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Abstract

Automated planning and reactive synthesis are well-
established techniques for sequential decision making. In
this paper we examine a collection of AI planning problems
with temporally extended goals, specified in Linear Tempo-
ral Logic (LTL). We characterize these so-called LTL planning
problems as two-player games and thereby establish their cor-
respondence to reactive synthesis problems. This unifying
view furthers our understanding of the relationship between
plan and program synthesis, establishing complexity results
for LTL planning tasks. Building on this correspondence, we
identify restricted fragments of LTL for which plan synthesis
can be realized more efficiently.

1 Introduction
In this work we explore and expose the relationship be-
tween AI automated planning and reactive synthesis, a class
of program synthesis problems. The two seemingly dis-
tinct sequential decision making frameworks share a com-
mon past in the seminal work on program and plan synthe-
sis via theorem proving (e.g., (Green 1969; Nilsson 1969;
Waldinger and Lee 1969; Fikes and Nilsson 1971)) but di-
verged as planning research focused on efficient algorithms
for classical planning. With growing interest in non-classical
planning problems that include non-deterministic actions
and temporally extended goals, we reunite these frameworks
through the lens of two-player games. This unified view ad-
vances our understanding of the relationship between plan
and program synthesis, providing us with complexity results
for Linear Temporal Logic (LTL) planning and leading to the
identification of fragments of LTL for which plan synthesis
is more efficient.

Program synthesis from logical specification follows
from the classical synthesis problem originally proposed by
Church (1957). Reactive synthesis is a class of program syn-
thesis problems concerned with synthesizing a reactive mod-
ule that responds to the environment in accordance with a
temporal logic specification. Our concern in this paper is
with so-called LTL synthesis – reactive synthesis of speci-
fications expressed in LTL. The problem is commonly char-
acterized as a two-player game and has been shown to be
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2EXP-complete (Pnueli and Rosner 1989). More recently
LTL synthesis has been extended to specifications in LTL in-
terpreted over finite traces (aka LTLf) (e.g., (De Giacomo and
Vardi 2013; 2015; Zhu et al. 2017; Camacho et al. 2018a;
2018b)), and the model has been extended to handle envi-
ronment assumptions and quality measures (Camacho, Bi-
envenu, and McIlraith 2018).

The popularity of LTL is not restricted to program syn-
thesis. Over the past 20 years there has been growing inter-
est in planning with temporally extended goals and prefer-
ences specified in LTL. Initial work focused on planning with
deterministic actions and LTL goals (and preferences) inter-
preted over finite traces (e.g., (Bacchus and Kabanza 2000;
Doherty and Kvarnström 2001; Baier and McIlraith 2006a;
2006b; Triantafillou, Baier, and McIlraith 2015; Torres and
Baier 2015)) and subsequently infinite traces (e.g., (Al-
barghouthi, Baier, and McIlraith 2009; Patrizi et al. 2011)).
Other work focused on LTL preferences (e.g., (Edelkamp
2006; Baier, Bacchus, and McIlraith 2009; Coles and Coles
2011; Bienvenu, Fritz, and McIlraith 2011)) some of it
in the PDDL3.0 (Planning Domain Definition Language)
fragment of LTL (Gerevini et al. 2009). More recent work
has examined LTL interpreted over both finite and infinite
traces in fully-observable non-deterministic (FOND) plan-
ning settings (e.g., (De Giacomo, Patrizi, and Sardiña 2010;
Patrizi, Lipovetzky, and Geffner 2013; Camacho et al. 2017;
De Giacomo and Rubin 2018; D’Ippolito, Rodrı́guez, and
Sardiña 2018)). We refer to this broad collection of planning
problems loosely as LTL Planning Problems.

We are seeing increasing commonalities between the re-
cent work on LTL synthesis and the work on LTL planning,
particularly in the FOND setting. Both exploit automata rep-
resentations of LTL for synthesizing solutions. Further the
non-determinism in the FOND setting is closely related to
the non-determinism exhibited by the environment in syn-
thesis settings. Finally, we note the growing interest in us-
ing planning algorithms for the realization of LTLf and LTL
synthesis (Camacho et al. 2018a; 2018c; 2018d). The corre-
spondence between planning and synthesis has been previ-
ously noted (e.g. (D’Ippolito, Rodrı́guez, and Sardiña 2018;
Camacho et al. 2018b)), and even hybrid models have been
proposed (e.g. (De Giacomo et al. 2016)). Opportunities
abound from the cross-fertilization between these research
areas, which motivated us to develop a unified view of LTL
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planning and reactive synthesis.
In Section 2 we review LTL and reactive LTL synthesis,

and in Section 3 we outline a collection of LTL planning
problems in a manner that is amenable to their formulation
in terms of structured games. Next, we introduce game struc-
tures, providing a characterization of LTL synthesis in terms
of structured games, re-establishing complexity results for
LTL synthesis in this context, and highlighting the equiv-
alence of winning strategies for these game and solutions
to the corresponding LTL synthesis problems. In Section 5,
we provide a clear bidirectional mapping between structured
games and LTL FOND and show that LTLf FOND can be re-
duced to LTL FOND and games. Our reductions allow us to
obtain complexity results for LTL/LTLf planning that repli-
cate those for games, utilizing notions of combined com-
plexity as well as domain complexity and goal complexity.
While the domain complexity of LTL and LTLf FOND plan-
ning is the same as for FOND with reachability goals, the
overall complexity jumps to double-exponential time as re-
sult of the goal. In Section 6, we identify restricted frag-
ments of LTL and LTLf for which plan synthesis has the same
worst-case complexity as FOND with reachability goals but
which is richer in terms of its expressiveness. We first ex-
plore GR(1), a syntactically restricted fragment of LTL for
which synthesis can be done in single exponential time.
Then we move to the finite case, and revisit the syntax of
PDDL3.0 in the context of LTLf FOND planning. In both
cases, we show that these compelling and expressive frag-
ments of LTL can be employed without realizing the double
exponential complexity of LTL FOND.

The main contributions of this paper are: (i) a unified view
of LTL synthesis and various forms of LTL/LTLf plan synthe-
sis in terms of game structures; (ii) complexity results for
various LTL/LTLf plan synthesis tasks that decouple the goal
and domain complexity, thereby exposing the barriers to ef-
ficient algorithms for LTL/LTLf planning and synthesis; (iii) a
structure-preserving correspondence between LTL synthesis
and LTL/LTLf planning in FOND settings; (iv) identification
of fragments of LTL and LTLf for which plan synthesis can
be realized more efficiently, including that FOND planning
for PDDL3.0 goals is in the same complexity class as FOND
planning with final-state goals.

