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Abstract

Several inconsistency-tolerant semantics have been intro-
duced for querying inconsistent description logic knowledge
bases. This paper addresses the problem of explaining why a
tuple is a (non-)answer to a query under such semantics. We
define explanations for positive and negative answers under
the brave, AR and IAR semantics. We then study the com-
putational properties of explanations in the lightweight de-
scription logic DL-LiteR. For each type of explanation, we
analyze the data complexity of recognizing (preferred) expla-
nations and deciding if a given assertion is relevant or neces-
sary. We establish tight connections between intractable ex-
planation problems and variants of propositional satisfiabil-
ity (SAT), enabling us to generate explanations by exploiting
solvers for Boolean satisfaction and optimization problems.
Finally, we empirically study the efficiency of our explanation
framework using the well-established LUBM benchmark.

1 Introduction
Description logic (DL) knowledge bases (KBs) consist of a
TBox (ontology) that provides conceptual knowledge about
the application domain and an ABox (dataset) that contains
facts about particular entities (Baader et al. 2003). The prob-
lem of querying such KBs using database-style queries (in
particular, conjunctive queries) has been a major focus of
recent DL research. Since scalability is a key concern, much
of the work has focused on lightweight DLs for which query
answering can be performed in polynomial time w.r.t. the
size of the ABox. The DL-Lite family of lightweight DLs
(Calvanese et al. 2007) is especially popular due to the fact
that query answering can be reduced, via query rewriting, to
the problem of standard database query evaluation.

Since the TBox is usually developed by experts and sub-
ject to extensive debugging, it is often reasonable to assume
that its contents are correct. By contrast, the ABox is typ-
ically substantially larger and subject to frequent modifica-
tions, making errors almost inevitable. As such errors may
render the KB inconsistent, several inconsistency-tolerant
semantics have been introduced in order to provide mean-
ingful answers to queries posed over inconsistent KBs. Ar-
guably the most well-known is the AR semantics (Lembo et
al. 2010), inspired by work on consistent query answering
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in databases (cf. (Bertossi 2011) for a survey). Query an-
swering under AR semantics amounts to considering those
answers (w.r.t. standard semantics) that can be obtained
from every repair, the latter being defined as an inclusion-
maximal subset of the ABox that is consistent with the
TBox. The more cautious IAR semantics (Lembo et al. 2010)
queries the intersection of the repairs and provides a lower
bound on AR semantics. The brave semantics (Bienvenu and
Rosati 2013), which considers those answers holding in at
least one repair, provides a natural upper bound.

The complexity of inconsistency-tolerant query answer-
ing in the presence of ontologies is now well understood (see
e.g. (Rosati 2011; Bienvenu 2012; Lukasiewicz, Martinez,
and Simari 2013)), so attention has turned to the problem
of implementing these alternative semantics. There are cur-
rently two systems for querying inconsistent DL-Lite KBs:
the QuID system of (Rosati et al. 2012) implements the IAR
semantics, using either query rewriting or ABox cleaning,
and our CQAPri system (2014) implements the AR, IAR
and brave semantics, using tractable methods to obtain the
answers under IAR and brave semantics and calls to a SAT
solver to identify the answers holding under AR semantics.

The need to equip reasoning systems with explanation ser-
vices is widely acknowledged by the DL community (see
Section 6 for discussion and references), and such facilities
are all the more essential when using inconsistency-tolerant
semantics, as recently argued in (Arioua et al. 2014). In-
deed, the brave, AR, and IAR semantics allow one to classify
query answers into three categories of increasing reliability,
and a user may naturally wonder why a given tuple was as-
signed to, or excluded from, one of these categories. In this
paper, we address this issue by proposing and exploring a
framework for explaining query answers under these three
semantics. Our contributions are as follows:
•We define explanations of positive and negative query an-
swers under brave, AR and IAR semantics. Intuitively, such
explanations pinpoint the portions of the ABox that, in com-
bination with the TBox, suffice to obtain the considered
query answer. We focus on ABox assertions since inconsis-
tencies are assumed to stem from errors in the ABox, and
because this already yields a non-trivial framework to study.
•We investigate the main search and decision problems re-
lated to explanations: generating an (arbitrary) explanation,
generating a most preferred explanation according to some



natural ranking criteria, recognizing (most preferred) expla-
nations, and checking whether an assertion is relevant / nec-
essary (i.e. appears in some / all explanations). We study the
data complexity of these problems for DL-LiteR, showing
(in)tractability of each of the tasks and pinpointing the exact
complexity of the intractable decision problems.
•We establish tight connections between the intractable de-
cision problems, as well as the problem of generating (pre-
ferred) explanations, and SAT-based reasoning tasks. This
enables effective solutions to these problems using solvers
for Boolean satisfaction and optimization problems.
• Finally, we present an implementation of our explanation
services on top of the CQAPri system and SAT4J solver. Us-
ing the LUBM benchmark, we show its practical interest on
a large ABox with increasing number of conflicting asser-
tions: explanations of answers are computed rapidly overall,
typically in a few milliseconds, rarely above a second.

2 Preliminaries
We briefly recall the syntax and semantics of DLs, and the
inconsistency-tolerant semantics we use.

Syntax A DL knowledge base (KB) consists of an ABox and
a TBox, both constructed from a set NC of concept names
(unary predicates), a set NR of role names (binary predi-
cates), and a set NI of individuals (constants). The ABox
(dataset) consists of a finite number of concept assertions
of the form A(a) and role assertions of the form R(a, b),
where A ∈ NC, R ∈ NR, a, b ∈ NI. The TBox (ontology)
consists of a set of axioms whose form depends on the DL
in question. In DL-LiteR, TBox axioms are either concept
inclusions B v C or role inclusions Q v S formed accord-
ing to the following syntax (where A ∈ NC and R ∈ NR):

B := A | ∃Q, C := B | ¬B, Q := R | R−, S := Q | ¬Q

Semantics An interpretation has the form I = (∆I , ·I),
where ∆I is a non-empty set and ·I maps each a ∈ NI to
aI ∈ ∆I , each A ∈ NC to AI ⊆ ∆I , and each R ∈ NR

to RI ⊆ ∆I ×∆I . The function ·I is straightforwardly ex-
tended to general concepts and roles, e.g. (R−)I = {(c, d) |
(d, c) ∈ RI} and (∃Q)I = {c | ∃d : (c, d) ∈ QI}. We say
that I satisfies an inclusion G v H if GI ⊆ HI ; it satisfies
A(a) (resp. R(a, b)) if aI ∈ AI (resp. (aI , bI) ∈ RI). We
call I a model of K = (T ,A) if I satisfies all axioms in T
and assertions in A. A KB K is consistent if it has a model;
otherwise it is inconsistent, denoted K |= ⊥. An ABox A is
T -consistent if the KB K = (T ,A) is consistent.

Example 1. As a running example, we consider a simple
KB Kex = (Tex,Aex) about the university domain that con-
tains concepts for postdoctoral researchers (Postdoc), pro-
fessors (Pr) of two levels of seniority (APr,FPr), and PhD
holders (PhD), as well as roles to link advisors to their stu-
dents (Adv) and instructors to their courses (Teach). The
ABox Aex provides information about an individual a:

Tex ={Postdoc v PhD,Pr v PhD,Postdoc v ¬Pr,

FPr v Pr,APr v Pr,APr v ¬FPr,∃Adv v Pr}
Aex ={Postdoc(a),FPr(a),APr(a),Adv(a, b),

Teach(a, c1),Teach(a, c2),Teach(a, c3)}

Observe that Aex is Tex-inconsistent.
Queries We focus on conjunctive queries (CQs) which take
the form ∃~y ψ, where ψ is a conjunction of atoms of the
forms A(t) or R(t, t′), t, t′ are variables or individuals, and
~y is a tuple of variables from ψ. When we use the generic
term query, we mean a CQ. Given a CQ q with free variables
x1, . . . , xk and a tuple of individuals ~a = (a1, . . . , ak), we
use q(~a) to denote the first-order sentence resulting from re-
placing each xi by ai. A tuple ~a is a certain answer to q over
K, written K |= q(~a), iff q(~a) holds in every model of K.

