
Conjunctive Regular Path Queries
in Lightweight Description Logics

Meghyn Bienvenu
Laboratoire de Recherche en Informatique

CNRS & Université Paris Sud, France

Magdalena Ortiz and Mantas Šimkus
Institute of Information Systems

Vienna University of Technology, Austria

Abstract
Conjunctive regular path queries are an expressive
extension of the well-known class of conjunctive
queries and have been extensively studied in the
database community. Somewhat surprisingly, there
has been little work aimed at using such queries
in the context of description logic (DL) knowl-
edge bases, and all existing results target expressive
DLs, even though lightweight DLs are considered
better-suited for data-intensive applications. This
paper aims to bridge this gap by providing algo-
rithms and tight complexity bounds for answering
two-way conjunctive regular path queries over DL
knowledge bases formulated in lightweight DLs of
the DL-Lite and EL families.

1 Introduction
Recent years have seen a rapidly growing interest in using
description logic (DL) ontologies to query instance data. In
databases, similar attention has been paid to the related prob-
lem of querying graph databases which, like DL instance
data, are sets of ground facts using only unary and binary
predicates, i.e., node- and edge-labeled graphs [Consens and
Mendelzon, 1990; Barceló et al., 2010]. The relevance of
both problems lies in the fact that in many application ar-
eas, data can be naturally represented in such form. This ap-
plies, in particular, to XML and RDF data. While the DL and
database communities share some common research goals,
the research agendas they have pursued differ significantly. In
DLs, the focus has been on designing efficient algorithms for
answering (plain) conjunctive queries in the presence of on-
tological constraints. By contrast, work on graph databases
typically does not consider ontological knowledge, but in-
stead aims at supporting expressive query languages, like reg-
ular path queries (RPQs) and their extensions, which enable
sophisticated navigation of paths. Such path navigation has
long been considered crucial for querying data on the web.
Indeed, it lies at the core of the XPath language for querying
XML data, and of the property paths feature of SPARQL 1.1,
the language recently recommended as the new standard for
querying RDF data.

In this paper, we are interested in the problem of query-
ing DL knowledge bases using various kinds of regular

path queries. We mainly focus on conjunctive (two-way)
regular path queries (C(2)RPQs), which are one of the
most expressive and popular languages for querying graph
databases. CRPQs simultaneously extend plain conjunctive
queries (CQs) and basic RPQs: they allow conjunctions of
atoms that can share variables in arbitrary ways, where the
atoms may contain regular expressions that navigate the arcs
of the database (or roles, in DL parlance). In the case of
2RPQs and C2RPQs, roles can be navigated in both direc-
tions. C2RPQs have already been studied for DLs, but all ex-
isting results concern expressive DLs for which reasoning is
provably intractable. In particular, algorithms have been pro-
posed for ZIQ, ZIO, and ZOQ [Calvanese et al., 2007b;
2009], for which query answering is 2-EXPTIME hard. Even
in data complexity, that is, when the query and ontology
are assumed fixed, these algorithms need exponential time.
More recently, algorithms for answering C2RPQs in Horn-
SHOIQ and Horn-SROIQ were proposed [Ortiz et al.,
2011]. These algorithms run in polynomial time in the size
of the data, but still require exponential time in the size of
the ontology. By contrast, to the best of our knowledge, path
queries have not yet been considered for the lightweight DLs
of the DL-Lite [Calvanese et al., 2007a] and EL [Baader et
al., 2005] families, which underly the OWL 2 QL and EL pro-
files. This is surprising given that the low complexity of these
DLs makes them better suited for data-intensive applications.

This paper aims to remedy this situation by providing
algorithms and precise complexity bounds for answering
(C)2RPQs in the EL and DL-Lite families of lightweight
DLs. We show that in data complexity, the query answer-
ing problem for CR2PQs is NL-complete for DL-Lite and
P-complete for EL, which in both cases is the lowest com-
plexity that could be expected. For combined complexity, we
prove PSPACE-completeness for both DL-Lite and EL, but
somewhat surprisingly obtain a tractability result for 2RPQs
for both DLs. All of our upper bounds apply to extensions of
EL and DL-Lite with role inclusions. Full proofs of all results
can be found in a technical report [Bienvenu et al., 2013].

2 Preliminaries
We briefly recall the syntax of DL-LiteR [Calvanese et al.,
2007a] and ELH [Baader et al., 2005] (and relevant sublog-
ics). As usual, we assume sets NC, NR, and NI of concept
names, role names, and individuals. We will use NR to refer

to NR ∪ {r− | r ∈ NR}, and if R ∈ NR, we use R− to mean
r− if R = r and r if R = r−. An ABox is a set of asser-
tions of the form A(b) or r(b, c), where A ∈ NC, r ∈ NR,
and b, c ∈ NI. We use Ind(A) to refer to the set of individu-
als in A. A TBox is a set of inclusions, whose form depends
on the DL in question. In DL-Lite, inclusions take the form
B1 v (¬)B2, where each Bi is either A (where A ∈ NC)
or ∃R (where R ∈ NR). DL-LiteR additionally allows role
inclusions of the form R1 v (¬)R2, where R1, R2 ∈ NR.
DL-LiteRDFS is obtained from DL-LiteR by disallowing in-
clusions which contain negation or have existential concepts
(∃R) on the right-hand side. In EL, inclusions have the form
C1 v C2, where C1, C2 are complex concepts constructed
as follows: C := > | A | C u C | ∃r.C. The DL ELH
additionally allows role inclusions of the form r v s, where
r, s ∈ NR. Note that in EL(H) TBoxes, inverse roles are not
permitted. A knowledge base (KB) K = (T ,A) consists of a
TBox T and an ABox A.

As usual, the semantics is based upon interpretations,
which take the form I = (∆I , ·I), where ∆I is a non-empty
set and ·I maps each a ∈ NI to aI ∈ ∆I , each A ∈ NC to
AI ⊆ ∆I , and each r ∈ NR to rI ⊆ ∆I × ∆I . The func-
tion ·I is straightforwardly extended to general concepts and
roles, e.g. (¬A)I = ∆I \ AI , (∃r.C)I = {c | ∃d : (c, d) ∈
rI , d ∈ CI}, and (P−)I = {(c, d) | (d, c) ∈ P I}. An in-
terpretation I satisfies G v H if GI ⊆ HI ; it satisfies A(a)
(resp. r(a, b)) if aI ∈ AI (resp. (aI , bI) ∈ rI). I is a model
of (T ,A) if I satisfies all inclusions in T and assertions inA.

To simplify the presentation, we will assume that ELH
TBoxes are in normal form, meaning that all concept inclu-
sions are of one of the following forms:

A v B A1 uA2 v B A v ∃r.B ∃r.B v A
withA,A1, A2, B ∈ NC∪{>}. It is well-known (cf. [Baader
et al., 2005] that for every ELH TBox T , one can construct
in polynomial time an ELH TBox T ′ in normal form (possi-
bly using new concept names) such that T ′ |= T and every
model of T can be expanded to a model of T ′.

We use sig(T) to denote the set of all concept and role
names appearing in a TBox T . For ease of reference, we also
define sets BCT of basic concepts and TCT of tail concepts
for T as follows: BCT = TCT = NC ∩ sig(T) if T is an
ELH TBox, and TCT = {∃r, ∃r− | r ∈ NR ∩ sig(T)} and
BCT = (NC ∩ sig(T)) ∪ TCT for a DL-LiteR TBox T .

Canonical Models We recall the definition of canonical mod-
els for DL-LiteR and ELHKBs. For both DLs, the domain of
the canonical model IT ,A for a KB (T ,A) consists of paths
of the form aR1C1 . . . RnCn (n ≥ 0), where a ∈ Ind(A),
each Ci is a tail concept, and each Ri a (possibly inverse)
role. When T is a DL-LiteR TBox, the domain ∆IT ,A con-
tains exactly those paths aR1∃R−1 . . . Rn∃R−n which satisfy:
− if n ≥ 1, then T ,A |= ∃R1(a);
− for 1 ≤ i < n, T |= ∃R−i v ∃Ri+1 and R−i 6= Ri+1.
When T is an ELH TBox in normal form, the domain ∆IT ,A

contains exactly those paths ar1A1 . . . rnAn for which each
ri ∈ NR, and:
− if n ≥ 1, then T ,A |= ∃r1.A1(a);
− for 1 ≤ i < n, T |= Ai v ∃ri+1.Ai+1.

We denote the last concept in a path p by tail(p), and define
IT ,A by taking:

aIT ,A = a for all a ∈ Ind(A)

AIT ,A = {a ∈ Ind(A) | T ,A |= A(a)}
∪ {p ∈ ∆IT ,A \ Ind(A) | T |= tail(p) v A}

rIT ,A = {(a, b) | r(a, b) ∈ A}∪
{(p1, p2) | p2 = p1S C and T |= S v r}∪
{(p2, p1) | p2 = p1S C and T |= S v r−}

Note that IT ,A is composed of a core consisting of the
ABox individuals and an anonymous part consisting
of (possibly infinite) trees rooted at ABox individuals.
We will use IT ,A|e to denote the submodel of IT ,A ob-
tained by restricting the universe to paths having e as a prefix.

Regular Languages We assume the reader is familiar with
regular languages, represented either by regular expressions
or nondeterministic finite state automata (NFAs). An NFA
over an alphabet Σ is a tuple α = 〈S,Σ, δ, s0, F 〉, where S is
a finite set of states, δ ⊆ S × Σ × S the transition relation,
s0 ∈ S the initial state, and F ⊆ S the set of final states.
We use L(α) to denote the language defined by an NFA α,
and when the way a regular language is represented is not
relevant, we denote it simply by L.

3 Path Queries
We now introduce the query languages studied in this paper.
Definition 1. A conjunctive (two-way) regular path query
(C2RPQ) has the form q(~x) = ∃~y ϕ where ~x and ~y are tuples
of variables, and ϕ is a conjunction of atoms of the forms:

(i) A(t), where A ∈ NC and t ∈ NI ∪ ~x ∪ ~y, and
(ii) L(t, t′), where L is (an NFA or regular expression

defining) a regular language over NR∪{A? | A ∈ NC},
and t, t′ ∈ NI ∪ ~x ∪ ~y.

As usual, variables and individuals are called terms, and the
variables in ~x are called answer variables. A query with no
answer variables is called a Boolean query.

Conjunctive (one-way) regular path queries (CRPQs) are
obtained by disallowing symbols from NR \ NR in atoms of
type (ii), and conjunctive queries (CQs) result from only al-
lowing type-(ii) atoms of the form r(t, t′) with r ∈ NR. Two-
way regular path queries (2RPQs) consist of a single atom
of type (ii), and regular path queries (RPQs) further disallow
symbols from NR \ NR. Finally, instance queries (IQs) take
the form A(x) with A ∈ NC, or r(x, y) with r ∈ NR.

We now define the semantics of C2RPQs. For a regular
language L over the alphabet NR ∪ NR ∪ {A? | A ∈ NC},
we call d2 an L-successor of d1 in I if there is some w =
u1 . . . un ∈ L and some sequence e0, . . . , en of elements in
∆I such that e0 = d1, en = d2, and, for all 1 ≤ i ≤ n:
− if ui = A?, then ei−1 = ei ∈ AI
− if ui = R ∈ NR ∪ NR, then 〈ei−1, ei〉 ∈ RI

A match for a Boolean C2RPQ q in an interpretation I is a
mapping π from the terms in q to elements in ∆I such that:

IQ (2)RPQ CQ C(2)RPQ
data combined data combined data combined data combined

DL-LiteRDFS in AC0 NL-c NL-c NL-c in AC0 NP-c NL-c NP-c

DL-Lite(R) in AC0 NL-c NL-c P-c† in AC0 NP-c NL-c PSPACE-c

EL(H) P-c P-c P-c P-c P-c NP-c P-c PSPACE-c

Figure 1: Complexity of Boolean query entailment. The ‘c’ indicates completeness results. New results are marked in bold.
For existing results, we refer to [Baader et al., 2005; Calvanese et al., 2007a; Rosati, 2007; Krisnadhi and Lutz, ; Krötzsch and
Rudolph, 2007; Artale et al., 2009] and references therein. † P-hardness for RPQs applies only to DL-LiteR.

− π(c) = cI if c ∈ NI,
− π(t) ∈ AI for each atom A(t) in q, and
− π(t′) is an L-successor of π(t), for each L(t, t′) in q.
We write I |= q if there is a match for q in I, and T ,A |= q
if I |= q for every model I of T ,A.

Given an C2RPQ q with answer variables v1, . . . , vk, we
say that a tuple of individuals (a1, . . . , ak) is a certain an-
swer for q w.r.t. T ,A just in the case that in every model I of
T ,A there is a match π for q such that π(vi) = aIi for every
1 ≤ i ≤ k. Deciding whether a tuple of individuals is a cer-
tain answer for an C2RPQ can be linearly reduced to Boolean
C2RPQ entailment. For this reason, we consider only the lat-
ter problem in what follows.

