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Abstract
Ontology-mediated query answering (OMQA) em-
ploys structured knowledge and automated reason-
ing in order to facilitate access to incomplete and
possibly heterogeneous data. While most research
on OMQA adopts (unions of) conjunctive queries
as the query language, there has been recent inter-
est in handling queries that involve counting. In
this paper, we advance this line of research by in-
vestigating cardinality queries (which correspond
to Boolean atomic counting queries) coupled with
DL-Lite ontologies. Despite its apparent simplic-
ity, we show that such an OMQA setting gives rise
to rich and complex behaviour. While we prove
that cardinality query answering is tractable (TC0)
in data complexity when the ontology is formulated
in DL-Litecore, the problem becomes coNP-hard as
soon as role inclusions are allowed. For DL-LiteHpos
(which allows only positive axioms), we establish a
P-coNP dichotomy and pinpoint the TC0 cases; for
DL-LiteHcore (allowing also negative axioms), we
identify new sources of coNP complexity and also
exhibit L-complete cases. Interestingly, and in con-
trast to related tractability results, we observe that
the canonical model may not give the optimal count
value in the tractable cases, which led us to develop
an entirely new approach based upon exploring a
space of strategies to determine the minimum pos-
sible number of query matches.

1 Introduction
In ontology-mediated query answering (OMQA) [Poggi et
al., 2008; Bienvenu and Ortiz, 2015; Xiao et al., 2018], data
is enriched with an ontology, which serves both to provide a
user-friendly vocabulary for query formulation and to capture
domain knowledge that is exploited at query time to obtain a
more complete set of answers. While the OMQA approach
offers many advantages, it also makes the query answering
task more challenging than ‘plain’ query evaluation. Indeed,
instead of having to evaluate the query over the single ex-
plicitly given data instance, one must identify the certain an-
swers, i.e. those holding in all possible situations (models)
compatible with the data and the ontology.

A major topic in OMQA research has thus been to under-
stand the complexity of OMQA and identify tractable set-
tings. Nowadays, for the most commonly considered query
language, namely, conjunctive queries (CQs), we have an al-
most complete picture of the complexity landscape for on-
tologies formulated in a wide range of different description
logics (DLs) [Baader et al., 2017] and rule-based languages
[Baget et al., 2011; Calı̀ et al., 2012]. In particular, it has
been shown that CQ answering is tractable in data complex-
ity for ontologies expressed in the most commonly consid-
ered dialects of the DL-Lite family [Calvanese et al., 2007;
Artale et al., 2009], which are often employed in OMQA.
A well-known and frequently used property of such DL-Lite
dialects and other Horn DLs is that they admit a canoni-
cal model, which is a single (possibly infinite) model that,
by virtue of being homomorphically embeddable into every
model, is guaranteed to give the correct answers to all CQs.

While CQs are a natural and well-studied class of queries,
there are many other relevant forms of database queries that
could be potentially be employed in OMQA. In the present
paper, our focus will be on counting queries, which together
with other forms of aggregate queries, are widely used for
data analysis, yet still not well understood in the context of
OMQA. A natural way to equip CQs with counting is to count
the number of distinct query matches for each answer. As the
count value may differ between models, Kostylev and Reut-
ter (2015) advocated a form of certain answer semantics that
considers lower and upper bounds on the count value across
different models. Their work provided the first investigation
of the complexity of answering counting CQs in the presence
of ontologies, revealing such queries to be much more chal-
lenging to handle than plain CQs: coNP-complete in data
complexity for the well-known DL-Litecore and DL-LiteHcore
dialects. A recent work by Bienvenu et al. (2020) refined and
generalized the complexity results from Kostylev and Reut-
ter to a wider class of counting queries and identified a re-
stricted scenario with very low (TC0-complete) data com-
plexity: rooted CQs coupled with DL-Litecore ontologies.
A similar tractability result for connected rooted CQs was
proven independently by Calvanese et al. (2020a), who also
initiated a study of the impact of other restrictions on query
shape and developed the first query rewriting procedure for
counting CQs. Notably, both the aforementioned TC0 result
and the rewriting procedure crucially relied upon showing
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that the canonical model gives the right answers under the
considered restrictions. We briefly mention two alternative
approaches to counting queries: an epistemic semantics for
aggregate queries (which only counts query matches over the
data constants, ignoring unnamed elements) was explored by
Calvanese et al. (2008), while another very recent study by
Feier et al. (2021) classifies the complexity of counting the
number of certain answers (rather than the number of ways a
certain answer is obtained) for guarded existential rules.

