1],Pluir, uiyal,. .., Pluj_1,u;]. Terms  Instances of interest Consider a PCQQ,P) and a rule
u; andu; are calledexternalto P*[t1, 2] w.rt. 4i; the other g ¢ R+ with head predicate. Theinstantiations of interest
terms occurring in the sequence are calfedrnal. The uni-  of (Q, P) w.rt. R are constructed as follows. For each re-
fier u is said to benternalif all atoms from@Q’ are expanded peatable patter®t [t1,t,] in Q, letai, ..., a’ be the atoms
from a single repeatable pattern, and no external terms ai§ the definition 6f-Pi with predicatep. If ni’“> 0, then ex-
unified together or with an existential variable; otherwise  pand p:t[t,,t,] into k standard patterns, whefe < &k <
calledexternal min(a;ity(p),m) + 2, and expand each of these standard

Example 3 Consider Q, from Example[2 and the rules patternsin turn into some;. An instance of interesss the
Ry = si(2',y) — pa(2,y)) and Ry = sy(2',y’) —  instance associated with an instantiation of interest.
s2(2',y',2'). The unifier oY, with R, that unifiega(21,b)  Example 4 Reconside, Q, and R, from ExampleEl2 and
with pz (2, y/') is internal. The unifier of); with R, thatuni- 3., is not an instance of interest @@ w.r.t. R, since
fies{s2(a, yo,2), s2(z1,y1, 2)} With s2(2’, ', ') is external - p, [z, b] is expanded intp(#1, #2) whereas the head pred-
because it involves two repeatable patterns. icate of Ry is 5. If we expandPs[z1, b] with so (#2, y, #1)



instead, we obtain the instance of inter€st= s2(a, yo, 2) A
s2(z1,y1,2) A s2(b, y2,71) A s1(a,b).

We next show that the set of unifiers computed on the in-
stances of interest of a PCQ ‘captures’ the set of unifierscom

puted on all of its instances.

Proposition 3 Let(Q,P) be a PCQ andk € R} . For every
instance of (Q, P) and unifiery, of Q with R, there exist an
instance of interesf)’ of (Q,P) w.r.t. R and a unifiery’ of
Q' with R such that.’ is more generdl than .

5.1 Internal Rewriting
Rewriting w.r.t. internal unifiers is performed ‘inside’ a-r

peatable pattern, independently of the other patterns a

the formS*[#1, #2], f is the identity, otherwis¢ permutes
#1 and#2. For all s; in the definition ofS, we addf(s;) to

P’s definition.

Note that the addition of an atom to a pattern definition is
up toisomorphisnm{with #1 and#2 treated as distinguished
variables, i.e.#1 and#2 are mapped to themselves).

Example 6 ReconsiderR, i, and the definition of? from
Exampldb. Performing a direct rewriting w.r.E using R
andy results in adding the atom(#1, #2) to P’s definition.

Proposition 4 Let(Q, P) be a PCQ wheré’*[t;, t5] occurs

andR € R}. For any instance) of (Q,P), any classical
direct rewriting Q' of @ with R w.r.t. to a unifier internal to
nfL [t1,t2], and any@’ € full(Q',PP), there exists a direct

atoms in the query. We will therefore handle this kind of rewriting P’ of P w.r.t. P and R such that(Q, P’) has a full

rewriting in a query-independent manner by updating the pat;

tern definitions.

To find all internal unifiers between instances under a re

peatable patter®*[t1,¢2] and a rule head! = p(...), one
may think that it is sufficient to consider each atapin P’s
definition and check if there is an internal unifierfwith

nstance that is isomorphic 1Q’.

5.2 External Rewriting

Let (Q,P) be a PCQR € R}, T be an instantiation of in-
terest of(Q,P) w.r.t. R, @ be the instance associated with

H. Indeed, this suffices when predicates are binary: in ad’, andy = (Q', H, P) be an external unifier of) with R.

internal unifier,t; and¢, are unified with distinct variables,

which cannot be existential; thus, the termddrare frontier

From this, several direct rewritings gfw.r.t. P andR can be
built. First, we mark all leaves iff" that either have the root

variables, and a piece must consist of a single atom. If th@s parent or are labelled by an atom@, and we restrict
arity of p is greater than 2, the other variables can be existen?’ to branches leading to a marked leaf. Then, we consider

tial, so it may be possible to unify a path of atoms frétis
definition, but not a single such atom (see next example).

Example 5 Let R = s(z,y) — r(z1,2,22,y) and P :=

T(#2a #11 Zo, xl)l ’f'(#l, T2, #21 :E3)| T(CE47 Ts5, #17 #2)

There is no internal unifier of an atom iR’s definition with
H = r(z21,z,22,y). However, if we expand®*[ty, ] into

a path P[t1, yo] Plyo, y1] Ply1, t2], then expand théth pat-
tern of this path into théth atom in P’s definition, the re-
sulting instance can be unified wifti by an internal unifier
(with the partition{{z1, yo, 24}, {z,t1, 22, 75}, {22, %0, Y1},

{ya Ty, T3, tQ}})

Fortunately, we can bound the length of paths to be consid-

each instantiatioff; that can be obtained fro@ as follows.
Replace each repeatable pattétti[t,, o] that hask > 0
children inT by one of the following:

(i) Pt[t1, 1) A X[z, 22] A Pt[za,ta],
(i) PT[ty,z1] A X[x1,ta],
(i) X[t1,x2] A PT[za,ta],
(iv) X[t1,12],

where X|[v1,v2] is a sequenceP[vi,y1], Ply1,y2),- -,
Plyi—1,v2]. Let Q; be the instance associated with

If P[z’,%] in T has childa(t), expand inT; the corre-

ered using both the arity of and the number of atoms with spondingP[z, y] into a(p(t)) wherep = {2’ = z,y' — y}.

predicatep in P’'s definition, allowing us to use instances of

interest introduced earlier.

A direct rewriting ' of a set of pattern definition® w.r.t.
a pattern namé and a ruleR = B — H € R is the set
of pattern definitions obtained frofih by updatingP’s defi-
nition as follows. We consider the PC@ = P*[z,y], P).
We select an instance of interggtof Q w.r.t. R, an internal

unifier u of Q with H, and a substitution associated with

1 that preserves the external terms. [Btbe obtained from

o(B) by substituting the first (resp. second) external term by

#1 (resp.#2). If B’ is an atom, we add it t&’s definition.
Otherwise B’ is a repeatable pattern of the foST [#1, #2]
or ST[#2, #1]. Let f be a bijection o{#1, #2}: if B is of

! Consider unifierst = (Q, H, P,) andy’ = (Q', H, P,/), and
let o (resp.o’) be a substitution associated with (resp.P,). We
say thatu’ is more generathany if there is a substitutior from
o'(Q") to o(Q) such thatu(c'(Q")) C o(Q) (i.e.,h is a homomor-
phism froma’(Q’) to o(Q)), and for all termse andy in Q' U H,
if o/(z) = o'(y) thena(h(z)) = o (h(y)).

If ' = (p(Q), H, p(P)) is still a unifier of Q; with H, we
say thatQ, is aminimally-unifiable instancef Q w.r.t. yi. In
this case Q) = 1/(Q;) \ ¢/ (H) U 1/(B) is adirect rewriting
of Qw.rt.PandR.

Example 7 Reconsider @3 and Ry, and let p =
({82(0‘7 Yo, Z)a SQ(Ila Y1, Z)}v Hy, {{aa Z1, 'r/}a {yOv Y1, y/}v
{z,2'}}). First, we consider the instantiation that gener-
ated@s, and we remove the node labellé&d[z, 0] and its
child s2(b, y2, z1), since the latter atom is not involved in
u. Next will replace the repeatable patted?|'[a, z] (resp.
P57 [2,b]) using one of the four cases detailed above, and
we check whethep’ (obtained fromy) is still a unifier.
We obtain in this manner the following minimally-unifiable
instances: Q; = P;"[a, x2]A sa(z2,v0,2)A s2(z1, Y1, 2)A
P2+['r17 b]/\ Sl(aa b)’ andQ2 = SQ(avyOa Z) A SQ(Ila Y1, Z)

A Py [z1,b] A si(a,b). Finally, we rewrite Q; and Qs
into: Q) = P [a,2'] A s1(z',y)A Py [2',b]A s1(a,b) and
Q% = s1(a,y")A Py la,b]A s1(a,b).



Proposition 5 Let(Q,P) be a PCQ and? € R} . For every
Q € full(Q,P) and every classical direct rewritin@’ of Q
with R w.r.t. an external unifier, there is a direct rewriting’
of @ w.r.t. P and R that has an instance isomorphic .