It is well known that the canonical model IT ,A can be ho-
momorphically embedded into any model of T ,A, hence a
CQ q is entailed from T ,A if and only if there is a match
for q in IT ,A. This result can be easily lifted from CQs to
C2RPQs, as C2RPQs are also monotonic and their matches
are preserved under homomorphisms.
Lemma 2. For every DL-LiteR or ELH KB (T ,A) and
Boolean C2RPQ q: T ,A |= q if and only if IT ,A |= q.

This property will be a crucial element in establishing our
main theorem:
Theorem 3. The complexity results in Figure 1 hold.

We split the proof of this theorem into parts, with the lower
bounds shown in the next section, and the (more involved)
proofs of the upper bounds outlined in Section 5.

4 Lower Bounds
We start by establishing the required lower bounds.
Proposition 4. Boolean CRPQ entailment is

1. NL-hard in data complexity for DL-LiteRDFS;

2. P-hard in data complexity for EL;

3. NP-hard in combined complexity for DL-LiteRDFS;

4. PSPACE-hard in combined complexity for DL-Lite & EL.

Statements (1) and (2) hold even for RPQs.

Proof. Statement (1) follows from the analogous result for
graph databases [Consens and Mendelzon, 1990]. It can be
shown by a simple reduction from the NL-complete directed
reachability problem: y is reachable from x in a directed
graph G if and only if (x, y) is an answer to r∗(x, y) w.r.t.

the ABox AG encoding G. Statement (2) is immediate given
the P-hardness in data complexity of instance checking in EL
[Calvanese et al., 2006], and (3) follows from the well-known
NP-hardness in combined complexity of CQ entailment for
databases [Abiteboul et al., 1995].

For statement (4), we give a reduction from the problem of
emptiness of the intersection of an arbitrary number of regular
languages, which is known to be PSPACE-complete [Kozen,
1977]. Let L1, . . . , Ln be regular languages over alphabet Σ.
We will use the symbols in Σ as role names, and we add a
concept name A. Let A = {A(a)} and q = ∃x L1(a, x) ∧
. . .∧Ln(a, x). For DL-Lite, we will use the following TBox:
T = {A v ∃r | r ∈ Σ} ∪ {∃r− v ∃s | r, s ∈ Σ}. For
EL, we can use T = {A v ∃r.A | r ∈ Σ}. Notice that in
both cases the canonical model IT ,A consists of an infinite
tree rooted at a such that every element in the interpretation
has a unique r-child for each r ∈ Σ (and no other children).
Thus, we can associate to every domain element the word
over Σ given by the unique path from a, and moreover, for
every word w ∈ Σ∗ we can find an element ew whose path
from a is exactly w. This means that if w ∈ L1 ∩ . . . ∩ Ln,
we obtain a match for q in the canonical model by mapping
x to ew. Conversely, if q is entailed, then any match in the
canonical model defines a word which belongs to every Li,
which means L1 ∩ . . . ∩ Ln is non-empty.

For (2)RPQs in DL-LiteRDFS and EL, we inherit combined
complexity lower bounds of NL and P respectively from IQs.
For DL-Lite, we establish a P lower bound for 2RPQs, which
contrasts with the NL-completeness of instance checking.
Proposition 5. Boolean 2RPQ entailment in DL-Lite is P-
hard in combined complexity, assuming an NFA representa-
tion of the regular language.

Proof sketch. Consider the P-complete entailment problem
in which one is given a propositional formula T = ρ1 ∧ . . .∧
ρm ∧ v1 over variables v1, . . . , vn with ρi = vi1 ∧ vi2 → vi3 ,
and the problem is to decide whether T |= vn. We construct
a DL-Lite TBox T and 2RPQ q such that T , {A(a)} |= q if
and only if T |= vn. We let T consist of the axioms:
− A v ∃ri,j , for 1 ≤ i ≤ m, j ∈ {1, 2}
− ∃r−i1,j1 v ∃ri2,j2 , for 1 ≤ i1, i2 ≤ m and j1, j2 ∈ {1, 2}
and q = ∃xα(x, x), where α = (S,Σ, δ, s0, {voutn }) is the
NFA defined as follows:
− S={s0}∪ {v1}∪ {vini , vouti |2≤ i≤n}∪ {ρi |1≤ i≤m}

− Σ ={A?}∪{ri,j , r−i,j | 1 ≤ i ≤ m, 1 ≤ j ≤ 2}

− δ contains (s0, A?, vinn), and for each ρi = vj ∧ vk → v`,
the following transitions: (vin` , ri,1, v

in
j), (voutj , r−i,1, ρi),

(ρi, ri,2, v
in
k), and (voutk , r−i,2, v

out
`). Note: we use v1 in

place of vin1 and vout1 .

The first transition in δ enforces that x must be mapped
to a and that there must be a loop at a from state vinn to
voutn . Intuitively, a state vin` indicates that v` needs to be
proven, and vout` signals that v` has been successfully de-
rived. From a state vin` , the available transitions correspond
to the rules in T which conclude on v`: selecting transition
(vin` , ri,1, v

in
j) means choosing to use ρi to derive v`. The

transitions (vout` , r−i,1, ρi) and (ρi, ri,2, v
in
k) allow us to move

to the second variable of ρi once the first variable of ρi has
been derived. When both variables have been proven, the
transition (voutk , r−i,2, v

out
`) allows us to exit the derivation of

v`. Thus, any loop from vinn to voutn in IT ,{A(a)} corresponds
to a derivation of vn, and conversely, any derivation of vn
yields a path witnessing the entailment of q.

As a corollary, we get P-hardness of RPQs in DL-LiteR, by
using role inclusions to simulate the inverse roles in the query.
We leave open whether the preceding hardness result applies
when regular languages are given as regular expressions.

5 Upper Bounds
The main objective of this section will be to define a proce-
dure for deciding IT ,A |= q for a KB (T ,A) and C2RPQ q.
The procedure comprises two main steps. First, we rewrite q
into a set Q of C2RPQs such that IT ,A |= q if and only if
IT ,A |= q′ for some q′ ∈ Q. The advantage of the rewrit-
ten queries is that in order to decide whether IT ,A |= q′, we
will only need to consider matches which map the variables
to Ind(A). The second step decides the existence of such re-
stricted matches for the rewritten queries.

In order to more easily manipulate regular languages, it
will prove convenient to use NFAs rather than regular expres-
sions. Thus, in what follows, we assume all binary atoms take
the form α(t, t′), where α is an NFA over NR ∪ NR ∪ {A? |
A ∈ NC}. Given α = 〈S,Σ, δ, s0, F 〉, we use αs,G to denote
the NFA 〈S,Σ, δ, s,G〉, i.e., the NFA with the same states and
transitions as α but with initial state s and final states G.

5.1 Loop Computation
A key to defining our rewriting procedure will be to under-
stand how an atom L(t, t′) can be satisfied in the anonymous
part of the canonical model IT ,A. A subtlety arises from
the fact that the path witnessing the satisfaction of an atom
L(t, t′) may be quite complicated: it may move both up and
down, passing by the same element multiple times, and pos-
sibly descending below t′. This will lead us to decompose
an atom L(t, t′) into multiple “smaller” atoms corresponding
to segments of the L-path which are situated wholly above
or below an element. Importantly, we know that the canon-
ical model displays a high degree of regularity, since when-
ever two elements p1 and p2 in the anonymous part end with

the same concept (i.e., Tail(p1) = Tail(p2)), the submod-
els IT ,A|p1 and IT ,A|p2 are isomorphic. In particular, this
means that if Tail(p1) = Tail(p2), then p1 is an L-successor
of itself in the interpretation IA,T |p1 just in the case that p2
is an L-successor of itself in the interpretation IA,T |p2 .

We will require a way of testing for a given TBox T and
NFA α with states s, s′ whether Tail(e) = C ensures that
there is a loop from e back to itself, situated wholly within
IT ,A|e, which takes α from state s to state s′. To this end, we
construct a table Loopα which contains for each pair s, s′ of
states in α, a subset of TCT . If T is a DL-LiteR TBox, then
Loopα is defined inductively using the following rules:
1. for every s ∈ S: Loopα[s, s] = TCT

2. if C ∈ Loopα[s1, s2] and C ∈ Loopα[s2, s3], then C ∈
Loopα[s1, s3]

3. if C ∈ TCT , T |= C v A, and (s1, A?, s2) ∈ δ, then
C ∈ Loopα[s1, s2]

4. if T |= C v ∃R, T |= R v R′, T |= R− v R′′,
(s1, R

′, s2) ∈ δ, ∃R− ∈ Loopα[s2, s3], (s3, R
′′, s4) ∈ δ,

C ∈ TCT , and C 6= ∃R, then C ∈ Loopα[s1, s4]

For ELH, we replace the last rule by:

4’. if T |= C v ∃r.D, T |= r v r′, T |= r v r′′,
(s1, r

′, s2) ∈ δ, D ∈ Loopα[s2, s3], (s3, r
′′−, s4) ∈ δ,

and C ∈ TCT , then C ∈ Loopα[s1, s4]

Example 6. Consider a DL-LiteR TBox T containing the
inclusions B v ∃r, ∃r− v B, B v ∃t1, and t1 v t−2 , and
consider the query q = ∃xy.r∗t1t2r−(x, y), B(y), or equiv-
alently, q = ∃xy.α(x, y), B(y), where α = 〈{s0, s1, s2, s3},
{r, t1, t2, r−}, δ, s0, {s3}〉 and δ = {(s0, r, s0), (s0, t1, s1),
(s1, t2, s2), (s2, r

−, s3)}. In the first step of the loop compu-
tation, we infer that Loopα[si, si] is the set of all tail concepts
for 0 ≤ i ≤ 4. Next, by rule 4, and using T |= Bv∃t1, T |=
∃r− v ∃t1, T |= t−1 v t2, (s0, t1, s1), ∃t−1 ∈ Loopα[s1, s1],
and (s1, t2, s2), we can infer that B ∈ Loopα[s0, s2] and
∃r− ∈ Loopα[s0, s2]. In a further step, we can use T |=
B v ∃r, (s0, r, s0), ∃r− ∈ Loopα[s0, s2], and (s2, r

−, s3) to
obtain B ∈ Loopα[s0, s3].
Note that the table Loopα can be constructed in polynomial
time in |T | and |α| since entailment of inclusions is poly-
nomial for both DL-LiteR and ELH. The following lemma
shows that Loopα has the desired meaning:
Lemma 7. For every element p ∈ ∆IA,T \ Ind(A): Tail(p) ∈
Loopα[s, s′] if and only if p is an L(αs,s′)-successor of itself
in the interpretation IA,T |p.

5.2 Query Rewriting
Our aim is to rewrite our query in such a way that we do
not need to map any variables to the anonymous part of the
model. We draw our inspiration from a query rewriting pro-
cedure for Horn-SHIQ described in [Eiter et al., 2012]. The
main intuition is as follows. Suppose we have a match π for
q which maps some variable y to the anonymous part, and
no other variable is mapped below π(y). Then we modify
q so that it has essentially the same match except that vari-
ables mapped to π(y) are now mapped to the (unique) parent
of π(y) in IT ,A. The delicate point is that we must “split”

PROCEDURE rewrite(q, T)

1. Choose either to output q or to continue.
2. Choose a non-empty set Leaf ⊆ vars(q) and y ∈ Leaf.

Rename all variables in Leaf to y.
3. Choose C ∈ TCT such that T |= C v B whenever
B(y) is an atom of q. Drop all such atoms from q.

4. For each atom α(t, t′) where α = 〈S,Σ, δ, s, F 〉 is an
NFA and y ∈ {t, t′},
• choose a sequence s1, . . . , sn of distinct states from
S such that sn ∈ F ,
• replace α(t, t′) by the atoms αs,s1(t, y), αs1,s2(y, y),

. . . , αsn−2,sn−1
(y, y), αsn−1,sn(y, t′).

5. Drop all atoms αs,s′(y, y) such that C ∈ Loopα[s, s′].

6. Choose someD ∈ BCT andR,R1, R2 ∈ NR such that:
(a) C = ∃R− and T |= D v ∃R [for DL-LiteR], or

R ∈ NR and T |= D v ∃R.C [for ELH].
(b) T |= R v R1 and T |= R v R2

(c) for each atom α(y, x) with α = 〈S,Σ, δ, s, F 〉,
there exists s′ ∈ S such that (s,R−1 , s

′)∈ δ.
(d) for each atom α(x, y) with α = 〈S,Σ, δ, s, F 〉,

there exist s′′ ∈ S, sf ∈ F with (s′′, R2, sf) ∈ δ.
For atoms of the form α(y, y), both (c) and (d) apply.

7. Replace
• each atom α(y, x) with x 6= y by αs′,F (y, x)

• each atom α(x, y) with x 6= y by αs,s′′(x, y)

• each atom α(y, y) by atoms αs′,s′′(y, y)

with s, s′, s′′, F as in Step 6.
8. If D ∈ NC is the concept chosen in Step 6, add D(y)

to q. If D = ∃P−, add αP (z, y) to q, where z is a fresh
variable and L(αP) = {P}. Go to Step 1.