While recent studies have improved our understanding
of the complexity of counting CQs, there nevertheless re-
main many unanswered questions. In this paper, we focus
on Boolean atomic counting queries of the form ∃z.A(z)
and ∃z1, z2.R(z1, z2), which we term cardinality queries as
they correspond to the natural task of determining (bounds
on) the cardinality of a given concept or role name. The
data complexity of answering such basic counting queries
remains completely open for DL-Litecore ontologies, whilst
for DL-LiteHcore, the problem is known to be P-hard and in
coNP [Calvanese et al., 2020a]. The main results of our in-
vestigation are displayed in Table 1. We show that when on-
tologies are expressed in DL-Litecore, cardinality query an-
swering is tractable in data complexity and enjoys the lower
possible complexity (TC0-complete). For cardinality queries
based upon a concept atom, TC0 membership holds even for
the fragment of DL-LiteHcore obtained by disallowing negative
role inclusions. By contrast, for role cardinality queries, we
show that coNP-hard situations arise in DL-LiteHpos, which al-
lows only positive concept and role inclusions. In fact, we ob-
tain a complete data complexity classification for DL-LiteHpos,
showing that every ontology-mediated query is either TC0-
complete, coNP-complete, or is in P and logspace-equivalent
to the complement of PERFECT MATCHING (whose precise
complexity is a longstanding open problem). The preced-
ing classification does not extend to DL-LiteHcore: we iden-
tify new sources of coNP-hardness and further exhibit L-
complete cases. We find it intriguing that such complex be-
haviour arises in what appears at first glance to be a sim-
ple OMQA setting. Moreover, in all of the tractable cases
we identify, the canonical model may not yield the minimum
cardinality, and query answering involves solving non-trivial
optimization problems. This led us to devise an entirely new
approach based upon exploring a space of strategies to find
the optimal way of merging witnesses for existential axioms.

The paper is organized as follows. Section 2 recalls rele-
vant background material and presents the considered OMQA
setting. Section 3 introduces strategies and uses them to es-
tablish TC0 membership. Our complexity classification for
DL-LiteHpos is the topic of Section 4, while Section 5 presents
our results for DL-LiteHcore. Section 6 concludes with a brief
discussion of related and future work.

An appendix with full proofs can be found in the long ver-
sion of this paper, available on arXiv.

2 Preliminaries
We recall standard definitions and notation for OMQA in DL-
Lite and introduce the particular setting studied in this paper.

Concept Role

DL-Litecore TC0-c TC0-c

DL-LiteHpos TC0-c† TC0-c | co-PM-c | coNP-c

DL-LiteHcore
TC0-c | L-c TC0-c | L-c
| coNP-c | ? | co-PM-c | coNP-c | ?

Table 1: Data complexity of cardinality queries based upon concept
and role atoms for various DL-Lite dialects. †: upper bound holds
for all DL-LiteHcore ontologies without negative role inclusions.

Knowledge Bases. We assume mutually disjoint sets NC of
concept names (unary predicates), NR of role names (binary
predicates), and NI of individual names (constants). We de-
note by N±R the set NR ∪ {R− | R ∈ NR} of role names and
their inverses. A knowledge base (KB) K = (T ,A) consists
of an ABox (dataset)A and a TBox (ontology) T . An ABox is
a finite set of concept assertions A(b) (with A ∈ NC, b ∈ NI)
and role assertions P(a, b) (with P ∈ NR, a, b ∈ NI), while
the TBox consists of a finite set of axioms, whose forms are
dictated by the considered description logic.

In this paper, our focus will be on DL-LiteHcore (alterna-
tively referred to as DL-LiteR), which is the logic underly-
ing the OWL 2 QL profile. DL-LiteHcore TBoxes contain four
types of axioms: positive concept inclusions B1 v B2, neg-
ative concept inclusions B1 v ¬B2, positive role inclusions
R1 v R2, and negative role inclusions R1 v ¬R2, where the
Bi and Ri are positive concepts and roles given by:

Bi := A | ∃Ri Ri : = P | P− (A ∈ NC, P ∈ NR)

The sublogic DL-Litecore allows only concept inclusions
(which may be either positive or negative), while DL-LiteHpos
is restricted to positive (concept and role) inclusions.