Our theoretical results open the door to combining the
benefits of structured planning models and reactive synthesis
to specify and perform controller synthesis. Similarly, exist-
ing techniques from one field (e.g. LTL synthesis for GR(1)
objectives) may be leveraged for the other (e.g. FOND plan-
ning with GR(1) goals, for which no dedicated algorithm
exists as of yet).

2 Preliminaries
2.1 LTL and Automata

Linear Temporal Logic (LTL) is a propositional modal logic
commonly used to express temporally extended properties
of state trajectories (Pnueli 1977). The syntax of LTL is de-
fined over a set of propositional variables p ∈ AP, and in-
cludes the standard logical connectives and basic temporal

operators next ( ϕ) and until (ϕ1Uϕ2).

ϕ B p | > | ⊥ | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ϕ | ϕ1Uϕ2

Other temporal operators are defined in terms of these ba-
sic operators, including eventually (♦ϕ := >Uϕ), always
(�ϕ := ¬♦¬ϕ), release (ϕ1Rϕ2 := ¬(¬ϕ1U¬ϕ2))), and weak
until (ϕ1Wϕ2 := �ϕ1 ∨ (ϕ1Uϕ2)). We denote by |ϕ| the size
of ϕ, i.e., its total number of symbols.

LTL formulae are evaluated over infinite traces, i.e., infi-
nite sequences s1s2 . . . where each si ⊆ AP defines a propo-
sitional valuation. Intuitively, formula ϕ states that ϕ holds
in the next timestep, while ϕ1Uϕ2 states that ϕ1 needs to
hold until ϕ2 holds. Formally, we say that an infinite trace
π = s1s2 · · · satisfies an LTL formula ϕ if π, 1 |= ϕ, where
π, i |= ϕ (i ≥ 1) is defined recursively as follows:
• π, i |= p iff p ∈ AP and p ∈ si,
• π, i |= ¬ϕ iff it is not the case that π, i |= ϕ,
• π, i |= (ϕ1 ∧ ϕ2) iff π, i |= ϕ1 and π, i |= ϕ2,
• π, i |= ϕ iff π, i + 1 |= ϕ,
• π, i |= ϕ1Uϕ2 iff there exists a j ≥ i such that π, j |= ϕ2

and for every k ∈ {i, . . . , j − 1}, π, k |= ϕ1.
We write π |= ϕ when π satisfies ϕ and call π a model of ϕ.

Every LTL formula can be transformed into an equiva-
lent automaton that accepts all and only the models of the
formula. Property 1 formulates this result for deterministic
parity word automata (DPW) (Piterman 2007). A DPW is a
tuple A = 〈Σ,Q, q0, δ, α〉, where Σ is a finite alphabet, Q is a
finite set of states, q0 ∈ Q is the initial state, δ : Q×Σ→ Q is
the transition function, and α : Q → N is the labeling func-
tion. The number of different values (also called colours)
that α can take is called the index of the automaton. A run
of A on an infinite word w = s0s1 · · · ∈ Σω is a sequence
q0q1 · · · ∈ Qω where qi+1 = δ(qi, si) for each i ≥ 0. We
say that a run ρ = q0q1 · · · is accepting when the highest
value that appears infinitely often in α(q0)α(q1) · · · is even.
Finally, the language L(A) of A is the set of words that have
an accepting run on A. LTL formulae can be transformed into
DPW over the alphabet Σ B 2AP in double-exponential time.
Property 1. Given an LTL formula ϕ, a DPW Aϕ that accepts
all and only the models of ϕ can be constructed in worst-case
double-exponential time in |ϕ|, with the index of Aϕ being
worst-case single-exponential in |ϕ|.

In this work, we also consider LTLf, a variant of LTL
in which formulae are interpreted over finite traces π =
s1 · · · sn. LTLf inherits the syntax of LTL. A macro final :=
¬ > is commonly used to indicate the end of the trace. It
is important to notice that in LTLf, ¬ ϕ . ¬ϕ, but instead
we have ¬ ϕ ≡ final ∨ ¬ϕ (here ≡ denotes equivalence
for LTLf semantics, i.e., being satisfied by the same finite
traces). LTLf can be transformed into finite-word automata
(cf. (Baier and McIlraith 2006b)).

2.2 Reactive LTL Synthesis
Reactive synthesis is the problem of automatically con-
structing a reactive module – a system that reacts to the
environment with the objective of realizing a given logical
specification (Church 1957). In this paper, we are concerned
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with LTL synthesis, a form of reactive synthesis where the
specification is expressed in LTL (Pnueli and Rosner 1989).

Definition 1. An LTL specification is a tuple 〈X,Y, ϕ〉,
where X and Y are disjoint finite sets of variables, and ϕ
is an LTL formula over X ∪Y.

A strategy for an LTL specification 〈X,Y, ϕ〉 is a function
σ : (2X)+ → 2Y that maps finite sequences of subsets of X
into subsets of Y. For an infinite sequence X = X1X2 · · · ∈

(2X)ω, the play induced by strategy σ is the infinite sequence
ρσ,X = (X1 ∪ σ(X1))(X2 ∪ σ(X1X2)) · · · . A play ρ is winning
if ρ |= ϕ, and a strategy is winning when ρσ,X |= ϕ for all
X ∈ (2X)ω. Realizability is the problem of deciding whether
an LTL specification has a winning strategy, and synthesis is
the problem of computing one. Both problems can be solved
in double-exponential time (Pnueli and Rosner 1989):

Theorem 1. LTL realizability is 2EXP-complete.

3 Plan Synthesis with LTL Goals
Automated planning provides a framework for sequential
decision-making in which the agent can interact with the
environment according to a prescribed domain theory, and
where the objective is to generate a plan whose execution is
guaranteed to satisfy a prescribed goal. Planning problems
differ in the assumptions they make about the form of the ini-
tial state (complete, partial), the transition system (determin-
istic, non-deterministic, stochastic), the nature of the goal
condition, whether the state is (partially) observable during
plan execution, the form of the solution or plan (sequence of
actions, conditional plan, policy), and whether the execution
of that plan is finite or infinite.

Our concern in this paper is with planning problems
whose transition systems are non-deterministic and whose
goals are temporally extended and as such take the form of
constraints on valid executions of the plan. We specify such
temporally extended goals in LTL. Plan executions may be
finite or infinite. Unless otherwise noted, initial states are
complete and plan execution is fully observable. In the rest
of this section we review this class of so-called LTL (resp.
LTLf) Planning Problems using notation that will facilitate
subsequent characterization in terms of 2-player games.
Planning Domain Following (Ghallab, Nau, and Traverso
2016), we represent planning domains compactly using a
symbolic representation of states, actions, and transitions:

Definition 2. A planning domain is a tuple 〈F ,A, δ,Poss〉,
where F is a finite set of fluent symbols, A is a finite set of
action symbols, Poss ⊆ 2F ×A, and δ : 2F ×A → 22F . The
size of the domain is |F |.