Figure 2: Query rewriting procedure rewrite.

atoms of the form α(t, t′) with y ∈ {t, t′} into the parts which
are satisfied in the subtree IT ,A|π(y), and those which occur
above π(y), whose satisfaction still needs to be determined
and thus must be incorporated into the new query. With each
iteration of the rewriting procedure, we obtain a query which
has a match which maps variables “closer” to the core of
IT ,A, until eventually we find some query that has a match
which maps all terms to Ind(A).

In Figure 2, we give a recursive non-deterministic query
rewriting procedure rewrite which implements the above in-
tuition. Slightly abusing notation, we will use rewrite(q, T)
to denote the set of queries which are output by some execu-
tion of rewrite on input q,T .

Example 8. We illustrate two different ways to apply the
rewriting step to the query q = ∃xy.r∗t1t2r−(x, y), B(y)
in Example 6. First, let Leaf = {x} be the set chosen in
step 2. There is no renaming to do, so we proceed to step 3
and choose ∃r−. In step 4, we choose the sequence s2, s3,

and replace α(x, y) by αs0,s2(x, x), αs2,s3(x, y). Since
∃r− ∈ Loopα[s0, s2], we drop the first atom and keep only
αs2,s3(x, y). In step 6, we can choose B for D, and r for the
rolesR,R1,R2. This ensures (a) and (b). For (c), we can take
s3 since (s2, r

−, s3) ∈ δ. In step 7, we replace αs2,s3(x, y)
by αs3,s3(x, y). At the end of step 8, we are left with the
query q′ = ∃xyz.r(z, y), αs3,s3(x, y), B(y), which is output
as a rewriting when we return to step 1. We remark that q′
is equivalent modulo T to the simpler ∃yz.r(z, y) since by
choosing x = y, the atom αs3,s3(x, y) is trivially satisfied,
and B(y) is enforced by r(z, y) and the inclusion ∃r− v B.
Intuitively, this rewriting captures the fact that, whenever we
have an element e in an interpretation that satisfies ∃r−, then
we can map x to e, thereby ensuring that the initial segment
r∗t1t2 is satisfied below e. Moreover, by mapping y to the
r-predecessor of e, we satisfy the remaining r−.

As further illustration, suppose that in step 2, we choose
Leaf = {x, y}, and let y be the selected variable. After
renaming, we obtain q = ∃y.α(y, y), B(y). In step 3, we
choose ∃r−, which leads us to drop the atom B(y), leaving
us with ∃y.α(y, y). In step 4, we choose the sequence that
contains only s3, so the atom α(y, y) is left untouched. Since
∃r− ∈ Loopα[s0, s3], we can drop this atom in step 5, ob-
taining the empty query. In step 6, we choose D = B and
R = R1 = R2 = r. Step 7 is inapplicable since there are no
binary atoms. Finally, in step 8, we add B(y) to obtain the
query q = ∃y.B(y). Intuitively, this rewriting captures that
if some element e satisfies B, then we can map both x and y
to it to obtain a query match in which the regular expression
r∗t1t2r

−(x, y) is fully satisfied below e.

The next lemma shows that using rewrite(q, T), we can re-
duce the problem of finding an arbitrary query match to find-
ing a match involving only ABox individuals.

Lemma 9. T ,A |= q if and only if there exists a match π
for some query q′ ∈ rewrite(q, T) in IA,T such that π(t) ∈
Ind(A) for every term t in q′.

We remark that the number of variables and atoms in each
query in rewrite(q, T) is linearly bounded by |q|. This is the
key property used to show the following:

Lemma 10. There are only exponentially many queries in
rewrite(q, T) (up to equivalence), each having size polyno-
mial in |q|.

5.3 Query Evaluation
Even when all terms are mapped to ABox individuals, the
paths between them may need to pass by the anonymous part
in order to satisfy the regular expressions in the query. This
leads us to define a relaxed notion of query entailment, which
exploits the fact that if all variables are mapped to Ind(A),
only loops (that is, paths from an individual a to itself in
IA,T |a) may participate in the paths between them. Hence,
we look for paths in the ABox that may use such loops to skip
states in the query automata.

As part of our query evaluation procedure, we will need
to decide for a given individual a whether a is an L(αs,s′)-
successor of itself in IA,T |a. We cannot use Loopα directly,
since it does not take into account the concepts which are

entailed due to ABox assertions. We note however that the set
of loops starting from a given individual is fully determined
by the set of basic concepts which the individual satisfies.
We thus define a new table ALoopα such that ALoopα[s, s′]
contains all subsets G ⊆ BCT such that a is an L(αs,s′)-
successor of itself in IA,T |a whenever G = {C ∈ BCT |
a ∈ CIT ,A}. Note that the table ALoopα is exponential in
|T |, but the associated decision problem is in P:
Lemma 11. It can be decided in polytime in |T | and |α|
whether G ∈ ALoopα[s, s′].

We use ALoopα to define a relaxed notion of query match.
Definition 12. We write T ,A |≈ q if there is a mapping π
from the terms in q to Ind(A) such that:
(a) π(c) = c for each c ∈ NI,
(b) T ,A |= A(π(t)) for each atom A(t) in q, and
(c) for each α(t, t′) ∈ q with α = 〈S,Σ, δ, s, F 〉, there is

a sequence (a0, s0), . . . , (an, sn) of distinct pairs from
Ind(A) × S such that a0 = π(t), an = π(t′), s0 = s,
sn ∈ F , and for every 0 ≤ i < n, either:
(i) ai = ai+1 and {C ∈ BCT | T ,A |= C(ai)} ∈

ALoopα[si, si+1], or
(ii) T ,A|=R(ai, ai+1) and (si, R, si+1)∈δ for some R.

The following lemma characterizes C2RPQ entailment in
terms of relaxed matches.
Lemma 13. T ,A |= q if and only if T ,A |≈ q′ for some
q′ ∈ rewrite(q, T).

By applying the preceding characterization, we obtain our
C2RPQ upper bounds:
Proposition 14. Boolean C2RPQ entailment is
1. NL in data complexity for DL-LiteR and DL-LiteRDFS;
2. P in data complexity for ELH;
3. NP in combined complexity for DL-LiteRDFS;
4. PSPACE in combined complexity for DL-LiteR and ELH.

Proof sketch. By Lemmas 9 and 13, T ,A |= q just in the case
that T ,A |≈ q′ for some q′ ∈ rewrite(q, T). For statements 1
and 2, if T and q are fixed, then computing rewrite(q, T)
requires only constant time in |A|. To decide whether T ,A |≈
q′ for q′ ∈ rewrite(q, T), we guess a mapping π from the
terms in q′ to Ind(A) and verify that it satisfies the conditions
in Definition 12. Note that for condition (c), we cannot keep
the whole sequence (a0, s0), . . ., (an, sn) in memory at once,
so we use a binary counter that counts up to |Ind(A)×S| and
store only one pair of nodes (ai, si), (ai+1, si+1) at a time.
The data complexity of verifying conditions (b) and (c) is the
same as for instance checking in the corresponding DL: AC0

for DL-LiteR, and P for ELH. This yields the desired upper
bounds of NL and NLP =P, respectively.

For statement 4, instead of building the whole set
rewrite(q, T), which can be exponential, we generate a sin-
gle q′ ∈ rewrite(q, T) non-deterministically. By Lemma 10,
every query in rewrite(q, T) can be generated after at most
exponentially many steps, so we can use a polynomial-size
counter to check when we have reached this limit. Since each

rewritten query is of polynomial size (Lemma 10), and we
keep only one query in memory at a time, the generation
of a single query in rewrite(q, T) requires only polynomial
space. We can then use the same strategy as above to de-
cide in polynomial space whether T ,A |≈ q′. This yields
a non-deterministic polynomial space procedure for decid-
ing T ,A |= q. Using the well-known fact that NPSPACE
= PSPACE, we obtain the desired upper bound.

For statement 3, we note that if T is an DL-LiteRDFS TBox,
rewrite(q, T) = {q}. Thus, it suffices to decide T ,A |≈ q,
which can be done by guessing a mapping π and verifying in
polytime that π satisfies the conditions of Definition 12.

By moving to 2RPQs, we can achieve tractability even in
combined complexity.
Proposition 15. Boolean 2RPQ entailment is
1. NL in combined complexity for DL-LiteRDFS;
2. P in combined complexity for DL-LiteR and ELH.

Proof sketch. For (1), we can iterate over all mappings π of
the (at most two) query variables, and for each mapping, we
check whether the conditions of Definition 12 are met using
the same strategy as in the proof of point 1 of Proposition 14.
Recall that in DL-LiteRDFS, instance checking is in NL w.r.t.
combined complexity [Calvanese et al., 2007a].

For (2), we first give a polynomial reduction to the problem
of deciding whether T ,A |≈ q′ with q′ a 2RPQ. When q =
∃xy L(x, y) with x 6= y, we can simply replace q by q′ =
∃xy Σ∗ · L · Σ∗(x, y), where Σ = NR ∪ NR ∪ {A? | A ∈
NC}, since T ,A |= q iff T ,A |≈ q′. For queries of the
form ∃xL(x, x), the proof is more involved and passes by the
definition of an alternative rewriting procedure for 2RPQs,
which is similar in spirit to rewrite but is guaranteed to run in
polynomial time. We can then check for a match of a 2RPQ in
the ABox using essentially the same strategy as for (1), except
that we must now perform some polynomial-time ALoopα
tests to verify condition (c) of Definition 12.

6 Conclusion and Future Work
In this paper, we established tight complexity bounds for an-
swering various forms of regular path queries over knowl-
edge bases formulated in lightweight DLs from the DL-Lite
and EL families. Our results demonstrate that the query an-
swering problem for these richer query languages is often not
much harder than for the CQs and IQs typically considered.
Indeed, query answering remains tractable in data complex-
ity for the highly expressive class of C2RPQs, and for 2RPQs,
we even retain polynomial combined complexity.

In future work, we plan to explore other useful exten-
sions of regular path queries, such as nested path expressions
(along the lines of [Pérez et al., 2010]), and the addition of
path variables (recently explored in [Barceló et al., 2010]).

Acknowledgements The authors were supported by a Uni-
versité Paris-Sud Attractivité grant and the ANR project
PAGODA ANR-12-JS02-007-01 (Bienvenu), the FWF
project T515-N23 (Ortiz), and the FWF project P25518-N23
and the WWTF project ICT12-015 (Šimkus).

References
[Abiteboul et al., 1995] Serge Abiteboul, Richard Hull, and

Victor Vianu. Foundations of Databases. Addison-Wesley,
1995.

[Artale et al., 2009] Alessandro Artale, Diego Calvanese,
Roman Kontchakov, and Michael Zakharyaschev. The
DL-Lite family and relations. Journal of Artificial Intel-
ligence Research, 36:1–69, 2009.

[Baader et al., 2005] Franz Baader, Sebastian Brandt, and
Carsten Lutz. Pushing the EL envelope. In Proc. of IJ-
CAI, pages 364–369, 2005.

[Barceló et al., 2010] Pablo Barceló, Carlos A. Hurtado,
Leonid Libkin, and Peter T. Wood. Expressive languages
for path queries over graph-structured data. In Proc. of
PODS, pages 3–14, 2010.

[Bienvenu et al., 2013] Meghyn Bienvenu, Magdalena Ortiz,
and Mantas Šimkus. Conjunctive Regular Path Queries
in Lightweight Description Logics. Technical Report IN-
FSYS RR-1843-13-01, Institute of Information Systems,
Vienna University of Technology. Available at http://
www.kr.tuwien.ac.at/research/reports/.

[Calvanese et al., 2006] Diego Calvanese, Giuseppe De Gi-
acomo, Domenico Lembo, Maurizio Lenzerini, and Ric-
cardo Rosati. Data complexity of query answering in de-
scription logics. In Proc. of KR, pages 260–270, 2006.

[Calvanese et al., 2007a] Diego Calvanese, Giuseppe De Gi-
acomo, Domenico Lembo, Maurizio Lenzerini, and Ric-
cardo Rosati. Tractable reasoning and efficient query an-
swering in description logics: The DL-Lite family. Journal
of Automated Reasoning, 39(3):385–429, 2007.

[Calvanese et al., 2007b] Diego Calvanese, Thomas Eiter,
and Magdalena Ortiz. Answering regular path queries in
expressive description logics: An automata-theoretic ap-
proach. In Proc. of AAAI, pages 391–396, 2007.

[Calvanese et al., 2009] Diego Calvanese, Thomas Eiter, and
Magdalena Ortiz. Regular path queries in expressive de-
scription logics with nominals. In Proc. of IJCAI, pages
714–720, 2009.

[Consens and Mendelzon, 1990] Mariano P. Consens and
Alberto O. Mendelzon. Graphlog: a visual formalism
for real life recursion. In Proc. of PODS, pages 404–416,
1990.

