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ABSTRACT
In this paper, we revisit the problem of entity resolution and pro-

pose a novel, logical framework, LACE, which mixes declarative

and procedural elements to achieve a number of desirable proper-

ties. Our approach is fundamentally declarative in nature: it utilizes

hard and soft rules to specify conditions under which pairs of entity

references must or may be merged, together with denial constraints

that enforce consistency of the resulting instance. Importantly,

however, rule bodies are evaluated on the instance resulting from

applying the already ‘derived’ merges. It is the dynamic nature of

our semantics that enables us to capture collective entity resolution

scenarios, where merges can trigger further merges, while at the

same time ensuring that every merge can be justified. As the denial

constraints restrict which merges can be performed together, we

obtain a space of (maximal) solutions, from which we can naturally

define notions of certain and possible merges and query answers.

We explore the computational properties of our framework and

determine the precise computational complexity of the relevant

decision problems. Furthermore, as a first step towards implement-

ing our approach, we demonstrate how we can encode the various

reasoning tasks using answer set programming.

CCS CONCEPTS
• Information systems→ Entity resolution; • Theory of com-
putation→ Logic and databases;Constraint and logic programming;
Problems, reductions and completeness.
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1 INTRODUCTION
Entity resolution (ER), which aims to identify different references to

the same real-world entity, is one of the most fundamental problems

in data quality management. In the context of relational databases,

ER traditionally focused on matching records based on similarity of

their fields [35], which is why ER sometimes goes by the name of

record linkage [22]. For instance, in a bibliographical database, we

might match author records if the email addresses are similar. How-

ever, ER can be more generally defined as the following problem:

given a database D determine, for each pair (c1, c2) of constants (of
the same type) occurring in D, whether they represent the same

real-world entity, and can thus be merged [38]. This more general

formulation naturally leads to considering the joint resolution of

references of multiple entity types (so-called collective ER) and ex-

ploiting other types of evidence, such as the way entity references

are related. For example, we may also resolve author references

by looking at the papers they have written, and likewise, use the

authors to determine if two references denote the same paper. The

advantages of collective approaches to ER, especially those exploit-

ing relational similarities, have been observed in several works

[18, 27, 30]. Being both an important and multi-faceted problem,

ER has been tackled using various approaches with different for-

mal foundations: probabilistic approaches [9, 38], deep learning

approaches [23, 31, 36] and logical approaches [1, 12, 19, 21]; see

[16] for a recent survey.

In this paper, we propose LACE, a logical framework for ER

that was designed to satisfy three main desiderata, namely, being

collective, declarative, and justifiable. More precisely, our approach

(i) supports complex interdependencies between merges of differ-

ent entities, (ii) adopts a declarative language with logical rules

and constraints, and (iii) is able to justify why two constants have

been deemed to represent the same entity. While the declarative

and collective aspects have received considerable attention in the

literature, justifiability is less explored, despite being a key step

towards developing more advanced explanation facilities, and thus

responsible technologies [31].

In a nutshell, LACE is a declarative language that, inspired by

the Dedupalog approach [1], employs hard and soft rules to specify

conditions under which pairs of entity references must or may

be merged. For example, the constraints every paper has a single
corresponding author and conferences with similar names are likely
to be the same can be captured using hard and soft rules, respec-

tively. In addition to rules, LACE specifications may include denial

constraints [6] to enforce consistency of the resulting instance and

constrain the allowed combinations of merges. For example, we

may require that the name of an author can appear in the list of
author names a single time. We equip LACE with a ‘dynamic’ and

‘global’ semantics. In line with approaches to ER based on matching
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dependencies (MDs) [8, 19, 21] and extensions thereof, such as rela-

tional MDs [3, 5], LACE adopts a dynamic semantics in which rule

bodies are evaluated on induced instances resulting from applying

the already ‘derived’ merges. It is thanks to the dynamic nature of

the semantics that we obtain a collective yet justifiable framework,

in which merges can trigger further merges, possibly in a recur-

sive fashion, while still being able to trace back the origins of each

merge. We describe our semantics as ‘global’ since LACE globally

merges constants by replacing one constant with the other every-
where in the database. This choice is motivated by the fact that our

focus is on identifying pairs of constants that are entity references

(e.g. authors, publications), rather than on merging attribute values

(e.g. titles, addresses), for which a local semantics is typically more

appropriate as the context in which a value occurs is crucial. In this

respect, our work departs from MDs (which adopt a local seman-

tics) and is more in line with Dedupalog and an elegant declarative

framework for entity linking proposed by Burdick et al. [12], both

of which implicitly work with a global semantics.

Taking further inspiration from the entity linking approach [12]

(we henceforth refer to it as EL), we consider not only a single

solution, but rather a space of maximal (w.r.t. set containment)

solutions. In LACE, this space naturally emerges from the fact that

denial constraints restrict which merges can be performed together,

effectively creating choices. Also in line with EL, we can naturally

define the notions of certain and possible merges, as those merges

that belong to all, resp. some, maximal solutions.

While LACE shares common features with the Dedupalog, MDs,

and the EL framework, we shall argue that none of these frame-

works fully satisfies our three desiderata, nor can be easily adapted

to do so. In particular, the ‘static’ semantics of Dedupalog and EL

frameworks makes it difficult to support collective, recursive sce-

narios while at the same ensuring all merges are properly justified.

Our paper focuses on the use of a dynamic, global semantics

for merging entity references, which is a main novelty of LACE.

However, we should emphasize that in practice many ER scenarios

will naturally involve merging both entity references and values.

Due to our dynamic semantics, we are confident that LACE can be

suitably extended to handle local merges as in the MD approach.

Outline of main results. Our first contribution is LACE, a novel

Logical Approach to Collective Entity resolution. We present its

syntax and semantics and illustrate it via a running example.

With the framework in place, we present our second contribu-

tion, a comprehensive study of the data complexity of the relevant

computational tasks. Our results can be summarized as follows:

(1) The problems of existence and recognition of maximal solutions

are intractable (complete for NP and coNP, respectively), but

recognition of arbitrary solutions is tractable (P-complete).

(2) The problem of recognizing certain merges lies at the second

level of the polynomial hierarchy (Π
p
2
-complete), while the dual

problem of identifying possible merges is NP-complete.

(3) We also define certain and possible query answers (w.r.t. the set

of maximal solutions) and show that the associated decision

problems have the same complexity as the problems in Point 2.

(4) We investigate the impact of imposing syntactic restrictions.We

show that all of the hardness results hold if denial constraints

consist solely of functional dependencies. By contrast, if one

considers denial constraints without inequalities, several of

the problems decrease in complexity. More drastic restrictions

ensure tractability of all considered problems.

Towards the development of an ER system based on LACE, our

third contribution is an encoding of solutions as stable models of

logic programs, which we use to show how the various tasks can

be handled using answer set programming (ASP) systems. The suit-

ability of ASP techniques for implementing data quality approaches

has been demonstrated in the ER context for (relational) MDs [3, 4],

following earlier ASP encodings of consistent query answering [2].

As a final contribution, we explore the differences in the seman-

tics of EL and LACE and their capability to capture recursive ER

scenarios. In particular, we exhibit one such scenario that is easily

captured in LACE, but is provably not expressible in EL.

Organization. Necessary background is provided in Section 2. In

Section 3, we present the basics of LACE, and in Section 4 we

introduce the central decision problems and investigate their com-

putational complexity. In Section 5 we show how to encode these

reasoning tasks using answer set programming. In Section 6 we po-

sition our approach w.r.t. the logical frameworks mentioned earlier.

We conclude in Section 7 with some perspectives for future work.

The appendix contains some sketches for omitted proofs.

2 PRELIMINARIES
A (relational) schema is a finite set S of relation symbols, with each

R ∈ S having an associated arity and list of attributes. We use con-

ventional notation R/k and R(A1, . . . ,Ak ) to indicate respectively

that R has arity k and that its attributes are (A1, . . . ,Ak ). A database
instance over schema S (or (S-)database for short) assigns to each

k-ary relation symbol R ∈ S a finite k-ary relation over a fixed,

infinite set of constants. Equivalently, we can view an S-database

D as a finite set of facts of the form R(c1, . . . , ck ), where (c1, . . . , ck )
is a tuple of constants of the same arity as R. In particular, we will

use the notations R(c1, . . . , ck ) ∈ D and D ⊆ D ′, with the obvious

meanings. The active domain of a database D, denoted dom(D), is
the set of all constants occurring in D.

When we speak of queries in this paper, we mean a conjunctive
query (CQ). Recall that a CQ over a schema S takes the form q(®x) =
∃®y.φ(®x, ®y), where ®x and ®y are disjoint lists of variables, and φ is

a conjunction of relational atoms of the form R(t1, . . . , tk ), with
R ∈ S a k-ary relation symbol and each ti is a constant or variable
from ®x ∪ ®y. The arity of a CQ q(®x) is its number of distinguished
variables ®x , and a query with arity 0 is called Boolean. Given an

n-ary query q(x1, . . . , xn ) and n-tuple of constants ®c = (c1, . . . , cn ),
we denote by q[®c] the Boolean query obtained by replacing each xi
by ci . The answers to an n-ary CQ q(®x) over a database D is defined

as usual as the set of n-tuples of constants ®c from D such that q[®c]
holds in D. We use q(D) to denote the answers to q over D.

When formulating entity resolution rules, we will consider CQs

that may also contain atoms built from a set of externally defined

binary similarity predicates. The preceding definitions and nota-

tions extend to such CQs, the only difference being that similarity

predicates have a fixed meaning (typically defined by applying

a similarity metric, e.g. edit distance, and keeping those pairs of

values whose score exceeds a given threshold).



Our framework will also utilize denial constraints [6, 20] of

the form ∀®x .¬(φ(®x)), where φ(®x) is a finite conjunction of atoms,

which are either relational atoms (over the considered schema)

or inequality atoms t1 , t2, with variables drawn from ®x . De-
nial constraints notably generalize the well-known class of func-
tional dependencies (FDs). For example, the FD R : {A,B} →
C , for relation R(A,B,C), is captured by the denial constraint

∀x,y, z, z′.¬(R(x,y, z) ∧ R(x,y, z′) ∧ z , z′).

3 FRAMEWORK FOR ENTITY RESOLUTION
In this section, we introduce LACE, a Logical Approach to Collective

Entity resolution that satisfies the desiderata laid out in Section 1.

