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Abstract
This paper considers the problem of querying dirty
databases, which may contain both erroneous facts
and multiple names for the same entity. While
both of these data quality issues have been widely
studied in isolation, our contribution is a holistic
framework for jointly deduplicating and repairing
data. Our REPLACE framework follows a declara-
tive approach, utilizing logical rules to specify un-
der which conditions a pair of entity references can
or must be merged and logical constraints to spec-
ify consistency requirements. The semantics de-
fines a space of solutions, each consisting of a set
of merges to perform and a set of facts to delete,
which can be further refined by applying optimal-
ity criteria. As there may be multiple optimal solu-
tions, we use classical notions of possible and cer-
tain query answers to reason over the alternative so-
lutions, and introduce a novel notion of most infor-
mative answer to obtain a more compact presenta-
tion of query results. We perform a detailed analy-
sis of the data complexity of the central reasoning
tasks of recognizing optimal solutions and (most in-
formative) possible and certain answers, for each of
the three notions of optimal solution and for both
general and restricted specifications.

1 Introduction
Data quality is one of the most fundamental problems in
data management as dirty data can lead to incorrect deci-
sions based on faulty retrieved answers from information sys-
tems, and unreliable data analysis, engendering huge costs
to the private and public sectors [Fan and Geerts, 2012;
Ilyas and Chu, 2019]. It is also a multi-faceted problem, en-
compassing several distinct issues: multiple representations
of the same entity (deduplication), conflicting and/or erro-
neous information (consistency / accuracy), missing infor-
mation (completeness), and outdated information (currency)
[Fan and Geerts, 2012]. While far from solved, each facet of
the data quality problem has given rise to a sizeable literature
and increasingly sophisticated methods. We give a brief (and
necessarily incomplete) introduction to the issues central to
our work: deduplication and consistency.

Deduplication, also called record linkage or entity reso-
lution (ER), was originally formulated as the task of iden-
tifying duplicate records in a table, and traditionally han-
dled by comparing attribute values using similarity measures
[Newcombe et al., 1959]. Over time, however, variants of
the problem have been explored, in which we may identify
(match, merge) pairs of entity references or values, rather
than whole tuples, and treat multiple tables and/or entity types
together (so-called collective entity resolution [Bhattacharya
and Getoor, 2007]), e.g. using a match of two authors in-
fer that a pair of paper ids should be merged. Moreover,
some recent approaches to collective ER [Deng et al., 2022;
Bienvenu et al., 2022] are able to exploit recursive depen-
dencies, e.g. a merge of authors may trigger merges of pa-
pers which in turn may trigger new author merges. Diverse
techniques have been applied to (collective) ER, including
similarity measures, deep learning, probabilistic formalisms,
and declarative frameworks based upon logical rules and con-
straints, see [Christophides et al., 2021] for a recent survey.

There is likewise a vast body of work aimed at identi-
fying and removing conflicting facts to restore consistency.
Declarative constraints (such as functional dependencies, or
the broader class of denial constraints) are often employed to
specify consistency requirements [Chu et al., 2013], and the
goal is to produce a consistent version of the data (called a re-
pair) through deletion or modification of facts. However, due
to lack of information, one typically cannot definitively iden-
tify the ‘true’ repair, so data cleaning often relies upon heuris-
tics to produce a unique result [Ilyas and Chu, 2019]. By
contrast, the well-known consistent query answering (CQA)
paradigm [Arenas et al., 1999; Bertossi, 2011] allows for
meaningful answers to be obtained without committing to a
single repair, by reasoning over the space of all (preferred) re-
pairs and returning those answers which hold w.r.t. every such
repair. The approach follows the skeptical mode of reasoning
often considered in knowledge representation and reasoning
(KR), and it has in turn inspired a line of KR research on
inconsistency-tolerant ontology-based data access [Bienvenu,
2020; Lukasiewicz et al., 2022]. While CQA has higher com-
plexity than data cleaning methods, SAT-based implementa-
tions show promising results [Dixit and Kolaitis, 2022].

The different facets of the data quality problem have
mostly been considered in isolation, whereas in practice,
datasets can be expected to suffer from multiple data quality



issues. A pipeline approach, which applies different meth-
ods in sequence, has the disadvantage that useful synergies
may be missed, as noted in [Chu et al., 2013; Fan et al.,
2014]. For example, by merging two constants, we may re-
solve a violation of a functional dependency (FD) without the
need to delete facts, while conversely, by deleting incorrect
facts, we may enable some desirable merges. The interest
of combining ER with repairs has been advocated in [Fan
et al., 2014]: “When taken together, record matching and
data repairing perform much better than being treated as sep-
arate processes”. They propose to interleave repair operations
(value updates) with merges of values inferred using match-
ing dependencies, and study when this combined process ter-
minates and how to generate a single repair of optimal cost.

We believe that the development of holistic approaches for
jointly tackling the ER and repairing tasks, pioneered in [Fan
et al., 2014], merits further investigation. Indeed, given the
vast number of different ER and repair methods, there are
many options for which methods to use and how to integrate
them. Moreover, to the best of our knowledge, no work has
explored how to reason over a space of alternative solutions
(in the spirit of CQA) for the combined task. These con-
siderations motivate us to introduce REPLACE, a logic-based
framework for collective entity resolution and repairing.