[Eiter et al., 2012] Thomas Eiter, Magdalena Ortiz, Mantas
Šimkus, TrungKien Tran, and Guohui Xiao. Query rewrit-
ing for Horn-SHIQ plus rules. In Proc. of AAAI, 2012.

[Kozen, 1977] Dexter Kozen. Lower bounds for natural
proof systems. In Proc. of FOCS, pages 254–266, 1977.

[Krisnadhi and Lutz,] Adila Krisnadhi and Carsten Lutz.
Data complexity in the EL family of description logics.
In Proc. of LPAR, pages 333–347.

[Krötzsch and Rudolph, 2007] Markus Krötzsch and Sebas-
tian Rudolph. Conjunctive queries for EL with composi-
tion of roles. In Proc. of DL, 2007.

[Ortiz et al., 2011] Magdalena Ortiz, Sebastian Rudolph,
and Mantas Simkus. Query answering in the Horn frag-
ments of the description logics SHOIQ and SROIQ. In
Proc. of IJCAI, pages 1039–1044, 2011.

[Pérez et al., 2010] Jorge Pérez, Marcelo Arenas, and Clau-
dio Gutierrez. nSPARQL: A navigational language for
RDF. Journal of Web Semantics, 8(4):255–270, 2010.

[Rosati, 2007] Riccardo Rosati. On conjunctive query an-
swering in EL. In Proc. of DL, 2007.

Omitted Proofs
Notational conventions. For convenience, we introduce some
further notation. We use terms(q) to refer to the set of terms
of a query q. We use q1 ⊆ q2 to denote query containment
(defined in the standard way), and C D (with C,D ∈
BCT) to state that ∃xC(x) ⊆ ∃xD(x).

Finally, given a word w = u1 . . . un and interpretation I,
we let wI denote that set of all sequences e0, . . . , en of ele-
ments in I, such that for every 1 ≤ i ≤ n:

• if ui = A?, then ei−1 = ei ∈ AI

• if ui = R ∈ NR ∪ NR, then 〈ei−1, ei〉 ∈ RI

Thus, b is an L(α)-successor of c just in the case that there is
a word w ∈ L(α) and σ ∈ wI such that σ begins with b and
terminates by c.

Proposition 5. 2RPQ answering in DL-Lite is P-hard (com-
bined complexity), assuming an NFA representation of the
regular language.

Proof. Consider a propositional Horn theory T over
v1, . . . , vn consisting of:

• a set of rules ρi = vi1 ∧ vi2 → vi3 (1 ≤ i ≤ m)

• a single “initialization” fact: v1
Let vn be a target variable. Then the problem is to decide
whether T |= vn. Note that this problem is P-complete
(straightforward reduction from Horn satisfiability).

We construct a DL-Lite TBox T , ABox A, and 2RPQ q
such that T ,A |= q if and only if T |= vn. The ABoxA con-
sists of a single assertion A(a), and T contains the following
axioms:

• A v ∃ri,j , for 1 ≤ i ≤ m, j ∈ {1, 2}
• ∃r−i1,j1 v ∃ri2,j2 , for 1 ≤ i1, i2 ≤ m and j1, j2 ∈ {1, 2}

We set q = ∃xα(x, x), where α = (S,Σ, δ, s0, {voutn }) is an
NFA defined as follows:

• S = {s0} ∪ {v1} ∪ {vini , vouti | 2 ≤ i ≤ n} ∪
{ρi | 1 ≤ i ≤ m}

• Σ = {A?} ∪ {ri,j , r−i,j | 1 ≤ i ≤ m, 1 ≤ j ≤ 2}
• δ contains the following transitions:

– (s0, A?, vinn)

– for each rule ρi = vj ∧ vk → v`:
(vin` , ri,1, v

in
j), (voutj , r−i,1, ρi), (ρi, ri,2, v

in
k),

(voutk , r−i,2, v
out
`)

– note: we replace any occurrences of vin1 and vout1 by v1
Claim: T ,A |= q if and only if T |= vn

(⇒) Suppose that T ,A |= q, and hence that q holds in the
canonical model I of T ,A. This means that exists a sequence
(s0, σ1, s1), (s1, σ2, s2), . . . , (sp−1, σp, sp) ∈ δ of transitions
and a path e0, . . . , ep ∈ (σ1 . . . σp)

I such that e0 = ep and
sp = voutn . Note that since there is a single transition from
s0 (namely (s0, A?, vinn)), we must have (e0, e1) ∈ (A?)I ,
hence e0 = e1 = ep = a and s1 = vinn .

We will show by induction on i that if si = voutj , then
T |= vj , for every 1 ≤ i ≤ p. This clearly implies that
T |= vn, since sp = voutn .

For the base case, suppose that si = voutj , and there is
no k < i such that sk = voutj′ . By examining the possible
transitions leading to voutj , then we can infer that there must
exist a rule ρ` = v1 ∧ v1 → vj in T , and hence that T |= vj .

For the induction step, suppose that sk+1 = voutj and that
the statement has been shown to hold for all 1 ≤ i ≤ k.
Then there must exist a rule ρ` = v`1 ∧ v`2 → vj such
that σk+1 = r−`,2 and ek = ek+1r`,2. We consider the most
interesting case in which v`1 6= v1. Then we must have
sk = vout`2

, and hence T |= v`2 , by the IH. Moreover, since
ek = ek+1r`,2, we must have k′ < k such that ek′−1 = ek+1,
σk′ = r`,2, and ek′ = ek. Examining the transition relation,
we can infer that sk′−1 = ρ`, which in turn means that
σk′−1 = r−`,1 and sk′−2 = vout`1

. Applying the IH, we obtain
T |= v`1 , and hence T |= vj .

(⇐) If T |= vn, then there must be exist a proof tree for
vn from T , i.e. a node-labelled tree satisfying the following
conditions:

• the root node is labelled vn
• all leaf nodes are labelled v1
• if a non-leaf node has label vi, then T contains a rule ρj =
vj1 ∧ vj2 → vj3 such that vj3 = vi and the node’s two
children have labels vj1 and vj2

It is straightforward to use this proof tree to define a match
for q in the canonical model of T ,A.

Lemma 7. For every element p ∈ ∆IA,T \ Ind(A): Tail(p) ∈
Loopα[s, s′] if and only if p is an L(αs,s′)-successor of itself
in the interpretation IA,T |p.

Proof. Fix a TBox T , ABox A, and an automaton α =
〈S,Σ, δ, s, F 〉. For the first direction, we need to show that
if p ∈ ∆IA,T \ Ind(A) and Tail(p) ∈ Loopα[s, s′], then p
is an L(αs,s′)-successor of itself in the interpretation IA,T |p.
To this end, we fix also a sequence of applications of the rules
1, 2, 3, and 4 (or 4’) which generates the full table Loopα. Let
k be the length of this sequence. It then suffices to show the
following claim for all 1 ≤ i ≤ k:

Claim 1: If C is inserted into Loopα[s, s′] on the i-th rule ap-
plication and p ∈ ∆IA,T \ Ind(A) is such that Tail(p) = C,
then p is an L(αs,s′)-successor of itself in the interpretation
IA,T |p.
Proof of claim. The proof is by induction on i. First suppose
that C is inserted into Loopα[s, s′] with the first rule applica-
tion. Then either rule 1 or rule 3 must have been applied. In
the former case, we have s = s′, so p is trivially an L(αs,s′)-
successor of itself in IA,T |p (as witnessed by ε ∈ L(αs,s′)).
In the latter case, we have Tail(p) = C and T |= C v A,
which implies that p ∈ AIA,T . As (s,A?, s′) ∈ δ, we have
A? ∈ L(αs,s′), and thus, p is an L(αs,s′)-successor of itself.

For the induction step, suppose that the statement holds
for all 1 ≤ i < k, and let p ∈ ∆IA,T \ Ind(A) be such

that C = Tail(p) is inserted into Loopα[s, s′] on the k-th
rule application. The first possibility is that the k-th rule
application involves rules 1 or 3, in which case we pro-
ceed as in the base case. The next possibility is that rule 2
was applied. Then there must exist s′′ such that after the
first k − 1 rule applications, we have C ∈ Loopα[s, s′′]
and C ∈ Loopα[s′′, s′]. Applying the induction hypothesis,
we get that p is both an L(αs,s′′)-successor of itself and an
L(αs′′,s′)-successor of itself in IA,T |p. It follows that there
exists words w1 ∈ L(αs,s′′) and w2 ∈ L(αs′′,s′) and se-
quence of elements d = d0 . . . dn and e = e0 . . . em from
IA,T |p with d0 = dn = e0 = em = p such that d ∈ wIA,T

1

and e ∈ w
IA,T
2 Thus, w = w1w2 is a word from L(αs,s′)

such that d0 . . . dne1 . . . em ∈ wIA,T with d0 = em = p,
hence p is an L(αs,s′)-successor of itself in IA,T |p.

The final possibility is that the k-th rule application in-
volves rule 4. Here the proof differs depending on whether
T is formulated in DL-LiteR or ELH. We give the proof
only for DL-LiteR; the proof for ELH proceeds analogously.
We first note that since an application of rule 4 leads to the
insertion of C into Loopα[s, s′] at stage k, it must be the case
that we can find R,R′, R′′ ∈ NR and s′′, s′′′ ∈ S such that:

• C 6= ∃R,

• T |= C v ∃R,

• T |= R v R′,
• T |= R− v R′′,
• (s,R′, s′′) ∈ δ and (s′′′, R′′, s′) ∈ δ,

• ∃R− ∈ Loopα[s′′, s′′′] (after k − 1 rule applications)

As Tail(p) = C, C 6= ∃R, and T |= C v ∃R, the path
p′ = pR∃R− must belong to ∆IT ,A . Then by applying the
induction hypothesis, we can infer that p′ is an L(αs′′,s′′′)-
successor of itself in IA,T |p′ , and hence there is some word
w ∈ L(αs′′,s′′′) and some sequence of elements σ in IA,T |p′
such that σ ∈ wIA,T . Using the above points, we can show
that the word w′ = R′wR′′ and sequence σ′ = pσp are
such that σ′ ∈ (w′)IA,T . We can thus conclude that p is
anL(αs,s′)-successor of itself in IA,T |p. (end proof of claim)

For the second direction, we will proceed by induction on
the length of the word witnessing the successor relationship.
To formalize this, we need to introduce some terminology.
Given a path pwhich is an L(β)-successor of itself in IA,T |p,
a witness for (p, β) is a pair (w, σ) such that w ∈ L(β), σ is a
sequence of elements in IA,T |p which starts and ends with p,
and σ ∈ wI . We define the minimal witness length of (p, β)
as the minimum of |w| over all witnesses (w, σ) for (p, β).
To establish the second direction of the lemma, it suffices to
prove the following claim for all i ≥ 0:

Claim 2: If p is an L(αs,s′)-successor of itself in the inter-
pretation IA,T |p, and the minimal witness length of (p, αs,s′)
is i, then Tail(p) ∈ Loopα[s, s′].
Proof of claim. The proof is by induction on i. The base
case is when i = 0, i.e. when there is a witness (w, σ) with
w the empty word. Then we must have ε ∈ L(αs,s′), and

the statement follows trivially from rule 1 of the definition of
Loopα.

For the induction step, suppose that the statement of the
claim holds for all i < k, and suppose that p is an L(αs,s′)-
successor of itself in the interpretation IA,T |p such that the
minimal witness length of (p, αs,s′) is k. Letw = u1 . . . uk ∈
L(αs,s′) and σ = e0, . . . , ek be a witness for (p, αs,s′).
First suppose that there exists some ej with 1 ≤ j < k
such that ej = p. Set w1 = u1 . . . uj , w2 = uj+1 . . . uk,
σ1 = e0, . . . , ej , and σ2 = ej , . . . , ek. Then (w1, σ1) is
a witness for (p, αs,s′′) with length < k, and (w2, σ2) is a
witness for (p, αs′′,s′) with length < k. Thus, from the in-
duction hypothesis, we have that Tail(p) ∈ Loopα[s, s′′] and
Tail(p) ∈ Loopα[s′′, s′]. Hence, by rule 2 of the construction
of Loopα, we must also have Tail(p) ∈ Loopα[s, s′].

Now let us consider the second possibility, which is that
ej 6= p for all 1 ≤ j < k. A special case is when k = 1,
in which case the witness takes the form (A?, pp). We thus
have (s,A?, s′) ∈ δ and p ∈ AIA,T . The latter implies that
T |= Tail(p) v A, so the conditions of rule 3 are satisfied,
and hence Tail(p) ∈ Loopα[s, s′]. Next consider the case
where k ≥ 2. Then since IA,T |p is tree-shaped, we must have
e1 = ek−1, and also e1 = p′ for some p′ = pRC ∈ ∆IT ,A|p .
At this point, the proof slightly differs depending on whether
we are in DL-LiteR or ELH. We present the proof for the
case of ELH, in which case we have R = r ∈ NR and T |=
Tail(p) v ∃r.C. As (w, σ) is a witness for (p, αs,s′), we also
have that:

• u1 ∈ NR and T |= r v u1
• uk ∈ NR and T |= r− v uk
Next we note that since w ∈ L(αs,s′), there must exist
s′′, s′′′ ∈ S such that:

• (s, u1, s
′′) ∈ δ

• u2 . . . uk−1 ∈ L(αs′′,s′′′)

• (s′′′, uk, s
′) ∈ δ

From the second bullet, we obtain that w′ = u2 . . . uk−1
and σ′ = e1, . . . , ek−1 are a witness for (p′, αs′′,s′′′). Note
moreover, that w′ has length less than k, so the induction hy-
pothesis applies, allowing us to infer that Tail(p′) = C ∈
Loopα[s′′, s′′′]. We thus satisfy all of the required conditions
for applying rule 4 to obtain Tail(p) ∈ Loopα[s, s′]. This
completes our proof of Claim 2.