Causes and conflicts A cause for q(~a) w.r.t. KB K =
(T ,A) is a minimal T -consistent subset C ⊆ A such that
T , C |= q(~a). We use causes(q(~a),K) to refer to the set of
causes for q(~a). A conflict forK is a minimal T -inconsistent
subset of A, and confl(K) denotes the set of conflicts for K.

When K is a DL-LiteR KB, every conflict for K has at
most two assertions. We can thus define the set of conflicts
of a set of assertions C ⊆ A as follows:

confl(C,K) = {β | ∃α ∈ C, {α, β} ∈ confl(K)}.

Inconsistency-tolerant semantics A repair of K = (T ,A)
is an inclusion-maximal subset ofA that is T -consistent. We
consider three previously studied inconsistency-tolerant se-
mantics based upon repairs. Under AR semantics, a tuple ~a
is an answer to q over K, written K |=AR q(~a), just in the
case that T ,R |= q(~a) for every repair R of K (equiva-
lently: every repair contains some cause of q(~a)). If there
exists some repair R such that T ,R |= q(~a) (equivalently:
causes(q(~a),K) 6= ∅), then ~a is an answer to q under brave
semantics, written K |=brave q(~a). For IAR semantics, we
haveK |=IAR q(~a) iff T ,R∩ |= q(~a) (equivalently,R∩ con-
tains some cause for q(~a)), where R∩ is the intersection of
all repairs of K. The three semantics are related as follows:

K |=IAR q(~a) ⇒ K |=AR q(~a) ⇒ K |=brave q(~a)

For S ∈ {AR, brave, IAR}, we call ~a a (positive) S-answer
(resp. negative S-answer) if K |=S q(~a) (resp. K 6|=S q(~a)).
Example 2. The example KB Kex has three repairs:

R1 = Aex \ {FPr(a),APr(a),Adv(a, b)}
R2 = Aex \ {Postdoc(a),FPr(a)}
R3 = Aex \ {Postdoc(a),APr(a)}

We consider the following example queries: q1 = Prof(x),
q2 = ∃y PhD(x) ∧ Teach(x, y), and q3 = ∃yTeach(x, y).
Evaluating these queries on Kex yields the following results:
Kex |=brave q1(a) Kex |=AR q2(a) Kex |=IAR q3(a)
Kex 6|=AR q1(a) Kex 6|=IAR q2(a)

3 Explaining Query Results
The aforementioned inconsistency-tolerant semantics allows
us to identify three types of positive query answer:

IAR-answers ⊆ AR-answers ⊆ brave-answers

The goal of the present work is to help the user under-
stand the classification of a particular tuple, e.g. why is ~a



an AR-answer, and why is it not an IAR-answer? To this
end, we introduce the notion of explanation for positive and
negative query answers under brave, AR, and IAR seman-
tics. For consistent KBs, these three semantics collapse into
the classical one, so existing explanation frameworks can
be used (Borgida, Calvanese, and Rodriguez-Muro 2008;
Calvanese et al. 2013; Du, Wang, and Shen 2014).

Formally, the explanations we consider will take either the
form of a set of ABox assertions (viewed as a conjunction)
or a set of sets of assertions (interpreted as a disjunction of
conjunctions). We chose to focus on ABox assertions, rather
than TBox axioms, since we target scenarios in which incon-
sistencies are due to errors in the ABox, so understanding the
link between (possibly faulty) ABox assertions and query
results is especially important. Moreover, as we shall see in
Sections 4 and 5, our ‘ABox-centric’ explanation framework
already poses non-trivial computational challenges.

The simplest answers to explain are positive brave- and
IAR-answers. We can use the query’s causes as explanations
for the former, and the causes that do not participate in any
contradiction for the latter. Note that in what follows we sup-
pose that K = (T ,A) is a KB and q is a query.

Definition 1. An explanation for K |=brave q(~a) is a cause
for q(~a) w.r.t. K. An explanation for K |=IAR q(~a) is a cause
C for q(~a) w.r.t. K such that C ⊆ R for every repairR of K.

Example 3. There are three explanations for Kex |=brave
q1(a): FPr(a), APr(a), and Adv(a, b). There are twelve
explanations for Kex |=brave q2(a): Postdoc(a) ∧
Teach(a, cj), FPr(a)∧Teach(a, cj), APr(a)∧Teach(a, cj),
and Adv(a, b) ∧ Teach(a, cj), for each j ∈ {1, 2, 3}. There
are three explanations for Kex |=IAR q3(a): Teach(a, c1),
Teach(a, c2), and Teach(a, c3).

To explain why a tuple is an AR-answer, it is no longer
sufficient to give a single cause, since different repairs may
use different causes. We will therefore define explanations
as (minimal) disjunctions of causes that ‘cover’ all repairs.

Definition 2. An explanation for K |=AR q(~a) is a set E =
{C1, . . . , Cm} ⊆ causes(q(~a),K) such that (i) every repair
R of K contains some Ci, and (ii) no proper subset of E
satisfies this property.
Example 4. There are 36 explanations for Kex |=AR q2(a),
each taking one of the following two forms:

Eij =(Postdoc(a) ∧ Teach(a, ci)) ∨ (Adv(a, b) ∧ Teach(a, cj))

E ′ijk =(Postdoc(a) ∧ Teach(a, ci)) ∨ (FPr(a) ∧ Teach(a, cj))

∨ (APr(a) ∧ Teach(a, ck))

for some i, j, k ∈ {1, 2, 3}.
We next consider how to explain negative AR- and IAR-

answers, i.e., brave-answers not entailed under AR or IAR
semantics. For AR semantics, the idea is to give a (minimal)
subset of the ABox that is consistent with the TBox and con-
tradicts every cause of the query, since any such subset can
be extended to a repair that omits all causes. For IAR seman-
tics, the formulation is slightly different as we need only
ensure that every cause is contradicted by some consistent
subset, as this shows that no cause belongs to all repairs.

Definition 3. An explanation for K 6|=AR q(~a) is a T -
consistent subset E ⊆ A such that: (i) T , E ∪ C |= ⊥ for
every C ∈ causes(q(~a),K), (ii) no proper subset of E has
this property. An explanation for K 6|=IAR q(~a) is a (pos-
sibly T -inconsistent) subset E ⊆ A such that: (i) for ev-
ery C ∈ causes(q(~a),K), there exists a T -consistent subset
E ′ ⊆ E with T , E ′∪C |= ⊥, (ii) no E ′ ( E has this property.
Example 5. The unique explanation for Kex 6|=AR q1(a) is
Postdoc(a), which contradicts the three causes of q1(a). The
explanations for Kex 6|=IAR q2(a) are: FPr(a) ∧ Postdoc(a),
APr(a) ∧ Postdoc(a), and Adv(a, b) ∧ Postdoc(a), where
the first assertion of each explanation contradicts the causes
of q2(a) that contain Postdoc(a), and the second one con-
tradicts those that contain FPr(a), APr(a) or Adv(a, b).