The REPLACE framework adopts the expressive class of
denial constraints (which generalize the conditional FDs con-
sidered in [Fan et al., 2014]) and subset repairs (obtained via
deletion of facts, rather than updates), the most commonly
considered repair notion in the CQA literature. The ER mech-
anism in REPLACE is based on the recently proposed LACE
framework [Bienvenu et al., 2022], which employs hard and
soft rules to define mandatory and possible merges of con-
stants. Differently from [Fan et al., 2014] and other works
using matching dependencies [Fan et al., 2009; Bertossi et
al., 2013], the semantics is global in the sense that we merge
all occurrences of the matched constants [Arasu et al., 2009;
Burdick et al., 2016], rather than only those constant occur-
rences used in deriving the match. Such a semantics is geared
towards merging of constants that are entity references (e.g.
authors, publications), whereas the local one is more appro-
priate for merging attribute values (e.g. titles and addresses)
(see [Bienvenu et al., 2022] for a detailed discussion). RE-
PLACE’s semantics further follows the standard desiderata
of maximizing merges and minimizing deletions. As these
two criteria may conflict, REPLACE implements three natural
ways to compare solutions: give priority to the maximization
of merges (MER), give priority to the minimization of dele-
tions (DEL), or adopt the Pareto principle (PAR).

Aside from introducing the new framework, our main con-
tribution is the investigation of the data complexity of the
main reasoning tasks associated with REPLACE. First, we
show that the problem of recognizing optimal solutions is
coNP-complete, for all three optimality notions. Next, we
consider how to query the space of optimal solutions and de-
termine the complexity of recognizing certain and possible
query answers, i.e. those answers which hold in all or some
optimal solution, respectively. The certain answer tasks are
Πp

2-complete for the three optimality notions, while for pos-
sible answers, the recognition problem Σp

2-complete for MER

and DEL, but NP-complete for PAR. We further consider a
restricted setting in which inequality atoms are disallowed in
denial constraints. This restriction does not yield better com-
plexity for these problems, if we consider the MER preorder,
whereas for DEL and PAR, the complexity improves in almost
all cases. As a further contribution, we introduce a novel no-
tion of most informative answer to obtain a more compact
presentation of query results and show that the improved for-
mat leads to a slight increase in the complexity of certain and
possible answer recognition tasks. We conclude the paper
with some directions for future work.

2 Preliminaries
A (relational) schema S is a finite set of relation symbols,
with each R ∈ S having an associated arity and list of at-
tributes. As is standard, we use R/k and R(A1, . . . , Ak) to
indicate, respectively, that R has arity k and that its attributes
are A1, . . . , Ak. A database instance over a schema S (or
(S-)database for short) assigns to each k-ary relation symbol
R ∈ S a finite k-ary relation over a fixed, denumerable set of
constants. Equivalently, we view an S-database D as a finite
set of facts of the form R(c1, . . . , ck), where (c1, . . . , ck) is
a tuple of constants of the same arity as R. We use the no-
tations R(c1, . . . , ck) ∈ D and D ⊆ D′ with their obvious
meanings. The active domain of a database D, denoted by
dom(D), is the set of constants occurring in D.

When we speak of queries in this paper, unless otherwise
stated, we mean a conjunctive query (CQ). Recall that a CQ
over a schema S takes the form q(x) = ∃y.φ(x,y), where
x and y are disjoint lists of variables, and φ is a finite con-
junction of relational atoms over S, i.e. atoms of the form
R(t1, . . . , tk) with R ∈ S and each ti is either a constant
or a variable from x ∪ y. The arity of a query q(x) is
the arity of x, and a query with arity 0 is called Boolean.
Given an n-ary query q(x1, . . . , xn) and n-tuple of constants
c = (c1, . . . , cn), we denote by q[c] the Boolean query ob-
tained by replacing each xi by ci. The answers to an n-ary
query q(x) over a databaseD is defined as the set of n-tuples
of constants c from dom(D) such that the Boolean CQ q[c]
holds in D. We use q(D) to denote the answers to q over D.

When formulating entity resolution rules, we will consider
queries that may also contain atoms built from a set of ex-
ternally defined binary similarity predicates. The preceding
definitions and notations extend to such queries, the only dif-
ference being that similarity predicates have a fixed meaning
(typically defined by applying a similarity metric, e.g. edit
distance, and keeping those pairs of values whose score ex-
ceeds a given threshold).

Our framework will also make use of denial con-
straints [Bertossi, 2011; Fan and Geerts, 2012]. Recall
that a denial constraint over a schema S takes the form
∀x.¬(ϕ(x)), where ϕ(x) is a finite conjunction of relational
atoms over S and inequality atoms t1 ̸= t2.

3 Existing LACE Framework
In this section, we recall the salient features and definitions
of the LACE framework [Bienvenu et al., 2022] for collec-



tive entity resolution, as it will form the basis for our new
REPLACE framework, presented in Section 4.

Entity resolution consists in determining pairs of database
constants that refer to the same entity and can thus be identi-
fied. We will use the term merge to speak about such pairs.
The LACE framework employs hard and soft rules to indi-
cate, respectively, required or potential merges. A hard rule
(w.r.t. a schema S) takes the form q(x, y) ⇒ EQ(x, y),where
q(x, y) is a CQ, whose atoms may use relation symbols in S
as well as similarity predicates, and EQ is a special relation
symbol (not in S) used to store merges. Intuitively, such a rule
states that (c1, c2) being an answer to q is sufficient to con-
clude that c1 and c2 refer to the same entity. A soft rule has
a similar form: q(x, y) 99K EQ(x, y), but states instead that
(c1, c2) being an answer to q provides reasonable evidence for
c1 and c2 denoting the same entity. Soft rules suggest poten-
tial (but not mandatory) merges of constants. In what follows,
we use the notation q(x, y) → EQ(x, y) for a generic (hard or
soft) rule, and shall omit quantifiers in rule bodies for brevity.