The fluents in F denote state properties; we employ a
propositional STRIPS representation to parsimoniously rep-
resent states as subsets s ⊆ F ; the set of states is S B 2F .
We use the term search space to refer to the set S . An ac-
tion a is applicable in state s if (s, a) ∈ Poss. The function
δ describes state transitions, with s′ ∈ δ(s, a) indicating that
state s′ is a possible result of applying action a in state s.

A strategy for a planning domain D = 〈F ,A, δ,Poss〉 is
a function σ : (2F )+ → A ∪ {end} that maps finite state

histories to actions, or to end otherwise.1 Here end is a spe-
cial symbol, not contained in D, that denotes the termina-
tion of a plan. We require strategies to be well defined, that
is, for all n ≥ 0, action σ(s0 · · · sn) is applicable in sn. A
strategy is history-independent if σ(s0 · · · sn) = σ(sn) for
each s0 · · · sn ∈ (2F )+. In this case, we call σ a policy. An
execution of σ from s0 ∈ S is a sequence of state-action
pairs π = (s0, a0)(s1, a1) · · · such that, for each n < |π|:
(i) an = σ(s0 · · · sn); (ii) if n < |π| − 1, then an ∈ A and
sn+1 ∈ δ(sn, an); and (iii) if n = |π|−1, then an = end. The ex-
ecution terminates when an = end. Terminating executions
are finite sequences π = (s0, a0) · · · (sn, an) where n is the
first and only index i such that ai = end. Non-terminating
executions are infinite, and we write |π| = ∞ .
LTL FOND Planning An LTL fully-observable non-
deterministic (FOND) planning problem is a tuple
〈D, ϕI , ϕG〉, where D = 〈F ,A, δ,Poss〉 is a planning do-
main, ϕI is a propositional formula over F that describes a
unique state called the initial state (typically given as a com-
plete conjunction of literals), and ϕG is an LTL formula over
F ∪A. A strategy σ is a solution to an LTL FOND planning
problem 〈D, ϕI , ϕG〉 if all executions of σ that commence in
s0 |= ϕI are infinite and satisfy ϕG. In other words, the ob-
jective is to define a non-terminating process that guarantees
achievement of the given temporally extended goal, whose
satisfaction may depend on the entire execution, rather than
just the final state.
LTLf FOND Planning We can define LTLf FOND planning
problems in exactly the same manner, except that a strategy
σ is deemed a solution if all executions of σ that commence
in s0 |= ϕI terminate and satisfy ϕG (note that we use LTLf
semantics to evaluate ϕG over the induced finite trace). Thus,
the aim is to generate terminating strategies that guarantee
satisfaction of the goal.
FOND Planning As a special case of LTLf FOND planning,
we have (plain) FOND planning, in which the goal takes
the form ϕG = ♦(θg ∧ final), with θg a propositional formula
over fluents F (typically, a conjunction of fluents). Solutions
to FOND planning are policies (rather than arbitrary strate-
gies), but we observe that this restriction does not affect the
existence of solutions (cf. Proposition 1).
Proposition 1. Any strategy that solves a LTLf FOND plan-
ning problem P with goal ϕG = ♦(θg ∧ final) can be trans-
formed into a policy that is a solution to P.

Planning with Partially Specified Initial States A benefit
of describing the initial state by a formula ϕI is that it al-
lows us to partially specify the initial state. We extend the
definitions of LTL / LTLf FOND to allow for ϕI to describe
a family of states, i.e., those that satisfy ϕI . Solutions to an
LTL / LTLf FOND problem 〈D, ϕI , ϕG〉 with partially spec-
ified initial state ϕI are defined in the natural way. A strat-
egy σ is a solution to 〈D, ϕI , ϕG〉 if σ is a solution to an
LTL / LTLf FOND problem 〈D, ϕ′I , ϕG〉 for any complete for-
mula ϕ′I that describes a unique initial state, and such that

1History-dependent strategies are often represented compactly
in form of finite-state controllers (cf. (Patrizi, Lipovetzky, and
Geffner 2013; Camacho et al. 2017)).
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ϕ′I |= ϕI . Informally, σ solves all problems with initial state
that satisfies ϕI .
Deterministic LTL / LTLf Planning The preceding problems
can be restricted by only considering actions with determin-
istic effects, i.e., requiring that |δ(s, a)| = 1 for each pair
(s, a) ∈ S × A. We refer to this class of problems as deter-
ministic LTL / LTLf planning problems.
Complexity of Planning When speaking about the com-
plexity of planning, we focus on the decision problem of
plan existence. There are different possible complexity mea-
sures depending on which parts of the problem are consid-
ered as fixed or varying. In addition to the standard combined
complexity measure (in terms of the size of the whole prob-
lem), we will consider domain complexity (in terms of the
size of the domain, with the goal formula treated as fixed)
and goal complexity (in terms of the size of the goal formula,
with the domain treated as fixed).

4 Game Structures
In the previous section, we presented a variety of LTL (resp.
LTLf) planning problems. In this section we review and elab-
orate on the notion of game structures which we employ to
expose and highlight correspondences between these plan-
ning problems and LTL synthesis.

Piterman, Pnueli, and Sa’ar (2006) studied the problem of
computing winning strategies for so-called game structures
(see Definition 3). Intuitively, a game structure is similar to
an LTL specification. The difference is that the moves of the
players (system and environment) in a game structure are as-
sumed to be constrained by the rules of the game. Solutions
are system strategies that guarantee achievement of a win-
ning condition ϕ, under the assumption that both players act
as mandated by the rules described by θe, θs, ψe, and ψs.

Definition 3. A game structure is a tuple G =
〈X,Y, θe, θs, ψe, ψs, ϕ〉, where:

• X is a finite set of environment variables.
• Y is a finite set of system variables, disjoint with X.
• θe is a propositional formula over X.
• θs is a propositional formula over X ∪Y.
• ψe is a propositional formula over X ∪Y ∪ X.
• ψs is a propositional formula over X ∪Y ∪ X ∪ Y.
• ϕ is an LTL formula over X ∪Y (the winning condition)

with X = { x | x ∈ X} and Y = { y | y ∈ Y}.

The environment player moves first in each turn, and in-
puts a subset of the X variables. In response, the system
player outputs a subset of Y variables. The moves Xn ⊆ X

and Yn ⊆ Y in the n-th turn constitute a game configura-
tion, or state sn = Xn ∪ Yn. We shall use the term search
space to refer to the set of all such states and observe that
its size is singly exponential in |X| + |Y|. The structure of
the game constrains the players’ moves. The LTL formula ψe
relates the values of Xn, Yn, and Xn+1 and states how the en-
vironment is allowed to respond to a state sn. Similarly, the
LTL formula ψs relates the values of Xn, Yn, Xn+1, and Yn+1,
and states how the system can react to the environment given

the previous state. Formulas θe and θs have similar purposes,
serving to constrain the players’ initial moves.