When there are a large number of explanations for a given
answer, it may be impractical to present them all to the user.
In such cases, one may choose to rank the explanations ac-
cording to some preference criteria, and to present one or a
small number of most preferred explanations. In this work,
we will use cardinality to rank explanations for brave- and
IAR-answers and negative AR- and IAR-answers. For posi-
tive AR-answers, we consider two ranking criteria: the num-
ber of disjuncts, and the total number of assertions.
Example 6. Reconsider explanations E1 1 and E ′1 2 3 for
Kex |=AR q2(a). There are at least two reasons why E1 1 may
be considered easier to understand than E ′1 2 3. First, E1 1 con-
tains fewer disjuncts, hence requires less disjunctive reason-
ing. Second, both disjuncts of E1 1 use the same Teach as-
sertion, whereas E ′1 2 3 uses three different Teach assertions,
which may lead the user to (wrongly) believe all are needed
to obtain the query result. Preferring explanations having the
fewest number of disjuncts, and among them, those involv-
ing a minimal set of assertions, leads to focusing on the ex-
planations of the form Ei i, where i ∈ {1, 2, 3}.

A second complementary approach is to concisely sum-
marize the set of explanations in terms of the necessary as-
sertions (i.e. appearing in every explanation) and the rele-
vant assertions (i.e. appearing in at least one explanation).
Example 7. If we tweak the example KB to include n
courses taught by a, then there would be n2 + n3 expla-
nations for Kex |=AR q2(a), built using only n + 4 asser-
tions. Presenting the necessary assertions (here: Postdoc(a))
and relevant ones (FPr(a), APr(a), Adv(a, b), Teach(a, ci))
gives a succinct overview of the set of explanations.

4 Complexity Analysis
We next study the computational properties of the different
notions of explanation defined in Section 3. In addition to
the problem of generating a single explanation (GENONE),
or a single best explanation (GENBEST) according to a given
criteria, we consider four related decision problems: decide
whether a given assertion appears in some explanation (REL)
or in every explanation (NEC), decide whether a candidate is
an explanation (REC), resp. a best explanation (BEST REC).

In the remainder of the paper, we focus on KBs expressed
in the lightweight logic DL-LiteR since it is a popular choice
for ontology-based data access and the only DL for which



brave, IAR AR neg. AR neg. IAR

GENONE in P NP-h NP-h in P

GENBEST† in P Σp2-h‡ NP-h NP-h∗

REL in P Σp2-co NP-co in P

NEC in P NP-co coNP-co in P

REC in P BH2-co in P in P

BEST REC† in P Πp
2-co‡ coNP-co∗ coNP-co∗

† upper bounds hold for ranking criteria that can be decided in P
‡ lower bounds hold for smallest disjunction or fewest assertions
∗ lower bounds hold for cardinality-minimal explanations

Figure 1: Data complexity results for CQs.

the three considered semantics have been implemented. As
we target applications in which the ABox is significantly
larger than the TBox and query, we use the data complexity
measure, which is only with respect to the size of the ABox.

Our complexity results are displayed in Figure 1.
Theorem 1. The results in Figure 1 hold.

In what follows, we present some key ideas underlying
Theorem 1 (detailed proofs are provided in the appendix).
Positive brave- and IAR-answers We recall that in DL-
LiteR, KB satisfiability and query answering are in P
w.r.t. data complexity (Calvanese et al. 2007), and conflicts
are of size at most two. It follows that the causes and their
conflicts can be computed in P w.r.t. data complexity (using
e.g. standard query rewriting algorithms). From the causes
and conflicts, we can immediately read off the explanations
for brave- and IAR-answers; a simple examination of the set
of explanations enables us to solve the decision problems.

Positive AR-answers We relate explanations of AR-
answers to minimal unsatisfiable subsets of a set of proposi-
tional clauses. Let us recall that, given sets F and H of soft
and hard clauses respectively, a subset M ⊆ F is a minimal
unsatisfiable subset (MUS) of F w.r.t. H if (i) M ∪H is un-
satisfiable, and (ii)M ′∪H is satisfiable for everyM ′ (M .

To explain K |=AR q(~a), we consider the soft clauses

ϕ¬q = {λC | C ∈ causes(q(~a),K)} with λC =
∨

β∈confl(C,K)

xβ

and the hard clauses

ϕcons={¬xα∨¬xβ |xα, xβ∈vars(ϕ¬q), {α, β}∈confl(K)}

It was proven by Bienvenu et al. (2014) that K |=AR q(~a) iff
ϕ¬q ∪ ϕcons is unsatisfiable, and we can further show:
Proposition 1. A set E ⊆ causes(q(~a),K) is an explanation
forK|=AR q(~a) iff {λC |C ∈ E} is a MUS of ϕ¬q w.r.t. ϕcons.

In addition to enabling us to exploit MUS algorithms
for explanation generation, Proposition 1 can be combined
with known complexity results for MUSes (Liberatore 2005)
to infer the upper bounds for REL, REC, and BEST REC.
Moreover, we can find a TBox T ∗ and assertion α∗ such
that for every unsatisfiable clause set ϕ, we can construct

in polytime an ABox Aϕ such that the explanations for
(T ∗,Aϕ) |=AR α∗ correspond (in a precise sense) to the
MUSes of ϕ (w.r.t. ∅). This reduction enables us to transfer
complexity lower bounds for MUSes to our setting.

Negative AR-answers We relate explanations of negative
AR-answers to minimal models of ϕ¬q ∪ ϕcons. Given a
clause set ψ over variables X , a set M ⊆ X is a minimal
model of ψ iff (i) every valuation that assigns true to all vari-
ables in M satisfies ψ, (ii) no M ′ ( M satisfies this condi-
tion. Cardinality-minimal models are defined analogously.

Proposition 2. A set E is an explanation (resp. cardinality-
minimal explanation) for K 6|=AR q(~a) iff {xα | α ∈ E} is a
minimal (resp. cardinality-minimal) model of ϕ¬q ∪ ϕcons.

The preceding result enables us to generate explanations
using tools for computing (cardinality-)minimal models; it
also yields a coNP upper bound for NEC since α belongs to
all explanations just in the case that ϕ¬q ∪ ϕcons ∪ {¬xα}
is unsatisfiable. Recognizing an explanation E can be done
in P by checking consistency of E , inconsistency of E ∪ C
for every cause C, and minimality of E . It follows that REL
is in NP and BEST REC in coNP for ranking criteria that
can be decided in P (guess an explanation that contains the
assertion, resp. is a better explanation). The NP and coNP
lower bounds are proved by reductions from (UN)SAT.

Negative IAR-answers We relate explanations of negative
IAR-answers to minimal models of the clause set ϕ¬q .

Proposition 3. A set E is an explanation (resp. cardinality-
minimal explanation) for K 6|=IAR q(~a) iff {xα | α ∈ E} is a
minimal (resp. cardinality-minimal) model of ϕ¬q .

Importantly, ϕ¬q does not contain any negative literals,
and it is known that for positive clause sets, a single minimal
model can be computed in P, and the associated relevance
problem is also in P. The intractability results for GENBEST
and BEST REC are obtained by relating cardinality-minimal
models of monotone 2CNF formulas to cardinality-minimal
explanations of negative IAR-answers.