Recall that the general aim is to identify pairs of database con-

stants that refer to the same entity. We will use the term merge to
speak about such pairs. The LACE framework employs hard and

soft rules to indicate (required or potential) merges. A hard rule
(w.r.t. schema S) takes the form

q(x,y) ⇒ EQ(x,y),

whereq(x,y) is a CQ, whose atomsmay use relation symbols inS as

well as similarity predicates, and EQ is a special relation symbol (not

in S) used to store merges. Intuitively, such a rule states that (c1, c2)
being an answer to q provides sufficient conditions for concluding

that c1 and c2 refer to the same entity. Soft rules have a similar form

q(x,y) d EQ(x,y),

but state instead that (c1, c2) being an answer to q provides reason-

able evidence for c1 and c2 denoting the same entity. Such rules

suggest potential (but not mandatory) merges of constants. We use

the notation q(x,y) → EQ(x,y) for a generic (hard or soft) rule,

and for the sake of brevity, we will sometimes omit the existential

quantifiers of the variables appearing uniquely in the rule body.

Example 1. Figure 1 introduces the schema Sex and ruleset Γex of
our running example. Hard rule ρ2 states that if two conferences
are held in the year, have the same chair, and have similar names
(according to similarity predicate ≈), then they are actually the same
conference. Soft rule σ2 states that two author ids likely refer to the
same person if the affiliations match and the emails are similar.

We shall assume that rules are sensibly written, i.e. the rules

only generate merges between pairs of constants with compatible

entity types (e.g. person), and similarity atoms involve values of

the required datatype (e.g. string). These requirements could be

made formal by introducing types for attributes, constants, and

similarity predicates, but we omit the details, as they have no impact

on the technical development. The only syntactic restriction we

place on rulesets is to forbid an attribute from participating both

in merges and in similarity atoms. Formally, we call an attribute

Ai of R(A1, . . . ,Ak ) a merge attribute of ruleset Γ if there exists

a rule q(x,y) → EQ(x,y) ∈ Γ and body atom R(t1, . . . , tk ) such
that ti ∈ {x,y}; we call Ai a sim attribute of Γ if there is a rule

q(x,y) → EQ(x,y) ∈ Γ and variable v that occurs both in position

Ai of an R-atom of q and in a similarity atom of q. We call Γ sim-safe
if there is no attribute that is both a merge and sim attribute of Γ.

Example 2. The sim attributes of Γex are email, title, name, while
the merge attributes are those with attribute names: id, pID, aID, cID.
As there is no attribute in common, Γex is sim-safe.

We can now formally define specifications, which consists of

hard and soft rules, together with a set of denial constraints. The

latter serve to define what counts as a legal (or consistent) database

and can help to block incorrect identification of pairs of constants.

Definition 1. An ER specification over a schema S takes the form
Σ = ⟨Γ,∆⟩, where Γ = Γh ∪ Γs is a finite sim-safe set of hard and soft
rules over S, and ∆ is a finite set of denial constraints over S.

Example 3. Our running example utilizes the ER specification Σex
from Figure 1. In addition to the ruleset Γex, it contains three denial
constraints: δ1 and δ2 are FDs for Wrote, while δ3 states that the chair
of a conference cannot co-author a paper at the same conference.

Each ER specification and database will give rise to a set of solu-

tions, each corresponding to a set of merges that is coherent w.r.t.

the specification. Intuitively, these are EQ-databases that are ob-

tained by ‘deriving’ new EQ-facts via rule applications and closure

operations, the latter serving to ensure that the resulting set of

pairs is an equivalence relation. Importantly, rule bodies are evalu-

ated on the database induced by the already derived merges, which

makes it possible for new rules to become applicable that were not

applicable in the original database. Satisfaction of the hard rules

and denial constraints is also defined w.r.t. the induced database.

To simplify the presentation, we will define solutions directly

as equivalence relations
1
(rather than as EQ-databases). Given a

set S of pairs of constants from D, we denote by EqRel(S,D) the
least equivalence relation E ⊇ S over dom(D). We assume that

each equivalence relation E is equipped with a function repE that

maps each element to a representative of its equivalence class in E.
Given a database D and an equivalence relation E over dom(D), the
database induced by D and E, denoted DE , is the database obtained

from D by replacing each constant c by repE (c). We then define the

set q(D, E) of answers to a query q(®x) w.r.t. D and E as follows:

(c1, . . . , cn ) ∈ q(D, E) iff (repE (c1), . . . , repE (cn )) ∈ q(DE ).

The sim-safe condition ensures that similarity predicates in rule

bodies are handled correctly, e.g. if repE (d1) ≈ repE (d2) is used to

satisfy a rule body in DE , then repE (di ) = di (i = 1, 2), so d1 ≈ d2.
A set of denial constraints∆ is satisfied in (D, E), written (D, E) |=

∆, if DE |= δ for every δ ∈ ∆. A rule γ = q(x,y) → EQ(x,y) ∈ Γ is

satisfied in (D, E), written (D, E) |= γ , if q(D, E) ⊆ E, and (D, E) |=
Γ′ if all rules in Γ′ ⊆ Γ are satisfied.We call a pair (c, c ′) of constants
active in (D, E) w.r.t. Γ if there exists a rule q(x,y) → EQ(x,y) ∈ Γ
such that (c, c ′) ∈ q(D, E).

With these notions in hand, we are now able to formally define

the semantics of ER specifications in terms of solutions.

Definition 2. Given a database D and ER specification Σ = ⟨Γ,∆⟩
over the same schema, we call E a candidate solution for (D, Σ) if it
satisfies one of the two conditions:
( i) E = EqRel(∅,D);

( ii) E = EqRel(E ′ ∪ {α },D), where E ′ is a candidate solution for
(D, Σ) and α = (c1, c2) is active in (D, E ′) w.r.t. Γ.
A solution for (D, Σ) is a candidate solution E for (D, Σ) that further

satisfies (a) (D, E) |= Γh and (b) (D, E) |= ∆. We denote by Sol(D, Σ)
the set of solutions for (D, Σ).
1
Also for simplicity, we use equivalence relations over the whole dom(D), but only
constants occurring in merge attributes will belong to non-trivial equivalence classes.



Author(id, email, institution)
a1 wchen@gm.com Oxford

a2 wchen@ox.uk Oxford

a3 chenw@ox.uk Oxford

a4 gln@nyu.us NYU

a5 gln@nyu.us New York
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Paper(id, title, cID)
p1 A Survey on Logic in CS c1
p2 Declarative ER c2
p3 Declarative ER (Ext. Abst.) c3
p4 Semantic Data Integration c2
p5 Data Integration c3
p6 Basics of Data Science c4

Wrote(pID, aID, pos)
p1 a1 1

p1 a2 1

p1 a3 1

p2 a4 1

p3 a4 1

p4 a5 1

p5 a5 1

p4 a6 2

p5 a7 3

p6 a1 1

Conference(id, name, year)
c1 PODS 2021

c2 Conf. on Data Eng. 2019

c3 Data Eng. Conf. 2019

c4 Data Eng. & Analytics 2019

Chair(cID, aID)
c2 a1
c3 a3

CorrAuth(pID, aID)
p2 a4
p3 a5

δ1 = ∀x,y, z,y
′.¬(Wrote(x,y, z) ∧Wrote(x,y′, z) ∧ y , y′)

δ2 = ∀x,y, z, z
′.¬(Wrote(x,y, z) ∧Wrote(x,y, z′) ∧ z , z′)

δ3 = ∀x,y, z,w,p.¬(Paper(x,y, z) ∧Wrote(x,w,p) ∧ Chair(z,w))
ρ1 = ∃z, e,u,u

′.CorrAuth(z, x) ∧ CorrAuth(z,y) ∧ Author(x, e,u) ∧ Author(y, e,u ′) ⇒ EQ(x,y)
ρ2 = ∃n,n

′, ye,a.Conference(x,n, ye) ∧ Conference(y,n′, ye) ∧ Chair(x,a) ∧ Chair(y,a) ∧ n ≈ n′ ⇒ EQ(x,y)
σ1 = ∃n,n

′, ye.Conference(x,n, ye) ∧ Conference(y,n′, ye) ∧ n ≈ n′ d EQ(x,y)
σ2 = ∃e, e

′,u.Author(x, e,u) ∧ Author(y, e ′,u) ∧ e ≈ e ′ d EQ(x,y)
σ3 = ∃t, t

′, c,a, z.Paper(x, t, c) ∧ Paper(y, t ′, c) ∧Wrote(x,a, z) ∧Wrote(y,a, z) ∧ t ≈ t ′ d EQ(x,y)

Figure 1: A schema Sex, database Dex, and ER specification Σex = ⟨Γex,∆ex⟩ with Γex = {ρ1, ρ2,σ1,σ2,σ3} and ∆ex = {δ1, δ2, δ3}. A
fact of the form Wrote(p, a, i) indicates that author a appears at position i in the list of the authors of paper p. The extension
of the similarity predicate ≈ (restricted to dom(Dex)) is the symmetric and reflexive closure of {(e1, e2), (e2, e3), (e6, e7), (t2, t3),
(t4, t5), (n2, n3), (n3, n4)}, where ei , ti , and ni are the email of author ai , title of paper pi , and name of conference ci , respectively.

We note that a database-specification pair may admit zero, one,

or several solutions. The absence of solutions arises from constraint

violations (either initially present or introduced by the hard rules)

which cannot be repaired solely through permitted merges. When

the original instance satisfies the constraints, the trivial equivalence

relation (i.e. consisting only of pairs (c, c)) is always a solution.

The existence of multiple solutions is due to some combinations of

merges not being possible without violating the constraints, leading

to a choice of which possible merges to include.

Importantly, since rule bodies do not involve any kind of nega-

tion, a pair α that is active in (D, E) remains active in (D, E ′) for
any E ⊆ E ′. In particular, this means that if α is used to construct

a solution E, then α remains active for E. Informally: later merges

cannot invalidate the reasons for performing an earlier merge.

Rather than considering all solutions, it is natural to restrict

attention to the ‘best’ ones. In this paper, we shall focus on solutions

that are maximal w.r.t. set inclusion, i.e. they derive as many merges

as possible, subject to the constraints. Alternative optimality criteria

could also be considered, see Section 7 for discussion.

Definition 3. Given a database D and ER specification Σ = ⟨Γ,∆⟩
over the same schema, a solution E for (D, Σ) is called a maximal

solution for (D, Σ) if there is no solution E ′ for (D, Σ) with E ⊊ E ′.
We denote byMaxSol(D, Σ) the set of maximal solutions for (D, Σ).