A play of the game G is a maximal (possibly infinite) se-
quence of states, ρ = s0s1 · · · , such that: (i) s0 is an ini-
tial state, i.e., s0 |= θe ∧ θs; and (ii) for each n > 0, sn is
a successor of sn−1, i.e. (sn−1, sn) |= ψe ∧ ψs. The system
player aims to generate a play that satisfies the winning con-
dition ϕ. Formally, a play ρ is winning for the system if ei-
ther (i) ρ = s0 · · · sn is finite and there is no sn+1 such that
(sn, sn+1) |= ψe (i.e., the environment has no legal move); or
(ii) ρ is infinite and ρ |= ϕ.

Game strategies are defined as for LTL synthesis. Namely,
a strategy for the system player is a function σ : (2X)+ →

2Y. A play ρ = (X0 ∪ Y0)(X1 ∪ Y1) · · · is σ-compliant if
Yn = σ(X0 · · · Xn) at each n < |ρ|. We say σ is a winning
strategy for the system player if all σ-compliant plays are
winning. Winner determination is to decide whether such a
winning strategy exists, and by solving the game, we mean
the task of producing such a strategy.
Game Structures and LTL Synthesis The LTL synthesis
and structured game problems are interreducible: structured
games can be reduced to LTL synthesis where all the struc-
ture is embedded into the LTL objective (Theorem 2); con-
versely, any LTL specification formula can be converted into
an equivalent game with no structural constraints (Propo-
sition 2). We should emphasize that Theorem 2 was orig-
inally formulated for syntactically restricted formulae (in
the GR(1) fragment, discussed in Section 6.1), but the re-
sult naturally extends to arbitrary LTL formulae. The Tempo-
ral Logic Synthesis Format (TLSF) is a high-level descrip-
tion format for LTL synthesis (Jacobs, Klein, and Schirmer
2016). TLSF specifications are described in terms of the
components of a structured game. TLSF can be interpreted
under two different semantics, so-called strict or alterna-
tively standard semantics. The reduction in Theorem 2 cor-
responds to the strict semantics.
Theorem 2 (adapted2 and extended from (Klein and Pnueli
2010; Bloem et al. 2012)). The system wins the game G =
〈X,Y, θe, θs, ψe, ψs, ϕ〉 iff 〈X,Y, ϕG〉 is realizable, where:

ϕG B (θe → θs) ∧ (θe → (ψsW¬ψe)) ∧ ((�ψe ∧ θe)→ ϕ))

Moreover, the transformation preserves winning strategies.
We now show how LTL synthesis corresponds to a special

case of structured games:
Proposition 2. A strategy is winning for the LTL synthesis
problem 〈X,Y, ϕ〉 iff it is a winning strategy for the corre-
sponding structured game 〈X,Y,>,>,>,>, ϕ〉

Solving Structured Games As the reduction from Theo-
rem 2 preserves winning strategies, it provides a way to
solve games via reduction to LTL synthesis and to derive the
following complexity results:
Theorem 3. Structured games can be solved in double-
exponential time, and the winner determination problem for
structured games is 2EXP-complete.

2The formula in (Bloem et al. 2012) makes uses future and past
temporal operators. Here, we use an equivalent formula with only
future temporal operators (cf. (Jacobs, Klein, and Schirmer 2016)).
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In what follows, we present an alternative way to solve
games that exploits their structure and allows us to obtain
more fine-grained complexity results in terms of the size of
the search space and winning condition (Theorem 4). These
results extend similar results to games in a restricted frag-
ment of LTL, which we will revisit in Section 6.1.

The classical approach to LTL realizability reduces the
specification to a parity game, and constructs a strategy via
fixpoint computation (e.g. (Pnueli and Rosner 1989)). This
approach can be straightforwardly adapted to solve struc-
tured games G = 〈X,Y, θe, θs, ψe, ψs, ϕ〉. We revisit here the
main steps. The interesting thing to notice is that the pro-
cedure decouples the role of the winning condition and the
search space within the game complexity.

1. Transform ϕ into a DPW Aϕ

2. Construct a parity game G′ = Aϕ||G

3. Compute a winning strategy for G′

The first step computes a DPW Aϕ, in worst-case dou-
ble exponential time in |ϕ|, that recognizes the models of ϕ.
The index d of Aϕ (i.e., number of colors) is, at most, ex-
ponential in |ϕ|. In the second step, a product parity game
G′ = Aϕ||G is constructed that integrates the dynamics of
Aϕ and G in parallel. In the context of this paper, a parity
game may be viewed as a structured game with a parity win-
ning condition, in place of an LTL formula, to evaluate which
infinite plays are winning. Parity games are played on a fi-
nite graph whose nodes represent game states. The dynamics
of the game alternates between system’ and environment’
nodes. The nodes associated with the turn of the environ-
ment player are labeled with tuples (q, X,Y), where q is a
DPW state, X ⊆ X, and Y ⊆ Y. Intuitively, q keeps track
of the run of Aϕ on a partial play ρ = s0s1 · · · sn, and X and
Y are the components of state sn. Similarly, the nodes as-
sociated with the turn of the system player are labeled with
tuples (q, X,Y, X′) that keep track of the run of Aϕ on ρ fol-
lowed by the environment’s move X′. The colour of a node
is the colour of the DBW state in the node’s label, and the
index of G′ is the highest colour among all its nodes. The
edges of the tree connect nodes in the natural way whenever
both players have been following the rules of the structured

game. Edges (q, X,Y)
X′
−−→ (q, X,Y, X′) reflect an environ-

ment’s move, X′, and edges (q, X,Y, X′)
Y ′
−→ (q′, X′,Y ′) re-

flect a system’s move, Y ′, with q′ = δ(q, X′∪Y ′). Additional
edges are included to handle illegal moves of the structured
game G. Environment moves that violate ψe are captured
by edges that point to a dummy node, q>. More precisely,

(q, X,Y)
X′
−−→ q> whenever (X∪Y)(X′) 6|= ψe. Similarly, edges

to a dummy node q⊥ handle system moves that violate ψs,

i.e., (q, X,Y, X′)
Y ′
−→ q⊥ whenever (X ∪ Y)(X′ ∪ Y ′) 6|= ψs. We

shall assign colour 0 to q>, and 1 to q⊥. Both q> and q⊥ are
sink nodes, meaning that outgoing edges are all self-loops.
The root node of the game is labeled with (q0, , ), with q0
being the initial state of the DBW. The root node has no play
history associated to it. Its outgoing edges correspond to en-
vironment moves X and transition to nodes with labels of the

form (q0, , , X) whenever X |= θe, and to q> otherwise. Sim-
ilarly, nodes with labels of the form (q0, , , X) transition to
nodes with labels of the form (q′, X,Y) whenever X∪Y |= θs,
and to q⊥ otherwise. This construction preserves winner de-
termination, and a winning strategy for G can be extracted
from a winning strategy for G′.