6 Termination and Correctness

To establish the correctness of the query rewriting algorjt
we utilize Propositions|2]4 amd 5.

Theorem 2 Let @ be a CQ,(F,R) be a linear+trans KB,
and (Ip,Qq) be the (possibly infinite) output of the algorithm.
Then: F,R = Qiff F,1Ip = Q' for someQ’ € Qq.

Regarding termination, we observe that Step 3 (internab

rewriting) must halt since every direct rewriting step adds
new atom (using a predicate froRy,) to a pattern definition,

and there are finitely many such atoms, up to isomorphism.

is a direct specialization qf on positions{i, j}, or (b) there
is a rule of the formy(@) — r(¥) such that+(¢) is a spe-
cialization ofp on positions{E, f} and the terms occurring in
positions{k, [} of 7 occur in positiong, j} of @ with 7 # 0
andj # . We say that; is apseudo-transitive predicatéit

is a specialization of at least one transitive predicate.

We call a linear+trans rule seafeif it satisfies the follow-
ing safety conditionfor every pseudo-transitive predicate
there exists a pair of positiong, j} with ¢ # j such that
for all transitive predicates of which g is a specialization on
positions{7, j}, eitheri € i andj € 7, ori € j and; € i.

Note that if we consider binary predicates, the safety con-
ition is always fulfilled. Then, specializations corresdo
exactly to the subroles considered in DLs.

Example9 Let Ry = si(z,z,y) — pi(z,y), R

By contrast, Step 5 (external rewriting) need not halt, ass,(z,y, 2) — pa(z,y), Rz = s1(x,y,2) — sa2(2,2,9), and
the rewritings may grow unboundedly in size. Thus, to ensure, andp, be two transitive predicates.

termination, we will modify Step 5 to exclude direct rewrit-
ings that increase rewriting size. Specifically, we idgrtife
following ‘problematic’ minimally-unifiable instances:

The following specializations have to be consideredis
a direct specialization op; on positions{{1, 2}, {3}}, sz
is a direct specialization of, on positions{{1},{2}}, s1

e (' is composed of atoms expanded from a single patterif @ specialization op, on positions{{3},{1}}. We then

Pty ta], ¢/ (t1) = 1/ (t2), and Pt[ty, t5] is replaced
as in cas€i), (i) or (7i).

e ()’ is obtained from the expansion of repeatable pattern

atermt of (Q is unified with an existential variable of the

head of the rule; appears only in repeatable patterns of

form P"[t;, ¢] (resp.P;"[t, t;]), and all these repeatable
patterns are rewritten as in ca@@ P, [t;, t.] A X [t), ]
(resp. as in casg@ii) X[t,t)] A P [t ]).
We will call a direct rewritingexcludedf it is based on such
a minimally-unifiable instance; otherwise, itnen-excluded

Example 8 The rewritingQ’, from Examplé&l7 is excluded be-
cause it is obtained from the minimally-unifiable instaize
in which the repeatable patternd[a, 2] is expanded as in
case(ii) and P, [z, b] as in case(iii), and z is unified with
the existential variable’.

Proposition 6 Let(Q,P) beaPCQand? € R} . If Q' isa
non-excluded direct rewriting @@ with R, then|Q’| < |Q].

S

have two pseudo-transitive predicates:and ss. By choos-
ing the pair{1, 3} for s; and {1, 2} for s5, we observe that
{R1, R2, R3} satisfies the safety condition.

" If we replaceRs by Ry = s1(z,y,2) — sa(z,y,2),
s1 is a specialization ofp, on positions{{1},{2}}, and
{R1, Ra, R4} is not safe.

Theorem 3 The modified query rewriting algorithm halts.
Moreover, Theorefd 2 (soundness and completeness) holds for
the modified algorithm if either the input CQ is atomic, or the
input rule set is safe.

7 Complexity

A careful analysis of our query rewriting algorithm allows u

to pinpoint the worst-case complexity of atomic CQ entail-
ment over linear+trans KBs, and general CQ entailment over
safe linear+trans KBs. As usual, we consider two complex-
ity measurescombined complexitymeasured in terms of the
size of the whole input), andata complexitymeasured in

Let us consider the ‘modified query rewriting algorithm’ terms of the size of the fact base). The latter is often censid
that is obtained by only performing non-excluded directered more relevantsince the fact base is typically sigmitlga
rewritings in Step 5. This modification ensures terminationlarger than the rest of the input.
but may comprise completeness. However, we can show that With regards to data complexity, we show completeness for
the modified algorithm is complete in the following key cases NL (non-deterministic logarithmic space), which is the sam
when the CQ is atomic, when there is no specialization of a&omplexity as in the presence of transitivity rules alone.
transitive predicate, or when all predicates have arity @tm
two. By further analyzing the latter case, we can formulate
safety condition, defined next, that guarantees complsgene
for a much wider class of rule sets.

Safe rule sets We begin by defining a specialization rela-
tionship between predicates. A predicais adirect special-
izationof a binary predicatg on positions{i, j} (i # 0, ] #

0) if there is a rule of the forng(7) — p(z,y) such thati
(resp.j) contains those positions @fthat contain the term
(resp.y). It is aspecializatiorof p on positions{7, ;} if (a) it

gl heorem 4 Both (i) atomic CQ entailment over linear+trans
KBs and (ii) CQ entailment over safe linear+trans KBs are

NL-complete in data complexity.

Regarding combined complexity, we show that the addition
of transitivity rules does not increase the complexity ofigu
entailment for the two considered cases.

Theorem 5 Both (i) atomic CQ entailment over linear+trans
KBs and (ii) CQ entailment over safe linear+trans KBs are
P Sr,AcE-complete in combined complexity.



8 Conclusion [Calvaneset al, 2007 D. Calvanese, G. De Giacomo,

, D. Lembo, M. Lenzerini, and R. Rosati. Tractable rea-
In this paper, we made some steps towards a better under- soning and efficient query answering in description log-

standing of the interaction between transitivity and dabld ics: The DL-Lite family. J. Autom. Reasoning (JAR)
classes of existential rules. We obtained an undecidpabdit 39(3):385-429, 2007.

sult for aGRD-trans hence foffes+transandfusttrans More ) )
positively, we established decidability (with the lowessp ~ [Chandraand Vardi, 1985A. K. Chandra and M. Y. Vardi.
sible complexity) of atomic CQ entailment over line&mans The |mpl!cat_|on probl_em for functional and inclusion de-
KBs and general CQ entailment for safe linetaansule sets. pendencies is undecidabl&IAM J. Comput.14(3):671~
The safety condition was introduced to ensure terminatfon o 677,1985.
the rewriting mechanism when predicates of arity more thariCuenca Graet al, 2013 B. Cuenca Grau, |. Horrocks,
two are considered (rule sets which use only unary and binary M. Krotzsch, C. Kupke, D. Magka, B. Motik, and
predicates are trivially safe). We believe the condition bea Z. Wang. Acyclicity notions for existential rules and their
removed with a much more involved termination proof. application to query answering in ontologigdsArt. Intell.

In future work, we plan to explore the effect of transitiv-  Res. (JAIR)47:741-808, 2013.
ity on decidable rule classes that are incomparable wialin  [Ejteret al, 2009 T. Eiter, C. Lutz, M. Ortiz, and

rules, namely frontier-one rulespésclass that has close con- =\ simkus. Query answering in description logics with
nections to Horn DLs, and twinsclasses: domain-restricted transitive roles. IProc. of IJCA| pages 759-764, 2009.

and sticky rule setfBagetet al, 20114 Calet al, 201q. _ _ _ _
[Eiteret al, 2019 T. Eiter, M. Ortiz, M. Simkus, T.-K. Tran,
and G. Xiao. Query rewriting for Hor&HZ Q plus rules.
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Appendix

Notations
were notincluded in the main paper for space restrictioes. L
@1 andQ@- be two CQs, if there is a homomorphism fr@pa
to @2, we say that), is more generathan(@., and we note
Q1 > Q2. This definition is naturally extended to (U)PCQs:
let (Q1,P) and(Q2, Py) be two (U)PCQs, if for any full in-
stancel), of (Q2, P2) there is a full instanc€); of (Q1,P;)
such thatQ; > @2, we say thatQ;,P;) is more general
than(Q.,P2) and we notd Q1,P1) > (Qq, P2).