In addition to rules for generating merges, the LACE frame-
work employs denial constraints to define consistency re-
quirements. Together they form a specification:

Definition 1 ([Bienvenu et al., 2022]). A data quality (DQ)
specification Σ over a schema S takes the form Σ = ⟨Γ,∆⟩,
where Γ = Γh ∪ Γs is a finite set of hard and soft rules over
S, and ∆ is a finite set of denial constraints over S.

Example 1. Figure 1 introduces the schema Sex, database
Dex, and DQ specification Σex = ⟨Γex,∆ex⟩ of our running
example. Informally, the hard rule ρ1 states that paper identi-
fiers with similar titles, same year, same venue, same first au-
thor, and same conference chair must refer to the same paper.
The soft rule σ1 states that author ids associated with similar
emails and the same institution likely refer to the same per-
son. Finally, the denial constraint δ1 enforces that there is a
single chair for a given venue and year, while δ2 states that
the first author of a paper cannot be the same as the chair of
the event where the paper was published.

The semantics of LACE is based upon solutions, which take
the form of equivalence relations over the constants, with the
meaning that all constants from the same equivalence class
are deemed to be references to the same entity. Solutions
equate constants, rather than occurrences of constants, be-
cause LACE focuses specifically on merging constants that
are entity references (e.g. paper and author ids). Intuitively,
each solution is obtained by ‘deriving’ new merges via rule
applications and closure operations. Importantly, rule bodies
are evaluated on the database induced by previously derived
merges, which makes it possible for new rules to become ap-
plicable, i.e. merges can enable additional merges.

In order to formally define solutions, we must first intro-
duce some preliminary notions. Given a set S of pairs of
constants from a database D, we denote by EqRel(S,D) the
least equivalence relation E ⊇ S over dom(D), i.e. we close
S under reflexivity, symmetry, and transitivity. We assume
that each equivalence relation E is equipped with a function
rpE that maps each element to a representative of its equiv-
alence class in E. Given a database D and an equivalence
relation E over dom(D), the database induced by D and E,

denoted by DE , is the database obtained from D by replac-
ing each constant c by rpE(c). Moreover, for a tuple c of
constants (resp. query q, denial constraint δ), we denote by
cE (resp. qE , δE) the tuple of constants (resp. query, denial
constraint) obtained by replacing each constant c mentioned
also in an equivalence relation E by rpE(c). We then define
the set q(D,E) of answers to a query q(x) w.r.t. D and E as:

c ∈ q(D,E) iff cE ∈ qE(DE)

A set of denial constraints ∆ is satisfied in (D,E), writ-
ten (D,E) |= ∆, if DE |= δE for every δ ∈ ∆. A
rule γ = q(x, y) → EQ(x, y) ∈ Γ is satisfied in (D,E),
written (D,E) |= γ, if q(D,E) ⊆ E, and (D,E) |= Γ′

if all rules in Γ′ ⊆ Γ are satisfied. We call a pair (c, c′)
of constants active in (D,E) w.r.t. Γ if there exists a rule
q(x, y) → EQ(x, y) ∈ Γ such that (c, c′) ∈ q(D,E).
Remark 1. There is in fact an additional syntactic condition
placed on LACE rulesets (and which we shall adopt also in
this paper), namely, that attributes that are involved in merges
cannot participate in similarity atoms. We refer to [Bienvenu
et al., 2022] for a formal definition and discussion, simply
noting that this condition ensures an unambiguous evaluation
of similarity atoms in induced databases.

We can now give the formal definition of LACE solutions:
Definition 2 ([Bienvenu et al., 2022]). Given a DQ specifi-
cation Σ over a schema S and an S-database D, we say that
an equivalence relation E over dom(D) is an ER candidate
solution for (D,Σ) if it satisfies one of the two conditions:

(i) E = EqRel(∅, D);

(ii) E = EqRel(E′ ∪ {α}, D), where E′ is a candidate so-
lution for (D,Σ) and α = (c1, c2) is active in (D,E′)
w.r.t. Γ.

An ER solution for (D,Σ) is a candidate solution E that fur-
ther satisfies (a) (D,E) |= Γh and (b) (D,E) |= ∆. We
denote by ERSol(D,Σ) the set of ER solutions for (D,Σ).

Notice that each pair of constants that is deemed equiva-
lent by the ER solution is obtained by a sequence of rule ap-
plications and closure operations. Moreover, solutions must
be coherent in the sense that all of the hard rules and denial
constraints have to be satisfied w.r.t. the induced database.
Example 2. Continuing our running example, let D′

ex be the
Sex-database obtained from Dex by removing the tuples re-
garding papers p1, p2, p3, and p4. Due to the tuples involv-
ing p6, p7, and p8, we have (D′

ex, E0) ̸|= δ1, for the initial
relation E0 = EqRel(∅, D′

ex). However, we can resolve this
violation by merging authors a4 and a5. Indeed, one can ver-
ify that ϵ = (a4, a5) is active in (D′

ex, E0) w.r.t. Γex due to σ1.
Also α = (a1, a2) and β = (a2, a3) are active due to σ1.