5 Prototype and experiments
We implemented our explanation framework in Java within
our CQAPri system (www.lri.fr/˜bourgaux/CQAPri),
which supports querying of DL-LiteR KBs under several
inconsistency-tolerant semantics, including the brave, AR
and IAR semantics. We used the SAT4J v2.3.4 SAT solver
(www.sat4j.org) to compute MUSes and cardinality-
minimal models (Berre and Parrain 2010).

CQAPri classifies a query answer ~a into one of 3 classes:
• Possible: K |=brave q(~a) and K 6|=AR q(~a)

• Likely: K |=AR q(~a) and K 6|=IAR q(~a)

• (Almost) sure: K |=IAR q(~a)

Explaining the answer ~a consists in providing all the expla-
nations for ~a being a positive answer under the first seman-
tics and a single explanation for it being a negative answer
under the other one (i.e. a counter-example), together with
the necessary and relevant assertions. Positive explanations



Query id shape #atoms #variables #rewritings
g2 atomic 1 1 44
g3 atomic 1 1 44
q1 dag 5 2 6401
q2 tree 3 2 450
q3 tree 2 3 155
q4 dag 6 4 202579

Table 1: Queries in term of shape, number of atoms, number
of variables, and number of CQs in the UCQ-rewriting.

are ranked as explained in Section 3; for ranking positive-
AR answers, the user can choose the priority between the
numbers of disjuncts and the total number of assertions.

Explanations are computed using the results on positive
and negative answers from Section 4. We thus need the
causes of the query answers as well as their conflicts. The
conflicts are directly available from CQAPri; for the causes,
CQAPri uses query rewriting to identify consistent (but not
necessarily minimal) subsets of the ABox entailing the an-
swers, from which we must prune non-minimal ones.

To assess the practical interest of our framework, we em-
pirically study the properties of our implementation, in par-
ticular: the impact of varying the percentage of assertions in
conflict, the typical number and size of explanations, and the
extra effort required to generate cardinality-minimal expla-
nations for negative IAR-answers rather than arbitrary ones.
Experimental setting We used the CQAPri benchmark
available at www.lri.fr/˜bourgaux/CQAPri, which
builds on the DL-LiteR version (Lutz et al. 2013) of the
Lehigh University Benchmark (swat.cse.lehigh.edu/
projects/lubm). It extends the DL-LiteR TBox with neg-
ative inclusions and describes how to obtain an ABox with
a natural repartition of conflicts by adding assertions to an
initial ABox consistent with the enriched TBox.

We used a consistent database with 100 universities (more
than 10 million assertions) from which we generated seven
inconsistent ABoxes with different ratios of assertions in
conflicts by adding from 8005 to 351724 assertions. These
ABoxes are denoted cX, with X the ratio of conflicts varying
from 5% to a value of 44% challenging our approach. Also,
the way we generate conflicts ensures cX ⊆ cY if X ≤ Y.

The queries can be found on the CQAPri website. Table 1
displays the characteristics of these queries, which have (i)
a variety of structural aspects and number of rewritings, and
(ii) answers in the three considered classes (see Table 2).

Our hardware is an Intel Xeon X5647 at 2.93 GHz with
16 GB of RAM, running CentOS 6.7. Reported times are av-
eraged over 5 runs.
Experimental results We summarize below the general ten-
dencies we observed. Table 2 shows the number of answers
from each class for each query, as well as the distribution of
the explanation times for these answers. Figure 2 shows the
proportion of time spent in the different phases and the total
time to explain all query answers over ABoxes of increasing
difficulty. The explanation cost, given by the upper bar, con-
sists in pruning non-minimal consistent subsets of the ABox
entailing the answers to get the causes, and computing the

#answers < 10 [10, 100[ [100, 1000[ > 1000

g2 Sure 29074 100 0 0 0
Likely 1166 86.2 0 6.4 7.4
Poss. 18162 52.2 2.7 39 6.1

g3 Sure 129083 99.999 0.001 0 0
Likely 8902 99.98 0.02 0 0
Poss. 19737 98.58 0.05 1.36 0.01

q1 Likely 10 50 50 0 0
q2 Poss. 133 100 0 0 0
q3 Poss. 208752 99.578 0.421 0 0.001
q4 Sure 128616 99.99 0.01 0 0

Likely 192 99.5 0.5 0 0
Poss. 64820 87.055 12.942 0 0.003

Table 2: Number of answers of each class and distribution
of explanation times (in ms) per query on c29.

explanations from the causes and conflicts. The two lower
bars relate to the query answering phase, which consists in
rewriting and executing the query (execute), and identifying
Sure, Likely, and Possible answers (classify).

The main conclusion is that explaining a single query an-
swer, as described above, is always feasible and fast (≤1s)
when there are a few percent of conflicts in the ABox (c5
case), as is likely to be the case in most real applications.
Even with a significant percentage of conflicts (c29 case,
Table 2), the longest time observed is below 8s. In all the
experiments we made, explaining a single answer typically
takes less than 10ms, rarely more than 1s. (Computing ex-
planations of all answers can be prohibitively expensive
when there are very many answers (Figure 2, left), which
is why we do not produce them all by default.)

In more detail, adding conflicts to the ABox complicates
the explanations of answers, due to their shift from the Sure
to the Likely and Possible classes, as Table 3 shows. Ex-
plaining such answers indeed comes at higher computational
cost. Figure 2 illustrates this phenomenon. The general trend
is exemplified with q3: adding more conflicts causes the dif-
ficulty of explaining to grow more rapidly.

For negative IAR-answers, we compared the generation
of explanations using a polynomial procedure and of small-
est explanations using the SAT solver. The sizes of arbi-
trary explanations are generally very close to those of small-
est explanations (at most two extra assertions on c29) and
the time saved may be important. Arbitrary explanations are
generated in less than 10ms, whereas for g2 on c29, around
50 minutes is spent in computing a smallest explanation due
to its unusual size (18 assertions, whereas other negative ex-
planations consist in a few assertions).

Finally, we observed that the average number of expla-
nations per answer is often reasonably low, although some
answers have a large number of explanations (e.g. on c29,
often less than 10 on average, but for g2, 686 for an
IAR-answer, 4210 for an AR-answer, and 740 for a brave-
answer). Regarding the size of explanations of AR-answers,
the number of causes in the disjunction was up to 21, show-
ing the practical interest of ranking the explanations.



g2 g3 q1 q2 q3 q4
c5 c29 c44 c5 c29 c44 c5 c29 c44 c5 c29 c44 c5 c29 c44 c5 c29 c44

Sure 95 60 38 99 82 61 100 0 0 29 0 0 27 0 0 84.85 66.4 50.1
Likely 2 2.4 4 0.2 5.5 12 0 100 0 0 0 0 0 0 0 0.06 0.1 0.6

Possible 3 37.6 58 0.8 12.5 27 0 0 100 71 100 100 73 100 100 15.09 33.5 49.3

Table 3: Distribution of answers in the different classes on ABoxes with 5%, 29%, and 44% of assertions involved in a conflict.

Figure 2: Impact of conflicts [left] Proportion of time spent in the different phases and total time (in sec.) to explain all query
answers on c5, c29, and c44. [right] Time spent for explaining all answers of q3 on ABoxes with growing ratio of conflicts.