In the third step, a winning strategy for G′ can be com-
puted in O(e · nd), where e is the number of edges, n is
the number of nodes, and d is the index of G′ (Zielonka
1998). In the parity game G′ described above, the number
of nodes – as well as the number of edges – is polynomial
on |Aϕ| · 2O(|X|+|Y|), and G′ has the same index of Aϕ, which
is exponential in |X| + |Y| (w.l.o.g., we assume Aϕ has index
greater than zero). The following result follows:

Theorem 4. Structured games can be solved in double-
exponential time in the size of the winning condition, and
in polynomial time in the size of the search space.

5 Plan Synthesis and Structured Games
The correspondence between planning and game structures
has been noted in the past. De Giacomo et al. (2010) con-
structed a reduction of FOND planning with final-state goals
into game structures. Here, we extend those results to LTL
FOND and LTLf FOND planning.

We provide a clear bidirectional mapping between struc-
tured games and LTL FOND planning (Sections 5.1 and 5.2),
and then show that LTLf FOND planning can be reduced to
LTL FOND and games (Section 5.3). Our reductions allow
us to obtain complexity results for LTL/LTLf planning that
replicate those for games.

5.1 Structured Games as LTL FOND Planning
We begin by presenting a reduction of structured games to
LTL FOND planning. Intuitively, we model the moves of the
system by means of planning actions, and the response of the
environment by means of non-deterministic action effects.

Let G = 〈X,Y, θe, θs, ψe, ψs, ϕ〉 be a game structure. We
assume for now that θe is satisfiable and defines a complete
truth assignment to the variables X, returning later to the
general case. We construct an LTL FOND planning problem
PG = 〈D, ϕI , ϕG〉 with domainD = 〈F ,A, δ,Poss〉 and

F B X ∪Y ∪ X′ ∪
{
xinit, xend, x′end, aend

}
A B {A′ | A ⊆ Y} ∪

{
a′end

}
ϕI B xinit ∧ ¬xend ∧ ¬x′end ∧ ¬aend ∧ θ

′
e ϕG B ♦xend ∨ ϕ

Note that we useV′ B {v′ | v ∈ V} to denote a set of primed
variables (and similarly, use θ′e for θe with all variables now
primed). Planning states keep track of the last game state.
Intuitively, primed variables serve to indicate the moves per-
formed by each player in the current turn, whereas unprimed
variables indicate the last game state.

The set Poss ⊆ 2F × A consists of all pairs (X1 ∪ A1 ∪

X′2, A
′
2) such that X1 ⊆ X ∪ {xinit, xend}, X2 ⊆ X ∪ {xend},

A1, A2 ⊆ Y ∪ {aend}, and

• X1 |= xinit ∧ ¬xend and (X2 ∪ A2) |= θs, or

• X1, X2 ⊆ X, A1, A2 ⊆ Y, and (X1 ∪ A1)(X2 ∪ A2) |= ψs, or

• X2 |= xend and A2 = {aend}
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The initial state ϕI simulates the initial move of the en-
vironment, determined by the (unique, by assumption) in-
terpretation of X variables that make θe true. We now define
how δ simulates the moves of the environment in response to
the moves of the system. Intuitively, the non-determinism in
δ allows the environment to make a legal move, or otherwise
transition to {xend}. Formally, if X1, X2 ⊆ X, and A1, A2 ⊆ Y,
then δ is defined by:

δ(X1 ∪ A1 ∪ X′2, A
′
2) B

{
X2 ∪ A2 ∪ X′3 | X3 = {xend}

}
∪{

X2 ∪ A2 ∪ X′3 | X3 ⊆ X and (X2 ∪ A2)(X3) |= ψe
}

We simulate that the environment makes an illegal move
by assigning X3 = {xend}, and force the dynamics to enter a
loop in which only action aend can be applied: δ(X1 ∪ A1 ∪

{x′end}, {aend}) B {{xend, aend, x′end}}. Those simulated execu-
tions satisfy ♦xend. Note that executions that satisfy ϕ are
in correspondence with plays that satisfy the winning condi-
tion, ϕ. The one-timestep offset in ϕ is needed because ϕ
is evaluated over unprimed variables, and those are delayed
by one timestep in the construction of the problem.

In the general case, with generic θe, our reduction can be
extended with a dummy action, only applicable in a new
dummy initial state, that transitions non-deterministically
into one of the states that satisfy xinit ∧ ¬xend ∧ ¬x′end ∧

¬aend∧θ
′
e, or xend. The new goal becomes ϕG B ♦xend∨ ϕ,

with the additional next operator being introduced to reflect
the extra initial timestep. The reduction is polynomial, as it
transforms a game G into an LTL FOND problem PG with a
polynomial increase in the size of the search space. Winning
strategies to G can be extracted directly from solutions to the
reduced LTL FOND problem.

Theorem 5. A structured game with winning condition ϕ
can be reduced to an LTL FOND planning problem with goal
ϕG B ♦xend ∨ ϕ, with a polynomial increase in the size of
the search space.

5.2 LTL FOND Planning as Structured Games
To complete the bidirectional mapping, we provide a re-
duction from LTL FOND planning into structured games.
For an LTL FOND planning problem P = 〈D, ϕI , ϕG〉 with
domain D = 〈F ,A, δ,Poss〉 we construct a game GP =
〈X,Y, θe, θs, ψe, ψs, ϕG〉, where X B F , Y B A, and:

θe B ϕI ψe B
∨
s∈2F

∨
a∈A

∨
s′∈δ(s,a)

(τ(s) ∧ a ∧ (τ(s′)))

θs B

ϕone
A ∧

∨
(s,a)∈Poss

τ(s) ∧ a

 ψs B

ϕone
A ∧

∨
(s,a)∈Poss

τ(s) ∧ a


Consistent with our notation for planning, we use s for sub-
sets of F and A for subsets of A. We let τ(s) B

∧
f∈s f ∧∧

f∈F \s ¬ f and set ϕone
A
B

∨
a∈A a ∧

∧
a,a′∈A,a′,a ¬(a ∧ a′).

Note that in ψe and ψs, we use in front of arbitrary propo-
sitional formulas, but by pushing down to the fluents and
actions, we obtain formulae of the required form.