We recall from the body of the paper that a unifigr=
(Q',H, P,)is more general thap = (Q, H, P,) if there is
a substitutiorh from ¢/(Q’) to o(Q) such thati(o/(Q')) C
o(Q) (i.e.,his a homomorphism from’(Q’) to ¢(Q)), and
for all termsz andy in Q" U H, if o,/ () = o/ (y) then
ou(h(z)) = ou(h(y)), wheres,, ando,, are substitutions
associated respectively wiff, andP,,. In what follows, we
will write ¢/ > p to indicate thaj.’ is more general than.

Proposition 2 Let F be a fact base an¢Q, P) be a UPCQ.
ThenF,IIp = Qq iff F = Q for someQ € full(Q,P).

Proof: We successively prove the two directions.

(=) LetT be an instantiation ofQ, P) such that there ex-
ists a homomorphism from its associated full instance to the
fact baseF. Let us consider a node @f labelled by a stan-
dard pattern aton®[t,, t5]. The label-(p(#)) of its child was
obtained by choosing an atartt) in the pattern definition of
P. Thus our Datalog prografiz contains the rule () —
pt(#1, #2) where#1, #2 € t. Applying the rule according
to the homomorphismo p, we can add the atopi™ (¢, ¢2) to
F. Let us repeat this procedure for every nodd'débelled

In the following we use several notations that

has been obtained by a (possibly empty) sequence of applica-
tions of the rule expressing the transitivityof on ap™-path

7(t) = t1,...,t, = w(t’) such that no atorp™ (¢;,¢;11) in

F' has been obtained by a transitivity rule. Then the node
labelled P*[t,t'] hask + 1 children respectively labelled
Plt = z1,22),...,Plag—1,zr = ¢']. For the fresh vari-
ableszs, ..., z;_1, we definer’(z;) = t;. Repeat this pro-
cedure for every repeatable pattern aton¥in Let us next
consider a node of' labelled by a standard pattern atom
Pz, 2']. Since that node was obtained in the previous phase,
we know that the atomp™ (7' (), #’(2')) is in F’, and that

it was not obtained from the application of a transitivityeru
Thus, the Datalog rule used to produce that atom is neces-
sarily a rule obtained from the definition of the pattdPn

Let r(f) — pt(#1,#2), where#1,#2 € i, be that rule.
According to that pattern definition, we can add to the node
labelled P[z, z'] a child labelled-(p(%)). Since the Datalog
rule was applied according to a homomorphisth we de-
fine, for every fresh variablg(t), 7' (p(t)) = 7”(t). Do the
same for every standard pattern atonZofThe instance as-
sociated withT is full, and#’ is a homomorphism from this
full instance to the initial fact base. O

Proposition 3 Let(Q,P) be a PCQ and? € R} . For every
instance of (Q,P) and unifiery of Q with R, there exist an
instance of interesf)’ of (Q,P) w.r.t. R and a unifiery’ of
Q' with R such thay’ is more general thap.

Proof: Let (Q,P) be a PCQR < RZ be a rule with head
p(t), Q be an instance ofQ,P), andy = (Q2, p(t), P,) be
a unifier of@ with R.

Consider a repeatable patteP [¢;, t2] from which some
atoms inQ, are expanded. IP*[t;,1s] is expanded into
k < arity(p) + 2 standard patterns if, then there is

by a standard pattern atom. Consider next a repeatablepattesn instance of interesp’ that expandsP[t,,t,] into ex-

atom labelledP™[t, '] whose children are respectively la-
belledP[t = t1,t2], P[t2,ts], ..., Pltk—1,tr = t']. Accord-
ing to the rule applications already describ&thow contains
the at0m$)+(t = tla t2)7p+(t25 t3)7 cee ,p+(tk71, e = t/)
Then, by successive applications of the rulé&linexpressing
the transitivity ofp™, we finally add taF the atomp™ (¢, ¢).
Repeat this procedure for every nodeTotabelled by a re-
peatable pattern atom. Now the rootiofs labelled by some
Q € Q. The UCQQq contains a CQ) that was obtained
from Q by replacing each repeatable pattd?ri[t;,ts] by
pt(t1,t2). Observe that the restriction afto the terms of)

is a homomorphism fron® to the fact based obtained from
F by previous rule applications.

(<) Conversely, let us consider a fact basé obtained
by saturating the initial fact basé& with the rules ofIlp,
and a homomorphismr from some CQQ'’ in the UCQ
Qo to F'. Let us now build an instantiatio’ whose full
instance can be mapped ® thanks to a homomorphism
7’. The root node ofl" is labelled by the UPCQ@ in Q

from which Q' was obtained. Its children are labelled by

the atoms and pattern atoms @ Now we define the re-
striction of ’ to the terms ofQ asw. Let us now con-
sider a child of the root labelled by a repeatable pattermato
PTt,t']. It follows thatp™ (7 (t), 7(t')) is an atom ofF".

actly k£ standard patterns. Thus, there is an isomorphism
7 between the atoms expanded und&r|t, 2] in Q and

in Q. Assume instead thaP™[iy,t2] is expanded inQ
into & > arity(p) + 2 standard patterns. We denote
by o a substitution associated witk,, and by P[t; =
xo,x1], Plx1,22],. .., Pltg—2, xx—1], Plrp—1, 2 = t2] the
sequence of standard patterns expanded 01t , £5] in Q,
and letzs andz, (s < e) be the external terms dP* [ty 5]
w.r.t. u. The unifier is single-piece (cf. Sectibh 2), thus, for
every0 < i < k, o(z;) = o(z;) for some existential variable
z; from the head ofR.

We construct an instanc€)’ and functionw as fol-
lows. Starting fromQ, we expand every repeatable pattern
PT[ty,ts] that is relevant fop into e — s standard patterns
(wheree ands are defined as above and depend on the partic-
ular pattern):

Plty :x;,$;+1],P[I;+1,I;+Q],...,P[I;_l,xé = tg].

Then for every < i < e, we setr(z}) = z;, and we expand
P[z}, ;] into the atomu; that is obtained from the the atom
a; expanded undeP[z;, z;+1] in Q by replacing every:;

2strictly speaking, we mean the instantiation underlyihgout
to simplify the notation, here and later in the appendix, vileoften

Since this atom is not in the initial fact base, it means that irefer to instances, leaving the instantiation implicit.



with 2., If e — s < arity(p) + 2, we are done. Otherwise,

occur underneath a developed repeatable pattern (i.mster

we Wlﬁ need to remove some patterns in order to satisfy thehat appear in a repeatable pattern that is not expanded, or i
definition of instances of interest. To this end, we define aone of the standard atom &f). Observe that is an injective

sequence < i; < j1 < ...
follows:

e We calli < j, with s < i < j < e, amatching pairif
a; and ina;, x;,, andx’; occur at the same position of
p (hencep(zi+1) = o(z;));
e We say that a matching paik j is maximal w.r.t. index
¢ if the following conditions hold:
— 3>/,
— there is no matching paif < j' with £ <’ <
— there is no matching pair< j' with 5/ > j

< im < jm < eofindices as

e We leti; < j; be the matching pair that is maximal w.r.t.

indexs + 1

o If i), < ji is already defined, then we 16,1 < jkri1
be the matching pair that is maximal w.r.t. indgy if

function, so its inverse —! is well-defined.

Now let @Y consist of all atoms i@’ N Q- that are not
expanded from a repeatable pattern (i.e., they are standard
atoms fromQ) as well as all atoms i)’ that lie under a
repeatable pattern.

Note that by construction every tertrin Q5 is such that
7(t) appears irQ2. We can thus define a partitidfy, of the
terms in@, U H by taking every clas¢’ in P, and replac-
ing every termt from @Q, by 7=—1(¢), if such a term exists,
and otherwise deleting terms fromp(t) are left untouched.
Moreover, by the injectivity ofr, every term appears in at
most one class, i.eR);, is indeed a partition.

We aim to show thap/ = (Q}, p(t), P.) is the desired
unifier, We first show that’ is a unifier on’ with R. In what
follows, it will prove convenient to extend to the terms in
the head atomp(#), by lettingr be the identity on such terms.

such a pair exists (otherwisg, < ji is the final pair in
the sequence).

Now remove fron)’ all of the patterng[z), 2} ;| such that
ig < < j, forsomel < g < m, as well as the atomsthat
are expanded from such patterns. We claim that there are now
at mostarity(p) 4 2 patternsP [z}, ] below P*[t1, to] in

Q'. Indeed, if this were not the case, we could find a matching
pairi < j among the remaining patterns. Singe< j; is
maximal w.r.t. indexs + 1, and there are no further matching
pairs starting frony,,,, we know thati > i; andi < j,.
Moreover, sincex; is still present inQ’, it must be the case
thatj, < i < ig41 for somel < g < m. But this contradicts

the fact thaty 1 < jg41 is maximal w.r.t.j,.