6 Related Work on Explanations
As mentioned in Section 1, there has been significant in-
terest in equipping DL reasoning systems with explanation
facilities. The earliest work proposed formal proof systems
as a basis for explaining concept subsumptions (McGuin-
ness and Borgida 1995; Borgida, Franconi, and Horrocks
2000), while the post-2000 literature mainly focuses on ax-
iom pinpointing (Schlobach and Cornet 2003; Kalyanpur
et al. 2005; Horridge, Parsia, and Sattler 2012), in which
the problem is to generate minimal subsets of the KB that
yield a given (surprising or undesirable) consequence; such
subsets are often called justifications. For the lightweight
DL EL+, justifications correspond to minimal models of
propositional Horn formulas and can be computed using
SAT solvers (Sebastiani and Vescovi 2009); a polynomial
algorithm has been proposed to compute one justification in
(Baader, Peñaloza, and Suntisrivaraporn 2007). In DL-Lite,
the problem is simpler: all justifications can be enumerated
in polynomial delay (Peñaloza and Sertkaya 2010).

It should be noted that work on axiom pinpointing has
thus far focused on explaining entailed TBox axioms (or
possibly ABox assertions), but not answers to conjunc-
tive queries. The latter problem is considered in (Borgida,
Calvanese, and Rodriguez-Muro 2008), which introduces a
proof-theoretic approach to explaining positive answers to
CQs over DL-LiteA KBs. The approach outputs a single
proof, involving both TBox axioms and ABox assertions,
using minimality criteria to select a ‘simplest’ proof.

More recently, the problem of explaining negative query
answers over DL-LiteA KBs has been studied (Calvanese et
al. 2013). Formally, the explanations for T ,A 6|= q(~a) corre-
spond to sets A′ of ABox assertions such that T ,A ∪A′ |=
q(~a). Practical algorithms and an implementation for com-
puting such explanations were described in (Du, Wang, and
Shen 2014). The latter work was recently extended to the
case of inconsistent KBs (Du, Wang, and Shen 2015) . Es-

sentially the idea is to add a set of ABox assertions that will
lead to the answer holding under IAR semantics (in partic-
ular, the new assertions must not introduce any inconsisten-
cies). By contrast, in our setting, negative query answers re-
sult not from the absence of supporting facts, but rather the
presence of conflicting assertions. This is why our explana-
tions are composed of assertions from the original ABox.

Probably the closest related work is (Arioua, Tamani, and
Croitoru 2015) which introduces an argumentation frame-
work for explaining positive and negative answers under
the inconsistency-tolerant semantics ICR (Bienvenu 2012).
Their motivations are quite similar to our own, and there are
some high-level similarities in the definition of explanations
(e.g. to explain positive ICR-answers, they consider sets of
arguments that minimally cover the preferred extensions,
whereas for positive AR-answers, we use sets of causes that
minimally cover the repairs). Our work differs from theirs by
considering different semantics and by providing a detailed
complexity analysis and implemented prototype.

Finally, we note that the problem of explaining query re-
sults has been studied in the database community (Cheney,
Chiticariu, and Tan 2009; Herschel and Hernández 2010).

7 Conclusion and Future Work
We devised a framework for explaining query (non-)answers
over DL KBs under three well-established inconsistency-
tolerant semantics (brave, AR, IAR). We then studied the
computational properties of our framework, focusing on DL-
LiteR that underpins W3C’s OWL2 QL (Motik et al. 2012).
For intractable explanation tasks, we exhibited tight connec-
tions with variants of propositional satisfiability, enabling us
to implement a prototype using modern SAT solvers. Our
experiments showed its practical interest: explanations of
query (non-)answers are generated quickly overall, for re-
alistic to challenging ratios of conflicting assertions.



There are several natural directions for future work. First,
we plan to accompany our explanations with details on the
TBox reasoning involved, using the work of (Borgida, Cal-
vanese, and Rodriguez-Muro 2008) on proofs of positive an-
swers as a starting point. The difficulty of such proofs could
provide an additional criteria for ranking explanations (cf.
the work on the cognitive complexity of justifications (Hor-
ridge et al. 2011)). Second, our experiments showed that an
answer can have a huge number of explanations, many of
which are quite similar in structure. We thus plan to inves-
tigate ways of improving the presentation of explanations,
e.g. by identifying and grouping similar explanations (cf.
(Bail, Parsia, and Sattler 2013) on comparing justifications),
or by defining a notion of representative explanation as in
(Du, Wang, and Shen 2014). Third, we plan to experiment
with other methods of generating explanations of negative
answers, by comparing alternative encodings and using tools
for computing hitting sets or diagnoses. Finally, it would be
interesting to explore how explanations can be used to par-
tially repair the data based upon the user’s feedback.
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A Proofs for Section 4
We recall the definitions of the considered complexity classes:
• P: problems which are solvable in polynomial time.
• NP: problems which are solvable in non-deterministic polyno-

mial time.
• coNP: problems whose complement is in NP.
• BH2: problems that are the intersection of a problem in NP and

a problem in coNP.
• Σp2: problems which are solvable in non-deterministic polyno-

mial time with an NP oracle.
• Πp

2: problems whose complement is in Σp2 .
When showing that a decision problem is hard for a given com-

plexity class, we use standard polynomial-time many-one reduc-
tions (also known as Karp reductions), which transform an instance
of one decision problem into an instance of a second decision prob-
lem.

We consider that a procedure solves the generation task
GENONE (resp. GENBEST) if it outputs an explanation (resp. best
explanation according to the chosen criterion) when there is at least
one explanation, and otherwise, it outputs no. To show that a gener-
ation task is hard for a class C, we reduce a C-hard decision problem
to it. As we cannot use many-one reductions (which relate two de-
cision problems), we will use polynomial-time Turing reductions,
that is, we will show how to solve the C-hard decision problem us-
ing a polynomial-time Turing machine that can use the generation
task as an oracle. Moreover, to prove a stronger intractability result,
we will only allow a single oracle call.

Positive brave and IAR-answers
In DL-LiteR, the conflicts for a KB K = (T ,A) can be computed
in polynomial time in |A| by querying (the database corresponding
to)A for individuals belonging to two disjoint concepts. More pre-
cisely, we can use the query obtained by applying standard UCQ
rewriting algorithms to the queries corresponding to the violation
of negative inclusions of the TBox. The conflicts are those sets of
(at most two) assertions that correspond to the homomorphic im-
age of one of the disjuncts of this query. The causes of q w.r.t. K
can be computed similarly: we first compute the sets of assertions
that correspond to the homomorphic image of one of the disjuncts
in a UCQ-rewriting of the query, and then prune the inconsistent or
non-minimal sets.

The explanations for positive brave-answers are the causes, and
the explanations for positive IAR-answers are the causes that be-
long to every repair, i.e., those which do not contain any assertion
involved in a conflict of K (recall that in DL-LiteR conflicts are
binary). It is therefore possible to compute the entire set of ex-
planations for positive brave and IAR-answers in P. This means
that GENONE is in P. For polynomial-time ranking criteria, both
GENBEST and BEST REC are solvable in P since we can compare
all of the explanations to identify the best ones. The sets of relevant
and necessary assertions can be computed in P by taking the union
and intersection of the explanations.

Positive AR-answers
We begin by proving Proposition 1. For convenience, we recall the
definition of the clause sets:
ϕ¬q = {λC | C ∈ causes(q(~a),K)} with λC =

∨
β∈confl(C,K)

xβ

ϕcons={¬xα ∨ ¬xβ |xα, xβ∈vars(ϕ¬q), {α, β}∈confl(K)}

Proposition 1. A set E ⊆ causes(q(~a),K) is an explanation for
K|=AR q(~a) iff {λC |C ∈ E} is a MUS of ϕ¬q w.r.t. ϕcons.