Lemma 10. There are only exponentially many queries in
rewrite(q, T) (up to equivalence), and each one has size poly-
nomial in |q|.

Proof. Let n be the number of variables in the input query q.
First we argue that by introduction of fresh atoms in Step 8,
a rewriting of q may increase the query size only linearly. In
particular, it adds at most 2n variables, at most n atoms of the
form D(x), and at most 4n states occurring in fresh atoms of
the form α(x, y). These bounds clearly hold after a one-step
application of the rewriting, which introduces one atom of the
form D(y) or αP (z, y), that is, at most one fresh variable z
and at most two states (we assume that αP has only two states

sP and sPf , and its only transition is (sP , P, sPf)). We as-
sociate the variable z and the atom with the chosen variable
y ∈ Leaf. In subsequent rewriting steps, if y is not chosen
to be a member of Leaf, then there is no need to introduce
another variable or atom associated to y. If y ∈ Leaf and we
had introduced D(y), then we must drop D(y) in Step 3 be-
fore introducing again some new atom in Step 8. Hence we
only have one extra variable and one extra atom associated
to the same variable at any given stage. If instead we had
introduced the atom αP (z, y), then this atom will be rewrit-
ten in Step 7 into αsP ,sP (z, y). We may add a new atom
αP ′(z

′, y) in Step 8, leaving us with two extra variables and
three states. However, in the next iteration in which y ∈ Leaf
is chosen, Step 5 will eliminate the older αsP ,sP (z, y) (since
A ∈ LoopαP

[sP , sP] trivially holds for all A), and Step 7
will rewrite the newer one into αs′P ,s′P (z′, y), leaving us again
with just one extra variable and two extra states before intro-
ducing a new atom in Step 8. Hence, we have at most two
variables and four states associated to the same variable at a
time.

Second, we give a bound on the number of NFAs that can
occur in the atoms introduced by the other steps of the rewrit-
ing algorithm. Let m be the size of the (string encoding)
the input query. The rewriting only adds atoms αs,s′(t, t′)
with s, s′ states of some α already occuring in the query,
hence there are only O(m2) different NFAs. Next we ob-
serve that with O(m2) NFAs and O(m) variables, at most
O(m4) atoms can be built. This gives a polynomial bound on
size of the largest possible query in rewrite(q, T), and a total
of O(2m

4

) different queries (up to renaming of variables).

Lemma 9. T ,A |= q if and only if there a match π for some
query q′ ∈ rewrite(q, T) in IA,T such that π(t) ∈ Ind(A)
for every t ∈ terms(q′).

We split Lemma 9 into the two lemmas, a first showing
correctness of the procedure rewrite, and a second showing
its completeness. In the proofs of these lemmas, it will prove
useful to refer to queries that are produced by a single iter-
ation of rewrite. We thus introduce the set one-step(q, T)
which contains precisely those queries q′ for which there is
an execution of rewrite(q, T) such that q′ is output the first
time that the procedure returns to Step 1.

Lemma 16. If T ,A |= q′ for some q′ ∈ rewrite(q, T), then
T ,A |= q.

Proof. It is sufficient to show that if q′ ∈ one-step(q, T) and
T ,A |= q′, then T ,A |= q. Fix a C2RPQ q and a DL-
LiteR or ELH TBox T . Let q′ ∈ one-step(q, T) be such that
T ,A |= q′, and let π be a match for q′ in IT ,A.

Consider the execution of rewrite(q, T) which leads to the
query q′ being output the first time that the procedure returns
to Step 1. Let Leaf be the non-empty subset of vars(q) which
was selected in Step 2, let C ∈ TCT be the concept selected
in Step 3, and letD ∈ BCT andR,R1, R2 be the concept and
roles selected in Step 6. Because of Step 8, we know that q′
either contains an atom D(y), or contains an atom αP (z, y)
such that D = ∃P−, z is a variable not appearing in vars(q),

and αP is such that L(αP) = {P}. In the former case, we
know that π(y) ∈ DIT ,A and that either (i) T |= D v ∃R
and C = ∃R−, or (ii) T |= D v ∃R.C, hence there must
exist an R-successor e of π(y) in IT ,A with Tail(e) = C. In
the latter case, we can find d such that (d, π(y)) ∈ P IT ,A ,
which implies that π(y) ∈ DIT ,A . We then use the fact that
T |= D v ∃R where C = ∃R− to find some R-successor
e of π(y) in IT ,A with Tail(e) = C. We define a mapping
π′ : terms(q) → ∆IT ,A by setting π′(t) = e for every t ∈
Leaf and setting π′(t) = π(t) for every t ∈ terms(q′) \ {y}.
This mapping is well-defined since every variable in q either
belongs to Leaf or appears in q′.

We aim to show that π′ is a match for q in IT ,A. To this
end, consider some concept atom B(t) ∈ q. First suppose
that t ∈ Leaf. Then we know that the concept C selected in
Step 3 is such that T |= C v B. We then use the fact that
since t ∈ Leaf,we have π′(t) = e ∈ CIT ,A . If t 6∈ Leaf, then
B(t) ∈ q′. As π is a match for q′, we have π(t) ∈ BIT ,A .
Using π′(t) = π(t), we get π′(t) ∈ BIT ,A .

Now consider some atom of the form α(t, t′) ∈ q, where
α = 〈S,Σ, δ, s, F 〉. If both t 6∈ Leaf and t′ 6∈ Leaf, then
it can be verified that α(t, t′) ∈ q′. As π is a match for q′
in IT ,A, it must be the case that π(t′) is an L(α)-successor
of π(t). Since π′(t) = π(t) and π′(t) = π(t), the same
holds for π′. Let us next consider the more interesting case
in which {t, t′} ∩ Leaf 6= ∅. In Step 4, we have a query
containing α(σ(t), σ(t′)), where σ(t) = t for t 6∈ Leaf and
σ(t) = y for t ∈ Leaf. Note that since {t, t′} ∩ Leaf 6= ∅, at
least one of σ(t) and σ(t′) must be y. It follows that in Step 4,
we will select a sequence s1, . . . , sn of distinct states from S
such that sn ∈ F , and we will replace α(σ(t), σ(t′)) by the
atoms: αs,s1(σ(t), y), αs1,s2(y, y), . . . , αsn−2,sn−1(y, y),
αsn−1,sn(y, σ(t′)). Let us denote this set of atoms by Qα.
We now establish the following claim:

Claim 1. If π′ is a match for Qα in IT ,A, then π′ is a match
for α(t, t′) in IT ,A.

Proof of claim. Suppose that π′ is a match for the atoms in
Qα in IT ,A. Then this means that:

• π′(y) is an L(αs,s1) of π′(σ(t))

• for every 1 ≤ i < n− 1: π′(y) is an L(αsi,si+1
)-successor

of π′(y)

• π′(σ(t′)) is an L(αsn−1,sn)-successor of π′(y)

We then remark that the language consisting of all words
w1 . . . wn such that w1 ∈ L(αs,s1), wi ∈ L(αsi,si+1

)
for every 1 ≤ i < n − 1, and wn ∈ L(αsn−1,sn)} is
a subset of the language L(αs,sn), and hence of L(α).
Thus, by composing the paths witnessing each of the above
successor relationships, we can show that π′(σ(t′)) is an
L(α)-successor of π′(σ(t)). Then to complete the proof, we
simply note that π′(σ(t)) = π′(t) and π′(σ(t′)) = π′(t′),
because of the way we defined π′ and σ.

Because of Claim 1, to complete the proof that π′ is a
match for q in IT ,A, it is sufficient to show the following:

Claim 2. For every αs,s′(u, u′) ∈ Qα: π′(u′) is an L(αs,s′)-
successor of π′(u).

Proof of claim. Take some αs,s′(u, u′) ∈ Qα. We start with
the case where u = u′ = y and C ∈ Loopα[s, s′]. We know
from above that Tail(π′(y)) = C, so we can apply Lemma 7
to infer that π′(y) is an L(αs,s′)-successor of π′(y) in IT ,A,
which yields the desired result given that u = u′ = y. Next
suppose that either u 6= y, u′ 6= y, or C 6∈ Loopα[s, s′]. Then
we will not remove αs,s′(u, u′) in Step 5, so it will still be
present in Step 6. There are three cases depending on which
of u and u′ equals y. We treat each case separately:

Case 1: u = y and u′ 6= y. It follows that u′ = σ(t′) = t′

and so π′(u′) = π(u′). In Step 7, we will replace αs,s′(u, u′)
with αs′′,s′(u, u′) where s′′ ∈ S is such that (s,R−1 , s

′′)∈ δ.
The atom αs′′,s′(u, u

′) belongs to q′, so we know that it
is satisfied by π. More precisely, we know that π(u′) is
an L(αs′′,s′)-successor of π(u) = π(y) in IT ,A. Since e
is an R-successor of π(y) in IT ,A and T |= R v R1 it
follows that π(y) is an L(αs,s′′)-successor of e (via the word
R−1 ∈ L(αs,s′′)). We can thus infer that π′(u′) = π(u′) is an
L(αs,s′)-successor of π′(u) = π′(y) = e.

Case 2: u 6= y and u′ = y. It follows that u = σ(t) = t
and so π′(u) = π(u). In Step 7, we will replace αs,s′(u, u′)
with an atom αs,s′′(u, u

′) where s′′ ∈ S is such that
(s′′, R2, s

′) ∈ δ. The atom αs,s′′(u, u
′) appears in q′, so it

must be satisfied by π. That means that π(u′) = π(y) is an
L(αs,s′′)-successor of π(u) in IT ,A. We also know that e
is an R-successor of π(y) in IT ,A and that T |= R v R2.
From this, we can infer that e is an L(αs′′,s′)-successor of
π(u′). Combining these, we get that π′(u) = π′(y) = e is an
L(αs,s′)-successor of π′(u).

Case 3: u = u′ = y. In Step 7, we will replace αs,s′(u, u′)
with an atom αs′′,s′′′(u, u

′) where (s,R−1 , s
′′)∈ δ and

(s′′, R2, s
′) ∈ δ. By combining the arguments used in Cases

1 and 2, we find that π(y) is an αs,s′′ -successor of π′(u),
π(y) is an αs′′,s′′′ -successor of π(y), and π′(u′) is an αs′′′,s′ -
successor of π(y). From this, we can infer that π′(u′) is an
αs,s′ -successor of π′(u).

Lemma 17. Suppose that T ,A |= q and π is a match for q
in IT ,A such that π(v) = pSC and there is no v′ ∈ vars(q)
such that π(v) is a proper prefix of π(v′). Then there is a
match π′ for some q′ ∈ one-step(q, T) such that:

• π′(u) = π(u) for every u ∈ terms(q) is such that π(u) 6=
π(v)

• π′(u) = p for every u ∈ terms(q) with π(u) = π(v)

• if u 6∈ terms(q), then π′(u) is either a proper prefix of p or
in Ind(A)

Proof. Let π be a match for a C2RPQ q in IT ,A and v be
such that π(v) = pSC and there is no v′ ∈ vars(q) with π(v)
a proper prefix of π(v′). We show how to obtain a query q′ ∈
one-step(q, T) and match π′ with the required properties. In

Step 1 of rewrite, we choose to continue on to Step 2, where
we set Leaf = {u ∈ vars(q0) | π(u) = π(v)}. We define
a function σ as follows: σ(u) = u if π(u) 6= π(v), else
σ(u) = y. At the end of Step 2, we have the query:

{B(σ(u)) | B(u) ∈ q} ∪ {α(σ(u), σ(u′)) | α(u, u′) ∈ q}
In Step 3, we choose the concept C (note that C ∈ TCT
because π(v) = pSC). Consider some atom B(y) ∈ q2 We
know that there must be some atom B(u) ∈ q with u ∈ Leaf.
Since π is a match for q, we must have that π(u) = π(v) ∈
BIT ,A . Since π(v) = pSC, it follows from the definition of
canonical models that T |= C v B, as required by Step 3.