Example 4. We now determine the maximal solutions for our ex-
ample scenario (Dex, Σex). Initially, E0 = EqRel(∅,Dex) and DexE0 =

Dex. Note that E0 is not a solution for (Dex, Σex) as (Dex, E0) ̸|= δ1,
due to a1,a2,a3 all appearing as 1st author of p1. The following
pairs are active in (Dex, E0) w.r.t. Γex: α = (a1,a2), β = (a2,a3), and
χ = (a6,a7) due to σ2, and ζ = (c2, c3) and η = (c3, c4) due to σ1. By
including α and β , we resolve the violation of δ1. In fact, it can be
verified that every solution for (Dex, Σex) contains both α and β .

Adding α and β (in either order) yields E1 = EqRel({α, β},Dex),
which contains (a1,a3) due to transitivity. Note that E1 is not a so-
lution as (Dex, E1) ̸|= ρ2. The only fix is to include ζ , which in turn
blocks η. Indeed, if both ζ and η are present, then c2 and c4 are deemed
the same, which means a1 would be an author of the paper p6 pre-
sented at the same conference that (s)he chaired, in violation of δ3.

With ζ added, we get E2 = EqRel({α, β, ζ },Dex), which is a so-
lution since (Dex, E2) |= {ρ1, ρ2} and (Dex, E2) |= ∆ex. However, E2
is not a maximal solution, as θ = (p2,p3) and λ = (p4,p5) are now
active due to σ3, and χ remains active. Note however that extending
E2 by including both λ and χ would violate δ2.

Adding θ to E2 leads us to E3 = EqRel({α, β, ζ , θ },Dex). There is
now a new active pair κ = (a4,a5) in (Dex, E3) due to ρ1, which must
be added to satisfy the hard rules. We can then obtainM1 by adding λ
and κ to E3, i.e.M1 = EqRel({α, β, ζ , θ, λ,κ},Dex), which is a maxi-
mal solution for (Dex, Σex) as no further active pair in (Dex,M1) can
be added without violating some denial constraint in ∆ex. Alterna-
tively, we can obtain a second maximal solutionM2 for (Dex, Σex) by
adding χ and κ to E3, i.e.M2 = EqRel({α, β, ζ , θ, χ,κ},Dex).

It can be verified thatM1 andM2 are the only maximal solutions
for (Dex, Σex), i.e.MaxSol(Dex, Σex) = {M1,M2}.

The preceding example illustrates how constraint violations can

be resolved using merges, and how the dynamic semantics enables

us to obtain desirable merges. Observe the recursive dependencies:

merging authors can lead to merging papers, which in turn may

lead to further merges of authors.

Also note that all merges occurring in a solution are justified,
in the sense that it is possible to trace back how each merge was

obtained by a sequence of rule applications and closure steps.

Definition 4. Let D be a database, Σ = ⟨Γ,∆⟩ be an ER specifica-
tion, E ∈ Sol(D, Σ), and (a,b) ∈ E (with a , b). A justification for

(a,b) w.r.t. E and (D, Σ) is a sequence (e1, e ′
1
), . . . , (en, e

′
n ) such that



{en, e
′
n } = {a,b} and for every 1 ≤ i ≤ n, (ei , e ′i ) ∈ E and one of the

following conditions holds:
- ei = ej , e ′j = ek , and e ′k = e ′i for some j,k < i ,

- there is P1(v1
1
, . . . ,vℓ1

1
)∧ . . .∧Pm (v

1

m, . . . ,v
ℓm
m ) → EQ(x,y) ∈ Γ

and facts P1(c1
1
, . . . , cℓ1

1
), . . . , Pm (c

1

m, . . . , c
ℓm
m ) ∈ D such that:

if vsr = v
u
t and csr , c

u
t , then {c

s
r , c

u
t } = {ej , e

′
j } for some j < i .

Intuitively, the first item implements a single transitive closure

step
2
, while the second corresponds to a rule application, in which

previously derived merges may be used to ‘join’ database facts to

satisfy the rule body. It follows easily from Definition 2 that every

merge in a solution gives rise to at least one justification.

Example 5. In our running example, the sequence (c2, c3) is a one-
step justification of the merge ζ = (c2, c3) w.r.t.M1 and (Dex, Σex), as
supported by the rule σ1 and database facts

Conference(c2,n2, 2019),Conference(c3,n3, 2019),n2 ≈ n3,

where we use ni for the name of conference ci , for i ∈ {2, 3}.
Another justification for ζ is (a1,a2), (a2,a3), (a1,a3), (c2, c3), sup-

ported by the following transitivity steps and rule applications:
- apply σ2 using facts Author(a1, e1,O),Author(a2, e2,O), e1 ≈ e2
- apply σ2 using facts Author(a2, e2,O),Author(a3, e3,O), e2 ≈ e3
- transitively close (a1,a2) and (a2,a3)

- apply ρ2 using Conference(c2,n2, 2019),Conference(c3,n3, 2019),
Chair(c2,a1),Chair(c3,a3),n2 ≈ n3 and joining via (a1,a3)

where O stands for Oxford, and ei and ni are used for the email and
name of author ai and conference ci , respectively.

When solutions are numerous, it can be helpful to summarize

them using the notions of certain and possible merges.

Definition 5. Given a database D and ER specification Σ over the
same schema, we call (c1, c2) a possible merge for D w.r.t. Σ if
(c1, c2) ∈ E for some E ∈ MaxSol(D, Σ), and we call it a certainmerge

for D w.r.t. Σ if additionally (c1, c2) ∈ E for every E ∈ MaxSol(D, Σ).
We use possMerge(D, Σ) and certMerge(D, Σ) to denote the sets of
possible and certain merges for D w.r.t. Σ.

Observe that by requiring certain merges to be possible merges,

we ensure that certMerge(D, Σ) = ∅ whenever Sol(D, Σ) = ∅.

Example 6. Continuing our running example, we can easily ver-
ify that (i) η < possMerge(Dex, Σex), (ii) χ and λ belong to
possMerge(Dex, Σex) but not to certMerge(Dex, Σex), and (iii) α , β ,
ζ , θ , and κ are all in certMerge(Dex, Σex).

Interestingly, since inequalities are allowed in denial constraints,

each hard rule can be simulated with a soft one together with a

denial constraint. Specifically, given ρ = q(x,y) ⇒ EQ(x,y) with
q(x,y) = ∃®z.φ(x,y, ®z), we use the soft rule σρ = q(x,y) d EQ(x,y)
and denial constraint δρ = ∀x,y, ®z.¬(φ(x,y, ®z) ∧ x , y).

Proposition 1. Let Σ = ⟨Γh ∪ Γs ,∆⟩ be an ER specification over S,
and let Σ′ = ⟨Γ′s ,∆

′⟩ be the ER specification with Γ′s = Γs ∪ {σρ |
ρ ∈ Γh } and ∆′ = ∆ ∪ {δρ | ρ ∈ Γh }. Then Σ and Σ′ are equivalent
in the following sense: Sol(D, Σ) = Sol(D, Σ′) for each S-database D.
2
Note that we deliberately omit reflexivity and symmetry steps from justifications, as

we judge them as uninformative to users. This explains whywe use {en , e ′n } = {a, b }
rather than (en , e ′n ) = (a, b), and similarly for {csr , c

u
t } = {ej , e

′
j }.

4 COMPLEXITY ANALYSIS
In this section, we analyze the computational complexity of the

central decision problems associated with the framework. All of

the results are provided w.r.t. data complexity measure [40], i.e. the

complexity is w.r.t. the size of the database D (and also the equiva-

lence relation E for problems that require it). For the convenience

of the reader, Table 1 summarizes the obtained results.

4.1 Solution Existence & Recognition
We first consider the solution recognition problem (Rec), which is

to decide whether an input set of pairs is a solution.

Theorem 1. Rec is P-complete. The lower bound holds even for ER
specifications consisting of a single hard rule.

Proof Sketch. Hardness is shown by a reduction from a variant

of the propositional Horn entailment problem [10]. For the upper

bound, we first check that (D, E) |= Γh and (D, E) |= ∆. If these
checks succeed, then we verify whether E is a candidate solution as

follows. Starting from E ′ B EqRel(∅,D), we repeat the following
step until a fixpoint is reached: if there is some pair (c, c ′) ∈ E
such that (c, c ′) is active in (D, E ′) w.r.t. Γ and (c, c ′) < E ′, then set

E ′ B EqRel(E ′ ∪ {(c, c ′)},D). If E coincides with the computed E ′,
then E is a solution. □

By contrast, we show that the Existence problem of determining

whether a given pair (D, Σ) admits a solution is intractable.

Theorem 2. Existence is NP-complete.

Proof Sketch. Membership in NP is easy: guess a candidate

and check if it is a solution. The lower bound is by reduction from

the satisfiability problem for propositional 3CNF. Consider a 3CNF

ϕ = c1 ∧ . . . ∧ cm over the variables x1, . . . , xn , where ci = ℓi ,1 ∨
ℓi ,2 ∨ ℓi ,3. Denote by xi , j the variable of ℓi , j , and set si , j = t if
ℓi , j = xi , j and si , j = f if ℓi , j = ¬xi , j . We encode ϕ using the

following database:

Dϕ = {V (xi ) | 1 ≤ i ≤ n} ∪ {Prec(xi , xi+1) | 1 ≤ i < n}

∪ {Rsi ,1si ,2,si ,3 (xi ,1, xi ,2, xi ,3) | 1 ≤ i ≤ m}

∪ {FV (x1), LV (xn ),C1(c1),C2(c2),T (1), F (0),Q(0),Q(1)}

For instance, a clause xk∨¬xz∨xw is represented asRtft (xk , xz , xw ).
The fixed ER specification Σ3SAT contains soft rulesV (x)∧Q(y)∧

FV (x) d EQ(x,y), V (x) ∧Q(y) ∧ Prec(xp , x) ∧Q(xp ) d EQ(x,y),
andC1(x) ∧C2(y) ∧Q(z) ∧ LV (z) d EQ(x,y). The first two enable
each variable xi to merge with either 0 or 1. Once every variable has

been assigned a truth value in this manner, the third rule allowsC1-

andC2-marked clauses to merge together. Denial constraints ensure

the merges yield a proper truth assignment (∀y.¬(F (y)∧T (y))) that
does not violate any clause (∀y1,y2,y3.¬(Rtft (y1,y2,y3) ∧ F (y1) ∧
T (y2) ∧ F (y3)), and similarly for other clause types). A final con-

straint ∀y1,y2.¬(C1(y1) ∧C2(y2) ∧y1 , y2) requires c1 and c2 to be
merged, which means a full truth assignment is generated. It is not

too hard to see that ϕ is satisfiable iff Sol(Dϕ , Σ3SAT) , ∅. □

The problem MaxRec of recognizing maximal solutions can also

be shown to be intractable using a similar reduction.