The components of GP mimic the dynamics of P, accord-
ing to the semantics discussed in Section 4. In the game GP ,
the environment controls the fluents (X B F ), and the sys-
tem controls the actions (Y B A). The formulas ψe and
ψs reproduce the state transition model in D. Formula ψe

checks whether state s′ in a sequence (s∪ A)(s′ ∪ A′) of two
consecutive game states is a legal move of the environment
player, relative to s and A – assuming that previous moves
of each player respected the dynamics of the game. This oc-
curs when s′ ∈ δ(s, a). Formula ψs checks whether A′ ⊆ A
is a legal move of the system player, relative to s, A, and s′ –
assuming that previous moves of each player respected the
dynamics of the game. This occurs when (i) A′ contains a
single action; and (ii) action a ∈ A′ is applicable in s′. Fi-
nally, formulas θe and θs are assertions over X and X ∪ Y,
respectively, and check that the initial move of the environ-
ment and system players is legal – that is, the environment
sets the initial state to ϕI , and the system responds with an
action that is applicable in the initial state. The auxiliary for-
mula ϕone

A
ensures that exactly one action symbol holds in

each game position, making it possible to translate winning
game strategies into solutions. Note that our reduction does
not require ϕI to define a unique state.
Theorem 6. Plan existence of an LTL FOND planning prob-
lem P can be reduced to winner determination of the game
structure GP and, by extension, to LTL realizability of
ϕP B (θe → θs) ∧ (θe → (ψsW¬ψe)) ∧ ((�ψe ∧ θe)→ ϕG))
Furthermore, the reduction is such that solutions can be di-
rectly extracted from winning strategies.

Encoding STRIPS Models When we represent planning
problems with propositional STRIPS-like models, formulas
ψe and ψs can be written more compactly, as follows:

ψeff
a B a→

∨
e∈Eff a

 ∧
f∈Adde

f ∧
∧

f∈Dele

¬ f ∧
∧

f∈F\Adde∪Dele

f ↔ f


ψe B

∧
a∈A

ψeff
a θs B

ϕone
A ∧

∧
a∈A

¬a ∨
∧

p∈Prea

p


 ψs B θs

Observe that ψeff
a captures both the positive and negative

effects of non-deterministic action a, as well as frame as-
sumptions – that the truth value of every other fluent, not
affected by the action a, stays the same. In particular, for-
mulae

∧
f∈F\Adde∪Dele f ↔ f capture the frame axioms for

effect e ∈ Eff a. We can write these as successor state ax-
ioms to realize a more parsimonious solution to the frame
problem (Reiter 2001).
Complexity Analysis Our reduction of LTL FOND plan-
ning into structured games conveniently decouples the do-
main from the goal formula. This allows us to characterize
the complexity of LTL FOND planning in terms of these two
components and obtain analogous results to those in game
structures (cf. Theorem 4), The same complexity results
have been independently obtained very recently (available
on arXiv, (Aminof et al. 2018)) with a different approach.
Theorem 7. Plan existence in LTL FOND planning is EXP-
complete in domain complexity, and 2EXP-complete for
goal and combined complexity.
Proof sketch. Membership follows from the reduction to
games in Theorem 6 and results in Theorem 4. Hardness
is obtained by reducing LTLf FOND into LTL FOND (see
Lemma 1), and then applying the hardness results for LTLf
FOND from (De Giacomo and Rubin 2018). �
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Remark 1. The results in Theorems 6 and 7 also apply to
LTL FOND planning with partially specified initial states.

5.3 LTLf FOND Planning as Structured Games
It is also possible to reduce LTLf FOND planning to struc-
tured games. We show this by reducing LTLf FOND to LTL
FOND, from which Theorem 6 can be applied. The re-
duction of an LTLf FOND problem P = 〈D, ϕI , ϕfin〉 with
domain D = 〈F ,A, δ,Poss〉 is an LTL FOND problem
〈D′, ϕ′I , ϕinf 〉 whose domain, D′ B 〈F ′,A′, δ′,Poss′〉, has
symbols F ′ B F ∪ {alive} and A′ B A ∪ {aend}. The dy-
namics of D′ simulate plan executions in D. Symbol aend
indicates that the simulated plan execution has terminated,
and symbol alive indicates the opposite. Formally:

Poss′ B {(s ∪ {alive} , a) | (s, a) ∈ Poss} ∪
{
(s, aend) | s ∈ 2F

′
}

δ′(s, a) B
{
{s′ ∪ {alive}}s′∈δ(s\{alive},a) if a , aend and s |= alive
{∅} otherwise

The new initial state is given by ϕ′I B ϕI ∧ (alive). Finally,
LTL goal formula ϕinf B tr(ϕfin) ∧ ♦¬(alive) is obtained by
applying the following polynomial transformation to ϕfin:

tr(p) = p tr(¬ϕ) = ¬tr(ϕ) tr(ϕ1 ∧ ϕ2) = tr(ϕ1) ∧ tr(ϕ2)
tr( ϕ) = (alive ∧ tr(ϕ)) tr(ϕ1Uϕ2) = tr(ϕ1)U(alive ∧ tr(ϕ2))

Intuitively, an infinite trace π satisfies ϕinf iff alive is false
at some point, and the finite prefix π′ in which alive is
true simulates a finite trace that satisfies ϕfin. The preceding
transformation is based on the transformations found in (De
Giacomo and Vardi 2013; Camacho, Bienvenu, and McIl-
raith 2018), but fixes some minor mistakes and makes some
simplifications by leveraging the dynamics induced by aend.

The transformation preserves plan existence (Lemma 1).
Moreover, solutions σfin to the LTLf FOND planning prob-
lem can be easily defined from solutions σinf to the LTL
FOND planning reduction as σfin(s0 · · · sn) B σinf (s′0 · · · s

′
n),

where primed states are augmented with predicate alive, and
execution terminates (end) whenever σinf outputs aend.

Lemma 1. Plan existence of an LTLf FOND planning prob-
lem 〈D, ϕI , ϕfin〉 can be polynomially reduced to plan exis-
tence of an LTL FOND planning problem 〈D′, ϕ′I , ϕinf 〉.

Combining Lemma 1 and Theorem 6 yields:

Theorem 8. Plan existence of an LTLf FOND planning
problem P can be reduced to winner determination of a
game structure and, by extension, to LTL realizability.

Encoding STRIPS Models With a propositional STRIPS-
like representation of the planning problems, the translation
of a domain D with symbols F ,A produces a new domain,
D′, with symbols F ′ B F ∪ {alive} and A′ B A ∪ {aend}.
Action aend has preconditions Preaend B {alive} and a de-
terministic effect, Eff aend

= {〈∅,F ′〉}, that deletes all fluents.
Actions inA are updated to incorporate symbol alive in their
preconditions.

Remark 2. The results in Lemma 1 and Theorem 8 apply to
LTLf FOND planning with partially specified initial states.