In order for the different remaining patterns to form a se-
guence, we will need to perform a renaming of terms. If there
aren patterns left undeP*[t;, t5], then we will rename these
patterns from left to right by:

Plty = xp, 2], Pz, 25], . . .,

" 12
P['rn—l y Uy =

ta].

and will rename the atoms underneath these patterns accord-
ingly. We will also updater by settingr (z;') = n(a}) if
was renamed inte;’ and there is na’, with j* < j that was
also renamed inta’.

Let Q' be the instance obtained in this manner. We note
that by construction, it is an instance of interest(¢f, P)
w.r.t. R, as we only expand patterns into atoms that use the
predicatep from the rule head, and the number of patterns
generated from any repeatable pattern is at masiy (p) + 2

Regardingr, note that a term may be shared among sev-
eral repeatable patterns that are relevanjfoHowever, we
can show that if a term is shared by multiple relevant pastern
then the (partial) mapping associated with those patteiths w
agree on the shared term, izeis well defined. First note if
a term is shared by two repeatable patterns, then it must ap-
pear as one of the distinguished terms{,) in both patterns.
Moreover, by tracing the above construction, we find that
is the identity on such terms.

To complete the definition of, we extend it to all of the
terms ofQQ’ by lettingz be the identity on all terms that do not

We will let o be a substitution associated wijth and leto’
be the corresponding substitution faf defined by setting

' (t) = o(w(t)).

P! is admissible: since is the identity on constants, if
a class inP,, contains two constantsd, then the corre-
sponding class i, must also contain, d (a contradic-

tion)

(p(t)) = o'(Qh): sinced’ (p(1)) = o(p(t)) (due to
our ch0|ce ofa’), it sufﬂces to prove that’'(Q5,) C
o(Q2). First take some atom that belongs t@} N Qs.
Then we haver(a) = a, sod'(a) = o(n(a)) €
a(Q2). Next consider the case of an atom that
belongs toQ. but not Q. Then a must lie be-
low a repeatable patter®™[t;,t5] that is expanded
into & > arity(p) + 2 standard pattern®[t; =
wo, 21], Pley, o), . . ., Plog—2, 2 1], Plvg—1, 2y
ta] in Q. In this case P [t1, 2] is expanded i)’ into

P[tl = I;,I;+1],P[.§C;+l,x;+2],.. '7P['r/e—la

and eachP[z], z; ] is expanded inta;. If e — s <
arity(p) + 2, then the atoms:; all belong to Q5.

we havea = a}, then we haver(ag) = a;, hence
o'(a) = o(n(a})) = o(a;) € o(Q2). The final pos-
sibility is thate — s > arity(p) + 2, in which case
some of the patterns will be removed and the remaining
patterns will be renamed (as will be their corresponding
atoms). Suppose thatis the atonmu], below the pattern
Plzy,zy ], which was obtained from renaming the pat-
tern P[zp, xp4+1]). We claim thato' (o) = o(n(a))
o(an), hences’(a) € o(Q2). By examining the way
renaming is performed, there are two situations that can
occur:

I/e = tQ]v

— m(xy) xp andw(zy, ) = xzp41t in this case,
w(a})) = ap, hencer’(a) = o(ap).

— w(z}) # xp: in this case, there must exist a match-
ing pairiy, < j, such thaty = j,, 7(x}) = 2,41,
and w(xy,,) = wpy1. From the definition of
matching pairs, we know that(z;, 1) = o(z;,).



It follows thato'(z)) = o(m(z})) = o(zi,4+1) =
o(an) ando’(f,,) = o(r(a))) = oln).

We can thus conclude that(a) = o(ap,).

e for a contradiction, suppose the classin P, contains
an existential variable from H and either a constant or
a variable that occurs i)’ \ Q5. If it contains a con-
stantc, then the corresponding clagsin P, will con-
tain bothz andc, i.e.,C' is not a valid class. Next sup-
pose that’’ contains a variable that occurs irQ’\ Q%,
which means that the corresponding cléss P, con-
tainsm(x). Sincex that occurs i)’ \ Q%, it must either
appear in a standard atom@f that does not appear un-

Initialize Q" to Q \ A’ U {PT[t1,12]}. One can see that
Q" is an instance of botliQ,P) and (Q,P’). If Bis a
not a repeatable pattern, lét= 1, otherwise letS be the
repeatable pattern i, and S{x,z1],...,S[z;_,,z}] be
the sequence expanded frofit [z(, z}] in Q. We denote
by a; the atom expanded undéiz;, z;,,]. Then expand
Ptty, 6] in Q" into k' = |4 + |A,| + ¢ standard patterns:
Plt, = zg,2],...,Pla}_,,x}, = t2]. Letn be the func-
tion defined as follows:

o forall0 <i<s,w(z})=ay;
o foralls < i < s+ ¢, n(z)

.
= T5i_g»

der any repeatable pattern or in a repeatable pattern that e forall s + ¢ < i < k', m(z}') = 2i_p4(e—s)-

is not developed irQ’. In the former case, the same
atom appears i \ @2, and in the latter case, sin¢g

is full, there is an atom i) that is developed from the
repeatable pattern and contain(s), but which does not
participate inQ.. In both cases, we obtain a contradic-
tion.

Finally, we show that is more general thap:
e 0/(Q%)) C o(Q2): proven above.

e if o/(u1) = o' (u2), thenuy, us belong to the same class
in P/, and sor(u;) andrw(uz) must belong to the same
classinP,.

We have thus shown tha&’ is an instance of interest of
(Q,P) w.r.t. R such that there is a unifier’ of Q" with R
with i/ > p. O

Proposition 4 Let(Q, P) be a PCQ wherd’*[t1, 2] occurs
andR € R} . For any instance) of (Q,P), any classical
direct rewriting @’ of Q with R w.r.t. to a unifier internal to
Ptt1,t2], and anyQ’ € full(Q',P), there exists a direct
rewriting P’ of P w.r.t. P and R such that(Q,P’) has a full
instance that is isomorphic 1Q’.

Proof: Let (Q,P) be a PCQ wheré™[iy, 2] occurs,R =
(B — H) € R}, Q be an instance ofQ,P), u
(Q2, H, P,) be a unifier internal td>*[t;, t2] of Q with R,
Q' be the classical direct rewriting 6§ with R w.r.t. i, and
' be afull instance of Q’, P).

Sincey is internal toPT[t1, 5], all atoms inQ, are ex-
panded fromP*[t, t5] in @, and do not unify; with ¢2, nor
t; (resp.t2) with an existential variable fron/. We denote
by Pty = xo,21], Plr1,22],. .., Plzg_1, 71 = t2] the se-
quence of standard patterns expanded udtig;, to] in Q,
xs andz, (s < e) the external terms oP ™ [t1, 5] W.I.L. p,
anda; the atom expanded und&z;, x;1]. From Prop[B,
there is a unifiep,” of an instance of intere§); of Q with R
with ¢/ > u. Sincez,; andzx. are not unified with existential
variables, let), be the CQ obtained fror@; by removing
all atoms and patterns that are not relevanforObviously
Q. is an instance of interest of a PCQ of foi [t t5]. Let
P’ be the direct rewriting o w.r.t. i/, obtained fromQ,.

Let A, {P[Ii,$i+1] | 0 < 1 < S}, A,
{Plzi,zit1] | s <i<e}, Ay = {Plry, zipa] | e < i < k},
andA = AU A, UA,. Further let4; (resp.4],, A\, A’) be
the set of atoms expanded undgr(resp.A,,,, A, A) in Q.

Note thatr is injective, so its inverse exists. Expand all
Plzf,zf ] with 0 < i < sors+ ¢ < i < k (resp.
s < i < s+ L) into 7 1(a;) (resp. 7~1(a})). Finally, for
all termsu in Q" for which  is not defined (i.e., those terms
appearing in atoms that were not expanded from the pattern
Pty ts]), we setr(u) = u.

By construction()” is still an instance ofQ, ') andr is
an isomorphism betweep’ andQ”. O

Proposition 5 Let(Q,P) be a PCQ and? € R} . For every
Q € full(Q,P) and every classical direct rewritin@’ of @

with R w.r.t. an external unifier, there is a direct rewriting’

of Q@ w.r.t. P and R that has an instance isomorphic¢y.

Proof: Let (Q,P) be a PCQR = (B — H) € R,
Q € full(Q,P), u = (Qu, H, P,) be an external unifier of
Q with R, andQ’ be the classical direct rewriting @ with
Rw.rt. u.