Theorem 3. MaxRec is coNP-complete.



Rec MaxRec Existence CertMerge PossMerge CertAnswer PossAnswer

General Specifications P-c coNP-c NP-c Π
p
2
-c NP-c Π

p
2
-c NP-c

Restricted Specifications P-c P-c P-c coNP-c NP-c coNP-c NP-c

Table 1: Data Complexity of Decision Problems. We use ‘-c’ as an abbreviation for ‘-complete’.

Note that the preceding results imply that there cannot exist any

efficient algorithm for enumerating (maximal) solutions.

4.2 Certain and Possible Merges
We next consider the problem CertMerge of determining whether

a given pair is a certain merge and show that it lies at the second

level of the polynomial hierarchy.

Theorem 4. CertMerge is Πp
2
-complete.

Proof Sketch. For the upper bound, we can show a pair (d, e)
is not certain by guessing E with (d, e) < E and checking that

E is a maximal solution. The lower bound is by reduction from

QBF validity problem for ∀∃-3CNF [39]. Given a ∀∃-3CNF instance

Φ = ∀X .∃Y .(c1 ∧ . . . ∧ cp ) over variables X = (x1, . . . , xn ) and

Y = (y1, . . . ,ym ), we construct the database DΦ
that contains:

VX (xi ) for each 1 ≤ i ≤ n,VY (yi ) for each 1 ≤ i ≤ m, Prec(yi ,yi+1)
for each 1 ≤ i < m, a Rsk ,1sk ,2,sk ,3 -fact to encode each clause ck
(as in the proof of Theorem 2), and the facts FVY (y1), LVY (ym ),
C1(c1), C2(c2), C(c), C

′(c ′), T (1), F (0), Q(0), and Q(1).
The specification Σ∀∃ borrows ideas from the proof of The-

orem 2, e.g. only allowing c1 and c2 to merge if every variable

from Y has merged with either 0 or 1. The modified constraint

∀y,y1,y2.¬(C(y)∧C ′(y)∧C1(y1)∧C2(y2)∧y1 , y2) is now violated

only if c and c ′ already merged, as made possible byC(x)∧C ′(x) d
EQ(x,y). Themerging ofY variables with 0 or 1 can only begin once

c and c ′ aremerged:VY (x)∧Q(y)∧FVY (x)∧C(z)∧C
′(z) d EQ(x,y).

No such requirement is imposed on theX variables:VX (x)∧Q(y) d
EQ(x,y). Denial constraints are again employed to check the in-

duced assignment does not falsify any clause. It can be shown that

Φ is valid iff (c, c ′) ∈ certMerge(DΦ, Σ∀∃). □

The dual problem PossMerge of recognizing possible merges has

lower complexity: as every solution is contained in a maximal one,

it suffices to exhibit any solution that contains the target merge.

Theorem 5. PossMerge is NP-complete.

Proof Sketch. The upper bound is based upon guessing a solu-

tion E that contains the input pair. For the lower bound, we consider

the specification Σ′
3SAT

obtained from Σ3SAT (proof of Theorem 2)

by dropping the constraint ∀y1,y2.¬(C1(y1) ∧ C2(y2) ∧ y1 , y2).

Then ϕ is satisfiable iff (c1, c2) ∈ possMerge(Dϕ , Σ′
3SAT
). □

4.3 Query Answering
It may not always be feasible to examine the possible merges to

identify which maximal solution corresponds to the true state of

affairs. However, we can still obtain useful information by consider-

ing those answers which hold in some (resp. all) databases induced

by a maximal solution. Formally:

Definition 6. Given a database D, ER specification Σ, and query q,
all over the same schema, a tuple ®a of constants from D is a possible

answer to q onD w.r.t. Σ if ®a ∈ q(D, E) for some E ∈ MaxSol(D, Σ); it
is a certain answer toq onD w.r.t. Σ if additionally ®a ∈ q(D, E) for ev-
ery E ∈ MaxSol(D, Σ). We use possAns(q,D, Σ) and certAns(q,D, Σ)
to denote the sets of possible and certain answers to q on D w.r.t. Σ.

We consider the decision problems CertAnswer and PossAn-

swer of testing whether a tuple belongs to certAns(q,D, Σ), resp.
possAns(q,D, Σ), and show that they have the same complexity as

the corresponding problems for merges. The upper bounds hold

not only for CQs but for all classes of queries that can be evaluated

in P and which are preserved under homomorphisms [? ].

Theorem 6. CertAnswer is Πp
2
-complete.

Theorem 7. PossAnswer is NP-complete.

We remark that Definition 6 ensures that certAns(q,D, Σ) =
possAns(q,D, Σ) = ∅ when Sol(D, Σ) = ∅. Alternatively, we could
follow the ex falso sequitur quodlibet principle and deem all tuples

of constants occurring in the database as possible and certain when

Sol(D, Σ) = ∅. This has no impact on the complexity for certain an-

swers, but it would cause PossAnswer to become coDP-complete
3
.

4.4 Restricted Settings
Given the intractability results, we explore the impact of placing

different syntactic restrictions on ER specifications. A first idea

may be to use FDs in lieu of arbitrary denial constraints. However,

all of our lower bounds can in fact be modified to work with ER

specifications whose set of constraints contains only FDs.

While FDs are central in traditional database settings, denial con-

straints without ,-atoms figure prominently in ontology-mediated

query answering, e.g. to express the disjointness axioms found in

popular ontology languages like DL-Lite [15] and the OWL 2 pro-

files [34] and to express policies in controlled query evaluation [17].

As the next result shows, adopting restricted ER specifications, whose
denial constraints do not use any inequality atoms, brings a de-

crease in complexity (under the usual complexity assumptions) for

several of our problems. Intuitively, this is due to constraint viola-

tions being preserved under merges, i.e. if δ is a denial constraint

without ,-atoms, then DE ̸ |= δ implies DE′ ̸ |= δ when E ⊆ E ′.

Theorem 8. For restricted ER specifications, we have that:
- both Existence and MaxRec are P-complete;

- both CertMerge and CertAnswer are coNP-complete.

We also identify more severe restrictions that ensure that there

is at most one maximal solution, computable in a deterministic

fashion, thereby rendering all of the considered problems tractable.

Theorem 9. For ER specifications ⟨Γ,∆⟩ such that either Γs = ∅ or
∆ = ∅, Rec, MaxRec, Existence, CertMerge, PossMerge, CertAn-
swer, and PossAnswer are all P-complete.
3
We recall that coDP contains those decision problems that are the union of a NP

problem and coNP problem [37].



5 ANSWER SET PROGRAMMING ENCODING
To lay the grounds for implementing our framework, we show

how the computational problems can be solved using answer set

programming (ASP) [24, 33], a well-studied paradigm for declarative

problem solving for which there exist highly optimized systems
4
.

5.1 ASP Basics
We briefly recall logic programs and stable model semantics, which

form the core of ASP
5
. A disjunctive rule has the form

r = H1 ∨ . . . ∨ Hℓ ← B1, . . . ,Bm, not C1, . . . , not Cn

where ℓ,m,n ≥ 0, l + m + n ≥ 0, Head(r ) = {H1, . . . ,Hℓ},

Body+(r ) = {B1, . . . ,Bm }, and Body
−(r ) = {C1, . . . ,Cn } are sets of

relational atoms, and every variable occurs in an atom in Body+(r ).
Disjunctive rules extend classical Datalog rules by allowing negated

body atoms and disjunctive ruleheads. A (disjunctive logic) program
Π is a finite set of disjunctive rules. A program is called normal if
its every rule contains at most one head atom, and it is ground if

all of its atoms are ground (i.e. variable-free).

We give the semantics first for ground programs. An interpre-
tation I for a ground program Π is a subset of the ground atoms

occurring in Π; it is a model of Π if for every rule r ∈ Π, either
Head(r ) ∩ I , ∅ or Body+(r ) ⊈ I or I ∩Body−(r ) , ∅. The reduct of
a ground program Π w.r.t. interpretation I , denoted reduct(Π, I ), is
the program obtained by: (i) removing rules r with Body−(r )∩I , ∅,
then (ii) removing negated body atoms from all other rules. An in-

terpretation M is a stable model of a ground program Π if M is a

⊆-minimal model of reduct(Π,M). In the case of normal programs,

stable models are the sets of positive atomsM which can be derived

from Π by assuming the negation of atoms not present inM .

The semantics is extended to general programs via grounding.

Given a program Π and database D, we use дr (Π,D) to denote the

ground program that consists of all facts in D6
together with all

ground instantiations of rules from Π with constants from Π ∪ D.
The stable models of (Π,D) (aka answer sets) are the stable models

of дr (Π,D); we call (Π,D) coherent if it has a stable model.

5.2 Generating Solutions
We first define a normal logic program ΠSol that can be used to

generate solutions of (D, Σ). It will consist of the following rules:

- for every hard rule q(x,y) ⇒ EQ(x,y): Eq(x,y) ← q+

- for every denial constraint ∀®x .¬(φ(®x)): ← φ+

- for every soft rule q(x,y) d EQ(x,y): Active(x,y) ← q+

- two rules capturing the choice to add or omit an active pair:

Eq(x,y) ← Active(x,y), notNeq(x,y)

Neq(x,y) ← Active(x,y), notEq(x,y)

- the following rules to enforce that Eq is an equivalence relation:

Eq(y, x) ← Eq(x,y) Eq(x, z) ← Eq(x,y), Eq(y, z)

Eq(x, x) ← Adom(x)

4
Examples include clingo and wasp, see also a recent survey on ASP systems [26].

5
Modern ASP systems support logic programs with a rich syntax and many expressive

features: function symbols, arithmetic operators, aggregation, optimization, etc.