Complexity Analysis Complexity results for LTLf FOND
planning (with unique initial state) were recently published

by De Giacomo and Rubin (2018). Membership can be eas-
ily deduced from our reductions. We extend their result to
LTLf FOND planning with partially specified initial states.
Interestingly, the complexity of LTLf FOND replicates that
of LTL FOND. The same phenomenon occurs in LTL and
LTLf synthesis, both being 2EXP-complete problems (Pnueli
and Rosner 1989; De Giacomo and Vardi 2015).
Theorem 9. Plan existence for LTLf FOND with partially
specified initial states is EXP-complete in domain complex-
ity, and 2EXP-complete in goal and combined complexity.
Proof sketch. Hardness results follow from (De Giacomo
and Rubin 2018). Membership follows from our reductions
(cf. Lemma 1, Theorem 7, and Remarks 1 and 2). �

6 More Efficient LTL/LTLf Plan Synthesis
In the previous sections, we formalized the connection be-
tween LTL synthesis, game structures, and various forms
of planning. By doing so, we derived complexity results
for planning that mimic those in LTL synthesis and games.
While the domain complexity of LTL and LTLf FOND plan-
ning is the same as for FOND with reachability goals, the
overall complexity jumps to double-exponential time.

The aim of this section is to identify restricted fragments
of LTL and LTLf for which plan synthesis has the same worst-
case complexity as FOND with reachability goals but which
is richer in terms of its expressiveness. We first explore
GR(1), a syntactically restricted fragment of LTL for which
synthesis can be done in single-exponential time. Then we
move to the finite case, and revisit the syntax of PDDL3.0 in
the context of LTLf FOND planning.

6.1 GR(1) Synthesis and Game Structures
Generalized Reactivity (1) (GR(1) for short) is a fragment
of LTL that has been studied in the context of synthesis and
games for its computational advantages. Inconsistent use of
terminology in the literature has created some confusion re-
garding what the GR(1) fragment is, how GR(1) synthesis
differs from GR(1) games, and the complexity of these tasks.
We provide a brief historical overview, with the aim of clar-
ifying each of these concepts as we understand them.

The GR(1) fragment of LTL was originally introduced by
Piterman, Pnueli, and Sa’ar (2006), and comprised the frag-
ment of LTL formulae in the syntactic form∧

i∈I

�♦αi →
∧
j∈J

�♦β j

where αi and β j are propositional formulae. GR(1) synthesis
can be done with exponentially lower worst-case complexity
than general LTL synthesis (Theorem 10).
Theorem 10 (Piterman et al. 2006). Synthesis of specifica-
tions 〈X,Y, ϕ〉 with GR(1) formula ϕ can be done in expo-
nential time on the number of variables in ϕ.

Piterman et al. studied the problem of computing winning
strategies for so-called GR(1) games, that is, game structures
with GR(1) winning condition. They provided a first reduc-
tion from GR(1) games into standard assume-guarantee LTL
synthesis. That reduction contained a fundamental flaw that
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produced false unrealizable specifications. The flaw was de-
tected and corrected by Klein and Pnueli (2010), and subse-
quently included in (Bloem et al. 2012) in the form given in
Theorem 2, namely:

(θe → θs) ∧ (θe → (ψsW¬ψe)) ∧ ((�ψe ∧ θe)→ ϕ))

Similar to GR(1) synthesis, GR(1) games can be solved
with exponentially lower hardness bounds than for general
LTL winning conditions. Perhaps better known than Theo-
rem 11 is the tractability result for GR(1) games in Corol-
lary 1. It is worth noting that the polynomial time bounds are
only valid when the size of the game search space is fixed.
Theorem 11. [Bloem et al. 2012] GR(1) games with win-
ning condition ϕ can be solved in polynomial time on the
size of the search space, and exponential time in the number
of variables in ϕ.
Corollary 1. For a fixed search space, GR(1) games can be
solved in polynomial time.

Despite the fact that GR(1) is a syntactically restricted
fragment of LTL, many non-GR(1) properties can be cap-
tured by GR(1) games by adding extra control variables.
Maoz and Ringert (2015) gave a method to reduce LTL re-
alizability into winner determination for a GR(1) game. The
approach works for any LTL formula that can be transformed
into deterministic Büchi word automata (DBW). This is the
case for 54 out of the 56 industrial patterns listed in (Dwyer,
Avrunin, and Corbett 1999), highlighting the strong appeal
of the GR(1) fragment for practical applications. The con-
struction first takes an LTL description of the pattern and
transforms it into a DBW. In a second step, an LTL formula
is constructed with extra controllable variables – one per au-
tomaton state – that capture the Büchi acceptance condition.
The syntactic form of the formula makes it possible to ap-
ply existing methods that reduce LTL realizability to winner
determination of a GR(1) game.

6.2 Planning with GR(1) Goals
The advantageous computational properties of the GR(1)
fragment for game structures also manifest in LTL FOND
planning (Theorem 13). This is because there exists a bidi-
rectional mapping between game structures and LTL plan-
ning when the goal and winning condition is a GR(1) for-
mula: GR(1) games can be reduced to LTL planning with
GR(1) goals and, conversely, LTL planning with GR(1) goals
can be reduced to GR(1) LTL planning.
Theorem 12. GR(1) games can be polynomially reduced to
LTL FOND planning with GR(1) goals, and vice versa.
Proof sketch. For the first direction, we employ the reduction
from Theorem 5. Observe that ϕG B ♦xend ∨ ϕ is equiv-
alent to ϕ′G B ♦xend ∨ ϕ when ϕ =

∧
i∈I �♦αi →

∧
j∈J �♦β j

is a GR(1) formula. Further observe that, for the constructed
planning problem, an execution satisfies ♦xend iff it satisfies
¬�♦¬xend. This is because xend cannot be made false once it
has been made true. By means of syntactic manipulation, we
can further show that an execution satisfies ϕG iff it satisfies
the GR(1) formula

(
�♦¬xend ∧

∧
i∈I �♦αi

)
→

∧
j∈J �♦β j.

For the second statement, we can reuse the reduction under-
lying Theorem 6, as it does not modify goal formulae. �

Theorem 13. Plan existence for LTL FOND planning prob-
lems with GR(1) goals is EXP-complete in domain and com-
bined complexity, and in PTIME w.r.t. goal complexity (i.e.,
when the domain is fixed).

Proof sketch. Membership results are obtained by combining
Theorems 11, 12, and Corollary 1. The EXP lower bound
follows from the EXP-hardness of FOND and the fact that
reachability goals can encoded using GR(1) formulae. �

The results in Theorem 13 can be extended to the finite
case: plan synthesis of FOND problems with LTLf goal in
GR(1) syntactic form can be done in exponential time. Un-
fortunately, this result is not very interesting because LTLf
FOND planning with GR(1) goals is equivalent to FOND
planning with final-state goals.

Property 2. The GR(1) syntactic fragment of LTLf is
equally expressive as the syntactic fragment of formulas of
the form ♦(θ ∧ final) for some propositional formula θ.