From Propositiof 13, there is an instance of intergstof
(Q,P) such that there is a unifiet = (Q., H, P,/) > p of
Q2 with R. We denote by (resp.c’) a substitution associ-
ated withy (resp.u’).

For any repeatable patteftt[t1, o] in Q, build A, A;, A,
andA, as in the proof of Propositidd 4 using the instadze
and unifieru’. Assumet; (or ¢2) is unified with an existential
variable, then from the condition on external unifiers, &ith
Ay or A, is empty. Consider the minimally-unifiable instance
Qur of Qw.rt. i/ that replace® ™ [t1, to] by: (i) A,, if A} =
A = 0; (i) PT[t1,zs), Am if A, = 0 and A; # 0; or (iii)
A, PTxe,ta] if A = 0 and A, # 0. In case (i) (resp.
(i), since all atoms in4; (resp. A,.) are not involved in./,
x, (resp.z.) is not unified with an existential variable (or the
piece condition on unifiers would not be satisfied). Thewrefor
w' is a unifier ofQ,, with R. We letQ’ be the direct rewriting
of O w.rt. p/ andR.

Note that each repeatable pattéti[i;, t2] in Q' expands
into A; A o(B) A A, and inQ’ there is aP™[t;, z4] (resp.
Pz, ts]) iff A; (resp.A,.) is not empty. Thus considé€}”’
obtained fromQ’ by expanding®* [t1, zs] (resp.PT [z, t2])
into k standard patterns wheke= | A;| (resp.k = |A,|), and
choose the same atoms asAn (resp.A.). Sincey’ > p,
there is an homomorphismfrom ¢'(Q.) to ¢(Q,). Note
that if we restrictr to terms ino’(B), « is an isomorphism.
Furthermore, we can extendto Q" in the same way as we
did in the previous proof. Thu§” is isomorphicta’. O



Proposition 6 Let(Q,P) beaPCQand? € R} . If Q'isa
non-excluded direct rewriting @@ with R, then|Q’| < |Q].

Proof: Let (Q,P) be aPCQR = (B — H) € R}, Q be
a non-excluded minimally-unifiable instance(@, P), u =
(Q', H, P,) be an external unifier of) with R, ando the
substitution induced by,.

Note that all repeatable patter®s [t;, 5] are at most re-
placed by the sequenéeneeded by the unifier (i.eS, C Q’),
plus a single repeatable patteR [t1, z1] (or P*[xzy, t2]).

instance of Q,P), and Q™ be obtained fron) by replacing
all atomsp(ty, t2) with p transitive byP*[tq, ¢5].

Then, for every full instanc@’ of (9™, Py), there is a full
instanceR” of (Q, P) such that)” is isomorphic tay’.

Proof: We build the instanc€)” as follows. InitializeQ” to

the atoms and repeatable patterns occurrirg.ifNext, for all
repeatable pattern [t1,¢,] in the instantiation underlying

Q consider each of the atom that is expanded from a child of
P;"[t1,t2] in turn, working from left to right. If the atom(#)

Indeed, the only situation that would lead us to introduceunderP;|u, v] is being considered, then do the following:

more than one more repeatable pattern (i.e., as in External

Rewriting cas€i)) is when eithet; or ¢, is unified with an
existential variable. However, if (or ¢;) is unified with an

existential variable, because of the piece condition on uni

fiers, no unifier ofPT[t1, 1] A S A PT[xy, t2] can be found.

Since|B| = 1, we have to show that all atoms that were
introduced when replacing a repeatable pattern are ergsed
the direct rewriting o) w.r.t. p.

If Q' consists of at least one atom that is not expanded from

a pattern, the direct rewriting @ w.r.t. u erases this atom.
Next assumey)’ consists only of atoms expanded from

repeatable patterns. ' = {PT[t;,t2]} and neithert;

nor t, is unified with an existential variable, ther(t;) =

o(t2), so the only non-excluded minimally-unifiable instance

of @ w.rt. u replacesPT[t1,t2] only by the sequencé

needed by the unifier (see the first condition on non-excluded

minimally-unifiable instances).
erasesPT[ty, ta].

Otherwise, we know that at least of&"[¢1, t5] from Q
is replaced by the sequenceinvolved in the unifier (see

Thus, the direct rewgtin

e if pis not a transitive predicate, then add a single child
Pi[u,v] to Pt [t1, 2], and expand it intg(t).

if p is transitive, therp(#) has been replaced i@*

by Pt[f]. We also know thatt consists of the
terms u,v from Pi[u,v]. We suppose thap(f) =
p(u,v) (hence PH[tf] = P*[u,v]); a similar argu-
ment can be used if the positions are reversed. Let
Plu = zg,21],...,Plzg_1,zr = v] be the children
of P*[u,v] in Q’, anda, be the atom expanded un-
der Plzg,2¢41) (0 < ¢ < k). In place of the child
P lu,v]in QF, we will addk children toP;" [t1, to] in
Q": Pilu = xg,21],..., P[zr—1, 2 = v], and expand
P;lz;,xj4+1] into ;. Note that we may assume that the
termsz; (0 < i < k) are fresh, i.e., they do not already

appear ing”.
It can be verified that the resulting full instan€®’ is iso-

morphic toQ’. Indeed, all atoms i)’ that are also ir) are
presentinR”. All other atoms belong to a sequence of transi-

b

the second condition on non-excluded minimally-unifiabletive atoms, which we have reproduced (modulo renaming of

instances), thus there is at least dre[t;, o] erased by the
direct rewriting. |

We will break the proof of Theorefd 2 into the following
five lemmas.

Lemmal Let@ be a CQ,R € RT, Py be the initial set of
pattern definitions relative t&” (see Step 1 of the algorithm
overview), and2* be obtained frond) by replacing all atoms
p(t1,t2) such thatp is a transitive predicate by ™[ty t5]. If
there is a classical direct rewritin@’ of Q with R, then there
is a full instanceR” of (@1, Py) that is isomorphic ta)’.

Proof: Let p(t1,t2) be the atom of) that is rewritten to ob-
tain Q’. Sincep is a transitive predicate, it occurs in a pattern
definition P in P, and Q™" contains the aton®* [¢;,¢s]. In
Q’', p(t1,t2) is rewritten intop(ty,z1) A p(x1,t2). Let Q"

be the full instance of @™, Py) that expands all repeatable

patterns buf’ ™ [¢1, £5] into a single standard pattern, expands

PT[ty, ts] into two standard patterri3|t,, )], Pz}, t2], and
then further expands the standard patterns using the uniq
atom in each of the pattern definitions. It is clear tQdtis
isomorphic toQ’ (simply mapz} to z; and all other terms to
themselves). ]

Lemma 2 Let P be a set of pattern definition®;, C P be
the initial set of patterns definitions built from the st
of transitivity rules,(Q,P) be a PCQ that does not contain
any standard atom using a transitive predicafg be a full

variables) inQ". O

Lemma 3 Let Q be a CQ andR be a set of linear+trans
rules, and let{Q, P) be the output of the algorithm. For any
()’ obtained from a sequence of classical direct rewritings of
Q@ with R, there is a PCQ(Q,P) with Q@ € Q and a full
instanceR” of (Q,P) s.t.Q" is isomorphic tay’.

Proof: Let Q = Qoa M1, Qla 12, QQ_a_' ey Mk Qk = Ql be a
sequence of classical direct rewritings fr@pro @', and let

Ry, ..., Ry be the associated sequence of rules ffldm

We show the desired property, by induction®rt ¢ < k.
For the base case £ 0), we can setdy = QT, sinceQq =
Q is clearly a full instance ofQq, P).

For the induction step, suppose that we h&e; € Q
and a full instance&)_, of (Q,_1,P) that is isomorphic to
the CQQ;_1. There are two cases to consider, depending on
the type of the ruler;.

If R; is a transitivity rule, then from Lemmnid 1, we know
that Q;" | (obtained fromQ;_; by replacing every transitive
Lf)‘?‘edicatq; by patternP™) is such that there is a full instance
Qi , of (@ ,,P) thatis isomorphic t@);. Furthermore, we
know thatQ,;_; cannot contain any standard atoms with tran-
sitive predicates, since every PCQ produced in Step 5 con-
tains patterns for the transitive predicates. Thus, we may a
ply Lemma2 and infer tha®;" | is isomorphic to some full
instanceQ!_; of (Q,_1,P). ThereforeQ/_, is isomorphic

to Ql



If R; isnota transitive rule, sinc@;_; is isomorphic to
some full instance&)! , of (Q;_1,P), let i/ be the unifier
of Q/_; with R; obtalned fromu and the isomorphism be-
tween);—; andQ/_,

Suppose thalP;,; is obtained fromP; by a single direct
rewriting step w.r.t. pattern name and the ruleR = B —
H € R}. LetQ = P*[z,y], Q be the considered instance

. If u! is internal to some repeatable of mterest ofo w.rt. R, u = (Q', H, P,) be the considered

pattern, then from PropositicErh 4, we know that there is an ininternal unifier ofQ with H, ando be the considered sub-

stance®); of (Q,_1,P) that is isomorphic t&);. Otherwise,
from Propositior b, there exisig and a direct rewriting;
of Q,_1 with x; such that there is an instan€g of (Q;,P)
that is isomorphic t@;.

stitution associated witp that preserves the external terms.
Finally, let B’ be obtained fronar( B) by substituting the first
(resp. second) external term BAl (resp.#2).