6
Facts correspond to rules with empty bodies.

- the following rules to compute the active domain:

Adom(xi ) ← P(x1, . . . , xn ) (P/n ∈ S, 1 ≤ i ≤ n)

To complete the definition of ΠSol , we explain how q+ and φ+ are
defined. Intuitively they weaken the original queries by allowing

two occurrences of the same variable to be mapped to different

constants if they have been determined to denote the same entity.

Given a CQ q(x,y) =
∧
i αi , we obtain q

+
from q as follows:

- each αi = P(v1, . . . ,vk ) is replaced by α
′
i = P(vi

1
, . . . ,vik ) (where

vij = vj if vj is a constant, else v
i
j is a fresh copy of variable vj )

- for every pair αi ,αk ∈ q such that variable v occurs in both αi
and αk , we add the atom Eq(vi ,vk )

- pick a single copy x i of the distinguished variable x and replace

all occurrences of x i by x ; we proceed analogously for y.

We define φ+ in a similar manner except: (i) we skip the third item,

and (ii) we additionally include ‘notEq(vi ,uk )’ for every inequality

atom v , u ∈ φ and pair of fresh variables of the forms vi ,uk .

Example 7. The encoding of δ1 of our running example is:

←Wrote(x1,y1, z1),Wrote(x2,y′1, z2),

Eq(x1, x2), Eq(z1, z2), not Eq(y1,y′1)

The solutions of Σ then correspond to the projection of the stable

models of ΠSol onto the predicate Eq:

Theorem 10. For every database D and ER specification Σ: E ∈
Sol(D, Σ) iff E = {(a,b) | Eq(a,b) ∈ M} for some stable model M of
(ΠSol ,D). In particular, Sol(D, Σ) , ∅ iff (ΠSol ,D) is coherent.

It follows that we can use the enumeration facilities of ASP

solvers to generate one or all solutions, and variants of ΠSol can be

used to solve the PossMerge and PossAnswer decision problems.

To produce all possible merges / answers, we can employ the brave
reasoning mode of ASP systems, which allows one to compute the

union of all stable models (without naïvely computing all of them).

Furthermore, we can employ off-the-shelf explanation tools for

ASP
7
to produce derivations of Eq-facts appearing in stable models,

from which we can extract justifications as defined in Section 3.

5.3 Maximal Solutions
To capture maximal solutions, we need a way to restrict our atten-

tion to stable models M of (ΠSol ,D) such that there is no stable

modelM ′ with strictly more Eq-facts. Rather than crafting an en-

coding from scratch, we can take advantage of a line of work on

incorporating preferences into ASP:

- The meta-programming approach from [25] provides a method

for constructing, for any normal program Π and target relation

T , a program Π⊆T whose stable models correspond to the stable

models of Π which have a ⊆-maximal set of T -facts. The stable
models of (Π

⊆Eq

Sol ,D) thus capture the maximal solutions of (D, Σ),

so we can use cautious reasoning (identifying facts common to

all stable models) to return all certain merges / answers.

- The Aspirin framework [11] also provides native support for

inclusion-based preferences, but uses iterative calls to an ASP

solver to more efficiently compute preferred stable models.

7
A recent tool for explaining conclusions of ASP programs is xclingo [14].

https://potassco.org/clingo/
https://dlv.demacs.unical.it/wasp
https://github.com/bramucas/xclingo


Both approaches are implemented and available for use.

6 CONNECTION TO RELATED APPROACHES
In this section, we investigate the relationship between LACE and

three logic-based frameworks for entity resolution.Wemainly focus

on these frameworks as they share certain features with LACE.

6.1 A Declarative Approach to Entity Linking
LACE shares with the entity-linking framework (EL) [12] the idea

of describing specifications in a declarative way using rules, pro-

viding a rigorous semantics, and generating a space of solutions.

Rules in EL are given as matching constraints (MCs) of the form

L(x,y) → Condition, where Condition is a first-order formula ex-

pressing requirements for a pair to be considered a link. Such rules

do not force the creation of any links and thus behave more simi-

larly to our soft rules. However, Condition may include universal

quantification, which is not expressible in our rule bodies. The

most expressive core dialect of EL, L2, is geared to collective entity

linking scenarios and allows link relations to be used in Condition
and for recursion between link predicates. Formally, a specification

in L2 is a tripleH = ⟨L,S,Ω⟩, where for each link symbol L ∈ L,
Ω contains at most one MC with left side L(x,y), two inclusion de-

pendencies for L, and zero, one, or two FDs over L. In the semantics

of EL, MCs are used to ‘statically’ ensure that solutions together

with the database fulfil desired properties, rather than constructing

solutions dynamically step by step. More precisely, an L-database
J is a solution for D w.r.t. H if (D, J ) |= Ω, where (D, J ) is the
S ∪ L-database D ∪ J . Maximal solutions (w.r.t. ⊆) are considered,

as well as quantitative notions of optimality based upon weights.

It is claimed [12] that the EL framework can be specialized to

the ER task. Alas, the details on how exactly to carry out such

a specialization are not provided. Naturally to deal with ER one

would need to specialize a general link relation L to an equivalence

relation, or find a way to capture the fact that we are dealing with

‘equality’. Probably the most natural way to adapt the EL approach

to ER is to axiomatize equality using MCs, e.g. including x = y,
L(y, x), and ∃z.L(x, z) ∧ L(z,y) as disjuncts on the right side of a

MC for L(x,y). However, we could then end up with all candidate

pairs appearing in the maximal solution, mutually supporting each

other’s presence, leading to unjustified merges. Another possibility

would be to modify the definition of solution to only accept as

solutions those databases that are equivalence relations, but such a

strong requirement would miss many expected solutions. Finally,

one could consider adding a post-processing step to close solutions

under symmetry, transitivity, and reflexivity, but the solutions pro-

duced could still be ‘incomplete’ since rules are not re-evaluated

over the new merges to potentially derive more new merges.

Leaving aside the issue with equivalence relations, more funda-

mentally, we would like to understand what are the consequences

of adopting either a static or dynamic view of the semantics, in

particular for capturing inherently recursive scenarios. To this aim,

we introduce the transitive same-generation property on directed

graphs (digraphs). Given a digraph G, we denote by DG the data-

base over schema SG = {V /1, E/2} that represents G, defined
as expected. We say that a pair of nodes (u,v) ∈ V 2

are sg in a

digraph G if they belong to the answers to the following Data-

log query
8
(with goal predicate sg) over DG : (1) sg(x, x)←V (x); (2)

sg(x,y)←E(z, x)∧E(z′,y)∧ sg(z, z′); (3) sg(x,y)←sд(x, z)∧ sg(z,y).
Let us suppose we have an SG -database DG representing a digraph

G such thatv andu are actually denoting the same real-world entity

iff (v,u) is a pair of sg nodes in G. In LACE, this can be done using

a single soft rule: ∃z.E(z, x) ∧ E(z,y) d EQ(x,y).
For a more faithful comparison, we will consider the sg property

graph over the subclass of directed bidirectional chain graphs (dgbc).
We do so as solutions in EL are not necessarily equivalence relations,

and over dgbc graphs, it is not needed to close the pairs transitively.
We delay the formal definition of dgbc graphs to the appendix as it

is rather technical and directly state the obtained result.

Theorem 11. There is no entity-linking specification H =

⟨{L},SG ,Ω⟩ in L2 that expresses the sg property over dgbc graphs,
i.e. such that, for every SG -database DG representing a dgbc graphG ,
L(a,b) is a certain link iff (a,b) is a pair of sg nodes in G.

By contrast, in LACE, we are still able to capture the sg prop-

erty over dgbc graphs even if we weaken the semantics to omit

the closure operation (and thus no longer require solutions to be

equivalence relations). Indeed, it suffices to add a further soft rule:

V (x) d EQ(x, x). We can thus conclude that the expressive power

of our ER specifications is not subsumed by the expressive power of

entity-linking specifications in L2, even if we adopt a pared-down

version of our semantics to aid the comparison. Note that the result

holds irrespective of whether expressivity is measured in terms of

certain links/merges as done in [13], or using maximal solutions.

6.2 Dedupalog
Dedupalog [1] is another logic-based framework for collective en-

tity resolution. LACE borrows fromDedupalog the idea of including

soft and hard rules. Interestingly, Dedupalog also allows for soft

rules with negated heads, to indicate likely non-merges.

As in the EL case, Dedupalog adopts a static view of the seman-

tics. In addition to this, as further crucial differences we mention

that: (i) while LACE aims at merging as many references as possi-

ble, Dedupalog aims at minimizing the number of violations of soft

rules; and (ii) Dedupalog further requires the mandatory presence

of soft-complete rules, which provide ‘soft’ sufficient and necessary

conditions for two entity references to be merged. This leads to

cases where it turns out to be convenient to not merge two refer-

ences, despite the existence of a soft rule which supports the merge

without contradicting any further constraint.

In light of these considerations, we believe that a formal compar-

ison of expressive power between LACE and Dedupalog would not

be informative, although similar arguments as the one provided

for the EL case apply due to the static view of the semantics. Fur-

thermore, due to requirement (ii) and the semantics adopted, we

also argue that it is hard to devise Dedupalog specifications for

inherently recursive scenarios, or for scenarios in which there can

be more than one reason to merge two references.

Finally, note that the actual Dedupalog implementation is an

algorithm that produces an approximately optimal solution, and

makes its own choices of which merges to apply. Thus, as also noted

8
Without (3), the query would be the so-called same-generation query [32].



in [12], Dedupalog is not an entirely declarative approach since the

user must be aware of how the rules are treated by the system.

6.3 Matching Dependencies
Matching dependencies (MDs) have been introduced to specify that a
pair of attribute values occurring as arguments in two database facts

have to be matched [19, 21], i.e. made equal, if certain similarity

conditions hold between (possibly other) values occurring in those

facts. Formally, anMD takes the form R1[ ®X1] ≈ R2[ ®X2] → R1[Y1] �
R2[Y2] and states that if the projections of an R1-fact f1 and R2-fact

f2 onto the attributes ®X1 and
®X2 respectively are pairwise similar,

then the Y1-value of f1 and the Y2-value of f2 must be made equal.

Relational MDs [3, 5] allow for additional atoms in the bodies of

MDs to provide context and are thus more similar to LACE rules.

(Relational) MDs are equipped with a dynamic semantics, which

can be defined via a chase-like procedure that fixes the violation

of MDs. While the first works on MDs did not specify how values

are made equal, Bertossi et al. [8] introduced matching functions
to define what new value results from matching a pair of values.