However, we cannot include both α and β, otherwise by
transitivity we would have a1 = a3, implying that the first
author of paper p5 would be the same as the chair, in vio-
lation of δ2. Now, consider E1 = EqRel({β, ϵ}, D′

ex) and
E2 = EqRel({α, ϵ}, D′

ex). While E1 ∈ ERSol(D′
ex,Σex), we

haveE2 ̸∈ ERSol(D′
ex,Σex). This is because (D′

ex, E2) ̸|= ρ1
since ζ = (p6, p7) is now active in (D′

ex, E2) w.r.t. Γex. One
can verify that E1 and E3 = EqRel({α, ϵ, ζ}, D′

ex) are the



Author(aid, email, inst)
aid email inst
a1 wtaka@gm.com Tokyo
a2 wtaka@tku.jp Tokyo
a3 takaw@tku.jp Tokyo
a4 mnk@ox.uk NYU
a5 mnk@gm.com NYU
a6 ropaolo@sap.it Sap

Paper(pid, title, fid, year, venue, cid)
pid title fid year venue cid
p1 Computational Complexity of CQA a6 2009 IJCAI a1
p2 CQA: Computational Complexity a6 2009 IJCAI a2
p3 A Framework for Collective ER a1 2010 PODS a2
p4 A Logical Framework for Collective ER a1 2010 PODS a2
p5 Answering CQs over DL Ontologies a1 2012 KR a3
p6 AI Techniques for ER a2 2023 AAAI a5
p7 AI Techniques for Collective ER a1 2023 AAAI a4
p8 Logical Techniques for Collective ER a3 2023 AAAI a5

δ1 = ¬(∃p, t, f , y, v, c, p′, t′, f ′, c′.Paper(p, t, f , y, v, c) ∧ Paper(p′, t′, f ′, y, v, c′) ∧ c ̸= c′)
δ2 = ¬(∃p, t, a, y, v.Paper(p, t, a, y, v, a))
ρ1 = Paper(x, t, f , y, v, c) ∧ Paper(y, t′, f , y, v, c) ∧ t ≈1 t

′ ⇒ EQ(x, y)
σ1 = Author(x, e, i) ∧ Author(y, e′, i) ∧ e ≈2 e

′ 99K EQ(x, y)

Figure 1: A schema Sex, Sex-database Dex, and DQ specification Σex = ⟨Γex,∆ex⟩ over Sex with Γex = {ρ1, σ1} and ∆ex = {δ1, δ2}. The
extension of the similarity predicates ≈1 and ≈2 (both restricted to dom(Dex)) are the symmetric and reflexive closures of {(e1, e2), (e2, e3),
(e4, e5)} and {(t1, t2), (t3, t4), (t6, t7), (t7, t8)}, respectively, where ei and ti are the email of author ai and title of paper pi, respectively.

only maximal ER solutions for ERSol(D′
ex,Σex), i.e. they be-

long to ERSol(D′
ex,Σex) and there is no other solution in

ERSol(D′
ex,Σex) containing strictly more merges.

Now reconsider the original database Dex. One can verify
that Sol(Dex,Σex) = ∅. This is because the tuples with p1
and p2 violate δ1, and, if a1 and a2 are merged to solve this
violation, then δ2 is violated due to the tuples with p3 and p4.

4 REPLACE: Adding Delete Operations
In practice, a given database may suffer from multiple data
quality issues. Some constraint violations may result from
the use of different constants for the same entity, and thus may
be resolved through merging constants. However, other con-
straint violations stem from the presence of erroneous facts
and can only be resolved by removing information. In this
section, we introduce a holistic approach to data quality that
allows for both merge and fact deletion operations. Our new
REPLACE framework can be viewed as the marriage of LACE
with the well-known consistent query answering approach.

Extending LACE with fact deletions allows us to obtain
meaningful solutions when ERSol(D,Σ) = ∅, but also to dis-
cover merges that were blocked due to constraint violations:

Example 3. Recall the database D′
ex from the previous ex-

ample and observe that by removing the fact with pid p5, we
can now include both α = (a1, a2) and β = (a2, a3) in the
set of merges, which will lead to η = (p7, p8) being active.

The REPLACE framework adopts the DQ specifications
from LACE, but redefines what constitutes a solution to a
database-specification (D,Σ) pair. In addition to an equiv-
alence relation E that specifies merges, solutions will addi-
tionally contain a set R of facts to delete from D. We shall
require that (i) E ∈ ERSol(D \ R,Σ), i.e. E is an ER solu-
tion for (D \ R,Σ) and (ii) if a fact φ ∈ R is equivalent to a
fact ψ ∈ D w.r.t. E, then ψ ∈ R. A fact φ = P (c) is said
to be equivalent to ψ = P ′(c′) w.r.t. E, denoted φ ≡E ψ, if
P = P ′ and cE = c′E .

We are now ready to formally define the new notion of so-
lutions employed by REPLACE:

Definition 3. Given a DQ specification Σ over a schema S
and an S-database D, we say that a pair W = (R,E) is a
solution for (D,Σ) if (i) R ⊆ D, (ii) E ∈ ERSol(D \ R,Σ),
and (iii) for all φ,ψ ∈ D with φ ≡E ψ, φ ∈ R iff ψ ∈ R. We
denote by Sol(D,Σ) the set of solutions for (D,Σ).

Example 4. Let W1 = (R1, E1) and W2 = (R2, E2)
be such that R1 (resp. R2) consists of the Paper fact with
pid p1 (resp. p2), E1 = EqRel({β, ϵ, θ}, (Dex \ R1)), and
E2 = EqRel({β, ϵ, θ}, (Dex \ R2))), where β = (a2, a3),
ϵ = (a4, a5), and θ = (p3, p4). One can verify that W1 ∈
Sol(Dex,Σex) and W2 ∈ Sol(Dex,Σex).