Proof. First suppose that E is an explanation of K |=AR q(~a). By
Definition 2, this means that every repair of K contains at least
one cause C from E . It follows that it is not possible to select one
conflicting assertion for each corresponding cause in a consistent
way, i.e. {λC | C ∈ E} ∪ ϕcons is inconsistent. Moreover, the
minimality condition ensures that for every proper subset E ′ ( E ,
there is a repairR that does not contain any cause from E ′. We can
useR to select a consistent set of assertions that conflict with every
cause in E ′, which means that {λC | C ∈ E ′}∪ϕcons is satisfiable.
Thus, {λC | C ∈ E} is a MUS of ϕ¬q w.r.t. ϕcons.

Conversely, suppose that {λC | C ∈ E} is a MUS of ϕ¬q w.r.t.
ϕcons. Then {λC | C ∈ E} ∪ ϕcons is unsatisfiable, and every
{λC | C ∈ E ′} ∪ ϕcons with E ′ ( E is satisfiable. The fact that
{λC | C ∈ E} ∪ ϕcons is unsatisfiable means that there is no
way to consistently contradict the causes in E , so every repair must
contain one of the causes in E . The satisfiability of {λC | C ∈ E ′}∪
ϕcons for E ′ ( E implies the existence of a repair that omits every
cause in E ′. We have thus shown that E satisfies the conditions of
Definition 2, so it is an explanation of K |=AR q(~a).

Using Proposition 1 and known complexity results for MUSes
yields the following upper bounds:

Proposition 4. Regarding explanations for AR-answers, REC is in
BH2, BEST REC is in Πp

2 , and REL is in Σp2 w.r.t. data complexity.

Proof. We recall the following complexity results for MUSes (see
(Liberatore 2005)):

• Deciding if a set of clauses is a MUS is BH2-complete.
• Deciding if a clause belongs to some MUS is Σp2-complete.

When combined with Proposition 1, the first item yields member-
ship in BH2 of REC. For BEST REC, we show that an explanation
is not a best one by guessing a better candidate and checking in
BH2 that it is an explanation. This yields a Σp2 procedure for the
complement of BEST REC, hence membership in Πp

2 for BEST REC.
For REL, we note that an assertion α is relevant for explaining

K|=AR q(~a) just in the case that there exists a cause C for q(~a) w.r.t.
K that contains α and appears in some explanation. By Proposition
1, the latter holds just in the case that λC belongs to some MUS
of ϕ¬q w.r.t. ϕcons. By the second item above, deciding whether
a particular clause λC belongs to some MUS can be decided in
Σp2 . To obtain a Σp2 decision procedure for REL, we simply add an
initial non-deterministic guess of a cause C ∈ causes(q(~a),K) that
mentions the considered assertion α.

We next show the NP upper bound for NEC.

Proposition 5. Regarding explanations for AR-answers, NEC is in
NP w.r.t. data complexity.

Proof. An assertion α belongs to every explanation ofK|=AR q(~a)
just in the case that either there are no explanations at all (i.e.,
K 6|=AR q(~a)) or there exists a repair R of K = (T ,A) such that
T ,R \ {α} 6|= q(~a). Both conditions can be tested in NP w.r.t.
data complexity. Indeed, to decide whether the second condition
holds, we simply guess a subsetR ⊆ A and check (in P w.r.t. data
complexity) thatR is a repair and T ,R \ {α} 6|= q(~a).

The following proposition shows how the connection to MUSes
can be exploited to obtain matching lower bounds.

Proposition 6. Regarding explanations for AR-answers, REC is
BH2-hard, NEC is NP-hard, REL is Σp2-hard, and GENONE is NP-
hard w.r.t. data complexity. Moreover, if we rank explanations ac-
cording to the number of causes or number of assertions, then
BEST REC (resp. GENBEST) is Πp

2-hard (resp. Σp2-hard) w.r.t. data
complexity. .



Proof. We show how the MUSes of a propositional clause set can
be captured by explanations of AR-answers.

Let ϕ0 = {C1, ..., Cn} be a set of clauses over {X1, ..., Xp}.
Consider the following KB and query (borrowed from (Bienvenu
2012)):

T0 = {∃P− v ¬∃N−,∃U− v ¬∃P,∃U− v ¬∃N,
∃U v A}

A0 = {P (ci, xj) | Xj ∈ Ci} ∪ {N(ci, xj) | ¬Xj ∈ Ci}∪
{U(a, ci) | 1 ≤ i ≤ n}

q0 =A(x)

The causes for q0(a) are given by the assertions U(a, ci), which
are in conflict with assertions of the form P (ci, xj) or N(ci, xj).
It was shown in (Bienvenu 2012) that T0,A0 |=AR A(a) iff ϕ0 is
unsatisfiable. To prove the proposition, we will require the follow-
ing stronger claim:
Claim. The following are equivalent:

1. the set of clauses {Ci1 , ..., Cik} is unsatisfiable
2. every repair of (T0,A0) contains some assertion from
{U(a, ci1), ..., U(a, cik )}

Proof of claim. It will be more convenient to show that the nega-
tions of the two statements are equivalent. First suppose that
{Ci1 , ..., Cik} is satisfiable, as witnessed by the satisfying assign-
ment ν. Define a repair Rν of (T0,A0) by including the assertion
P (ci, vj) if ν(vj) = true, including N(ci, vj) if ν(vj) = false,
and then adding as many other assertions as needed to obtain a
maximal T0-consistent subset. Since ν satisfies every clause in
{Ci1 , ..., Cik}, it follows that for every index ` ∈ {i1, . . . , ik},
the clause C` contains a positive literal v` such that ν(v`) = true,
or a negative literal ¬v` such that ν(v`) = false. In the former
case, Rν contains the assertion P (c`, v`), and in the latter case,
Rν contains N(c`, v`). In both cases, there is an assertion in Rν
that conflicts with U(a, c`), so the latter assertion cannot appear
in Rν . We have thus shown that Rν does not contain any of the
assertions in {U(a, ci1), ..., U(a, cik )}.

Next suppose there is a repairR that have an empty intersection
with {U(a, ci1), ..., U(a, cik )}. By the maximality of R, it fol-
lows that for every ` ∈ {i1, . . . , ik}, there must exist an assertion
in R of the form P (c`, vj) or N(c`, vj). Define a (possibly par-
tial) assignment νR by setting by Xj to true if R contains some
P (ci, xj) and to false if R contains some N(ci, xj) (recall that
R is consistent with T0, and so it cannot contain both P (ci, xj)
and N(ck, xj)). By construction, νR satisfies all of the clauses
in {Ci1 , ..., Cik}, i.e. {Ci1 , ..., Cik} is satisfiable. (end proof of
claim)

It follows from the preceding claim that the explanations for
T0,A0 |=AR q0(a), i.e. the minimal sets of causes for q0(a) that
cover all repairs, correspond precisely to the MUSes of ϕ0. We can
therefore exploit known complexity results for MUSes (Liberatore
2005):

• Deciding if a clause belongs to a MUS is Σp2-complete, so decid-
ing if U(a, ci) belongs to an explanation for T0,A0 |=AR q0(a)
is Σp2-hard w.r.t. data complexity. Thus, we have a Σp2 lower
bound for REL.

• Deciding if a clause belongs to every MUS is NP-complete,
so deciding if U(a, ci) belongs to every explanation for
T0,A0 |=AR q0(a) is NP-hard w.r.t. data complexity. This gives
an NP lower bound for NEC.