We denote by Ind(A) the set of individuals occurring in an
ABoxA. A signature is a finite set of concept and role names.
Given a signature Σ, we denote by Σ±C (resp. Σ±R ) the set of
positive concepts (resp. roles) built from Σ. The signature of a
TBox T (resp. ABox A) is the set of concept and role names
it contains, denoted sig(T ) (resp. sig(A)). To simplify the
presentation, we will assume w.l.o.g. that sig(A) ⊆ sig(T ).
Semantics of KBs. An interpretation takes the form I =
(∆I , ·I), where ∆I is a non-empty set (called the domain)
and ·I is the interpretation function that maps each A ∈ NC

to AI ⊆ ∆I , each P ∈ NR to PI ⊆ ∆I × ∆I , and each
a ∈ NI to aI . In this paper, we will make the Standard Names
Assumption by setting aI = a. Note however that our results
only rely upon the weaker Unique Names Assumption (UNA),
which stipulates that aI 6= bI whenever a 6= b. The UNA is
commonly adopted for DL-Lite KBs and enables more inter-
esting reasoning in the context of counting queries.

The function ·I is extended to general concepts and roles
as follows: (P−)I = {(e, d) | (d, e) ∈ PI}, (∃R)I = {d |
(d, e) ∈ RI}, and (¬G)I = ∆I \GI . An inclusion G v H is
satisfied in I if GI ⊆ HI ; an assertion A(b) (resp. P(a, b)) is
satisfied in I if b ∈ AI (resp. (a, b) ∈ PI). An interpretation
is a model of a TBox T (resp. ABox A)) if it satisfies all
axioms in T (resp. assertions in A), and it is a model of a
KB K = (T ,A) if it is a model of both T and A. A KB
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(a) Initial portion of the canonical model of Ke.
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(b) Another model of Ke.
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(c) Interpretation of strategy σe.

Figure 1: Models of the example KB Ke. For readability, we have omitted concepts and highlighted the role S from the cardinality query.

is satisfiable if it has at least one model. An inclusion (resp.
assertion) Φ is entailed from T (resp. K), written T |= Φ
(resp. K |= Φ), if Φ is satisfied in every model of T (resp.
K). We use K |= ∃R(a) (resp. K |= R(a, b) with R ∈ N±R ) to
indicate a ∈ ∃RI (resp. (a, b) ∈ RI) for every model I ofK.
Example 1. As a running example, we will consider the KB
Ke = (Te,Ae) whose TBox contains the following inclusions

A1 v ∃T1 A2 v ∃T2 ∃T−1 v ∃S ∃R−1 v ¬∃R
−
2

B1 v ∃R1 B2 v ∃R2 ∃R−1 v ∃S− ∃R−1 v ¬∃T
−
1

∃T−2 v ∃S ∃S− v ∃S ∃R−2 v ∃S−

and whose ABox contains the assertions
{A1(a1),A2(a2),B1(b1),B2(b2),R1(a1, a2), S(b2, b1)}

Two finite models of Ke are displayed in Figures 1b and 1c.
Canonical Model. Every satisfiable DL-LiteHcore KB K =
(T ,A) has a canonical model CK, defined as follows. The
domain of CK contains Ind(A) and all words aR1 . . .Rn, with
a ∈ Ind(A), Ri ∈ N±R , and n > 1, such that:
• K |= ∃R1(a) and there is no R1(a, b) ∈ A;
• for 1 ≤ i < n, T |= ∃R−i v ∃Ri+1 and R−i 6= Ri+1.
Concept and role names are interpreted as follows:
ACK = {a ∈ Ind(A) | K |= A(a)}

∪ {aR1 . . .Rn ∈ ∆CK \ Ind(A) | T |= ∃R−n v A}
PCK = {(a, b) | P(a, b) ∈ A}

∪ {(e1, e2) | e2 = e1R and T |= R v P}
∪ {(e2, e1) | e2 = e1R and T |= R v P−}

We use genK to refer to the set of generated roles, i.e. those
R ∈ N±R such that ∆CK contains an element wR.
Example 2. An initial portion of (the infinite) canonical
model of Ke is displayed in Figure 1a. Observe that genK =
{S, S−,R1,R2,T1,T2}.