Although (relational) MDs can be seen as hard rules (since they

must be satisfied), the order of rule application matters due to the

modification of values, leading to a set of possible solutions. By

contrast, in LACE, the existence of multiple solutions stems from

the combination of soft rules and denial constraints.

Due to the different settings, the ASP encodings developed for

(relational) MDs [3, 4] differ from ours in several respects. Most

notably, the MD encodings employ an ordering to keep track of

different versions of a tuple (nothing like this appears in our encod-

ing), whereas a key challenge for us is that the certainty problems

are at the second level of the polynomial hierarchy (the certain

answer problem for MDs is ‘only’ coNP-complete [4, 8]).

As already noted, a fundamental difference between LACE and

MDs is that our merges apply globally, throughout the database,

while MDs only change the two occurrences of the constants in-
volved in a specific MD. This difference is explained by the fact

that we focus on merging constants denoting references, whereas

MDs target constants denoting attribute values. For instance, local

merges allow for some occurrences of ‘ISWC’ to be matched to

‘Int. Semantic Web Conf.’ and others to ‘Int. Symp. on Wearable

Computing’, without (wrongly) equating the latter two constants.

7 CONCLUSION AND FUTUREWORK
We presented LACE, a new logical framework for entity resolution

which employs declarative specifications to handle complex collec-

tive ER settings, while ensuring that all merges can be justified. We

have argued that this trio of desirable features (collectivity, declara-

tivity, and justifiability) is better supported in LACE than in other

existing logical approaches to ER. We explored the computational

properties of our framework, establishing the precise data complex-

ity of the main decision problems related to reasoning over LACE

specifications and identifying some syntactic restrictions that lead

to lower complexity. To lay the groundwork for implementation,

we further showed how the reasoning tasks could be realized using

the functionalities of modern ASP solvers. This promising initial

investigation opens up many interesting research directions:

Local merges. We believe that the LACE and MD approaches are

complementary, and it would be fruitful to combine them to obtain

a framework that allows for both global and local merges. Indeed,

local merges may trigger global merges by making similarity atoms

hold or could resolve FD violations which would otherwise block

desirable global merges (e.g. two author IDs cannot merge due to

different variants of the author’s name). Likewise, global merges

could enable local merges. Such an extension could be accomplished

by adding a local version of EQ which is an equivalence relation

over value occurrences (with tuple identifiers to identify where a

value occurs), allowing hard and soft rules for the local EQ relation,

and adopting a strategy for evaluating similarity predicates over

sets of equivalent cell values (e.g. take the minimal similarity value).

Quantitative extensions. Using maximal set containment to de-

fine good solutions might in some cases be too coarse, as it does

not take into account the strength of evidence for a merge. It would

thus be interesting to equip rules with quantitative information and

use it to assign weights or probabilities to merges and solutions.

One might further include soft rules with negative heads (for likely

non-merges) and compare the evidence for and against a merge.

Tractable subclasses. It would also be worthwhile to investigate

other restricted forms of specifications that may yield lower com-

plexity. In particular, wemay consider whether the various syntactic

and semantic restrictions presented in [3, 5, 7] for (relational) MDs

(e.g. the so-called SFAI class) can be adapted to our setting.

Explanation facilities. Our notion of justification provides the

basis for explaining to a user how a given merge was obtained.

It would be interesting however to consider how best to present

justifications to users and also to explore more sophisticated forms

of explanations that concern the whole space of (maximal) solutions,

e.g. explaining why a given pair is (or is not) a certain merge.

Implementation.Wewant to develop an efficient prototype based

on the presented ASP encodings and experiment it on existing ER

benchmarks [28, 29]. Significant tuning and specialized optimiza-

tions will likely be required to achieve reasonable performance. In

particular, we plan to develop static analysis techniques for reduc-

ing the number of references to be compared (blocking). It could

also be interesting to explore the interaction with machine learning

techniques, as done in ERBlox [5].

Ontologies. We could also extend LACE with ontological infor-

mation. We believe that for ontology languages supporting first-

order rewritability, such as those in the DL-Lite family [15], our

complexity results could be lifted. The effect on the complexity of

considering other more expressive ontology languages is unclear.

Repairing and deduplicating. While merges can resolve some

constraint violations (i.e. those resulting from different represen-

tations of the same entity), a holistic framework for data quality

will need to combine ER with traditional database repair operations

[6]. How do we extend the LACE framework to simultaneously

tackle both ER and database repairs, and how do we handle the

interaction between fact deletions and merges?
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A PROOF DETAILS FOR SECTION 3

Proposition 1. Let Σ = ⟨Γh ∪ Γs ,∆⟩ be an ER specification over S,
and let Σ′ = ⟨Γ′s ,∆

′⟩ be the ER specification with Γ′s = Γs ∪ {σρ |
ρ ∈ Γh } and ∆′ = ∆ ∪ {δρ | ρ ∈ Γh }. Then Σ and Σ′ are equivalent
in the following sense: Sol(D, Σ) = Sol(D, Σ′) for each S-database D.

Proof Sketch. To prove the claim, note that it is enough to

show the following: given two ER specifications Σ = ⟨Γ,∆⟩ and
Σ′ = ⟨Γ′,∆′⟩ such that Γ′h = Γh \ {ρ}, Γs = Γ′s ∪ {σρ }, and ∆′ =

∆ ∪ {δρ }, where ρ ∈ Γh , we have that Σ and Σ′ are equivalent.
Consider any database D. We shall show that Sol(D, Σ) =

Sol(D, Σ′). First note that (D, Σ) and (D, Σ′) have the same set of

candidate solutions, since the notion of ‘active’ rule does not dis-

tinguish between hard rules and soft rules.

Let E ∈ Sol(D, Σ), i.e. E is a candidate solution for (D, Σ) sat-
isfying (D, E) |= Γh and (D, E) |= ∆. From (D, E) |= ρ, we obtain
DE |= δρ . Since DE |= δ for each δ ∈ ∆, this yields (D, E) |= ∆′ as
well. Therefore, E is a solution for (D, Σ′) (condition (D, E) |= Γ′h
immediately follows from the facts that (D, E) |= Γh and Γ′h ⊆ Γh ).

So, Sol(D, Σ) ⊆ Sol(D, Σ′).
Let E ∈ Sol(D, Σ′), i.e. E is a candidate solution for (D, Σ′) sat-

isfying (D, E) |= Γ′h and (D, E) |= ∆′. Satisfaction of the latter, and

in particular the fact that DE |= δρ , implies (D, E) |= ρ. Since
(D, E) |= ρ ′ for each ρ ′ ∈ Γ′h holds by the assumption (D, E) |= Γ′h ,

we derive that (D, E) |= Γh as well. Therefore, E is a solution for

http://www.w3.org/TR/owl2-profiles/


(D, Σ) (condition (D, E) |= ∆ immediately follows from the facts

that (D, E) |= ∆′ and ∆ ⊆ ∆′). So, Sol(D, Σ′) ⊆ Sol(D, Σ). □

B PROOF DETAILS FOR SECTION 4

Theorem 1. Rec is P-complete. The lower bound holds even for ER
specifications consisting of a single hard rule.

Proof Sketch. We outlined the upper bound argument in the

main paper and now give a sketch of the lower bound.

It is well known that the satisfiability and entailment problems

for propositional Horn 3CNF formulas are P-hard. For our reduction,

it is more convenient to work with a variant, Horn-All, which

takes as input a Horn formula ϕ = λ1 ∧ . . . ∧ λm , with variables

V = {v1, . . . ,vn } and with each λi taking the formvj ∧vk → vh or

⊤∧⊤ → vh , and decides whether it is the case thatϕ |= v1∧. . .∧vn .
It can be shown that this variant remains P-hard.

We shall consider the schema S = {R/4} and use R to store the

input Horn clauses, with each clause represented twice, using two

copies of the head variable. The fixed specification ΣHorn-All will
consist of a single hard rule:

ρ = ∃zℓ, z1, z2.R(zℓ, z1, z2, x) ∧ R(zℓ, z1, z2,y) ⇒ EQ(x,y),

which will be used to merge a propositional variable x with its copy

y whenever both variables z1 and z2 have been already merged

with their respective copies.

Now take some Horn-All instance ϕ = λ1 ∧ . . . ∧ λm of the

form described earlier. We construct an S-database Dϕ
as follows:

- for each λi = ⊤∧⊤ → vh , we include the facts R(ℓi , t, t,vh ) and
R(ℓi , t, t,v

′
h ), which will force vh and v ′h to be merged due to ρ;

- for each λi = vj ∧vk → vh , we include the facts R(ℓi ,vj ,vk ,vh )
and R(ℓi ,v

′
j ,v
′
k ,v
′
h ), thus merging constants vh and v ′h if both

pairs (vj ,v
′
j ) and (vk ,v

′
k ) have been previously merged.

As candidate solution, we consider the equivalence relation

EV ={(t, t)} ∪ {(li , li ) | 1 ≤ i ≤ m}∪

{(vj ,vj ), (v
′
j ,v
′
j ), (vj ,v

′
j ), (v

′
j ,vj ) | 1 ≤ j ≤ n}

Clearly, Dϕ
and EV can be constructed in LogSpace in ϕ. It can be

shown that ϕ |= v1 ∧ . . . ∧vn iff EV ∈ Sol(Dϕ , ΣHorn-All). □

Theorem 2. Existence is NP-complete.

Proof. We provide further details for the sketched reduction.