Next we show how to select a decomposition of atoms
in Step 4. Consider an atom α(t, t′) which is present in
the query at the start of Step 4, such that y ∈ {t, t′} and
α = 〈S,Σ, δ, s0, F 〉. Then we know from above that there is
an atom α(u, u′) in the original query q such that t = σ(u)
and t′ = σ(u′). Since π is a match for q with π(t) = π(u)
and π(t′) = π(u′), we know that π(t′) is an L(α)-successor
of π(t) in IT ,A. It follows that we can find w = u1 . . . um ∈
L(α) and a sequence π(t) = e0, . . . , em = π(t′) of elements
in ∆IT ,A such that for e0, . . . , em ∈ wI . We assume with-
out loss of generality that m is minimal, i.e. we cannot find
a different word from L(α) and associated sequence of ele-
ments satisfying the same properties but with length < m.
Now let j1 < . . . < jn−1 be all of the indices i < m such
that ei = π(v). We define the words w1, . . . , wn by setting:
• w1 = u1 . . . uj1
• wi = uji−1+1 . . . uji for 2 ≤ i < n

• wn = ujn−1+1 . . . um

We also define a sequence of states s1, . . . , sn such that:
• w1 ∈ L(αs0,s1)

• wi ∈ L(αsi−1,si) for 2 ≤ i ≤ n
• sn ∈ F
Note that such a sequence must exist since w = w1 . . . wn ∈
L(α), and α has start state s0 and final states F . Using the
fact that eji = π(v) = π(y) for 1 ≤ i < n, we have that (?):
• π(y) is an L(αs0,s1)-successor of π(t) = π(σ(u)) = π(u)

• π(y) is an L(αsi−1,si)-successor of π(y), for 2 ≤ i < n

• π(t′) = π(σ(u′)) = π(u′) is an L(αsn−1,sn)-successor of
π(y)

Suppose for a contradiction that sk = s` for some k < `.
It follows that w1 . . . wkw`+1 . . . wn ∈ L(α). We then note
that the wordw1 . . . wkw`+1 . . . wn and sequence of elements
e0 . . . ejkej`+1 . . . em satisfy the aforementioned conditions
and have length less than m, contradicting our earlier mini-
mality assumption. Hence, the states in s1, . . . , sn are pair-
wise disjoint. We can thus choose this sequence of states in
Step 4, and replace the atom α(t, t′) = α(σ(u), σ(u′)) with
the atoms: αs0,s1(σ(u), y), αs1,s2(y, y), αsn−2,sn−1

(y, y),
αsn−1,sn(y, σ(u′)).

The final choices to be made occur in Step 6, where we
must choose a concept D ∈ BCT , roles R,R1, R2 ∈ NR, and
states such that conditions (a)-(d) are satisfied. We set R = S
(recall that π(t) = pSC). If p 6∈ Ind, then we choose D

such that p = p′PD. Note that if we are in DL-LiteR, then
D = ∃P−. It follows from the definition of canonical models
that T |= D v ∃S (if we are in DL-LiteR) or T |= D v
∃S.C (for ELH), so condition (a) holds. If instead we have
p ∈ Ind, then the definition of canonical models, together
with our normal form for ELH TBoxes, guarantees that there
is some D ∈ BCT such that p ∈ DIT ,A and T |= D v ∃S
(if we are in DL-LiteR) or T |= D v ∃S.C (for ELH). Note
that for DL-LiteR, it is always possible to chooseD such that
we also haveA |= D(p), and we assume in what follows that
D has this property.

It remains to show that we can find R1, R2 and choices of
states such that conditions (b), (c), and (d) are verified. For
(c), consider some atom of the form γ(y, x) which belongs to
the query at the start of Step 6. Then we know that there must
exist an atom α(u, u′) ∈ q with α = 〈S,Σ, δ, s0, F 〉 such that
γ(y, x) is equal to one of the following atoms which replaced
α(σ(u), σ(u′)) during Step 4: αs0,s1(σ(u), y), αs1,s2(y, y),
. . . , αsn−2,sn−1

(y, y), αsn−1,sn(y, σ(u′)). Thus, we have an
atom of the form αsi,si+1

(y, x). Using property (?) from
above, and considering the different possible values for x, we
can infer that π(x) is an L(αsi,si+1)-successor of π(y) =
π(v). As si 6= si+1, there must exist a non-empty word w =
uw′ and state s′ ∈ S with (si, u, s

′) ∈ δ andw′ ∈ L(αs′,si+1)
which witnesses this successor relationship. Moreover, from
the way we chose the states s1, . . . , sn, we know that the path
associated with w starts at π(v) = π(y), ends at π(x), and
does not pass by π(v) in between. In particular, this means
that either the path is entirely contained in the subtree rooted
at π(v) or the path never visits any element below π(v). The
former option cannot hold, since it would imply that x = y
and that C ∈ Loopα[si, si+1], so the atom would have been
removed in Step 5. Thus, it must be the case that the first
“step” in the path goes from π(v) to its parent p. It follows
that u = R−1 for some R1 such that (p, π(v)) ∈ RIT ,A

1 . Note
that since π(v) = pSC, we must have T |= S v R1. This
shows that this choice of R1 satisfies both (b) and (c). In
what follows, it will also prove useful to note that π(x) is an
L(αs′,si+1)-successor of p (witnessed by the word w′).

We now consider condition (d). Take some atom of the
form γ(x, y) which appears in the query at the start of
Step 6. Then we know from above that we can find some
atom α(u, u′) ∈ q (where α = 〈S,Σ, δ, s0, F 〉) such that
γ(x, y) is equal to one of the following atoms which replaced
α(σ(u), σ(u′)) during Step 4: αs0,s1(σ(u), y), αs1,s2(y, y),
. . . , αsn−2,sn−1

(y, y), αsn−1,sn(y, σ(u′)). It follows that
γ(x, y) is an atom of the form αsi,si+1

(x, y). Using prop-
erty (?) from above, and considering the two possible values
for x, we can deduce that π(y) = π(v) is an L(αsi,si+1

)-
successor of π(x). As si 6= si+1, there must exist a non-
empty wordw = w′u and state s′′ ∈ S with (s′′ , u, si+1) ∈ δ
and w′ ∈ L(αsi,s′′) which witnesses this successor rela-
tionship. Moreover, from the way we chose s1, . . . , sn, we
know that the path associated with w starts at π(x), ends at
π(v) = π(y), and does not pass by π(v) in between. So either
the path is entirely contained in the subtree rooted at π(v) or
the path never visits any element below π(v). The former op-
tion would imply that x = y and thatC ∈ Loopα[si, si+1], so

the atom would have been removed in Step 5. Thus, it must be
the case that the last “step” in the path is from p to π(v). This
means that u = R2 for some R2 with (p, π(v)) ∈ R

IT ,A
2 .

Moreover, since π(v) = pSC, the definition of canonical
models implies that T |= S v R2. Thus, we have shown
that choosing R2 allows us to satisfy (b) and (d). In what
follows, we will use the fact that p is an L(αsi,s′′)-successor
of π(x). It is also important to note that if x = y, then we
can apply the arguments for conditions (c) and (d) together to
show that p is an L(αs′,s′′)-successor of p (with s′ as in (c),
and s′′ as required for (d)).

Now let q′ be the query we obtain at the end of Step 8
when all non-deterministic choices are made in the man-
ner described above. Note that if we are in ELH, then
terms(q′) ⊆ terms(q). For DL-LiteR, we either have
terms(q′) ⊆ terms(q) (if D ∈ NC), or we have terms(q′) ⊆
terms(q) ∪ {z}, where αP (z, y) is the atom added in Step 8.
In the latter case, we have D = ∃P−. If p 6∈ Ind, then
we saw above that p = p′PD, and thus, p′ is such that
(p′, p) ∈ P IT ,A . In this case, we set ez = p′. If p ∈ Ind,
then we know thatA |= D(p), and hence there is some b ∈ A
such that A |= P (b, p). In this case, we set ez = b.

We aim to find a match π′ for q′ which satisfies the condi-
tions of the lemma. Let π′ be the mapping defined as follows:

• π′(u) = π(u) for every u ∈ terms(q) with π(u) 6= π(v)

• π′(u) = p for every u ∈ terms(q) with π(u) = π(v)

• if {z} = terms(q′) \ terms(q), then π′(z) = ez (with ez
defined as above)

Note that π′ satisfies the conditions of the lemma because of
the way we chose ez .

To show that π′ is a match, first take some concept atom
B(u) ∈ q′. There are two possibilities. Either B(u) appears
in q and u 6∈ Leaf, or B(u) was introduced in Step 7. In
the former case, we know that π satisfies B(u), and since
π′(u) = π(u) (since u 6∈ Leaf), the same is true of π′. In the
latter case, we must have u = y and B = D. As π′(u) =
p and D was chosen so that p ∈ DIT ,A , it follows that π′
satisfies B(u).

Now consider some atom γ(t, t′) ∈ q′. If y 6∈ {t, t′},
then γ(t, t′) ∈ q. As π is a match for q in IT ,A, it must
be the case that π(t′) is an L(γ)-successor of π(t′). Since
π′(t) = π(t) and π′(t) = π(t), the same holds for π′,
and so the atom γ(t, t′) is satisfied by π′. Next suppose
that y ∈ {t, t′} and {t, t′} ⊆ terms(q). A straightforward
examination of the procedure rewrite shows that there is an
atom α(u, u′) ∈ q (where α = 〈S,Σ, δ, s0, F 〉) which is
replaced in Step 4 by the atoms αs0,s1(σ(u), y), αs1,s2(y, y),
. . . , αsn−2,sn−1

(y, y), αsn−1,sn(y, σ(u′)) and such that
γ(t, t′) replaces one of the latter atoms during Step 7. We
distinguish three cases:

Case 1: γ(t, t′) replaces αsi,si+1(y, x) with x 6= y. Then
γ(t, t′) must have the form αs′,si+1

(y, x), where s′ is the state
which was chosen to ensure condition (c) in Step 6. We recall
that s′ is such that π(x) is an L(αs′,si+1

)-successor of p.
Since x 6= y, we know that x 6∈ Leaf, and so π(x) = π′(x). It
follows that π′(x) is an L(αs′,si+1

)-successor of π′(y) = p,

so the atom γ(t, t′) is satisfied by π′.

Case 2: γ(t, t′) replaces αsi,si+1
(x, y) with x 6= y. Then

γ(t, t′) must have the form αsi,s′′(x, y), where s′′ is the state
which was used in condition 6(d). We showed earlier when
examining condition 6(d) that p is an L(αsi,s′′)-successor
of π(x). Using the fact that π′(x) = π(x) and π′(y) = p,
we can infer that π′(y) is an L(αsi,s′′)-successor of π′(x),
hence π′ satisfies the atom γ(t, t′).

Case 3: γ(t, t′) replaces αsisi+1
(y, y). Then γ(t, t′) must

have the form αs′,s′′(y, y), where s′ is the state from 6(c)
and s′′ is the state from 6(d). We have seen above that
p = π′(y) is an L(αs′,s′′)-successor of p = π′(y) in IT ,A,
which means that π′ satisfies the atom γ(t, t′).

The remaining possibility is that γ(t, t′) is the atom αP (z, y)
added during Step 8. Then we use the facts that π′(z) = ez ,
π′(y) = p, (ez, p) ∈ P IT ,A , and L(αP) = {P} to show
that π′(z) is an L(αP)-successor of π′(y), and hence that π′
satisfies γ(t, t′).

As we have shown that every atom in q′ is satisfied by the
mapping π′, it follows that π′ is a match for q′ in IT ,A, which
completes the proof.

Lemma 11. It can be decided in polytime in |T | and |α|
whether G ∈ ALoopα[s, s′].

Proof. Fix a DL-LiteR or ELH TBox T and NFA α =
〈S,Σ, δ, s, F 〉, and let G be a subset of BCT .

If T is a DL-LiteR TBox, then let L be the subset of S×S
defined inductively using the following rules:

(1) for every s ∈ S, (s, s) ∈ L
(2) if (s1, s2) ∈ L and (s2, s3) ∈ L, then (s1, s3) ∈ L
(3) if A ∈ G and (s1, A?, s2) ∈ δ, then (s1, s2) ∈ L
(4) if C ∈ G, T |= C v ∃R, T |= R v R′, T |=

R− v R′′, (s1, R
′, s2) ∈ δ, ∃R− ∈ Loopα[s2, s3], and

(s3, R
′′, s4) ∈ δ, then (s1, s4) ∈ L

For ELH, we replace the fourth rule by:

(4’) if C ∈ G, T |= C v ∃r.D, T |= r v r′, T |= r− v r′′,
(s1, r

′, s2) ∈ δ, D ∈ Loopα[s2, s3], and (s3, r
′′, s4) ∈

δ, then (s1, s4) ∈ L
Clearly, for both DL-LiteR and ELH, the set L can be

computed in polynomial time in T and α. To complete the
proof, we establish the following claim:

Claim: G ∈ ALoopα[s, s′] if and only if (s, s′) ∈ L.