It is well known (see e.g. [Calvanese et al., 2007]) that,
for every model I of K, there is a homomorphism from CK
to I, i.e. a function f : ∆CK → ∆I such that (i) f(a) = a
for all a ∈ Ind, (ii) e ∈ ACK implies f(e) ∈ AI , and (iii)
(d, e) ∈ PCK implies (f(d), f(e)) ∈ PI .

Cardinality Queries. A cardinality query is either a con-
cept cardinality query ∃z.C(z) or a role cardinality query
∃z1, z2.S(z1, z2). Throughout the paper, we use qC (resp. qS)
as a shorthand for the cardinality query based upon C (resp.
S). A match for a cardinality query qC (resp. qS) in an in-
terpretation I is an element of CI (resp. SI). We define the
answer to a cardinality query q in an interpretation I, de-
noted qI , as the number of matches of q in I, or equivalently,
as the cardinality of FI , with F the concept or role name in q.
A certain answer to q w.r.t. K is an interval [m,M ] ∈ N×N
such that qI ∈ [m,M ] for every model I of K.
Example 3. Consider the role cardinality query qS. The an-
swer to qS is +∞ in CKe , 6 in the model from Figure 1b, and 5
in the model from Figure 1c. The latter implies that [6,+∞]
is not a certain answer. We leave it is an exercise to find a
model with 3 matches and show there is no model with fewer
matches, which means that [m,+∞] is a certain answer to
qS over Ke if and only if m ≤ 3.

Cardinality queries as defined above correspond to a spe-
cial case of the counting queries considered in [Kostylev and
Reutter, 2015; Bienvenu et al., 2020; Calvanese et al., 2020a].

Observe that since DL-LiteHcore cannot restrict the size of
models, the value M in a certain answer [m,M ] must be
+∞whenever the query predicate F is satisfiable w.r.t. T (i.e.
there is a model I of T such that FI 6= ∅). For this reason,
we assume the latter condition holds and focus on identifying
certain answers of the form [m,+∞].
Complexity. We will be interested in classifying the com-
plexity of the following problem:

OMQA(q, T ): Given A and an integer m ≥ 1 (in binary),
decide whether [m,+∞] is a certain answer to q w.r.t. K.

where (q, T ) is an ontology-mediated query (OMQ) based
upon a cardinality query q and a TBox T formulated in
DL-LiteHcore or one of its sublogics. Note that we are adopting
the data complexity measure as (q, T ) is fixed.

Beyond well-known complexity classes such as P and
coNP, we will refer to the following classes: TC0 is the
class of problems solvable by families of constant-depth
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polynomial-size circuits based upon AND, OR, NOT, and
threshold gates, and L (resp. NL) is the class of problems
solvable in deterministic (resp. nondeterministic) logarithmic
space. It is known that: TC0 ⊆ L ⊆ NL ⊆ ... ⊆ P ⊆ coNP.

3 Tractable Cases
In this section, we identify two settings in which cardinality
queries can be answered with the lowest possible complexity:
Theorem 1. OMQA(q, T ) is TC0-complete if either (i) q is
a role cardinality query and T a DL-Litecore TBox, or (ii) q
is a concept cardinality query and T is a DL-LiteHcore TBox
without negative role inclusions.

The remainder of this section is devoted to establishing
TC0 membership for case (i) where our query is qS =
∃z1, z2.S(z1, z2). A similar but simpler argument can be
used for the membership half of case (ii), while TC0-
hardness is easily shown by reduction from the TC0-complete
NUMONES problem [Aehlig et al., 2007] asking, given a bi-
nary stringX and k ≥ 1, whetherX contains at least k 1-bits.

Existing proofs of sub-polynomial data complexity for re-
stricted classes of counting queries rely on the canonical
model minimizing the number of matches [Bienvenu et al.,
2020; Calvanese et al., 2020a]. However, for the class of
cardinality queries, the canonical model may not yield the
minimum value. Therefore, we develop a different approach
based upon a systematic exploration of a set of models that is
guaranteed to contain an optimal model and whose size de-
pends only on the TBox. This special set of models will be
induced from strategies that dictate how to merge elements of
the canonical model. To show such models contain the op-
timal value, we show that if we extract a strategy σ from an
arbitrary model I and consider any model J induced by σ,
then J has at most as many matches as the initial model I.