Recall that the specification Σ3SAT contains three soft rules:

- σ1 = V (x) ∧Q(y) ∧ FV (x) d EQ(x,y),

- σ2 = ∃xp .V (x) ∧Q(y) ∧ Prec(xp , x) ∧Q(xp ) d EQ(x,y),

- σ3 = ∃z.C1(x) ∧C2(y) ∧Q(z) ∧ LV (z) d EQ(x,y),

and its set ∆ contains ten denial constraints, which are:

- δ1 = ∀y1,y2.¬(C1(y1) ∧C2(y2) ∧ y1 , y2),

- δ2 = ∀y.¬(F (y) ∧T (y)),
and eight additional constraints δ3, . . . , δ10, one for each rela-

tion Rsi ,1si ,2,si ,3 . For example, ∀y1,y2,y3.¬(Rtft (y1,y2,y3)∧ F (y1)∧
T (y2)∧ F (y3)) is the constraint for Rtft , which serves to forbid truth

assignments that would violate clauses whose first literal is positive,

second literal is negative, and third literal is positive (every such

clause being represented by a Rtft -fact). To complete the proof, we

need to show that ϕ is satisfiable iff Sol(Dϕ , Σ3SAT) , ∅.
First suppose that ϕ = c1 ∧ . . . ∧ cm is satisfiable, and let

(b1, . . . ,bn ) ∈ {0, 1}
n
be a truth assignment for x1, . . . , xn that

satisfies ϕ. Set E = EqRel({(x1,b1), . . . , (xn,bn ), (c1, c2)},Dϕ ). It

is straightforward to verify that E is a candidate solution for

(Dϕ , Σ3SAT) and that (D, E) |= ∆. Thus, E ∈ Sol(Dϕ , Σ3SAT).
Conversely, suppose that E ∈ Sol(Dϕ , Σ3SAT) , ∅. It follows that

D
ϕ
E |= δ1, which means that (c1, c2) ∈ E. By examining the available

rules, only σ3 can be used to add (c1, c2). In turn, σ3 can only be

applied if the last variable xn has been previously merged with

either constant 0 or 1. Due to the structure of σ2, it can be shown by

a simple inductive argument that each of the preceding variables

x1, . . . , xn−1 has also been merged with 0 or 1. Since by assumption,

D
ϕ
E |= δ2, it follows that 0 and 1 have not been merged, so for every

xi , either (xi , 0) ∈ E or (xi , 1) ∈ E but not both. Moreover, due

to the fact that D
ϕ
E |= δi for i ∈ [3, 10], the truth assignment that

assigns 0 to xi if (xi , 0) ∈ E and 1 to xi if (xi , 1) ∈ E cannot violate

any of the clauses of ϕ, i.e. ϕ is satisfiable. □

As stated in the body of the paper, all of our lower bounds can

be modified to work with ER specifications whose set of denial

constraints contains only FDs. We show how to adapt the reduction

for the Existence problem (Theorem 2), and similar modifications

can be used for the other lower bounds.

Theorem 12. Existence is NP-hard even for ER specifications whose
set of denial constraints contains only FDs.

Proof. The proof is again by reduction from 3SAT. The schema

will be similar to the one from Theorem 2, except that the

Rsi ,1si ,2,si ,3 and C relations will have an extra attribute, and we

use a binary relation FT in place of the unary relations T and F .
Given a 3CNF instanceϕ = c1∧. . .∧cm over variables x1, . . . , xn ,

we consider the following database D
ϕ
FD :

{V (xi ) | 1 ≤ i ≤ n} ∪ {FV (x1), LV (xn )} ∪ {Prec(xi , xi+1) | 1 ≤ i < n}

∪ {C1(c, c1),C2(c, c2), FT (0, cF ), FT (1, cT ),Q(0),Q(1)}

∪ {Rfff (1, 1, 1, c
′
R ),Rfft (1, 1, 0, c

′
R ),Rftf (1, 0, 1, c

′
R ),Rftt (1, 0, 0, c

′
R ),

Rtff (0, 1, 1, c
′
R ),Rtft (0, 1, 0, c

′
R ),Rttf (0, 0, 1, c

′
R ),Rttt (0, 0, 0, c

′
R )}

∪ {Rsi ,1si ,2si ,3 (xi ,1, xi ,2, xi ,3, cR ) | 1 ≤ i ≤ m}

where the polarities si ,1, si ,2, si ,3 of literals in a clause are defined

as in Theorem 2.

The specification ΣFD
3SAT

will contain the soft rules σ1 and σ2, as
well as the modified soft rule

σ ′
3
= ∃z, z′.C(z, x) ∧C(z,y) ∧Q(z′) ∧ LV (z′) d EQ(x,y)

The denial constraints (all corresponding to FDs) are as follows:

- δC = ∀x,y1,y2.¬(C(x,y1) ∧C(x,y2) ∧ y1 , y2)

- δFT = ∀x,y1,y2.¬(FT (x,y1) ∧ FT (x,y2) ∧ y1 , y2)

- δτ = ∀x1, x2, x3,y1,y2.¬(RI (x1, x2, x3,y1) ∧ RI (x1, x2, x3,y2) ∧
y1 , y2), for each possible τ ∈ {fff , fft,ftf ,ftt, tff , tft,ttf ,ttt}.

Intuitively, δC forces c1 and c2 to merge and thus replaces δ1 from
Theorem 2, whereas δFT replaces δ2 and serves to forbid 0 and 1

merging (so that each variable receives a unique truth value). The



constraints δτ are used in place of δ3, . . . , δ10 to ensure that the

obtained truth assignment satisfies all clauses. For example, if the

data contains Rtft (x j , xk , xℓ, cR ) (representing the clause x j ∨¬xk ∨
xℓ ) and we merge x j with 0, xk with 1, and xℓ with 0 (thus falsifying
the clause), then δtft will be violated due to fact Rtft (0, 1, 0, c

′
R ).

Following an argument similar to the one used for Theorem 2, it

can be shown that ϕ is satisfiable iff Sol(Dϕ
FD , Σ

FD
3SAT
) , ∅. □

Theorem 3. MaxRec is coNP-complete.

Proof Sketch. For the upper bound, we can decide E <
MaxSol(D, Σ) in NP by first guessing E ′ and then checking that

either (i) E < Sol(D, Σ) or (ii) E ⊊ E ′ and E ′ ∈ Sol(D, Σ) holds.
The lower bound can be obtained with a modification of the

lower bound proof of Theorem 2. The intuition is to introduce two

new constants c and c ′, which can be merged by an additional soft

rule, and the variable x1 of the 3SAT instance ϕ can be merged with

either 0 or 1 only if c and c ′ have been previously merged.

Recall the database Dϕ
encoding the 3SAT instance ϕ as in

the proof of Theorem 2, and let D
ϕ
C = Dϕ ∪ {C(c),C ′(c ′)}. The

ER specification Σ′
3SAT

is obtained from Σ3SAT (from the proof

of Theorem 2) by (i) replacing V (x) ∧ Q(y) ∧ FV (x) d EQ(x,y)
with ∃z.V (x) ∧ Q(y) ∧ FV (x) ∧ C(z) ∧ C ′(z) d EQ(x,y), (ii) in-
cluding soft rule C(x) ∧ C ′(y) d EQ(x,y), and (iii) replacing
∀y1,y2.¬(C1(y1)∧C2(y2)∧y1 , y2)with ∀y,y1,y2.¬(C(y)∧C ′(y)∧
C1(y1) ∧C2(y2) ∧ y1 , y2), which require c1 and c2 to be merged

only if c and c ′ already merged. Finally, we let E = EqRel(∅,Dϕ
C ).

With the correctness of the reduction provided in the proof of The-

orem 2 at hand, it is not hard to see that ϕ is unsatisfiable if and

only if E ∈ MaxSol(Dϕ
C , Σ

′
3SAT
). □

Theorem 6. CertAnswer is Πp
2
-complete.

Proof Sketch. Membership is by guess-and-check, and the

lower bound adapts the proof of Theorem 4, by using the Boolean

CQ q = ∃z.C(z) ∧C ′(z) in place of the merge (c, c ′). □

Theorem 7. PossAnswer is NP-complete.

Proof Sketch. The upper bound again exploits the fact that it

is sufficient to consider (not necessarily maximal) solutions. For the

lower bound, we employ a reduction similar to the one used for

Theorem 5 but use q = ∃z.C1(z) ∧C2(z) in place of (c1, c2). □

Theorem 8. For restricted ER specifications, we have that:
- both Existence and MaxRec are P-complete;

- both CertMerge and CertAnswer are coNP-complete.

Proof Sketch. We only provide the P upper bound for MaxRec,

which we believe to be the most interesting. As a first step, we

check whether E ∈ Sol(D, Σ) using the technique illustrated in

the proof sketch of Theorem 1. If E < Sol(D, Σ), then we return

false; otherwise, we continue as follows. We collect in set S all

those pairs of constants α = (c, c ′) such that α is active in (D, E)
w.r.t. Γs and α < E. For each α ∈ S , we proceed as follows. Starting

from E ′ B EqRel(E ∪ {α },D), we repeat the following step until

a fixpoint is reached: if there exists a pair (c, c ′) such that (c, c ′) is
active in (D, E ′) w.r.t. Γh and (c, c ′) < E ′, then set E ′ B EqRel(E ′ ∪
{(c, c ′)},D). Once the fixpoint is reached, we simply check whether

(D, E ′) |= ∆. If this is the case for some α ∈ S , then we return false;
otherwise, we return true.

The intuition is that for E ∈ Sol(D, Σ), to establish E <
MaxSol(D, Σ) it is enough to ‘minimally’ extend E and see whether

such a minimal extension leads to a solution for (D, Σ). This is be-
cause, if ∆ is a set of denial constraints without inequality atoms,

then (D, E) ̸|= ∆ implies (D, E ′) ̸|= ∆whenever E ⊆ E ′ (thus making

futile the consideration of ‘non-minimal’ extensions of E). □

C PROOF DETAILS FOR SECTION 5

Theorem 10. For every database D and ER specification Σ: E ∈
Sol(D, Σ) iff E = {(a,b) | Eq(a,b) ∈ M} for some stable model M of
(ΠSol ,D). In particular, Sol(D, Σ) , ∅ iff (ΠSol ,D) is coherent.

