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1 INTRODUCTION

A belief revision operator can be seen as a function which takes as
input a set of beliefs K and an input formula ¢ and outputs a new set
of beliefs K * ¢. Many of the belief revision schemes that have been
defined in the literature require additional input. The extra informa-
tion they need comes in various forms: relations over subsets of the
sets of beliefs [2], epistemic entrenchment relations [1], system of
spheres [6], faithful orderings [7], etc.

In many applications we do not have such background informa-
tion, which is why there is a need for revision operators which give
good results without it. Unfortunately, the above approaches appear
ill-suited to cases where we do not have any information regarding
the relative importance of different beliefs or models. For example,
if we accord equal importance to each of the beliefs (or each model
of the beliefs or non-beliefs), which seems the most reasonable thing
to do if we have no preference information, then these approaches
result in the infamous drastic revision operator which gives up all
old beliefs whenever the incoming information contradicts them.

All of the above belief revision schemes are insensitive to syn-
tax: logically equivalent sets of beliefs are revised in the same way,
and logically equivalent input formulas lead to the same result. The
so-called formula-based approaches, like the full meet [S, 4] and
cardinality-maximizing base revision operators [5, 9], abandon the
postulate of insensitivity to syntax, and allow e.g. the set of beliefs
K1 = {a, b} to be revised differently from K> = {a A b}. Such ap-
proaches can do without extra information: they do not collapse into
the drastic revision operator.

There are only very few belief revision operators that are both in-
sensitive to syntax and independent of extra information. The most
prominent one is Dalal’s [3]. It is often called model-based: revision
is identified with a move from the models of K to those models of ¢
that are closest in terms of the Hamming distance. Two other model-
based revision operators exist: Weber’s [12] and Satoh’s [11].

In this paper we propose two revision operators which are formula-
based yet syntax-insensitive, and do not rely on background informa-
tion. Our operators are obtained by first replacing the belief base by
its set of prime implicates and then applying either the full meet or
the cardinality-maximizing base revision operators. The prime impli-
cates of a belief base, defined as its logically strongest clausal con-
sequences, can be seen as the primitive semantic components of the
belief base, from which all other beliefs can be derived. We argue
that when no extra information is available, prime implicates provide
a natural and interesting way of representing a set of beliefs. More-
over, the fact that equivalent sets of formulae have the same sets of
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prime implicates guarantees the syntax-insensitivity of our operators.

2 FORMAL PRELIMINARIES

We consider a propositional language built out of a finite set of atoms
and the usual Boolean connectives. We suppose the latter includes
the 0-ary connective L. We will use V(¢) to refer to the set of atoms
occurring in . A belief base is a finite set of propositional formulae.
Where convenient, we will identify a belief base with the conjunc-
tion of its elements. We will use \/ K to denote the disjunction of
the elements in the belief base K. A literal is either an atom or the
negation of an atom, and a clause is a disjunction of literals.

Prime implicates (cf. [8]) are defined as the logically strongest
clausal consequences of a formula. By definition, if 7 is a prime im-
plicate of ¢, then so too are all clauses equivalent to 7. To simplify
the presentation, we will choose a representative for each equivalence
class of clauses, and we let I1(¢) denote the set of representatives of
equivalence classes of prime implicates of .

We define the minimal language of a formula , written Vo (), to
be the set of atoms occurring in every formula ¢’ which is equivalent
to p. A set {A1,..., A} of sets of atoms is a splitting of a belief
base K if and only if the A; partition Vo (K') and there exist formulae
©1,...,%n such that K = A_, ¢; and V(p;) C A; for all i. A
splitting {A1,..., An} of K is a finest splitting of K just in the
case that if {A],..., A}} is another splitting of K, then for every
A; there is some A such that A; C A’j. It was shown in [10] that
every belief base has a unique finest splitting.

We will use K Ly and K L cqrq to denote respectively the set of
inclusion- and cardinality-maximal subsets of K consistent with —p.

3 PROPOSED REVISION OPERATORS

Our first revision operator xr; conjoins the input ¢ and the disjunc-
tion of the maximal subsets of II(K') consistent with . It is essen-
tially the same as the syntactic full meet base revision operator [5, 4]
except that instead of dealing directly with the formulae in the belief
base we deal with the prime implicates of the belief base.