Rather than considering all solutions, it is natural to focus
on the ‘best’ ones. But what makes a solution better than an-
other? Similarly to LACE, we will prefer solutions that con-
tain more merges, since we aim to tackle the ER problem.
However, we also want to retain as much information as pos-
sible, hence should minimize fact deletions, as is done when
defining repairs. These two criteria may conflict, as deleting
more facts may enable more merges. This leads us to con-
sider three natural ways to compare solutions: give priority to
the maximization of merges (MER), give priority to the min-
imization of deletions (DEL), or adopt the Pareto principle
and accord equal priority to both criteria (PAR). The follow-
ing definition formalizes the three preorders for comparing
solutions and the resulting notions of optimal solution, using
set inclusion for comparing the sets of merges and deletions.

Definition 4. Consider a DQ specification Σ over schema S
and S-database D. The preorders ≺MER, ≺DEL, and ≺PAR

over Sol(D,Σ) are defined as follows:

• (R,E) ≺MER (R′, E′) iff either (i) E ⊂ E′ or (ii) E ⊆
E′ and R′ ⊂ R;

• (R,E) ≺DEL (R′, E′) iff either (i) R′ ⊂ R or (ii) R′ ⊆
R and E ⊂ E′;



• (R,E) ≺PAR (R′, E′) iff either (i) E ⊂ E′ and R′ ⊆ R
or (ii) R′ ⊂ R and E ⊆ E′.

ForX ∈ {MER,DEL, PAR}, we call a solutionW for (D,Σ)
an ⪯X -optimal solution for (D,Σ) if there is no solution W ′

for (D,Σ) such that W ≺X W ′, and denote by SolX(D,Σ)
the set of ⪯X -optimal solutions for (D,Σ).

It is easy to verify that both SolMER(D,Σ) ⊆ SolPAR(D,Σ)
and SolDEL(D,Σ) ⊆ SolPAR(D,Σ) hold for any database-
specification pair (D,Σ). The next example shows that the
converse inclusions do not necessarily hold. Furthermore,
using analogous arguments, it is not hard to construct a case
whereW ∈ SolPAR(D,Σ) but neitherW ∈ SolMER(D,Σ) nor
W ∈ SolDEL(D,Σ).

Example 5. Returning to our running example, it can be
verified that W1 and W2 from Example 4 both belong to
SolX(Dex,Σex) for each X ∈ {MER,DEL, PAR}.

Next consider W3 = (R3, E3), in which R3 con-
sists of the tuples with pids p3 and p4 and E3 =
EqRel({α, µ, ϵ, ζ, }, (Dex \ R3)), where α = (a1, a2), µ =
(p1, p2), ϵ = (a4, a5), and ζ = (p6, p7). One can show that
W3 ∈ SolDEL(Dex,Σex) (hence, W3 ∈ SolPAR(Dex,Σex)) be-
cause the violation of δ1 involving the p1 and p2 tuples is
resolved by merging a1 and a2, rather than via deletion. We
claim however that W3 ̸∈ SolMER(Dex,Σex). To see why, let
W4 = (R4, E4) be such that R4 contains the tuples with pids
p3, p4, and p5 andE4 = EqRel({α, µ, β, ϵ, ζ, η}, (Dex\R4)),
where β = (a2, a3) and η = (p7, p8). One can verify that
W4 ∈ Sol(Dex,Σex) and W3 ≺MER W4 (while W4 ≺DEL W3

and W3 and W4 are incomparable w.r.t. the ⪯PAR preorder).
Overall, we obtain the following: SolPAR(Dex,Σex) =

{W1,W2,W3,W4}, SolDEL(Dex,Σex) = {W1,W2,W3},
and SolMER(Dex,Σex) = {W1,W2,W4}.

We conclude this section by situating REPLACE w.r.t. ex-
isting frameworks. First, observe that for any database-
specification pair (D,Σ), we have (∅, E) ∈ SolDEL(D,Σ) iff
(∅, E) ∈ SolPAR(D,Σ) iff E is a maximal ER solution in the
sense of [Bienvenu et al., 2022, Definition 3]. Thus, the max-
imal solutions considered in LACE can be seen as special case
of ⪯DEL- and ⪯PAR-optimal solutions. It is not hard to see that
an analogous property does not hold for ⪯MER preorder.

Next we relate REPLACE solutions with the subset re-
pairs employed in consistent query answering. Consider any
database-specification pair (D,Σ) such that Σ = ⟨∅,∆⟩.
Then, SolMER(D,Σ), SolDEL(D,Σ), and SolPAR(D,Σ) all co-
incide and contain only solutions of the form (R, trivE),
where trivE = {(c, c) | c ∈ dom(D \ R)}. It is readily
verified that (R, trivE) ∈ SolMER(D,Σ) = SolDEL(D,Σ) =
SolPAR(D,Σ) iff D \ R is a repair in the sense of [Chomicki
and Marcinkowski, 2005, Definition 2.2].

5 Reasoning about Solutions
In this section, we analyze the computational complexity of
the central decision problems associated with the REPLACE
framework, namely, checking whether a given set of merges
and deletions is an (optimal) solution, and whether a candi-
date tuple is a certain or possible answer w.r.t. the space of op-
timal solutions. As is common when considering data-centric

tasks, we employ the data complexity measure [Vardi, 1982],
i.e. complexity is measured w.r.t. the size of the database D
(and also the pair W = (R,E) when it is part of the input).

Our results, summarized in Table 1, consider the three no-
tions of optimality, as well as the impact of adopting a syn-
tactically restricted form of specification (defined further).