We now formalize this approach. In order to abstract from
specific ABox individuals, we introduce types.
Definition 1. A type for a TBox T is a subset of sig(T )±C .
The set of all types is ΘT = 2sig(T )±C . We denote by θK(d) the
type of a domain element d w.r.t.K and define it by: θK(d) ={

B ∈ sig(T )±C | K |= B(d)
}

if d ∈ Ind(A), else θK(d) = ∅.
Example 4. In our running example, θKe(a1) =
{A1, ∃R1, ∃T1} and θKe(α) = ∅ (since α 6∈ Ind(Ae)).

Strategies indicate for each generated role R the type onto
which all elementswR should merge. Several copies of a type
might be required to comply with negative inclusions (e.g. R1

and R2 associated to the same type but T |= ∃R−1 v ¬∃R
−
2 ).

Definition 2. A strategy σ for the KB K is a function from
genK to ΘT × {1, . . . ,

∣∣sig(T )±R
∣∣}, that satisfies:

1. ∀R ∈ genK : σ(R) = (t, i)∧B ∈ t⇒ T 6|= ∃R− v ¬B.

2. ∀R1,R2∈genK : σ(R1)=σ(R2)⇒T 6|= ∃R−1 v ¬∃R
−
2 .

3. ∀t ∈ ΘT , if t 6= ∅, then |{i | ∃R ∈ genK, σ(R) = (t, i)}|
≤ |{a | a ∈ Ind(A) ∧ θK(a) = t}|.
Conditions 1 and 2 ensure that merging will not violate any

negative inclusions. Condition 3 ensures the ABox provides
at least as many individuals of a non-empty type as the strat-
egy requires copies of this type.

Example 5. The following mapping σe is a strategy for Ke:

T1 7→ (∅, 1) R2 7→ ({B1, ∃R1, ∃S, ∃S−}, 1)
T2 7→ (∅, 2) S 7→ (∅, 2)
R1 7→ (∅, 2) S− 7→ ({A1, ∃R1, ∃T1}, 1)

To construct a model from a strategy σ, the basic idea is to
merge elements wR with an element of type σ(R), with the
latter selected according to a choice of well-typed elements:
Definition 3. A mapping ch : genK → Ind(A) ] {⊥i | i =
1, . . . ,

∣∣sig(T )±R
∣∣}, is a choice of well-typed elements for σ

over K if it satisfies the following conditions:
1. ∀R ∈ genK, ∃i such that σ(R) = (θK(ch(R)), i)

2. ∀R1,R2∈genK, ch(R1) = ch(R2) ⇔ σ(R1) = σ(R2).

Example 6. The function che, defined as below, is a choice
of well-typed elements for σe over Ke:

T1 7→ ⊥1 T2 7→ ⊥2 R1 7→ ⊥2

R2 7→ b1 S 7→ ⊥2 S− 7→ a1

It turns out however that when R = S or R = S−, it is use-
ful to depart from this guideline in order to reduce the number
of query matches, as this stand-alone example illustrates:
Example 7. Consider T = {A v ∃S,B v ∃S−} and
A = {A(a1),A(a2),B(b1),B(b2)}. If we merge a1S with
a2S, and b1S

− with b2S
−, then there will be at least three

matches of qS, no matter which further merges are performed.
However, by ‘pairing’ a1 with b1 and a2 with b2, we can ob-
tain a model with only two matches: (a1, b1), (a2, b2).

The next three definitions serve to identify the critical ele-
ments for which such a pairing operation is useful.
Definition 4. We set D+

K =
{
a | a ∈ Ind(A) ∧ aS ∈ ∆CK

}
and D−K =

{
a | a ∈ Ind(A) ∧ aS− ∈ ∆CK

}
.

Definition 5. Given a strategy σ, we set D+
σ = {R | R ∈

dom(σ) \ {S, S−} ∧ T |= ∃R− v ∃S ∧ ∃S /∈ t if σ(R) =
(t, k)} andD−σ = {R | R ∈ dom(σ)\{S, S−}∧T |= ∃R− v
∃S− ∧ ∃S− /∈ t if σ(R) = (t, k)}.
Definition 6. Let ch be a choice of well-typed elements for σ.
We set crit+ = D+

K ∪ ch(D+
σ ) and crit− = D−K ∪ ch(D−σ )

and use critical elements to refer to the elements of these sets.
Example 8. For σe and che as defined in Examples 5 and 6,
we have crit+ = {a2, b1,⊥1,⊥2} and crit− = {a2,⊥2}.