• REC: Deciding if a set of clauses is a MUS is BH2-complete, so
deciding if {{U(a, ci1)}, ..., {U(a, cik )}} is an explanation is
BH2-hard w.r.t. data complexity. Hence, REC is BH2-hard.

The proof of (Liberatore 2005) for Σp2-hardness of deciding if
there exists a MUS of size at most k also shows that deciding if a
set of clauses is a smallest MUS is Πp

2-hard. It follows that deciding
if an explanation for an AR-answer contains a smallest number of
causes is Πp

2-hard. Moreover, since every cause in the considered
KB consists of a single assertion, deciding if an explanation for an
AR-answer contains a smallest number of assertions is also Πp

2-
hard.

To see why the generation task GENONE is NP-hard, we note
that to solve the NP-complete problem of whether K 6|=AR q(~a), it
suffices to call the procedure for GENONE to generate a single ex-
planation for K |=AR q(~a). If the procedure outputs ‘no’ (meaning
there is no explanation for K |=AR q(~a)), then we output ‘yes’, and
if it outputs an explanation, then we return ‘no’.

The Σp2-hardness of GENBEST, when explanations are ranked
based upon the number of disjuncts or the number of assertions,
follows from the Πp

2-hardness of BEST REC for these same criteria.
Indeed, to show that an explanation is not a best explanation, it
suffices to generate a best explanation (GENBEST) and verify that
it has fewer disjuncts / assertions than the explanation at hand.

Negative AR-answers
We begin by establishing Proposition 2.

Proposition 2. A set E is an explanation (resp. cardinality-minimal
explanation) for K 6|=AR q(~a) iff {xα | α ∈ E} is a minimal (resp.
cardinality-minimal) model of ϕ¬q ∪ ϕcons.

Proof. It is shown in (Bienvenu, Bourgaux, and Goasdoué 2014)
that K |=AR q(~a) iff ϕ¬q ∧ ϕcons is unsatisfiable. This is because
the assertions whose corresponding variables are assigned to true
in a valuation that satisfies ϕ¬q ∧ϕcons form a subset of the ABox
which: (i) contradicts every cause, since ϕ¬q states that for every
cause, one conflicting assertion is selected, and (ii) is consistent,
since ϕcons states that two assertions in a conflict cannot be se-
lected together. Thus, the inclusion-minimal models ofϕ¬q∧ϕcons
are precisely the explanations for negative AR-answers.

Next we show the complexity upper bounds for the decision
problems.

Proposition 7. Regarding explanations for negative AR-answers,
REC is in P, BEST REC is in coNP, REL is in NP, and NEC is in
coNP w.r.t. data complexity.

Proof. It follows from Definition 3 that deciding whether E ⊆ A is
an explanation for K 6|=AR q(~a) can be done in P (data complexity)
by checking:

• consistency of (T , E)

• inconsistency of (T , E ∪ C) for every C ∈ causes(q(~a),K)

• minimality of E : no proper subset E ′ ( E satisfies the two pre-
vious conditions.

We can decide in NP that an explanation E is not a best expla-
nation (according to some polynomial-time ranking criterion) by
guessing a subset E ′ ⊆ A and verifying in P w.r.t. data complex-
ity that E ′ is an explanation (see previous paragraph) and that it is
better than E according to the given criterion. This yields a coNP
upper bound for BEST REC.

A simple NP procedure for deciding REL consists in guessing a
subset E ⊆ A that contains the considered assertion and checking
in P whether it is an explanation (using the P procedure for REC).



However, for the purposes of implementation, we propose an alter-
native procedure based upon a reduction to satisfiability. Specifi-
cally, to test whether an assertion α is relevant, we check whether
the clause set ϕ¬q ∪ ϕcons ∪ ϕα is satisfiable, where

ϕα ={
∨

C∈causes(q(~a),K),α∈confl(C,K)

xC}∪

{¬xC ∨ ¬xβ | C ∈ causes(q(~a),K), α ∈ confl(C,K),

β ∈ confl(C,K), β 6= α}

Indeed, if α is relevant, there exists an explanation E such that α ∈
E . Since E is minimal, there exists a cause C such that C∪(E\{α})
is consistent. It follows that no assertion β ∈ confl(C,K) belongs
to E expect for α. Then the valuation ν such that ν(xC) = true,
and for every assertion β, ν(xβ) = true if β ∈ E , ν(xβ) = false
otherwise, satisfies ϕ¬q ∪ ϕcons ∪ ϕα. In the other direction, if
ϕ¬q ∪ ϕcons ∪ ϕα is satisfiable, it is possible to contradict every
cause with a consistent set E of assertions such that there exists a
cause C such that the only assertion of E ∩ confl(C,K) is α. Then
an explanation that contains α is included in E .

By Proposition 2, E is an explanation for K 6|=AR q(~a) iff {xα |
α ∈ E} is a minimal model of ϕ¬q ∪ ϕcons. It follows that an
assertion α belongs to every explanation for K 6|=AR q(~a) just in
the case that ϕ¬q ∪ ϕcons ∪ {¬xα} is unsatisfiable. This yields
membership in coNP for NEC.

The next proposition establishes matching lower bounds.

Proposition 8. Regarding explanations for negative AR-answers,
NEC is coNP-hard, and REL, GENONE, and GENBEST (for any
ranking criterion) is NP-hard w.r.t. data complexity. If explanations
are ranked by cardinality, then BEST REC is coNP-hard w.r.t. data
complexity.

Proof. All reductions are from (UN)SAT. Let ϕ = C1 ∧ ... ∧ Cn
be a set of clauses over propositional variables {X1, ..., Xp}.

• GENONE and GENBEST: Let T0,A0, and q0 be as in Proposition
6. We know that ϕ0 is satisfiable iff T0,A0 6|=AR A(a). Thus, to
decide the satisfiability of ϕ0, we generate a (best) explanation of
T0,A0 6|=AR A(a). If an explanation is produced, then we return
‘yes’, and if the procedure returns with no explanation, then we
output ‘no’.

• NEC: We again let T0,A0, and q0 be as in Proposition 6. Define a
new TBox T1 = T0∪{∃U v ¬S} and ABoxA1 = A0∪{S(a)}.
By construction, the assertion S(a) contradicts every cause for
q0(a), so T1,A1 6|=AR q0(a). We show that deciding whether ϕ
is satisfiable is equivalent to deciding if S(a) is not necessary for
explaining T1,A1 6|=AR q0(a). This establishes the coNP-hardness
of checking necessity.
⇒ Let ν be a satisfying valuation for ϕ. It can be easily verified

that the set {P (ci, vj) ∈ A0 | ν(vj) = true} ∪ {N(ci, vj) ∈
A0 | ν(vj) = false} conflicts with every cause of q0(a), and so by
choosing a subset of these assertions, we can construct an explana-
tion for T1,A1 6|=AR q0(a) that does not contain S(a).
⇐ An explanation E that does not contain S(a) forms a T1-

consistent set of P - and N -assertions such that every ci has an
outgoing P - or N -edge. We obtain a (partial) assignment νE that
satisfies ϕ by setting νE(vj) = true if E contains an assertion
P (ci, vj) and νE(vj) = false if E contains an assertion N(ci, vj).

• REL: We use the TBox T1 and the ABox A2 = A1 ∪
{U(a, cn+1), P (cn+1, xp+1)}. Again, we note that S(a) contra-
dicts every cause for q0(a), so T1,A2 6|=AR q0(a). We show
that ϕ is satisfiable iff P (cn+1, xp+1) is relevant for explaining
T1,A2 6|=AR q0(a); it follows that relevance is NP-hard.