Definition 1. Let K be a belief base and ¢ be a formula. Then the
prime implicate-based full meet revision operator, written i, is de-
fined as follows:

Ko =@ A \/(TI(K) L)
We illustrate the functioning of our operator on some examples:

Example 2. Let K = {a V b,a V ¢} and ¢ = —a A —b. We have
II(K) = K,and II(K) L = {{a V c}}, so the result of revising
KbyypisaA-bA(aVec)=-aA-bAec



Example 3. Let K = {aV ¢,—bVd,—aV b} and let ¢ = =¢c A —d.
Then II(K) = {aV ¢,7bVd,—aVbbVec-aVdcVd} The
maximal subsets of IT(K) consistent with ¢ are P, = {aVc, —bVd},
P,={aVe¢,~aVbbVvch Ps={-bVd —-aVb-aVd} and
Py = {—aVb,bVe,~aVd}.Now P A—cA—d = aN—-bA—cA—d,
PoAN=cA—d=aAbA—-cNA—d, Ps A-cA—d = —-aA—-bA—-cA—d,
and P A—cA-d=-aAbA—-cA-d,so Kx*np=-cA—d.

In the last example, none of the prime implicates from K can be
inferred from the revised base K 11 . This is because our operator
takes the disjunction of all the inclusion-maximal subsets consistent
with the revision formula, which means that those prime implicates
which do not appear in every inclusion-maximal subset can be lost
when we take the disjunction.

The solution lies in selecting only some of the inclusion-maximal
subsets. If we have no information regarding the importance of dif-
ferent beliefs, as we assume here, there is no sure way of choos-
ing among the subsets. One reasonable heuristic is to accord equal
importance to each of the prime implicates, and hence to prefer
those subsets which contain the most prime implicates. This leads
us to propose a second revision operator which selects only those
cardinality-maximal subsets consistent with the revision formula.

Definition 4. Let K be a belief base and ¢ be a formula. Then
the prime implicate-based cardinality-maximizing revision operator,
written *11,card, 1S defined as follows:

K *m,card p = @ A \/(H(K)J-Cardﬁw)

The operator *1,cqrd Can be seen as a syntax-insensitive version
of the cardinality-maximizing base revision operator [5, 9].

Example 5. Let K and ¢ be as in Example 3. P», Ps, and P, are the
cardinality-maximal subsets that are consistent with ¢. So we have
K xm,card ¢ = (maV b) A —c A —d, which is logically stronger than
—c A —d which is obtained using *r.

3.1 Properties of Our Operators

Revision operators are often judged based on whether they satisfy the
well-known AGM postulates [2]. These postulates are formulated for
logically closed sets of formulae (belief sets), but they can be modi-
fied so as to apply to belief bases. The modified postulates (omitted
for lack of space) are known as the KM postulates [7].

Our first operator satisfies the first five KM postulates but fails to
satisfy the last one.

Proposition 6. 1 satisfies KM1-KMS, but falsifies KM6.

This proposition is not surprising since Katsuno and Mendelzon
showed in [7] that KM6 ensures that the faithful assignment corre-
sponding to the revision operator is a total pre-order.’ As our prime
implicate-based full meet operator uses inclusion to compare subsets
of prime implicates, it induces a partial and not a total pre-order over
the set of interpretations.

Katsuno and Mendelzon argued however in [7] that requiring the
faithful assignment to be total may be too strong in practice, and they
proposed to replace KM6 with weaker postulates KM7 and KM8.
Since they are less well-known, we recall them here:

KM7 If K % o1 | w2 and K * 2 |= 1 then K x o1 = K * 2.

5 A faithful assignment maps a belief base K to a pre-order < g over the set
of all interpretations of the language.

KM8 (K * 1) A (K *¢@2) E K * (1 V ¢2).

We show that both of these postulates are satisfied by our operator.
Proposition 7. xp satisfies KM7 and KMS.

Our cardinality-based operator satisfies all KM postulates.
Proposition 8. xr1,cqrq satisfies KM1-KMG6.

The AGM/KM postulates have been criticized for admitting revi-
sion operators that discard beliefs that have no real connection with
the incoming information. For instance, there are AGM/KM opera-
tors for which (a A b) x ~a [~ b, even though intuitively we expect b
to survive the revision. In an attempt to remedy this, Parikh [10] pro-
posed an additional postulate which can be formulated as follows:

Relevance If K is satisfiable and K |= ¢ and K x ¢ [~ ¢, then
there is some set of atoms A in the finest splitting of K such that
both Vo(¢) N A # 0 and Vo(¢p) N A # 0.

We can show that our revision operators satisfy this postulate:

Proposition 9. x1 and *m1,cara satisfy Relevance.

3.2 Comparison With Other Operators

The following proposition concerns the relation between our opera-
tors and the model-based operators mentioned in the introduction.

Proposition 10.

1. Our operators sometimes yield logically stronger revised bases
than the Dalal, Weber, and Satoh operators.

2. Our revision operators sometimes yield logically weaker revised
bases than the Dalal and Satoh operators.

Proof. For (1), consider Example 2. For (2), consider Example 3.
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