5.1 Solution Recognition
We first consider the solution recognition problem (REC):
given Σ, D, and W , decide whether W ∈ Sol(D,Σ).
Tractability easily follows from the P-completeness of the
analogous problem for ERSol [Bienvenu et al., 2022]:

Theorem 1. REC is P-complete.

Next we determine the complexity of the problem X-
OPTREC of deciding whether W ∈ SolX(D,Σ), where
X ∈ {MER,DEL, PAR} is the chosen optimality notion.

Theorem 2. X-OPTREC is coNP-complete for any X ∈
{MER,DEL, PAR}.

The upper bounds employ a guess-and-check approach, ex-
ploiting Theorem 1. We transferred an existing coNP lower
bound for maximal ER solutions to X-OPTREC when X ∈
{DEL, PAR}, while MER-OPTREC required a new proof.

5.2 Query Answering
In an ideal world, we would determine which solution corre-
sponds to the true data, and query the resulting clean instance.
When this is infeasible, due to lack of time or knowledge, a
reasonable approach is to query the space of optimal solutions
to identify those tuples that are answers w.r.t. every solution
(in line with CQA semantics and the skeptical mode of infer-
ence employed in non-monotonic reasoning) or at least one
solution (a form of credulous / brave reasoning).

This leads us to define the following notions of certain and
possible answers. Note that given a solution W = (R,E) to
(D,Σ), we shall use q(D,W ) to refer to q(D \R,E).

Definition 5. Given a DQ specification Σ, database D, and
query q, all over schema S, and X ∈ {MER,DEL, PAR},
we say that a tuple c of constants is an X-certain (resp. X-
possible) answer to q on D w.r.t. Σ if c ∈ q(D,W ) for every
(resp. some) W ∈ SolX(D,Σ). We use X-certAns(q,D,Σ)
andX-possAns(q,D,Σ) to denote, respectively, the set ofX-
certain answers and X-possible answers to q on D w.r.t. Σ.

Example 6. First consider the query q1ex(x, y, z) =
∃t, v, e,m.Paper(x, t, y, 2023, v, e)∧Author(y,m, z), which
returns the id of papers written in 2023 along with the in-
stitution and the id of its first author. For the tuple t =
(p6, a3,Tokyo), we have the following:

• t ∈ MER-certAns(q1ex, Dex,Σex);

• t ̸∈ DEL-certAns(q1ex, Dex,Σex), as t ̸∈ q1ex(Dex,W3),
hence also t ̸∈ PAR-certAns(q1ex, Dex,Σex);

• t∈X-possAns(q1ex, Dex,Σex) (X∈{MER,DEL, PAR}).

Next let q2ex(x, y) = ∃t, f , v,m, i. Paper(x, t, f , 2012, v, y) ∧
Author(y,m, i) be the query that returns the ids of papers
written in 2012 and the venue chair. Observe that X-
certAns(q2ex, Dex,Σex) = ∅ for X ∈ {MER, PAR}, while



Specifications X X-OPTREC X-CERTANS X-POSSANS X-MICERTANS X-MIPOSSANS

General
MER/DEL coNP-c Πp

2-c Σp
2-c DP2-c DP2-c

PAR coNP-c Πp
2-c NP-c DP2-c DP-c

Restricted
MER coNP-c Πp

2-c Σp
2-c DP2-c DP2-c

DEL/PAR P-c coNP-c NP-c DP-c DP-c

Table 1: Data complexity of the decision problems, parameterized by X ∈ {MER, DEL, PAR}. We use ‘-c’ as an abbreviation for ‘-complete’.

DEL-certAns(q2ex, Dex,Σex) = {(p5, a3)}. Notice more-
over that X-possAns(q2ex, Dex,Σex) = {(p5, a2), (p5, a3)}
for each X ∈ {MER,DEL, PAR}.

Our next theorem provides the complexity of the deci-
sion problems X-CERTANS and X-POSSANS of checking
whether a given tuple of constants belongs to the set of X-
certain answers and X-possible answers, respectively. We
remind the reader that whenever we speak of queries we refer
to CQs.
Theorem 3. X-CERTANS is Πp

2-complete for any X ∈
{MER,DEL, PAR}, PAR-POSSANS is NP-complete, and X-
POSSANS is Σp

2-complete for X ∈ {MER,DEL}.

The Πp
2 and Σp

2 membership proofs involve guessing a po-
tential solution W that contains / omit the query tuple and
calling an NP oracle to check that W is indeed an optimal
solution. The NP upper bound for PAR-POSSANS relies
upon showing that it is sufficient to check that W is a so-
lution, rather than a PAR-optimal solution. This is because
c ∈ q(D,W ) implies c ∈ q(D,W ′) for any W ′ such that
W ≺PAR W ′ (no such property holds for ≺MER and ≺DEL).
While some lower bounds were adapted from analogous re-
sults for LACE, others require new ingredients.

5.3 Restricted Specifications
The preceding results show that it is computationally chal-
lenging to reason about optimal solutions. Faced with a sim-
ilar situation, Bienvenu et al. (2022) explored restricted DQ
specifications, in which inequality atoms are disallowed in
the denial constraints. While such specifications cannot cap-
ture keys and functional dependencies, they do allow for other
meaningful forms of constraints, e.g. class and property dis-
jointness statements commonly used for Semantic Web data.