Intuitively, a pairing matches critical elements from crit+

(which require an outgoing S) with those from crit− (which
require an incoming S).
Definition 7. A pairing for ch and σ consists of two partial
functions p+ : crit+ → crit− and p− : crit− → crit+ such
that one of the functions is total and injective, and the other
is its partial inverse.
Example 9. A pairing for che and σe is given by p+e =
{a2 7→ a2, b1 7→ ⊥2} and p−e = {a2 7→ a2,⊥2 7→ b1}.

We are now ready to define the interpretation of a strategy.
Definition 8. Consider a strategy σ, choice of well-typed
elements ch, and pairing (p+, p−) for ch. For every R ∈
sig(T )±R , pick a function sR that maps every individual in
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{a | K |= R(a, b) for some b ∈ NI} to an individual sR(a)
such that K |= R(a, sR(a)). Define function χ as follows:

∆CK → Ind(A) ∪ {⊥i | i = 1, . . . ,
∣∣sig(T )±R

∣∣}
a 7→ a

wS 7→

{
sS(χ(w)) if sS(χ(w)) is defined
p+(χ(w)) else if p+(χ(w)) is defined
ch(S) otherwise

wS− 7→

 sS−(χ(w)) if sS−(χ(w)) is defined
p−(χ(w)) else if p−(χ(w)) is defined
ch(S−) otherwise

wR 7→ ch(R)

The interpretation of σ (according to ch, (p+, p−) and the sR)
has domain χ(∆CK) and interpretation function χ ◦ ·CK .

Example 10. With choice che and pairing (p+e , p
−
e ), we get

χ(b2R2) = ch(R2) = b1, χ(b2R2S) = p+e (b1) = ⊥2, and
χ(b2R2S−) = sS−(b1) = b2 (observe that on our example,
the function sS− is uniquely defined, and the same is true for
the other roles). Figure 1c displays the interpretation of σe.

Observe that the interpretation of a strategy σ depends
not only on σ but also on the functions ch, p+, p−, sR. Im-
portantly, however, the key property of such interpretations
(stated in Lemma 1 later in this section) holds for any partic-
ular choice of these functions.

It remains to prove that a model minimizing the number of
matches can be found among the interpretations of strategies.
The first step is to to extract a strategy from a model.
Definition 9. Let I be a model of K, f : CK → I be a
homomorphism, and repr be a function mapping each role
R ∈ genK to an element with shape wR from ∆CK . Then
P = {P1, . . . , Pk}, defined by

{P1, . . . , Pk} = {(f ◦ repr)−1(w) | w ∈ ∆I} \ {∅}

is a partition of genK. The strategy extracted from I (for f
and repr) is defined as:

genK → ΘT × {1, . . . ,
∣∣sig(T )±R

∣∣}
R 7→ ((θK ◦ f ◦ repr)(R), i) with R ∈ Pi

Example 11. In our running example, there is a unique ho-
momorphism fe from CKe

to the model displayed in Fig-
ure 1b. Let repre be:

T1 7→ a1T1 R2 7→ b2R2 T2 7→ a2T2

S 7→ b1SSS R1 7→ b1R1 S− 7→ a2S
−

The strategy extracted from this model (for fe and repre) is
the strategy provided in Example 5.

By applying the next lemma to a model I having the fewest
possible number of matches, we obtain the desired conclu-
sion: there is a model minimizing the number of matches
among the models obtained by interpreting a strategy.
Lemma 1. Let I be a model ofK, and J an interpretation of
a strategy extracted from I. J is a model of K and qJS ≤ qIS .

We now sketch how to construct a family of TC0 circuits
(one for each size of ABox) to decide OMQA(qS, T ). Each
such circuit first computes the set genK and the type of each

ABox individual. Next, for each function % : genK →
ΘT × {1, . . . ,

∣∣sig(T )±R
∣∣} satisfying Conditions 1 and 2 of

Definition 2, the circuit decides whether % is a strategy for K
(i.e. Condition 3 holds), and if so, computes the number of
matches of qS in interpretations induced by %. Importantly,
this can be done without actually building interpretations: in
the appendix we give an explicit formula for this number and
show it can be computed with a TC0 circuit. Moreover, the
number of strategies depends only on |T |, so is constant w.r.t.
data complexity. Finally, the circuit computes the minimum
value across strategies and compares it with the input number.