Since we know thaj is an internal unifier, the external

We have thus completed the inductive argument and caterms of@Q’ cannot be unified together or with an existential

conclude that there is a PC@, P) with Q € Q and a full
instancel” of (Q,P) s.t.Q” is isomorphicto’ = Q. O

Lemma 4 LetQ be a CQ,(F,R) be alinear+trans KB, and
(Ip,Qq) be the output of the algorithm. IF, R = @ then

F,1Ip = Q' for someQ’ € Qq.

Proof: SinceF, R | Q, there is a (finite) classical rewriting
Q' of Q with R such thatF = Q’. From Propositiohl3, there
is there is a PCQQ, ') with Q € Q and a full instanc&)”
of (Q,P) s.t. Q" is isomorphic toQ’. Therefore,F |= Q”
We conclude by Propositidn 2.

Lemma5 LetQ@ be a CQ,(F,R) be alinear+trans KB, and
(Ip,Qq) be the output of the algorithm. F, IIp = Qg then

F.REQ.

Proof: Let P be the set of pattern definitions computed in
Step 3 of the algorithm, anldp the corresponding set of Dat-

alog rules. Consider the CQ*+obtained from) by replac-
ing every atonp(t1,t2) such thap is transitive by the atom

pt(t1,t2). The following claim establishes the soundness off

the internal rewriting mechanism in Step 3:
Claim 1 If 7,IIp = Q**, thenF, R E Q.

Proof of claim. Let Py, Py, ..., P, = P be the sequence of
sets of pattern definitions that led Boin Step 3, withlP;
being obtained fron®?; by a single direct (internal) rewriting

step. We prove by induction two distinct properties expedss

atrank0 < j < k:
P1 every rule inllg, is a semantic consequenceldf, U R.

P2 for every fact baser’ and CQQ’ (over the original vo-
cabulary):

F I, = (@)

= F,REQ

In the second property’)*+ denotes the CQ obtained by

replacing every atom(t1, t2) such thap is transitive by the
atomp™(¢1,t2). Observe thaP2 at rankk yields the claim:
we simply takeF’ = F and@’ = Q.

Base casei( = 0): propertyP1 is obviously verified.
For propertyP2, we note thatP, consists of the following
rules for every transitive predicafe the transitivity rule
pt(z,y) A pT(y,2) — pT(x,2) and the initialization rule
p(z,y) — p*(z,y). Clearly, if 7,1z, = (Q")"", then
we haveF, R E @', since if we can derive™ (a,b) using
F,IIp,, then we can also deriy&a, b) from F, R using the
transitivity rule forp in R.

Induction step foP1l: we assume property1 holds for
some rank) < 7 < k and show that it holds also for- 1.

pt(#1,21) Apt(z1,22) A ..

variable. Thus by considerin@” and P, obtained fromQ’
andP, by substituting the first (resp. second) external term by
#1 (resp#2), itis clearthap’ = (Q”, H, P,/) is a unifier of
Q" with R such that’(B) = B’, whereo’ is the substitution
associated with.’ that preserves the special terg#d and
#2.

We consider two cases depending on the natui@’ of
Case 1:The first possibility is thaB’ is an atom (as opposed
to a repeatable pattern), in which case we add the following
rule tollp,: B’ — pT (#1, #2).

Letay,...,ax be the atoms of)”, and leta’; be the atom
in P’s definition from whicha; is obtained. Since there is
a rewriting of{a; | 0 < j < k} with R into B’ (using the
unifier '), and the rulek appears in the original set of rules
R, it follows that

REB —aiA... Nag

From the induction hypothesis, we know that the rules—

(#1 #2) (0 < j < k) are entailed byIp,, R. We also
know that for alll < j < k, the atomsz;_; andaJ share
a variable corresponding respectively#@ in a’_; and to
#1in a}. Thus, by applying the rules; — p (#1 #2)

0 <y g k) to the conjunctioru; A ... A ag, we obtain
Apt(zr_1,#2). Hence:

k
H]P(MR ': /\ a; — p+(#17561)/\p+($1,$2)/\. . ‘/\p+(ﬁck*17#2)

§=0

Sincellp, contains a transitivity rule fop™, we can further
infer that

H]P’o ): p+(x11$2) AP /\p+(xk—la #2) — p+(#17 #2)

By chaining together the preceding entailments, we obtain
Ilp,, R | (B’ — pT(#1,#2)), as desired.

Case 2:The other possibility is thaB’ is a repeatable pattern
of the form ST [#1, #2] or ST[#2,#1]. Let f be a bijec-
tion on{#1, #2}: if B"is of the formS™t[#1, #2], f is the
identity, otherwisef permutes#1 and#2. Then for alls,

in the definition ofS, we addf (s,) to P’s definition, and we
add the corresponding rule®s;) — p*(#1,#2) to Ip,.
Consider one such rule rufsy) — p*(#1, #2).

Let a1,...,ar andadl,...,a) be defined as in Case 1.
Since there is a rewriting ofa; | 0 < j < k} with R € R}
into B’, and since the rul& was obtained from a rul&’ in
R by replacing the transitive predicaten the rule head by
the repeatable patte§i™, it follows that

R E f(s(#1,#2)) — a1 A ...

/\ak



Arguing as in Case 1, we obtain
Mgy, R = f(s(#1, #2)) = p* (#1, #2)

(Q°,P), removing the atoms aX, then by applying the sub-
stitution o and addings(B). We can see that the classical
direct rewriting ofQ¢ according tou produceQﬁrl. More-

From the induction hypothesis, we know that that the rulegver, since every full instance ¢0°, P) is a full instance of

s¢ — sT(#1,#2) are entailed fronilp,, R, and the same
obviously holds for the ruleg(s;) — f(sT(#1,#2)). By
combining the preceding entailments, we obtHip, R E
fse) = p™(#1,#2).

Induction step for property?2: we assumd?2 holds for
some rank < 7 < k and show that it holds also for- 1.

Suppose now thak’, Il , = (Q')* T, for some fact base
F’ and CQQ’ (over the original predicates). This means that
there is a finite derivation sequeng® = Ft,... Fi+
such thatF;}* = (Q')** and such that for ald < ¢ < m,
F, [} is obtained fromF, " either (i) by a sequence of appli-
cations of rules fronhlp, or (ii) by a sequence of applications
of rules fromllp,, , \ Ilp,.

In case (i), we haveF, ", IIp, | Fyyi++. Letting F,
be the fact base obtained by replacing every predicatim
JF;7* by the corresponding predicaigand recalling thaflp,
contains the rule(x,y) — pT(z,y), we haveF, Ilp, =
F;'[1. Applying the induction hypothesis (treatitfg’, " as a
CQ), we obtainFy, R | Fyy1.

In case (i), we haver, ', (Ilp,,, \ IIp,) = F,\1. From
propertyP1, we obtainF, " Ilp,, R = F/i. Using the
rule p(x,y) — p*(z,y) (that is present iflp,), the latter
yields 7y, I1p,, R |= F,/ . Finally, we note that if we can de-
rive p™(a, b) from F,, [T, , R, then we can also infer(a, b)
from F, R by using the transitivity rule fop instead of using
p(z,y) — p*(z,y) and the transitivity rule fop™. Thus, we
haveF,, R = Fii1.

We have thus shown that for evely< ¢ < m, F;, R |E
Fer1. SinceF' = Fy, by chaining these implications to-
gether, we obtaitF’, R = F,,. Using the same reasoning as
above, we can infeF,,, = Q' from F}+ = (Q')"". Then,
by combining these statements, we obtainR = @Q'. (end
proof of claim)

Now let Q be the set of queries computed in Step 5 by
performing all possible external direct rewritings wPtand
rules fromR} , starting fromQ™, and letQq be the set
of CQs associated witf) (defined as in Step 6). We start
by proving the following claim, which relates external dire
rewriting steps to sequences of classical direct rewsting

Claim 2 Let Q,,1 be a direct rewriting ofQ; w.rt. P.
Then every full instance ¢, ,P) is obtained from a se-
guence of (classical) direct rewritings of some full instarof
Proof of claim. Let (Q;+1,P) be obtained from an external
rewriting of (Q;,P) with rule R = B — H. This means
that there is a minimally unifiable instan€ and a unifier
uw = (X, H, P,) of Q¢ with H (with associated substitution
o)suchthatQ,1; = o(Q°¢\ X)Uo(B).