Do restricted DQ specifications yield better complexity
in our setting? For REC, MER-OPTREC, MER-CERTANS,
MER-POSSANS, and PAR-POSSANS, the answer is no, as
the lower bound proofs employ restricted DQ specifications.
However, for the remaining decision problems, we do find a
drop in complexity (under the usual complexity assumptions).
Theorem 4. For restricted DQ specifications, we have that:

• DEL-OPTREC and PAR-OPTREC are P-complete;

• X-CERTANS is coNP-complete for X ∈ {DEL, PAR}
and DEL-POSSANS is NP-complete;

Intuitively, this lower complexity is due to constraint vi-
olations being preserved under improvements, i.e. if δ is a
denial constraint without ̸=-atoms and both W = (R,E) and
W ′ = (R′, E′) belong to Sol(D,E), then (D \ R)E ̸|= δ
implies (D \R′)E′ ̸|= δ whenever E ⊆ E′ and R′ ⊆ R.

5.4 Comparison with LACE and CQA
Comparing with LACE, we note that in almost all cases, the
addition of delete operations does not affect the complex-
ity of recognizing (maximal / optimal) solutions or certain
and possible answers. The main exception is if we con-
sider ≺MER-optimal solutions coupled with restricted speci-
fications, where all problems are one level higher in the poly-
nomial hierarchy than the corresponding problems in LACE.

Adding merges to CQA brings a notable increase in com-
plexity. Indeed, the certain query answering and optimal so-
lution recognition tasks are one level higher than the cor-
responding CQA and repair checking tasks, if one consid-
ers general specifications or restricted specifications with the
≺MER preorder. An even larger complexity jump is observed
for possible query answering, as the analogous task w.r.t. re-
pairs is easily seen to have polynomial data complexity.

6 Most Informative Answers
While our notions of certain and possible answers (and the
corresponding notions in [Bienvenu et al., 2022]) provide a
natural way of querying the space of optimal solutions, they
present one major drawback from an end user’s perspective:
the query results may contain multiple distinct tuples that are
equivalent w.r.t. the considered solutions, as illustrated next.

Example 7. Consider a scenario in which we have the
database-specification pair (D,Σ), the database D contains
facts P (c1, c2) and P (c3, c4), and W = (∅, E) with E =
EqRel({(c1, c3), (c2, c4)}, D) is the only ⪯X -optimal solu-
tion for (D,Σ), for every X ∈ {MER,DEL, PAR}. Then,
for the query q(x1, x2) = P (x1, x2) and for any X ∈
{MER,DEL, PAR}, we have fourX-certain/possible answers
to q on D w.r.t. Σ, namely: (c1, c2), (c1, c4), (c3, c2), and
(c3, c4). These tuples could be more concisely presented as a
a single tuple of sets of constants ({c1, c3}, {c2, c4}).

To address this issue and present query results with as
much information (and as little repetition) as possible, we in-
troduce the new notions of most informative (certain / pos-
sible) answers. The main idea, evoked in the example, that
answers to queries now consist of tuples of sets of constants,
each set comprising constants in the same equivalence rela-
tion w.r.t. the solution(s) under consideration.

Definition 6. Given a solution W = (R,E) for (D,Σ), an
n-ary query q, and an n-tuple C = (C1, . . . , Cn) of sets of
constants from D, we call C a set-answer to q on D w.r.t. W
if the following holds: (i) Ci contains constants in the same
equivalence class in E, for 1 ≤ i ≤ n, and (ii) there exists
a tuple of constants c = (c1, . . . , cn) ∈ q(D,W ) such that



ci ∈ Ci for every 1 ≤ i ≤ n. We denote by q(D,W ) the set
of set-answers to q on D w.r.t. W .

Definition 7. For X ∈ {MER,DEL, PAR}, we say that a tu-
ple C of sets of constants is a X-certain set-answer (resp. X-
possible set-answer) to q on D w.r.t. Σ if C ∈ q(D,W )
for every (resp. some) W ∈ SolX(D,W ). We use X-
SetCert(q,D,Σ) (resp. X-SetPoss(q,D,Σ)) for the set of
X-certain (resp. X-possible) set-answers to q on D w.r.t. Σ.

Example 8. Recall the queries q1ex and q2ex from Exam-
ple 6. The tuple T = ({p6}, {a2, a3}, {Tokyo}) ∈ MER-
SetCert(q1ex, Dex,Σex) while T ̸∈ X-SetCert(q1ex, Dex,Σex)
for both X = DEL and X = PAR.

As another example, we have that ({p5}, {a2, a3}) ∈ X-
SetPoss(q2ex, Dex,Σex) for each X ∈ {MER,DEL, PAR}.

Among the X-certain and X-possible set-answers, we are
interested in presenting the most informative ones. More
formally, for two n-tuples C = ⟨C1, . . . , Cn⟩ and C′ =
⟨C ′

1, . . . , C
′
n⟩ of sets of constants, we say that C′ is strictly

more informative than C if (i) Ci ⊆ C ′
i for every 1 ≤ i ≤ n,

and (ii) Ci ⊂ C ′
i for some 1 ≤ i ≤ n. Given a set S of n-

tuples of sets of constants, we say that C ∈ S is most infor-
mative in S if there is no C′ ∈ S that is strictly more informa-
tive than C. With these notions in hand, we can now formally
define most informative certain and possible answers.
Definition 8. Given a DQ specification Σ, database D, and
query q, all over schema S , and X ∈ {MER,DEL, PAR}, we
say that a tuple C of sets of constants from D is a most infor-
mative X-certain answer (resp. most informative X-possible
answer) to q on D w.r.t. Σ if C is most informative in X-
SetCert(q,D,Σ) (resp. in X-SetPoss(q,D,Σ)). We denote
byX-MIcertAns(q,D,Σ) (resp.X-MIpossAns(q,D,Σ)) the
set of most informativeX-certain (resp.X-possible) answers
to q on D w.r.t. Σ.