Proof of claim. For the first direction, suppose that G ∈
ALoopα[s, s′]. Consider some arbitrary individual a such that
G = {C ∈ BCT | a ∈ CIT ,A}. Then it follows from the def-
inition of ALoopα that a is an L(αs,s′)-successor of itself in
IA,T |a. Thus, we can find a word w = u1 . . . um ∈ L(αs,s′)
and a sequence σ = e0, . . . , em with a = e0 = em of ele-
ments in ∆IT ,A|a such that σ ∈ wIT ,A . We assume without
loss of generality that m is minimal, i.e. we cannot find a

different word from L(αs,s′) and associated sequence of el-
ements satisfying the same properties but with length < m.
Now let j1 < . . . < jn−1 be all of the indices 1 < i < m
such that ei = a. We define the words w1, . . . , wn by setting:

• w1 = u1 . . . uj1

• wi = uji−1+1 . . . uji for 2 ≤ i < n

• wn = ujn−1+1 . . . um

We also define a sequence of states s1, . . . , sn−1 such that:

• w1 ∈ L(αs,s1)

• wi ∈ L(αsi−1,si) for 2 ≤ i < n

• wn ∈ L(αsn−1,s′)

We aim to show that all of the pairs
(s, s1), (s1, s2), . . . , (sn−2, sn−1), (sn−1, s

′) belong to
L. The proof is the same for each such pair, so we show it
just for a pair of the form (si−1, si). The first possibility is
that ji = ji−1 + 1 and wi = A? for some concept name
A. In that case, we must have a ∈ AIT ,A , hence A ∈ G.
We can thus apply the third rule to obtain (si−1, si) ∈ L.
The other possibility is that ji > ji−1 + 1. We know
that a is the root of IT ,A|a and that a does not appear
in eji−1+1, . . . , eji−1. From this, we can infer that every
element e` with ji−1 < e` < ji is a (proper) descen-
dant of a. In particular this means that we must have
eji−1+1 = eji−1 = p for some child p = aRD of a. We also
know that wi ∈ L(αsi−1,si) and σi = eji−1 . . . eji are such
that σi ∈ w

IT ,A
i . Thus, there must exist some states s′′ and

s′′′ such that:

• (si−1, uji−1+1, s
′′) ∈ δ

• (s′′′, uji , si) ∈ δ

• uji−1+1 ∈ NR and (a, p) ∈ uIT ,A
ji−1+1

• uji ∈ NR and (p, a) ∈ uIT ,A
ji

• p is an L(αs′′,s′′′)-successor of itself in IT ,A|p.

By Lemma 7, the last item can be rewritten as:
D ∈ Loopα[s′′, s′′′]. Moreover, from the definition of
canonical models, we know that there must exist some
C ∈ G such that T |= C v ∃r.D (or T |= C v ∃R
where D = ∃R− for DL-LiteR). It also follows from the
canonical model definition and the fact that (a, p) ∈ uIT ,A

ji−1+1

and (p, a) ∈ u
IT ,A
ji

that we have both T |= R v U}
and T |= R− v uji}. We thus have all of the necessary
conditions to apply the fourth rule, hence (si−1, si) must
belong to L. Now that we have seen that all of the pairs
(s, s1), (s1, s2), . . . , (sn−2, sn−1), (sn−1, s

′) belong to L,
we can use repeated applications of the second rule to
conclude that (s, s′) ∈ L.

For the second direction, consider a sequence of appli-
cations of the rules 1-4 which generates the set L, and let
p1, . . . , pn be the pairs in L, in the order that they were in-
serted into L. We show by induction that for every 1 ≤ i ≤ n
the pair pi = (si, s

′
i) is such that G ∈ ALoopα[si, si+1]. The

base case is the first pair p1, which must result from an ap-
plication of rule 1, and hence is of the form (s, s) for some
state s ∈ S. Then the property trivially holds since every in-
dividual a is an L(αs,s)-successor of itself in IA,T |a. Thus,
suppose that the property holds for all pi with 1 ≤ i < k,
and consider the pair pk = (s, s′). If pk resulted from an
application of the first rule, then we can use the same ar-
gument as for the base case. If the second rule was used,
then there exists pairs p` = (s, s′′) and pj = (s′′, s′) with
` < k and j < k. Thus, by the induction hypothesis, we
have G ∈ ALoopα[s, s′′] and G ∈ ALoopα[s′′, s′]. Thus, for
any individual a which satisfies precisely the concepts in G
in IT ,A, there is a word w1 ∈ L(αs,s′′) and sequence of ele-
ments σ1 from IT ,A|a which starts and ends with a such that
σ1 ∈ w

IT ,A
1 . Likewise, we can find a word-sequence pair

(w2, σ2) which witnesses the loop from s′′ to s at a. Then the
word w = w1w2 ∈ L(αs,s′) and sequence σ = σ′1σ2 (where
σ′1 is σ1 with final a removed) are such that σ ∈ wIT ,A . As σ
begins and ends with a, we obtain G ∈ ALoopα[s, s′]. Next
suppose that pk was obtained by applying rule 3. Then there
must be A ∈ G such that (s,A?, s′) ∈ δ. It follows immedi-
ately that G ∈ ALoopα[s, s′].

The final possibility is that pk results from an application
of rule 4. Here the proof differs depending on whether we are
in DL-LiteR or ELH. We give the proof only for DL-LiteR.
We know that there must exist some concept C ∈ G, roles
R,R′, R′′, and states s′′, s′′′ such that:

• T |= C v ∃R
• T |= R v R′

• T |= R− v R′′

• (s,R′, s′′) ∈ δ
• ∃R− ∈ Loopα[s′′, s′′′]

• (s′′′, R′′, s′) ∈ δ
Let a be some individual which satisfies all concepts in G in
IT ,A. As C ∈ G and T |= C v ∃R, the path e = aR∃R−
belongs to ∆IT ,A . Using ∃R− ∈ Loopα[s′′, s′′′], we can
infer that e is an L(αs′′,s′′′)-successor of itself in IA,T |e, and
hence there is some wordw ∈ L(αs′′,s′′′) and some sequence
of elements σ in IA,T |e such that w ∈ σIA,T |e . Using the
above points, we can show that the word w′ = R′wR′′ and
sequence σ′ = aσa are such that w′ ∈ σ′IT ,A|a . We can thus
conclude that a is an L(αs,s′)-successor of itself in IA,T |a.

Lemma 13. T ,A |= q if and only if T ,A |≈ q′ for some
q′ ∈ rewrite(q, T).

Proof. For the first direction, suppose that T ,A |≈ q′ for
some q′ ∈ rewrite(q, T). Then we can find a mapping π
which satisfies the conditions of Definition 12. We wish to
show that π is a match for q′ in IT ,A. First we note that
because of condition (a), we have π(c) = c for every individ-
ual c appearing in q′. Next consider some atom A(t) ∈ q′.
By condition (b), we know that T ,A |= A(π(t)). It fol-
lows from the definition of the canonical model IT ,A that
π(t) ∈ AIT ,A . Finally consider some atom α(t, t′) ∈ q′,

where α = 〈S,Σ, δ, s, F 〉. Then by condition (c), there
is a sequence (a0, s0), . . . (an, sn) of distinct pairs from
Ind(A)×S such that a0 = π(t), an = π(t′), s0 = s, sn ∈ F ,
and for every 0 ≤ i < n, one of the following holds:

(i) ai = ai+1 and {C ∈ BCT | T ,A |= C(ai)} ∈
ALoopα[si, si+1]

(ii) T ,A |= R(ai, ai+1) and (si, R, si+1), for some R.
For each 0 ≤ i < n, we select a word and sequence of ele-
ments in IT ,A. The definition will depend on whether i satis-
fies condition (i) or condition (ii). First suppose that i is such
that condition (i) is satisfied. Then {C ∈ BCT | T ,A |=
C(ai)} ∈ ALoopα[si, si+1], and so we can choose a word
wi ∈ L(αsi,si+1

) and a sequence σ′i beginning and ending
with ai satisfying σ′i ∈ w

IT ,A
i . We let σi be σ′i with the

last ai removed. Now consider the case in which i is such
that only condition (ii) is satisfied. Then we set wi = R and
σi = ai. Now we consider the following word and sequence:

w = w0 . . . wn−1 σ = σ0 . . . σn−1an

It is easily verified that w ∈ L(αs0,sn) and that σ ∈ wIT ,A .
Since σ begins with a0 = π(t) and ends with an = π(t′), we
have thus shown that π(t′) is an L(αs0,sn)-successor of π(t)
in IT ,A, which means that π satisfies the atom α(t, t′). We
can thus conclude that π is a match for q′ in IT ,A. More-
over by definition we have that π(t) ∈ Ind(A) for every
t ∈ terms(q′). Since q′ ∈ rewrite(q, T), by applying Lemma
9, we obtain T ,A |= q.

For the second direction, we suppose that T ,A |= q. By
Lemma 9, there exists q′ ∈ rewrite(q, T) and a match π for q′
in IA,T such that π(t) ∈ Ind(A) for every t ∈ terms(q′). We
claim that the mapping π satisfies the requirements of Defini-
tion 12. Condition (a) is trivially satisfied, since π is a match
for q′, and hence must map every individual in q′ to itself.
For condition (b), consider some atom A(t) in q′. Since π is
a match for q′ in IT ,A, we have that π(t) ∈ AIT ,A . By the
construction of IT ,A, it follows that T ,A |= A(π(t)), so con-
dition (b) holds. To show condition (c), consider some atom
α(t, t′) ∈ q′ with α = 〈S,Σ, δ, s0, F 〉. Since π is a match
for q′ in IT ,A, it follows that π(t′) is an L(α)-successor
of π(t) in IT ,A. This means that we can find some word
w = u1 . . . un ∈ L(α) and some sequence σ = e0, . . . , en of
elements in ∆IT ,A such that e0 = π(t), en = π(t′), and
σ ∈ wIT ,A . We suppose w.l.o.g. that n is minimal, i.e.
we cannot find another word and sequence of elements sat-
isfying the above conditions but with length less than n. As
w ∈ L(α) and σ ∈ wIT ,A , it follows that we can find a se-
quence of states , s1, . . . , sn such that:
• (s0, u1, s1) ∈ δ
• (si−1, ui, si) ∈ δ for every 2 ≤ i ≤ n
• sn ∈ F
Now we let j1 < . . . < jm be all of the indices i such that
ei ∈ Ind(A). Consider the sequence of pairs

(ej1 , sj1) . . . (ejm , sjm)

We claim that this sequence satisfies all requirements of con-
dition (c) of Definition 12. First we note that since e0 =

π(t) ∈ Ind(A) and en = π(t′) ∈ Ind(A), we have j1 = 0
and jm = n, and hence ej1 = π(t), sj1 = s0, ejm = π(t′),
and sjm ∈ F . Next consider some arbitrary index jk with
k < m. Then there are two possibilities. First suppose that
jk+1 = jk + 1. Then there must exist some R ∈ NR such
that (ejk , ejk+1

) ∈ RIT ,A and (sjk , R, sjk+1
) ∈ δ, which

means that condition (c)(ii) holds. The other possibility is
that jk+1 > jk + 1. Since we know that ei 6∈ Ind(A) for all
i between jk and jk+1, and that the anonymous part is tree-
shaped, it follows that ejk = ejk+1

, and moreover, every ei
with jk < i < jk+1 belongs to IT ,A|ejk . Thus, the word
ujk+1 . . . ujk+1

and sequence ejk . . . ejk+1
witnesses that ejk

is an L(αsjk ,sjk+1
)-successor of itself in IT ,A|jk . It follows

that {C ∈ BCT | T ,A |= C(ejk)} ∈ ALoopα[sjk , sjk+1
],

so condition (c)(i) holds. We have thus shown that for every
atom α(t, t′) ∈ q′, either (i) or (ii) holds, which means that
condition (c) is satisfied by π. This yields a mapping with the
required properties, so T ,A |≈ q′.

We now turn to the proof of point 2 of Proposition 15. To
treat 2RPQs of the form ∃x, y α(x, y), we employ the follow-
ing lemma:
Lemma 18. T ,A |= ∃x, y α(x, y) if and only if there is a
match π for α′(x, y) in IA,T such that π(x), π(y) ∈ Ind(A),
where α′ is an NFA such that L(α′) = (NR)∗ · L(α) · (NR)∗.

Proof. For the first direction, suppose that T ,A |=
∃x, y α(x, y), and let π be a match for ∃x, y α(x, y) in IT ,A.
Then there exists w ∈ L(α) and a sequence σ starting with
π(x) and ending with π(y) such that σ ∈ wIT ,A . If π(x) ∈
Ind(A), then set wx = σx = ε. Otherwise, π(x) must be of
the form aR1C1 . . . RnCn for n ≥ 1. Set wx = R1 . . . Rn
and σx = a(aR1C1) . . . (aR1C1 . . . Rn−1Cn−1). If π(y) ∈
Ind(A), we set wy = σy = ε, and otherwise, we let wy =
R−n . . . R

−
1 and σx = (bS1D1 . . . Sn−1Dn−1) . . . (bS1D1)b,

where π(y) = bS1D1 . . . SnDn. It can be easily verified that
wxwwy ∈ L(α′) and that σxσσy ∈ (wxwwy)IT ,A , hence b
is a L(α′)-successor of a in IT ,A. By defining π′(x) = a and
π′(b), we obtain the desired match for α′(x, y) in IA,T .