Proof Sketch. Given E ∈ Sol(D, Σ), letME extend D with the

following facts: Adom(d) for every d ∈ dom(D), Eq(a,b) for ev-
ery (a,b) ∈ E, Active(a,b) for every pair (a,b) that is active in

(D, E) due to a soft rule, and Neq(a,b) if Active(a,b) ∈ ME but

Eq(a,b) < ME . We claim thatME is a stable model, i.e. the unique

minimal model of reduct(дr (ΠSol ,D)). We describe a key part of

the argument, which is to show that every fact in ME is entailed

from reduct(дr (ΠSol ,D)), focusing on Eq-facts. We fix a sequence

E0,α0, E1, . . . ,αn, En such that E0 = EqRel(∅,D), and for every

1 ≤ i < n, Ei+1 = EqRel(Ei ∪ {αi },D) for some αi < Ei that is
active in (D, Ei ). By suitably enumerating the pairs in E0 and each

Ei+1 \ (Ei ∪ {αi }), we obtain an enumeration of the Eq-facts inME :

Eq(ϵ0
1
), . . . , Eq(ϵ0ℓ0 ), Eq(α1), Eq(ϵ

1

1
), . . . , Eq(ϵ1ℓ1 ), Eq(α2),

. . . , Eq(αn ), Eq(ϵ
n
1
), . . . , Eq(ϵnℓn )

such that each fact can be derived from D and the preceding facts

in the enumeration using the ground rules in reduct(дr (ΠSol ,D)).
Intuitively, each Eq(ϵ0k ) is obtained using groundings of Eq(x, x) ←

Adom(x) and the Adom rules, each Eq(ϵ
j
k ) (with j > 0) by applying

the (instantiated) symmetry or transitivity rule, each Eq(αi ) with
αi added to Ei due to ρ = q(x,y) ⇒ EQ(x,y) by the (instantia-

tion of the) rule Eq(αi ) ← q+(αi ), and each Eq(αi ) with αi added
due to σ = q(x,y) d EQ(x,y) by the combination of (instantia-

tions of) Active(αi ) ← q+(αi ) and Eq(αi ) ← Active(αi ) (note that
‘notNeq(αi )’ is dropped in the reduct since Neq(αi ) < ME ).

Conversely, suppose thatM is a stable model of (ΠSol ,D), and let
EM = {(a,b) | Eq(a,b) ∈ M}. AsM is a stable model, there exists an

enumeration β1, . . . , βN of the facts inM such that for every 1 ≤ i ≤
N , there exists a ground rule ri ∈ reduct(дr (ΠSol ,D))whose head is
βi andwhose body consists of facts fromD∪{β1, . . . , βi−1}. Wemay

assumew.l.o.g. that the enumeration respects the following strategy:

(i) first apply all instantiations of rules of the form Adom(xi ) ←
P(x1, . . . , xn ) (ii) next apply all instantiations of the reflexivity rule,

(iii) next apply instantiations of the symmetry and transitivity rules,

as long as possible, (iv) next apply a single instantiation of a rule

associated with a hard or soft rule, (v) next apply any applicable

instantiations of the ‘add’ and ‘omit’ rules, and finally repeat (iii)-

(v) until all facts in M have been produced. This ensures that the

Eq-facts are suitably ordered so as to be grouped into a sequence

E0,α0, E1, . . . ,αn, En such that E0 = EqRel(∅,D), and for every

1 ≤ i < n, Ei+1 = EqRel(Ei ∪ {αi },D) for some αi active in (D, Ei ).
AsM is a model of (ΠSol ,D), and ΠSol contains analogs of the hard



rules and denial constraints from Σ, there cannot be any unsatisfied
hard rule nor violated constraint in DEM , i.e. EM is a solution. □

D PROOF DETAILS FOR SECTION 6

Recall that we say that a pair (v,v ′) of nodes is sg in a digraphD just

in the case that (v,v ′) ∈ qsg(DG ), where DG is the database that

representsG and qsg is the Datalog query with goal predicate sg and
the rules (1) sg(x, x)←V (x); (2) sg(x,y)←E(z, x)∧E(z′,y)∧sg(z, z′),
and (3) sg(x,y)←sд(x, z) ∧ sg(z,y).

We first detail our claim that the ER specification Σsg =
⟨{∃z.E(z, x) ∧ E(z,y) d EQ(x,y)}, ∅⟩ expresses the sg property over
digraphs, i.e. certMerge(DG , Σsg) = {(v,v

′) | (v,v ′) is sg in G} for
every SG -database DG representing a digraph G.

Proposition 2. Σsg expresses the sg property over digraphs.

Proof Sketch. As Σsg contains no denial constraints, for ev-

ery SG -database DG , there is a unique maximal solution MG for

(DG , Σsg). It follows that certMerge(DG , Σsg) = MG . To see why

MG contains precisely the sg pairs of G, observe that rules (1) and
(3) of qsg are handled directly by our semantics, which requiresMG
to be an equivalence relation over dom(DG ), whereas rule (2) of qsg
is captured by ∃z.E(z, x) ∧ E(z,y) d EQ(x,y), with our dynamic

semantics ensuring that the rule is applied until fixpoint. □

We now formally define the class of dgbc graphs. Given n,m ≥ 0,

we define the digraph Gm
n = (V , E) as follows:

- if n = 0: V = {u1, . . . ,um } and E = ∅;

- if n > 1: V = {д,д′,v1,v
′
1
, . . . ,vn,v

′
n,u1, . . . ,um } and

E = {(д,д′), (д′,д)} ∪ C ∪ C ′ with C = {(д,v1), (v1,v2), . . . ,
(vn−1,vn )} and C

′ = {(д,v ′
1
), (v ′

1
,v ′

2
), . . . , (v ′n−1,v

′
n )}.

Intuitively,Gm
n containsm isolated nodes and, ifn ≥ 1, two length-n

chains originating from д and a д,д′-loop. By directed bidirectional
chain graph (dgbc), we shall mean a digraphGm

n (for some n,m ≥ 0).

It can be easily verified that the pairs of sg nodes in Gm
n are:

qsg(DGm
n
) = {(v,v) | v ∈ V } ∪ {(vi ,v

′
i ), (v

′
i ,vi ) | i ≤ n}.

Observe that rule (3) of qsg is irrelevant for dgbc graphs, i.e.

qsg(DG ) = q
′
sg(DG ) for every dgbc graph G, where q′sg is obtained

from qsg by dropping rule (3). From this observation, one can im-

mediately see that even if we weaken our semantics by omitting

the closure operation (and thus no longer require solutions to be

equivalence relations), the ER specification Σ
dgbc
sg which adds to Σsg

the soft rule V (x) d EQ(x, x) expresses the sg property over dgbc
graphs, i.e. certMerge(DG , Σ

dgbc
sg ) = {(v,v

′) | (v,v ′) are sg in G}
for every SG -database DG representing a dgbc graph G.

Now let us consider the EL framework. We shall say that an EL

specificationH = ⟨{L},SG ,Ω⟩ expresses the sg property over dgbc
graphs, if for every SG -database DG representing a dgbc graph
G, the extension of L in the set of certain links for DG w.r.t. H

contains exactly the pairs of sg nodes in G. One might be tempted

to think that we can capture the sg property over dgbc graphs using
the EL specificationH∗ = ⟨{L},SG ,Ω⟩, where Ω is as follows: the

inclusion dependencies are such that L ranges over all constants

from V , there are no FDs over L, and the unique MC for L is:

L(x,y) →V (x) ∧V (y) ∧ x = y ∨ ∃z, z′.E(z, x) ∧ E(z′,y) ∧ L(z, z′)

We can prove that this is not the case. Since there are no FDs over

L, for every SG -database D, the set of certain links for D w.r.t.H∗

coincide with the unique ⊆-maximal {L}-database J such that

(D, J ) |= Ω. Consider the SG -database DG0

1

= {V (д), V (д′), V (v1),

V (v ′
1
), E(д,д′), E(д′,д), E(д,v1), E(д,v

′
1
)} representingG0

1
, and let J

be the ⊆-maximal {L}-database J such that (DG0

1

, J ) |= Ω. We claim

that L(д,д′) ∈ J and L(д′,д) ∈ J . Since neither pair is sg in G0

1
, it

follows thatH∗ does not express the sg property over dgbc graphs.
Let us thus suppose for a contradiction that either L(д,д′) < J or
L(д′,д) < J , and consider J ′ = J ∪ {L(д,д′), L(д′,д)}. Observe that
the instantiated MCs L(д,д′) → ∃z, z′.E(z,д) ∧ E(z′,д′) ∧ L(z, z′)
and L(д′,д) → ∃z, z′.E(z,д′) ∧ E(z′,д) ∧ L(z, z′) are satisfied

in DG0

1

∪ J ′. When combined with (DG0

1

, J ) |= Ω, this yields

(DG0

1

, J ′) |= Ω. Thus, J ′ is a solution for DG0

1

w.r.t.H∗ with J ⊊ J ′,

contradicting the maximality of J .
We now provide the proof sketch of Theorem 11.

Theorem 11. There is no entity-linking specification H =

⟨{L},SG ,Ω⟩ in L2 that expresses the sg property over dgbc graphs,
i.e. such that, for every SG -database DG representing a dgbc graphG ,
L(a,b) is a certain link iff (a,b) is a pair of sg nodes in G.

Proof Sketch. Suppose that the EL specification H =

⟨{L},SG ,Ω⟩ (in the most expressive L2 dialect of [12]) expresses

the sg property over dgbc graphs, and its unique MC for L is

ω = L(x,y) → ∀®u.(ψ (x,y, ®u) → α1 ∨ . . . ∨ αk ),

where ψ (x,y, ®u) is a (possible empty) conjunction of relational

atoms over SG , and each disjunct αi is a conjunctive query over

SG ∪ {L}, possibly with equality atoms and built-in predicates.

The proof proceeds by systematically imposing additional struc-

ture uponH until the specification is sufficiently constrained so

that we can show that it does not express the required property.

More specifically, the key steps are to show the following:

(1) There are no FDs over L.

(2) The inclusion dependencies are L(X ) ⊆ V (A) and L(Y ) ⊆ V (A),
with (X ,Y ) and A the attributes of L and V , respectively.

(3) We may assume w.l.o.g. that ω = L(x,y) → α1 ∨ . . . ∨ αk .

(4) No specification satisfying the preceding restrictions can express

the sg property over dgbc graphs.
For points (1) and (2), consider the SG -database DG1

1

= {V (д),

V (д′), V (v1), V (v
′
1
), V (u1), E(д,д

′), E(д′,д), E(д,v1), E(д,v
′
1
)}. As

(v1,v1) and (v1,v
′
1
) (resp., (v ′

1
,v ′

1
) and (v ′

1
,v1)) are pairs of sg nodes

in G1

1
, they must belong to the extension of L, hence we cannot

have the FD L : {X } → Y (resp., L : {Y } → X ). Further note that
(u1,u1) is a pair of sg nodes inG1

1
. Thus,H must have the inclusion

dependencies L(X ) ⊆ V (A) and L(Y ) ⊆ V (A), otherwise no solution
for DG1

1

w.r.t.H can contain L(u1,u1), and (u1,u1) would not be a

certain link. Points (3) and (4) require intricate arguments, which

cannot be adequately summarized in a few lines. Let us simply

note that unlike the arguments seen so far, they employ graphsGm
n

wherem and n are not bounded by a fixed constant and depend

instead on the number of variables occurring in ω. □
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