Let us consider a partial instan@f2 1 of (Qiy1,P) that
fully instantiateso(Q° \ X) but does not instantiate(B)
(we say that it is ar(B)-excluding instance). Note th&?,
can be built equivalently by choosing a full instangé of

(Q;,P), we know that)© is an instance ofQ;, P).

Now consider any full instanc€;;1 of (Q;+1,P). Note
that it is a full instance of some(B)-excluding instance
(QF.,P). There are two cases to consider:

e If o(B)is an atom, the®;;1 = OF,, and thus;;; is
obtained from a classical direct rewriting of an instance
of (Qz, ]P))

Otherwise, ifo(B) is a repeatable pattern, théh, 1 is
obtained from(Q7, ;,P) by expandingr(B) into a se-
quence ofk standard patterns, and expanding each of
them into some atora,. Let By = {a¢ | 1 < ¢ < k}.
Then,o(B) is generated in forward chaining froy,
with a sequence of applications of ruldsapplications

of transitivity rules, andc applications of the rules en-
coded inP, each one stemming from a finite sequence
of applications of rules oR (see Claini1l). Thus from
the completeness of classical rewriting, can be ob-
tained from a sequence of classical direct rewritings
from o(B), and thus?; 1 is obtained from a sequence
of classical direct rewritings of an instance(@;, P).

(end proof of claim)

The following claim shows the soundness of the external
rewriting in Step 5 and completes the proof of the lemma.

Claim 3 If F,IIp = Qq, thenF, R E Q.

Proof of claim. Suppose thaf,IIp = Qg with @ € Q.
We know that the PC@ is obtained from a finite sequence
Qo = Q1,01,...,9;, = Q of PCQs such that for all <

J < k, (Qj+1,P) is a direct external rewriting ofQ;,P).
We will show by induction ory that 7, IIp |= Qo, implies
F,R E Qforevery0 < j < k.

The base casg (= 0) is a direct consequence of Clalith 1.
For the induction step, we assume the property is true at
ranki, and we show that it is true at rank- 1.

Suppose thafF,IIp = Qg,, ,. From Propositiohl2, it
follows that there is a full instano®;; of (Q;+1,P) such
that 7 = Q;+1. By Claim[2, there is a full instancg);
of (Q;,P) such thatQ,,, is obtained from a sequence of
classical rewritings fromp;. Thus (from the correctness
of the classical rewriting), there is a fact basé such that
F,R = F andF' E Q;. Applying Propositioi 2, we ob-
tain 7/, IIp = Qo,. Now from our induction hypothesis, it
follows that 7/, R E Q, henceF,R E Q. (end proof of
claim) O

Theorem[2 Let@Q be a CQ,(F,R) be a linear+trans KB,
and (Ip,Qq) be the output of the algorithm. ThetF, R =
Q iff F,1Ip = Q' for someQ’ € Qg.

Proof: Follows from Lemm&¥ and Lemnia 5.

The following two lemmas show that the non-excluded
minimally-unifiable instances are sufficient to ensure com-
pleteness when the input query is atomic or when the input
rule set satisfies the safety condition.

O



Lemma6 Let(Q,P) be a PCQ,R € R}, Q be an instance
of interest of Q,P) andu = (@', H, P,,) be an external uni-
fier of @ with R such that two external terms w.rt. from
a given patternP*[t1, t5] are unified together and with no
existential variable.

Every minimally-unifiable instancg, P) w.r.t. . that re-
placesPT[t1, 2] as in the External Rewriting casés), (ii),
or (zi¢) will lead to a direct rewriting(Q;,P) that is more
specific than(Q,P). Furthermore, for any classical direct
rewriting Q of Q) with R, either(Q,P) > (Q/,P) or there
is a classical direct rewriting®’ of the minimally-unifiable
instance ofQ that replacesP " [t1, t2] as in caseiv) with R
and(Q',P) > (Q/,P).

Proof: Without loss of generality, let us writ@ = q[t1, t2] A
PT[t1,t2] whereqlty, t2] denotes a set of atoms whegeand
to may occur. We denote hy, andz. (s < e) the external
terms of PT[tq,to] w.r.t. u, and by A[z,, z.] the sequence
of atoms expanded fron?*[¢1, i) involved in the unifier.

and(’ respectively, it holds that” > n/. Then, we denote
by Q" the direct rewriting 0of@ with R’ w.r.t. 1/ and obtain
Q" > Q.. The other possibility is that all atoms involved in
w' occur ino(B), then,Qf (resp.QY) is more specific tha@
sinceQ C Qf (resp.Q C QF). Moreover, for any instance
QY of @, one can easily bUI|d an instanég of Q in the
same way as above, and see tQat> QY. Thus, we have
(Q.P) > (QV,P). 0

Lemma 7 Let(Q,P) be aPCQ,R € R}, Q be an instance
of interest of Q,P) andu = (Q’, H, P,) be an external uni-
fier of @ with R such that one external term w.rt. from a
given patternP*[tq, 1] is unified with an existential vari-
able, and where all atoms i@’ are obtained from the expan-
sion of a repeatable pattern.

If @ is atomic, or if R}, is a set of safe linear rules, then
every minimally-unifiable instance 69, P) w.r.t. ;. that re-
places all P;"[t1, 5] as in the External Rewriting casés)
or (i41) will lead to a direct rewriting(Q}, P) that is more spe-

Since we assume that no existential variable is unified withific than (Q, P). Furthermore, for any direct rewriting/

variablesr, andz., no atom fromy can be part of the unifier.
Consider the following minimally-unifiable instances:

1. Ql:q[tl,tg]/\P+[t1,I5]/\A[$S,ZCG]/\P+[Ie,t2]
2. Qo = q[t1, 2] AN [t1 = g, xe] A PT[e, to]
3. Qg:q[tl,tg]/\P+[t1,$3]/\X[.%'S,$e:tg]

By unifying z; andx. together, we obtain the following in-
stances:

1' Q[tlatQ] /\ P+[t17IS] /\ A[SCS,ZCS] /\ P+['r57t2]
2. qty, ta] A Aty t1] NPTty o]
3. q[tl, tg] A\ P+[t1, tg] A\ A[tg, tg]

Let Q) be the direct rewriting 08, w.r.t. u with R. Itis easy
to see tha C Q) andQ C Qj, thus,(Q5,P) and(Q5, P)
are more specific thafQ, P).

Let @, be a full instance of @}, P). We construct a full
instance@ of (Q,P) as follows. First note thag[t;, t2] is
common to bothY; andQ, so we will expand all patterns in
q[t1,t2] exactly as inQ;. Now letk; (resp.k2) be the num-
ber of children ofP*[t1, z;] (resp.P™ [z, t2]) in the instan-
tiation of @1, and expand®*[ty, 5] in Q into k = ky + k2
children: P[ty = =g, 21],..., Plag—1,2r = t2]. Expand
eachP[x;, z;11] with i < k; as is expanded thé" child of
Pty 2] in Qq; and eachP|x;, z;1 1] with ky < i < k as
is expanded thé& — k; + 1)** child of P [z, t5] in Q;. By
construction, there is an homomorphism fréhto Q. We
have thus shown thgp, P) > (9}, P).

Furthermore, leQ” be a classical direct rewriting o’
with aruleR’ = B" — H' w.r.t. unifiery’ = (Q', H', P)),
wherel < i < 3. If at least one atom involved in’ occurs
in Q) \ o(B) (whereo is the substitution associated wijf),
then, lety” = {Q”,H', P!/} whereQ” = @'\ ¢(B) and
P/ is the restriction ofP;, to terms occurring irQ” U H'.
Since®” # 0 and all terms fromy(B) cannot connect two
different terms fromy[t;, ¢2] (indeed, the only term shared
betweens(B) andqlt1, t2] is eithert; or t3), o(B) can be
seen as a loop oA (or t3), therefore we can remove B)
while preserving the unifier, i.ey” is a unifier of @ with
R’. Moreover, sinceP,’ and@" are only restrictions oF,,

of @ with R, eitherQ > QY or there is a direct rewriting?’

of a minimally-unifiable instance @ w.r.t. ;. that replaces at
least one repeatable pattern as in cgge) and is such that
Q> 9.