Example 9. Observe that T1 = ({p6}, {a2}, {Tokyo}) ∈
X-MIcertAns(q1ex, Dex,Σex) for X ∈ {DEL, PAR},
while T1 ̸∈ MER-MIcertAns(q1ex, Dex,Σex) because
the tuple T0 = ({p6}, {a2, a3}, {Tokyo}) in MER-
SetCert(q1ex, Dex,Σex) is strictly more informative than T1.
In fact, T0 ∈ MER-MIcertAns(q1ex, Dex,Σex). Analogously,
one can see that T2 = ({p6, p7}, {a1, a2}, {Tokyo}) is such
that T2 ∈ X-MIpossAns(q1ex, Dex,Σex) for both X = DEL
and X = PAR, while T2 ̸∈ MER-MIcertAns(q1ex, Dex,Σex)
because T3 = ({p6, p7, p8}, {a1, a2, a3}, {Tokyo}) occurs
in MER-SetPoss(q1ex, Dex,Σex) and is strictly more informa-
tive than T2. In fact, T3 ∈ MER-MIpossAns(q1ex, Dex,Σex).

For query q2ex, X-MIcertAns(q2ex, Dex,Σex) = ∅ for
X ∈ {MER, PAR} while DEL-MIcertAns(q2ex, Dex,Σex) =
{({p5}, {a3})}. As for possible answers, X-MIpossAns =
{({p5}, {a2, a3})} for each X ∈ {MER,DEL, PAR}.

While X-certAns(q,D,Σ) ⊆ X-possAns(q,D,Σ), the
inclusion X-MIcertAns(q,D,Σ) ⊆ X-MIpossAns(q,D,Σ)
does not hold in general. However, we have the follow-
ing related property: if C ∈ X-MIcertAns(q,D,Σ), then
either C ∈ X-MIpossAns(q,D,Σ) or there exists C′ ∈ X-
MIpossAns(q,D,Σ) that is strictly more informative than C.

We now consider the decision problems X-MIPOSSANS
andX-MIPOSSANS of checking whether a given tuple of sets

of constants is a most informativeX-certain (respectively,X-
possible) answer. We find that adopting the most informative
notions of answers leads to higher complexity compared to
the (plain) notions of certain and possible answers.
Theorem 5. X-MICERTANS is DP2-complete1 for any X ∈
{MER,DEL, PAR}, X-MIPOSSANS is DP2-complete for
X ∈ {MER,DEL}, and PAR-MIPOSSANS is DP-complete.

The upper bounds rely on the fact that the set of yes-
instances for X-MICERTANS is precisely the intersection of
the yes-instances of X-SETCERT (decide whether C ∈ X-
SetCert(q,D,Σ)) andX-NOBETTERCERT (decides whether
there is no C′ ∈ SetCert(q,D,Σ) strictly more informative
than C). The latter can be solved by guessing a solution Wi

for each possible ‘minimal improvement’ Ci of C and veri-
fying that Ci ̸∈ q(D,Wi). Similar considerations apply for
X-MIPOSSANS. Lower bounds rely on new reductions.

We conclude this section by considering the impact of
adopting restricted specifications. While MER-MICERTANS,
PAR-MIPOSSANS, and MER-MICERTANS retain their origi-
nal complexity, the other problems enjoy lower complexity.
Theorem 6. For restricted DQ specifications, the decision
problems DEL-MICERTANS, PAR-MICERTANS, and DEL-
MIPOSSANS are DP-complete.

7 Conclusion and Future Work
We presented REPLACE, a new holistic framework for (pos-
sibly recursive) collective entity resolution and repairing,
which employs denial constraints coupled with (hard and
soft) logical rules to infer merges. The semantics, based upon
solutions that take the form of (coherent) sets of merges and
deletions, generalizes both LACE and (subset) repairs. In the
spirit of CQA, we studied how to query the space of (optimal)
solutions. Our complexity analysis shows that while certain
and possible answer recognition is harder than the analogous
tasks for repairs, it is for the most part on par with existing
results for LACE. We also explored an important question
(not considered in LACE) of how to present the query results,
which is non-trivial due to the merged constants, leading us
to propose novel notions of most informative answers.

We view this work as a starting point, with many inter-
esting questions left to explore. First, it could be natural
to consider other reasoning tasks, such as identifying cer-
tain and possible merges and deletions, which could help
guide users towards a unique solution. While some results
can be transferred from query answering, other cases require
further study. Next, we believe it would be interesting to
explore extensions of REPLACE with quantitive information
(weight or scores) associated to rules and facts, in particu-
lar, so that approximate weighted solutions could be gener-
ated. Finally, we would like to develop an efficient prototype
based on logic-based technologies, such as answer set pro-
gramming (ASP) [Gebser et al., 2012]. To this end, we could
use LACE’s ASP encoding as a steppingstone, but new in-
sights will be needed to handle most informative certain an-

1We recall that the complexity classes DP (a.k.a. BH(2)) and
DP2 (a.k.a. BH3(2)) are the second level of the Boolean hierarchy
of NP sets and of Σp

2 sets, respectively [Chang and Kadin, 1996].



swers, whose DP2 complexity goes beyond what is tradition-
ally supported by ASP. It would also be interesting to use
more informative similarity measures by adding ML predi-
cates, in the style of [Deng et al., 2022].
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