For the other direction, let π be a match for α′(x, y) in
IA,T . Then there must exist words w0 ∈ (NR)∗, w1 ∈ L(α),
and w2 ∈ (NR)∗ and sequences σ0, σ1, σ2 such that:
• σ0 begins with π(x), and σ2 ends with π(y)

• the last element of σ0 is the first element of σ1
• the last element of σ1 is the first element of σ2

• σi ∈ w
IT ,A
i for 0 ≤ i ≤ 2

Then by letting π′(x) (resp. π′(y)) be the first (resp. last)
element of σ1, we obtain a match for ∃x, y α(x, y) in IT ,A,
as witnessed by the word w1 ∈ L(α) and sequence σ1. We
thus obtain T ,A |= ∃x, y α(x, y).

To treat 2RPQs of the form ∃xα(x, x), we will utilize the
an alternative rewriting algorithm rpq-rewrite presented in
Figure 3.

Examining the algorithm rpq-rewrite, we remark that each
tuple in BCT ×S×S is examined at most once by rpq-rewrite,

PROCEDURE rpq-rewrite(α, T)

Input: NFA α = 〈S,Σ, δ, s0, F 〉, TBox T
1. Set Q = {α(x, x)}, Visited = ∅, and
Frontier = {(C, s0, sf) | C ∈ BCT , sf ∈ F}.

2. While Frontier 6= ∅
(a) Remove (C, s1, s2) from Frontier, add to Visited.
(b) If C ∈ Loopα[s1, s2]

For every D ∈ BCT such that D C.
Add D?(x, x) to Q.

(c) If C 6∈ Loopα[s1, s2]
Add C(x) ∧ αs1,s2(x, x) to Q.
For every (s3, s4) ∈ S2 such that
C ∈ Loopα[s1, s3] and C ∈ Loopα[s4, s2]

For every (D,R, s′1, s
′
2) ∈ BCT × NR × S2

such that
(i) T |= D v ∃R and C = ∃R− [DL-LiteR]

or T |= D v ∃R.C [ELH];
(ii) there exist R′, R′′ with T |= R− v R′,
T |= R v R′′, (s1, R

′, s′1)∈ δ, and
(s′2, R

′′, s2)∈ δ;
(iii) (D, s′1, s

′
2) 6∈ (Frontier ∪ Visited).

Add (D, s′1, s
′
2) to Frontier.

3. Output Q.

Figure 3: Query rewriting procedure rpq-rewrite.

and the loop and entailment checks can be done in polynomial
time. We thus obtain:

Lemma 19. The algorithm rpq-rewrite runs in polynomial
time, and hence produces a polynomial number of queries.

In what follows, we will somewhat abuse notation by us-
ing rpq-rewrite(α, T) to refer to the set of queries which are
output by rpq-rewrite on input (α, T).

Lemma 20. Then T ,A |= ∃xα(x, x) if and only if there a
match π for some query q(x) ∈ rpq-rewrite(α, T) in IA,T
such that π(x) ∈ Ind(A).

Proof. For the first direction, suppose that T ,A |=
∃xα(x, x), and let π be a match for ∃xα(x, x) in IA,T .
If π(x) ∈ Ind(A), then the statement trivially holds since
α(x, x) is added to Q in Step 1. Thus, suppose that
π(x) 6∈ Ind(A). We start by proving the following claim:

Claim: If (C, s1, s2) is added to Frontier at some point dur-
ing the execution of rpq-rewrite(α, T), C 6∈ Loopα[s1, s2],
and there is a match ρ for C(x) ∧ αs1,s2(x, x) in IA,T such
that ρ(x) 6∈ Ind(A), then there is a tuple (D, s3, s4) which
is added to Frontier at some point and such that the query
D(x) ∧ αs3,s4(x, x) has a match ρ′ such that ρ′(x) is the
parent of ρ(x) and ρ′(x) ∈ DIA,T .

Proof of claim. Suppose that (C, s1, s2) and ρ satisfy the con-
ditions of the claim. Since ρ(x) 6∈ Ind(A), we have that
ρ(x) = pRC for some role R and concept C. At some
point during Step 2, the tuple (C, s1, s2) will be selected, and

we will enter (c) because C 6∈ Loopα[s1, s2]. Since ρ is a
match for αs1,s2(x, x), there exists w = u1, . . . , un ∈ L(α)
and a sequence e = e0, . . . , en of elements in ∆I such that
e0 = en = π(x), and, for all 1 ≤ i ≤ n:
• if ui = A?, then ei−1 = ei ∈ AI

• if ui = R ∈ NR ∪ NR, then 〈ei−1, ei〉 ∈ RI

Since w ∈ L(α), we can find a sequence of states q0q1 . . . qn
with q0 = s1 and qn = s2 such that for every 1 ≤ i ≤ n,
(qi−1, ui, qi) ∈ δ. Because C 6∈ Loopα[s1, s2], we know
that the match ρ is not fully contained within IA,T |π(x).
Thus, there must be at least two occurrences of the parent
p of π(x) in the sequence e. Let ej and ek respectively be
the first and last occurrences of p in e, and let Note that we
must thus have ej−1 = ek+1 = π(x). Set s3 = qj−1 and
s4 = qk+1. Then the words u1 . . . uj−1 and uk+2 . . . un
and sequences e0 . . . ej−1 and ek+1 . . . en witness that π(x)
is both an L(αs1,s3)-successor and an L(αs4,s2)-successor
of itself. As by construction, the sequences e0 . . . ej−1
and ek+1 . . . en are fully contained within IA,T |π(x), this
means that C ∈ Loopα[s1, s3] and C ∈ Loopα[s4, s2].
Thus, (s3, s4) ∈ S2 satisfies the required conditions, and
so we will enter the for-loop. By the structure of canonical
models, we know that either p has the form p′SD, or
p = a ∈ Ind(A) and p ∈ DIA,T for some D ∈ BCT such
that T |= D v ∃R and C = ∃R− (if T is formulated in
DL-LiteR), or T |= D v ∃R.C (for T an ELH TBox).
Thus, we can choose D ∈ BCT so that p ∈ DIA,T and item
(i) of the for-loop condition is satisfied. We set s′1 = qj and
s′2 = qk. We know that (s3, uj , s

′
1) = (qj−1, uj , qj) ∈ δ

and (s′2, uk+1, s4) = (qk, uk+1, qk+1) ∈ δ. As ej−1 6= ej
and ek 6= ek+1, it follows that uj and uk+1 belong to NR.
We thus have (ej−1, ej) ∈ u

IA,T
j and (ek, ek+1) ∈ u

IA,T
k+1 .

Again, because of the properties of canonical models, we
can derive that T |= R− v uj and T |= R v uk+1, and
thus that part (ii) of the for-loop condition is satisfied by the
tuple (D,R, s′1, s

′
2). If the tuple (D,R, s′1, s

′
2) has not yet

been examined, then it is added to Frontier. Thus, at some
point during the execution, the tuple (D,R, s′1, s

′
2) will be

examined, and the query D(x) ∧ αs′1,s′2(x, x) will be added
to Q, and hence belongs to the output of rpq-rewrite(α, T).
To complete the proof of the claim, we remark that the word
wj+1 . . . wk and sequence ej . . . ek witnesses that p is an
L(αs′1,s′2)-successor of itself. Moreover, we know from
above that p ∈ DIA,T . It follows that there is a match for
D(x) ∧ αs′1,s′2(x, x) ∈ rpq-rewrite(α, T) which maps x to
the parent p of π(x). (end proof of claim)

Since π(x) 6∈ Ind(A), we have π(x) = pRC for some
R ∈ NR and C ∈ BCT . From the definition of canonical
models, we have π(x) ∈ CIA,T . Since π is a match for
α(x, x), π must also be a match for αs0,sf (x, x) for some
sf ∈ F . In Step 1, the tuple (C, s0, sf) will be added to
Frontier. Repeated applications of the above claim either
yield a query q(x) ∈ rpq-rewrite(α, T) having a match
ρ mapping x to the ABox, or results in the insertion of a
tuple (D, s1, s2) into Frontier such that D(x) ∧ αs1,s2(x, x)
has a match in IA,T and D ∈ Loopα[s1, s2]. Let ρ be a

match for D(x) ∧ αs1,s2(x, x), and let a ∈ Ind(A) be such
that ρ(x) ∈ IA,T |a. Then there is some E ∈ BCT such
that E D and a ∈ EIA,T . Thus, there is a match for
E?(x, x) ∈ rpq-rewrite(α, T) which maps x to a ∈ Ind(A).

For the other direction, we start by establishing the
following claim:

Claim: If (C, s1, s2) is added to Frontier at some
point during the execution of rpq-rewrite(α, T), then
∃xC(x) ∧ αs1,s2(x, x) ⊆ ∃xα(x, x).

Proof of claim. The proof is by induction on the precedence
relation obtained by setting (C, s, s′) ≺ (D, s′′, s′′′) if the
tuple (D, s′′, s′′′) is added to Frontier during the examina-
tion of tuple (C, s, s′). For the base case, we have the tuples
(C, s1, s2) which are inserted in Step 1. Every such tuple
has the form (C, s0, sf), where sf ∈ F , and thus we triv-
ially have ∃xC(x) ∧ αs0,sf (x, x) ⊆ ∃xα(x, x). Next sup-
pose that we already shown the property for (C, s, s′), and
let (D, s′′, s′′′) be such that (C, s, s′) ≺ (D, s′′, s′′′). Fur-
ther suppose that there is a match π for D(x) ∧ αs′′,s′′′(x, x)
in IA,T . Then we can find w = u1 . . . un ∈ L(α) and
a sequence e = e0, . . . , en of elements in ∆I such that
e0 = en = π(x), and, for all 1 ≤ i ≤ n:

• if ui = A?, then ei−1 = ei ∈ AI

• if ui = R ∈ NR ∪ NR, then 〈ei−1, ei〉 ∈ RI

We can also find a sequence of states q0q1 . . . qn with q0 = s′′

and qn = s′′′ such that for every 1 ≤ i ≤ n, (qi−1, ui, qi) ∈
δ. Because (C, s, s′) ≺ (D, s′′, s′′′), there must exist some R
such that (D, s′′, s′′′) was added to Frontier when examining
the tuple (D,R, s′′, s′′′). We know that this tuple satisfied
conditions (i)-(iii), and hence that

• T |= D v ∃R and C = ∃R− [DL-LiteR],
or T |= D v ∃R.C [ELH]

• there existR′, R′′ such that T |= R− v R′, T |= R v R′′,
(s1, R

′, s′1)∈ δ, and (s′2, R
′′, s2)∈ δ

By the first point, the path p = π(x)RC belongs
to the canonical model. We can then use the word
w′ = R′ wR′′ ∈ L(αs,s′) and sequence e′ = p e p to show
that p is an L(αs,s′)-successor of itself in IA,T . Since
we also know that p ∈ CIA,T , we obtain a match for
∃xC(x) ∧ αs,s′(x, x) in IA,T . By the induction hypothesis,
∃xC(x) ∧ αs,s′(x, x) ⊆ ∃xα(x, x), and so there must
also exist a match for ∃xα(x, x). This yields the desired
containment. (end proof of claim)

Now suppose that there is a match for some q(x) ∈
rpq-rewrite(α, T). There are three possibilities for q. The
first is that q(x) = α(x, x), in which case we trivially have
T ,A |= ∃xα(x, x). The next possibility is that q(x) =
∃xC(x) ∧ αs,s′(x, x), in which case we can apply the claim
to find a match for α(x, x). The final possibility is that
q(x) = D?(x, x), which occurs when some (C, s, s′) ∈
Frontier is such that C ∈ Loopα[s, s′] and D C. In
this case, we have ∃xD(x) ⊆ ∃xC(x) (since D C),

∃xC(x) ⊆ ∃xC(x) ∧ αs,s′(x, x) (since C ∈ Loopα[s, s′]),
and ∃xC(x) ∧ αs,s′(x, x) ⊆ ∃xα(x, x) (by assumption).
Putting these statements together, we obtain ∃xD?(x, x) ⊆
∃xα(x, x), which yields T ,A |= ∃xα(x, x).

Note that the queries output by rpq-rewrite are either
2RPQs, or of the form ∃xC(x) ∧ α(x, x), and queries of the
latter form are trivially transformed into 2RPQs.

We are now able to prove the second statement in Proposi-
tion 15.
Proposition 21. 2RPQ-answering is in P (combined com-
plexity) for DL-LiteR and ELH.

Proof. Lemmas 18, 19, and 20 and the preceding remark pro-
vide a polynomial reduction of Boolean 2RPQ-answering to
the problem of deciding whether a 2RPQ has a match map-
ping all variables to the ABox. The latter problem can be
decided in P by iterating over the potential mappings and
checking whether the conditions of Definition 12 are satis-
fied. Since 2RPQs contain at most 2 variables, they are only
polynomially many mappings to check.