4 Complexity Classification for DL-LiteHpos
In this section, we consider DL-LiteHpos TBoxes. We show
that coNP-hard OMQs exist and prove a complexity tri-
chotomy which precisely delineates the tractability boundary.

We begin by exhibiting a coNP-complete1 situation.
Example 12. OMQA(qS, {B v ∃R1,R1 v S, ∃R−1 v
∃R2,R2 v S}) is coNP-complete. We consider the NP-
complete SET COVER problem: given a set U , set of subsets
S ⊆ 2U whose union is U , and number k, decide whether
there exists a k-cover, i.e. a subset C of S with |C| ≤ k
whose union is U . We prove that there exists a k-cover iff
[Σs∈S |s|+ k+ 1,+∞] is not a certain answer on the follow-
ing ABox: {B(u) | u ∈ U} ∪ {S(u, s) | u ∈ s, s ∈ S}. Intu-
itively, from a k-cover C, we obtain a countermodel in which
role R1 contains pairs (u, s) such that u ∈ s and s ∈ C, and
there is one outgoing R2 role from each s ∈ C.

The following definition abstracts the preceding example.
Definition 10. A TBox T admits a propagation of role W by
a concept B ∈ sig(T )±C and roles R1,R2 if T entails {B v
∃R1,R1 vW, ∃R−1 v ∃R2,R2 vW}.

A propagation of S (or S−) is not sufficient to ensure coNP-
hardness: the reduction sketched in Example 12 will fail in
the presence of ‘interferences’, which can be of three types.
Definition 11. A role U interferes with the propagation of W
by B,R1,R2 if it satisfies one of the following conditions:
1. T |= {B v ∃U,U vW,U vW−};
2. T |= {∃W− v ∃U,U v W} and either T |= U v W−

or T 6|= R2 vW−;
3. if B = ∃T and T vW, then T |= {∃T− v ∃U,U vW}

and either T |= U vW− or T 6|= R2 vW−.
Remarkably, the existence of a propagation without any

interfering role (which we call a non-trivial propagation)
ensures coNP-hardness, while its absence ensures that
OMQA(qS, T ) is in P. We further distinguish two tractable
cases, depending on the existence of a non-trivial pairing.
Definition 12. A TBox T admits a non-trivial pairing of S if
there exist B ∈ sig(T )±C and R ∈ sig(T )±R such that

T |= B v ∃R T |= R v S T |= R v S− T 6|= S v S−

and if B = ∃T, then either T 6|= T v S or T 6|= T v S−.
1A P upper bound for atomic counting queries in DL-LiteHpos

erroneously appears in Table 1 of [Calvanese et al., 2020a], but was
corrected in a later arXiv version [Calvanese et al., 2020b].
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To formulate our trichotomy result, we recall that a match-
ing in a graph (V, E) is a set of edges that are pairwise vertex-
disjoint. The PERFECT MATCHING problem (abbreviated to
PM) asks whether there exists a matching such that every ver-
tex is incident to one of its edges. Despite being the focus of
intensive research, its exact complexity remains open: in P
[Edmonds, 1965] and NL-hard [Chandra et al., 1984].
Theorem 2. Let T be a DL-LiteHpos TBox. OMQA(qS, T )
is coNP-complete if T admits a non-trivial propagation of
either S or S−, is L-equivalent to the complement of PM if
it does not admit such a non-trivial propagation but admits a
non-trivial pairing of S, and is in TC0 otherwise.

Proof sketch. The coNP-hardness proof generalizes the re-
duction sketched in Example 12. If there is a non-trivial
pairing (but no non-trivial propagation), we show that, up to
trivial cases solvable in TC0, the existence of a model with
few matches is equivalent to the existence of a large match-
ing between critical individuals. This yields L-equivalence
with the MAXIMUM MATCHING decision problem, which
is L-equivalent to the better-known PM problem [Rabin and
Vazirani, 1989]. TC0 membership is proven by case analysis,
where we exhibit for each case a model with an optimal (and
easily computable) number of matches.

5 First Look at DL-LiteHcore
We now turn to DL-LiteHcore and exhibit new situations that
are not captured by the preceding complexity classification.

First, we observe that negative concept and role inclusions
introduce two new sources of coNP-hardness.
Theorem 3. For T = {B v ∃U, U v S, C v ∃V, V v
S, ∃U− v ¬∃V− }, OMQA(qS, T ) is coNP-complete.