Proof: Let (Q,P), R, @ andu be as in the lemma statement,
and letP"[t1, 4], ..., P;T[th,t5] be the repeatable patterns
that are relevant fOﬂ For eachl < i < k, we denote by
Pi[t} = xf,2%],..., Pilz}_,, =), = t5]the sequence of stan-
dard patterns expanded frquJr [t},t5], and we let’ and
zl (si < e;) be the external terms df;" [t t4] w.r.t. ;1. We
assume without loss of generality that ittdé_ that is unified
with an existential variable, and let; (2% , = = t5] denote
the atoms expanded from[:c xj_H] With S; < J < e.

Since the unifief: is smgle piece, all repeatable patterns
relevant foru have to share some variable. For simplicity, we
assume that they all share their second term t}.e= ¢} for
all1 <i,j < k. (The argument is entirely similar, just more
notationally involved, if this assumption is not made.) ust
uset, for this shared term. Then we can wrifeas follows:

Q= q[t}a o itlf] A /\ Pi+[t§-.at2]
1<i<k

Note thatt, cannot occur iny.

Because we have chosen the second term to be shared
in all repeatable patterns, we only need to consider the
minimally-unifiable instanc&,, of (Q,P) w.r.t. that re-
places eachP [t} t2] by P [tt, x], A;[zi, 2t = to], i
External Rewriting case (ii). Thus, we have

Qu =qltt,.. ., t§IA N\ (BT, al) A Al ta)]).
1<i<k

Let o be the substitution associated wjith From the safety
condition (see Sectidd 6), we know that there is a pair of-posi
tions{p1, p2} for the predicate of H, such that for all atoms
p(t) occurring in a pattern definition the terresl and #2
occurs in positiongpy, p2 }. We further note that the external
terms in the concerned patterns &réwhich unifies with an



existential variable irf7) and the terms:%. (which unify with  the latter holds just in the case that there is a path of cotssta
a non-existential variable), and each of these externalser c;,...,¢, with ¢; = 7(¢1) and¢,, = = (t2) such that for ev-
must be obtained by instantiating teg#l or #2. Since the eryl < i < n, thereis arule;, = B; — p*(#1,#2) and
A;[zt, t2] are unified together, and share the same predicatsubstitutiono; of the variables inB; by constants iF such
p, it follows that all of thez’ must occur in the same posi- thato;(#1) = ¢;, 0:(#2) = ¢i 41, ando;(B;) € F. To check
tion (eitherp; or ps) of p; to will occur in the other position for the existence of such a path, we guess the constairts

amongp; andp.. We therefore obtain; the path one at a time, together with the witnessing pule
L 0 X , and substitutiom;, using a counter to ensure that the number
o(zy) =o(x5) =...=o(x5) =7, of guessed constants does not exceed the number of constants

wherez is the term inB that unifies with all of the:. (Note 1N - Note that we need only logarithmically many bits for
that if Q is an atomic query, there is a single, so tﬁe previ- the counter, so the entire procedure runs in non-detertiginis
ous statement obviously holds, even without the safety con@9arithmic space.

dition.) Thus,Q,, becomes: Hardness for NL can be shown _by an easy reduction from
the NL-complete directed reachability problem. O
1 k 148 ot
qlty, . H] A /\ (B[t 2] A Al 22]). Theorem[d Both (i) atomic CQ entailment over linear+trans
I<i<k KBs and (ii) CQ entailment over safe linear+trans KBs are

There is an isomorphism fro@ to O, \ {A; | 1 < i < k} P SpAace-complete in combined complexity.

that mapg. to «’. We then observe thdtd; | 1 < i < k} Proof: Consider a CQQ@ and linear+trans rule seR =

is exactly the set of atoms that will be erased in the direciR;, U Rr, with R a set of linear rules an® a set of
rewriting @, = On \ {4; | 1 <i <k}Uo(B),wheresis transitivity rules, and a fact basé. Suppose that either con-
a substitution associated with ThereforeQ is isomorphic  dition (i) or (ii) of the theorem statement holds. It follows
to 9, \ o(B), hence(Q,P) > (Q),,P). One can see that from TheoreniB that the modified query rewriting algorithm
the same reasoning as in the previous proof can be applidthlts and returns a set of a finite $&t of Datalog rules and
here to show that any further direct rewritiatj, of Q’,, will a finite setQ)q of CQs such thaf, R = Q iff F,1Ip E Q'
lead to more specific queries. ] for someQ’ € Qq.

Theorem[3 The modified query rewriting algorithm halts. To prove membership in RACE, we will not be able to

Moreover, Theoreil2 (soudness and completeness) holds 3R 21, F2MCiCR RO e 19 1 Y, o0 of expe
the modified algorithm if either the input CQ is atomic, or the

input rule set is safe. 1. Guess a CQ)’ of size at mos{Q)|.

Proof: From LemmaH#, we know that if we do notexclude any 2. Check that)’ € Qg (modulo variable renaming).
rewriting the algorithm is sound and complete, and Lerhina 6 . . ,
and[7 show that for any rewriting@ that we exclude, there 3. Guess amappingfrom the variables Q" to constants
is another rewritingQ’ obtainable using only non-excluded from J.

direct rewritings that is more general théh Therefore, the 4. Check that every atom in(Q’) is entailed fromF, I1p.
modified algorithm (in case of an atomic CQ, or a safe rule
set) is complete. Furthermore, excluding rewritings canno

Comprise the soundness of the rewriting mechanism. O It should be clear that the non-deterministic prOCEdUre jUS
] ] ] ] described has a successful execution just in the case that

Theorem[?_,. Both (i) atomic CQ entallme_nt over linear+trans F.IIp |= Q' for someQ’ € Qg. Since NPSACE=PSPACE,
KBs and (i) CQ entailment over safe linear+trans KBs are jt syffices to show that the checks in Steps 2 and 4 can be
NL-complete in data complexity. implemented in polynomial space.
Proof: Consider a C@), a linear+trans rule s&, and a fact First consider the problem of deciding whetligh € Qq.
baseF. Suppose that eithep is atomic orR satisfies the Starting from the initial query), we maintain a counter of
safety condition. Using Theorelmh 3, we can compute a finitthow many direct external rewritings we have computed, and
setIlp of Datalog rules and a finite s€lg of CQs with the  at each step we guess the next direct rewriting and increment
property thatF, R = Q iff F,IIp = Q' for someQ’ € Qq. the counter. Only the two most recent direct rewritings are
As IIp and@Qq do not depend on the fact bagethey can be  keptin memory at any time (and by Propositidn 6, both are of
computed and stored using constant space WHt. size at mostQ|). If at some point, we reach a query whose

To test whetherF, IIp = Q' for someQ’ € Qq, we pro-  corresponding CQ is isomorphic to the guessed@(xhen
ceed as follows. For each rewritifgf € Qq, we can con- we can stop. Otherwise, the counter will eventually reach
sider every possible mappingfrom the variables of)’ to  the number of non-isomorphic queries built from the avail-
the terms of 7. We then check whether the facts7iti@)’)  able atoms and patterns, and we can halt and return no. (Note
are entailed fron¥, ITp. For every atomy € Q' over one of  that there are only exponentially many such queries, so the
the original predicates, we can directly check i) € F, counter can be implemented using only polynomially many
since the rules iflp can only be used to derive facts over the bits.) Importantly, to perform a direct external rewritisigp,
new predicates™. For every atonp™[t;,t2] € Q' where  we must be able to decide whether some atom is present in a
pt is a new predicate, we need to check whetheflp = pattern definitionP; in IP. This can be done in a similar man-
pt(n(t1),w(t2)). Because of the shape of the ruleslla,  ner, by guessing a sequence of direct internal rewritingsste

5. Return yes if the checks succeeded, otherwise no.



maintaining a counter of the number of steps, and stopping

when either the desired atom is found or the counter exceeds
the number of non-isomorphic atoms. We have thus shown

how the check in Step 2 can be performed using only polyno-

mial space.

For the entailment checks in Step 4, we can proceed in al-
most exactly the same manner as in the proof of Theorem
[4. The only significant difference is that to check whether
F,Ip = pt(n(t1), (t2)), we will need to identify the rules
in ITp with head predicatg™. This can be done by checking
whether the corresponding atom appears in the pattern-defini
tion of P in P, using the same technique (based upon guessing
a sequence of internal rewriting steps) as was used for Step 2

Finally, we note that hardness for P&E is a direct con-
sequence of the FBcehardness of AQ entailment in the
presence of linear rules. ]
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