Proof. Satisfaction of GR(1) LTLf formula
∧

i∈I �♦αi →∧
j∈J �♦β j is equivalent to satisfaction of LTLf formula
♦(θ ∧ final) with θ =

∧
i∈I αi →

∧
j∈J β j. Conversely, sat-

isfaction of LTLf formula ♦(θ ∧ final) is equivalent to satis-
faction of GR(1) LTLf formula �♦> → �♦θ. �

6.3 Request-Response Planning
We propose here the class of request-response formulas:
a syntactic class that appear to be a reasonable counter-
part to GR(1) in the finite case, as it captures similar pat-
terns. Request-response formulas take the form � (α→ ♦β),
for some propositional formulas α and β. Request-response
LTL formulas can be transformed into GR(1) LTL formulas
that capture the same patterns, possibly with introduction of
two extra variables using Maoz and Ringert (2015)’s tech-
nique. Therefore, LTL games, synthesis, and planning for
request-response LTL formulas can be polynomially reduced
into their GR(1) counterparts. In contrast to GR(1), request-
response LTLf formulas are more expressive than final-state
goals when interpreted over finite traces.

We omit the proof of Theorem 14, as it can be obtained
from the more general Theorem 15.

Theorem 14. Plan existence for LTLf FOND with request-
response goal formulas is EXP-complete for domain and
combined complexity, and in PTIME for goal complexity.

6.4 Planning with PDDL3.0 Goals
The Planning Domain Definition Language (PDDL) is a
globally accepted language used to describe planning prob-
lems. Different variants of PDDL exist that allow for e.g.
durative actions and conditional effects. PDDL3.0 (Gerevini
et al. 2009), which we abbreviate to PDDL3, extends the
language of PDDL with the modal temporal operators listed
in Table 1, to be interpreted over finite traces. We in-
cluded equivalent LTLf formulae, as shown in (Gerevini et
al. 2009; De Giacomo, Masellis, and Montali 2014). We
provided corrected versions for the operators hold-during
and hold-after. We also simplified the formula for
sometime-before and at-most-once.
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modal operator equivalent LTLf size of DFA

(at-end θ) ♦(θ ∧ final) 2
(always θ) �θ 3
(sometime θ) ♦θ 3
(sometime-after θ1 θ2) �(θ1 → ♦θ2) 3
(sometime-before θ1 θ2) θ2R¬θ1 4
(at-most-once θ) (¬θ)W(θW(�¬θ)) 5

(within n θ)
∨

0≤i≤n
iθ n + 3

(always-within n θ1 θ2) �(θ1 →
∨

0≤i≤n
iθ2) n + 3

* (hold-during n1 n2 θ)
∨

0≤i≤n1
i(θ ∧ final)

n1 + n2 + 2
∨

∧
n1<i≤n2

i(θ)

(hold-after n θ) n+1θ 2n + 5
* (hold-after n θ)

∨
0≤i≤n+1

i(θ ∧ final) 2n + 5

Table 1: PDDL3 modal temporal operators, equivalent LTLf
formulae, and size of the corresponding minimal DFA.
Nested operators are abbreviated with a superindex. Opera-
tor weak-next ( ) is defined as ϕ B final∨ ϕ. We provide
corrected LTLf formulae for operators tagged with ∗.

The syntax of PDDL3 does not allow nesting of modal
operators, and is limited to conjunctions of modal operators
and literals. Despite its restricted syntax, PDDL3 temporal
operators subsume GR(1) and request-response formulas. In
this paper, all PDDL3 formulae apply PDDL3 modal oper-
ators to propositional formulae, but note that PDDL3 also
allows for a lifted syntax.

Relation with Request-Response formulas Request-
response formulas � (p→ ♦q) correspond to PDDL3 opera-
tor (sometime-after p q).

Relation with GR(1) formulas When interpreted over finite
traces, GR(1) formulas

∧
i �♦αi →

∧
j �♦β j are equivalent

to PDDL3 operator (at-end θ), with θ =
∧

i αi →
∧

j β j.

Relation with FOND planning FOND planning with final-
state goals is a special case of FOND planning with PDDL
3 goals in the form (at-end θ). Solutions in the form of a
policy can be constructed from strategies (cf. Proposition 1).

Reduction to Structured Games FOND planning with
PDDL3 goals can be reduced to LTLf FOND by rewriting
PDDL3 operators in LTLf, as indicated in Table 1.

Complexity Analysis The following theorem clarifies the
complexity of FOND planning with PDDL3 goals, which to
the best of our knowledge has not yet been considered in
the literature. The formulation is a bit more involved than
earlier results due to the use of numeric values in some of
the PDDL3 temporal operators.

Theorem 15. Assuming a unary encoding of numbers in
PDDL3 modal operators, plan existence for FOND plan-
ning with PDDL3 goals is EXP-complete for domain and
goal complexity, and the goal complexity is in PTIME pro-
vided that there is a bound on the number of conjuncts in the
goal that use numeric temporal operators.

Proof sketch. FOND planning with PDDL3 goals can be re-
duced to LTLf FOND (cf. Table 1). LTLf FOND planning can

be reduced to solving a DFA game3 following a similar tech-
nique as in Section 5.2. The game DFA is the product of (i)
a DFA encoding the transition system (which is exponential,
(ii) multiple DFA, one per PDDL3 operator in the goal for-
mula. The former DFA is of exponential size in the domain,
and each of the latter DFAs is of polynomial size (see third
column of Table 1), assuming a unary representation of nu-
meric values. The product DFA is thus of exponential size,
and if the domain is fixed, the restriction on the number of
numeric conjuncts suffices to obtain a polynomial-size DFA.
We conclude by recalling that DFA games can be solved in
polynomial time in the size of the DFA (see e.g. (Camacho,
Bienvenu, and McIlraith 2018)). �

7 Summary and Discussion
Synthesizing strategies for software agents is a central prob-
lem in artificial intelligence. In this work, we made a step
towards reconciling two different perspectives that address
this problem: AI planning and LTL synthesis.

Our work contributes with principled, bidirectional map-
pings between so-called LTL FOND planning, two-player
games, and reactive LTL synthesis. By means of these map-
pings, we were able to revisit well-known complexity results
in LTL and LTLf FOND planning, and derive new ones.

A further contribution was the identification of restricted
forms of LTL and LTLf FOND planning for which plan syn-
thesis can be realized more efficiently than in the general
case. For LTL FOND planning, we derived results for GR(1)
goals that are analogous to so-called GR(1) games. For the
finite-trace setting, we provided novel complexity results
for LTLf FOND planning with PDDL3.0 goals and observed
that, over finite traces, its expressivity subsumes other frag-
ments including GR(1). These results show that LTL FOND
and LTLf FOND plan synthesis can be performed with the
same computational complexity as traditional FOND plan-
ning with final-state goals, but utilizing a richer class of tem-
porally extended goal formulae.
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