Proof sketch. Let (U ,S, k) be an instance of SET COVER,
and consider the ABox A = {B(u) | u ∈ U} ∪ {S(u, s∗) |
u ∈ s, s ∈ S} ∪ {C(s) | s ∈ S} ∪ {S(s, s∗) | s ∈ S}. It can
be shown that no k-cover exists iff every model of (T ,A) has
at least |S|+

∑
s∈S |s|+ k + 1 matches.

Theorem 4. For T = { B v ∃U, U v S, ∃U− v ∃V, V v
S−, V v ¬W }, OMQA(qS, T ) is coNP-complete.

Perhaps more surprising, we show that there exist coNP-
hard OMQs based upon concept cardinality queries.
Theorem 5. For T = {A v ∃U, ∃U− v C, U v ¬U′, B v
∃V, ∃V− v C, V v ¬V′, ∃U− v ¬∃V−}, OMQA(qC, T )
is coNP-complete.

Proof sketch. Hardness is shown by reducing the tautology
problem. Three individuals are introduced per propositional
variable (one for the variable itself with concept A, two for
its possible truth values), as well as one individual per clause
(with concept B). Each variable should have a truth value
given by U (whose possible values in the ABox are restricted
through the use of U′), and each clause should have a falsi-
fied literal given by V (whose possibles values in the ABox
are restricted, according to the input formula, with V′). The
input formula is a tautology iff every model introduces a new
element marked C (as a witness for either ∃U or ∃V).

Moreover, we further show that L-complete OMQs exist.
The next result employs a role cardinality query, but a similar
result can be obtained using a concept cardinality query.
Theorem 6. For T = { B v ∃R, R v S, R v ¬R− },
OMQA(qS, T ) is L-complete.

Proof. Hardness is by reduction from the L-complete prob-
lem UNDIRECTED FOREST ACCESSIBILITY (UFA) [Cook
and McKenzie, 1987], which takes as input an undirected
acyclic graph (V, E) with two connected components, ver-
tices s, t ∈ V , and asks if t is reachable from s. We
set A = {B(u) | u ∈ V} ∪ {S(u, v) | {u, v} ∈ E} ∪
{S(s, v∗), S(t, v∗)} ∪ {R(s, v∗),R(t, v∗)} and observe that
((V, E), s, t) ∈ UFA iff [2|E| + 3,+∞] is a certain answer.
Indeed, there are 2|E|+ 2 matches in the ABox, and a further
match arises if we add R-atoms to satisfy B v ∃R in a con-
nected component that contains neither s nor t (such a match
can be avoided if it contains s or t). For the upper bound,
we characterize the minimum number of matches based upon
the graph structure of the ABox and show it can be computed
in L, by using an oracle for undirected reachability.

Our results imply that, under standard complexity-theoretic
assumptions, at least four different complexities are possible
for cardinality queries coupled with DL-LiteHcore ontologies.

6 Conclusion
In this paper, we investigated the complexity of answering
cardinality queries in the presence of DL-Lite ontologies.
Our study provides several novel insights into the challenge
of adopting counting queries in OMQA. On the one hand,
we identified new sources of coNP-hardness, showing that
even single-atom counting queries can be difficult to handle
(which closes some questions about restricted forms of count-
ing queries left open in [Calvanese et al., 2020a]). On the
other hand, we exhibited several settings in which cardinal-
ity queries can be answered with (sub-)polynomial data com-
plexity; in particular, the problem is in TC0 when the ontol-
ogy is formulated in DL-Litecore. Interestingly, our tractabil-
ity results do not rely on the canonical model yielding the
minimum number of matches, but instead involve a sophis-
ticated analysis of how to best merge witnesses for existen-
tial axioms. Differently from [Kostylev and Reutter, 2015;
Calvanese et al., 2020a; Bienvenu et al., 2020], we conducted
our complexity analysis on the level of ontology-mediated
queries, and notably obtained a full classification of the com-
plexity of OMQs based upon DL-LiteHpos ontologies.

We find it promising that very low data complexity can be
obtained even for settings in which non-trivial optimization is
required, and we plan to explore how to extend and adapt our
techniques to identify further tractability results for counting
queries. Another important topic for future work is to trans-
form our TC0 procedures into more practical algorithms that
are suitable for implementation on top of database systems.
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