⇒ If ϕ is satisfiable, then we can obtain an explanation for
T1,A2 6|=AR q0(a) by adding P (cn+1, xp+1) to a minimal sub-
set of the P - and N -assertions corresponding to a satisfying truth
assignment for ϕ.
⇐ If ϕ is unsatisfiable, then every explanation must con-

tain S(a). It follows that {S(a)} is the only explanation, so
P (cn+1, xp+1) is not relevant.

• BEST REC: We consider the following KB:

T3 = T0 ∪ {U1 v U,U2 v U,∃U−1 v ¬T,∃U2 v ¬S}
A3 = {P (ci, xj) | Xj ∈ Ci} ∪ {N(ci, xj) | ¬Xj ∈ Ci}∪

{U1(a, ci), U2(a, ci), T (ci) | 1 ≤ i ≤ n} ∪ {S(a)}

We claim that E = {S(a), T (c1), ..., T (cm)} is a smallest expla-
nation for T3,A3 6|=AR q0(a) iff ϕ is unsatisfiable.
⇒ If ϕ is satisfiable, then we can use a satisfying truth as-

signment to define a consistent set of m P - and N -edges such
that every ci has an outgoing edge. This set is an explanation for
T3,A3 6|=AR q0(a), and it has fewer assertions than E .
⇐ If there exists an explanation of size at most m, it contains

necessarily only P - and N -edges, since m assertions (P , N or T )
are needed to conflict all U1, and S(a) is needed as soon as one of
the U1-assertions is conflicted only by a T -assertion. It follows that
there exists a consistent set of P - and N -assertions such that every
ci has an outgoing edge, from which we can construct a satisfying
assignment for ϕ.

Negative IAR-answers
We start by proving Proposition 3.
Proposition 3. A set E is an explanation (resp. cardinality-minimal
explanation) for K 6|=IAR q(~a) iff {xα | α ∈ E} is a minimal (resp.
cardinality-minimal) model of ϕ¬q .

Proof. The assertions whose corresponding variables are assigned
to true in a valuation that satisfies ϕ¬q form a subset of the ABox
which contradicts every cause, since ϕ¬q states that for every
cause, one conflicting assertion is selected. Thus, the inclusion-
minimal (resp. cardinality-minimal) models of ϕ¬q are precisely
the explanations (resp. cardinality-minimal explanations) for nega-
tive IAR-answers.

We next establish the complexity upper bounds.

Proposition 9. Regarding explanations for negative IAR-answers,
REC is in P, BEST REC is in coNP, NEC is in P, REL is in P, and
GENONE is in P w.r.t. data complexity.

Proof. It follows from Definition 3 and from the fact that in DL-
LiteR conflicts are binary that deciding whether E ⊆ A is an ex-
planation for K 6|=IAR q(~a) can be done in P (data complexity) by
checking:

• for every C ∈ causes(q(~a),K), inconsistency of (T , C ∪ {α})
for some assertion α ∈ E

• minimality of E : no proper subset E ′ ( E satisfies the previous
condition.

We can decide in NP that an explanation E is not a best expla-
nation (according to some polynomial-time ranking criterion) by
guessing a subset E ′ ⊆ A and verifying in P w.r.t. data complexity
that E ′ is an explanation and that it is better than E according to the
given criterion. This yields a coNP upper bound for BEST REC.

An assertion is necessary just in the case that it is the only con-
flict of some cause. Since causes and conflicts can be computed in
P, deciding whether an assertion is necessary can be done in P.



For REL and GENONE, we can use Proposition 3 to polynomially
reduce these problems to the corresponding problems for minimal
models of monotone CNF formulas and exploit known results for
that setting. Here we describe polytime procedures for the REL and
GENONE that are based upon standard techniques from the propo-
sitional setting.

The key property underlying the polynomial procedure for REL
is as follows: an assertion α is relevant for K 6|=IAR q(~a) iff it
is in conflict with a cause C such that for every other cause C′,
if confl(C′,K) ⊆ confl(C,K), then α ∈ confl(C′,K). Clearly,
the latter condition can be checked in polynomial time by examin-
ing the causes and conflicts (which are known to be computable in
P w.r.t. data complexity). To see why this characterization holds,
first note that if α is relevant for K 6|=IAR q(~a), then there is a
subset E ⊆ A with α ∈ E such that every cause of q(~a) is in
conflict with some assertion in E , and no proper subset of E ′ pos-
sesses this property. Since E is a minimal set of assertions hav-
ing this property, we know that there is some cause C that does
not conflict with any assertion in E \ {α}, and so there cannot
exist another cause C′ such that confl(C′,K) ⊆ confl(C,K) and
α 6∈ confl(C′,K). Conversely, let us suppose that the assertion α
is in conflict with a cause C of q(~a) and for every other cause C′,
confl(C′,K) ⊆ confl(C,K) implies α ∈ confl(C′,K). It follows
that for every cause C′ of q(~a), either α ∈ confl(C′,K), or there
exists an assertion βC′ ∈ confl(C′,K) such that βC′ /∈ confl(C,K).
We can therefore construct an explanation forK 6|=IAR q(~a) by tak-
ing α together with some of the assertions βC′ .

For GENONE, we first compute (in P) the set of causes of q and
conflicts of K. If there is some cause that does not participate in
any conflict, then K |=IAR q(~a), so we return ‘no’. Otherwise, for
each cause C ∈ causes(q(~a),K), we choose some assertion αC
such that αC conflicts with some assertion in C. By construction,
{αC | C ∈ causes(q(~a),K)} contradicts all causes, which means
that this set contains at least one explanation. We therefore proceed
to remove one assertion at a time as long the set retains the property
of contradicting all causes. When it is no longer possible to remove
any assertions, we return the current set of assertions, which is an
explanation.

Finally, we establish the intractability of BEST REC and
GENBEST.

Proposition 10. Regarding explanations for negative IAR-answers
in the case where explanations are ranked by cardinality,
GENBEST is NP-hard, and BEST REC is coNP-hard w.r.t. data
complexity.

Proof. We give a reduction from the problem of deciding if a
truth assignment that satisfies a monotone 2-SAT formula assigns
a smallest number of variables to true. This problem is coNP-
complete (coNP-hardness can be shown by a straightforward re-
duction from the complement of the well-known NP-complete ver-
tex cover problem).

Let ϕ = C1 ∧ ... ∧ Cn be a monotone 2-CNF over the vari-
ables {X1, ..., Xp}, and let ν be a truth assignment that satisfies ϕ.
Consider the following KB:

T = {∃P−k v ¬T | 1 ≤ k ≤ 2}

A = {T (xi) | 1 ≤ i ≤ p} ∪ {Pk(cj , xi) | Xi kth term of Cj}
q =∃yz1z2 P1(y, z1) ∧ P2(y, z2)

The causes for q(a) take the form {P1(cj , xi1), P2(cj , xi2)}. It
follows that an explanation for T ,A 6|=IAR q is a set E of T -
assertions such that for every cj , there is at least one Xi ∈ Cj
such that T (xi) ∈ E .

Deciding if ν assigns a minimal number of variables to true
is equivalent to deciding if E = {T (xi) | ν(Xi) = true} is a
smallest explanation. This yields the coNP-hardness of BEST REC,
as well as the NP-hardness of GENBEST: we can solve the min-
imum assignment problem - and its complement - by generating
a cardinality-minimal explanation and comparing its size with the
number of variables set to true by the candidate assignment.


