
Journal of Artificial Intelligence Research 53 (2015) 315–374 Submitted 09/14; published 07/15

Regular Path Queries in Lightweight Description Logics:
Complexity and Algorithms

Meghyn Bienvenu meghyn@lri.fr
Laboratoire de Recherche en Informatique,
CNRS & Université Paris-Sud, France

Magdalena Ortiz ortiz@kr.tuwien.ac.at

Mantas Šimkus simkus@dbai.tuwien.ac.at

Institute of Information Systems,

TU Wien, Austria

Abstract

Conjunctive regular path queries are an expressive extension of the well-known class
of conjunctive queries. Such queries have been extensively studied in the (graph) database
community, since they support a controlled form of recursion and enable sophisticated path
navigation. Somewhat surprisingly, there has been little work aimed at using such queries
in the context of description logic (DL) knowledge bases, particularly for the lightweight
DLs that are considered best suited for data-intensive applications. This paper aims to
bridge this gap by providing algorithms and tight complexity bounds for answering two-
way conjunctive regular path queries over DL knowledge bases formulated in lightweight
DLs of the DL-Lite and EL families. Our results demonstrate that in data complexity,
the cost of moving to this richer query language is as low as one could wish for: the
problem is NL-complete for DL-Lite and P-complete for EL. The combined complexity of
query answering increases from NP- to PSpace-complete, but for two-way regular path
queries (without conjunction), we show that query answering is tractable even with respect
to combined complexity. Our results reveal two-way conjunctive regular path queries as
a promising language for querying data enriched by ontologies formulated in DLs of the
DL-Lite and EL families or the corresponding OWL 2 QL and EL profiles.

1. Introduction

Recent years have seen a rapidly growing interest in using description logic (DL) ontologies
to query instance data. This setting can be seen as a generalization of the related problem of
querying graph databases which, like DL instance data, are sets of ground facts using only
unary and binary predicates, i.e., node- and edge-labeled graphs (Consens & Mendelzon,
1990; Barceló, Libkin, Lin, & Wood, 2012). The relevance of both problems lies in the
fact that in many application areas, data can be naturally represented in such form. This
applies, in particular, to XML and RDF data. In the presence of a DL ontology, the
domain knowledge expressed in the ontology is exploited when querying the data, which
can facilitate query formulation and provide users with more complete answers to their
queries. While the DL and database communities share some common research goals, the
research agendas they have pursued differ significantly. In the DL research, the focus has
been on studying the computational complexity of answering (unions of) plain conjunctive
queries (CQs) in the presence ontological constraints expressed in different DLs, and on

c©2015 AI Access Foundation. All rights reserved.

Bienvenu, Ortiz, & Šimkus

the development of efficient algorithms for this setting, see the surveys of Ortiz (2013)
and Ortiz and Šimkus (2012). By contrast, the work on graph databases typically does
not consider ontological knowledge, but instead aims at supporting expressive navigational
query languages.

Regular path queries (RPQs) constitute the basic navigational query language. For-
mally, an RPQ is given as a regular language (represented as a regular expression or a finite
automaton) over the binary predicates in the database facts (arc labels, or roles in DL par-
lance), and it returns all pairs of objects that are connected by a path whose label is a word
belonging to the specified language. A crucial feature of these queries is that they allow for
controlled form of recursion that is computationally well behaved yet sufficient for express-
ing reachability queries and the traversal of paths of unbounded length (Florescu, Levy, &
Suciu, 1998). In two-way RPQs (2RPQs), the regular expressions may use the arc labels in
the backwards direction, which allows for more flexible path navigation. Notably, this comes
at no computational cost: answering both RPQs and 2RPQs over (plain) graph databases
is complete for NL in combined complexity (that is, when the complexity is measured in
terms of the whole input, which in this case consists of the query and the data). Con-
junctive (two-way) regular path queries (C(2)RPQs), which are one of the most expressive
and popular languages for querying graph databases, simultaneously extend plain CQs and
(2)RPQs by allowing for conjunctions of atoms that can share variables in arbitrary ways,
where the atoms may contain regular expressions that navigate the arcs of the database.
If we consider the data complexity measure (in which the complexity is measured only in
terms of the size of the data, with all other inputs considered as fixed), then answering
C2RPQs is still NL-complete. In combined complexity, the C2RPQ answering problem is
NP-complete, which is in fact the lowest complexity that could be expected, given that
CQ answering is already NP-hard. We note that the navigational capabilities provided by
RPQs and their extensions have long been considered crucial for querying data on the Web.
Indeed, navigation along regular paths is at the heart of the XPath language for querying
XML data (Berglund, Boag, Chamberlin, Fernández, Kay, Robie, & Siméon, 2007), and
SPARQL 1.1, the language recently recommended by the World Wide Web Consortium
(W3C) as the new standard for querying RDF data (Harris & Seaborne, 2013), adds to the
previous standard a feature called property paths, which roughly amounts to extending the
‘core’ of SPARQL from CQs to C2RPQs.

It comes as a surprise that, despite their advantages and relevance, RPQs and their ex-
tensions have received rather little attention in the DL literature. They were first considered
in the seminal work of Calvanese, de Giacomo, and Lenzerini (1998) on query answering
in the presence of DL ontologies. However, the vast majority of subsequent research has
targeted instance queries (IQs), conjunctive queries and unions thereof, and occasionally
positive first-order queries. Only a handful of works have considered C2RPQs. Calvanese et
al. (2014, 2007, 2009) showed that C2RPQ answering is 2ExpTime-complete in combined
complexity for the very expressive DLs1 ZIQ, ZIO, and ZOQ, which allow for regular
expressions as role constructors. The same upper bound was shown for containment of
C2RPQs in the presence of rich ontological knowledge (Calvanese et al., 2009). This is
noteworthy since it is a well-known fact that most forms of recursion make query answer-

1. The Z symbol was introduced as an abbreviation for ALCbSelfreg (Calvanese et al., 2009).

316

Regular Path Queries in Lightweight Description Logics

ing and query containment undecidable in the presence of ontological constraints (Levy &
Rousset, 1996). Moreover, this complexity is not higher than that of other significantly
more restricted settings, such as answering plain CQs in the DL ALCI (Lutz, 2008) or pos-
itive first-order queries in ALC (Ortiz & Šimkus, 2014). However, hardness for 2ExpTime
is nevertheless a prohibitively high complexity for many applications. Even in data com-
plexity, the algorithms underlying the aforementioned results still need exponential time.
More recently, algorithms for answering C2RPQs in Horn-SHOIQ and Horn-SROIQ were
proposed (Ortiz, Rudolph, & Šimkus, 2011). These algorithms run in polynomial time in
the size of the data, but may still require exponential time in the size of the ontology, which
is worst-case optimal for these logics. By contrast, for the lightweight DLs of the DL-Lite
(Calvanese, De Giacomo, Lembo, Lenzerini, & Rosati, 2007) and EL (Baader, Brandt, &
Lutz, 2005) families, which are the languages of choice for ontology-mediated query answer-
ing and notably underlie the OWL 2 QL and EL profiles (Motik, Cuenca Grau, Horrocks,
Wu, Fokoue, & Lutz, 2012), the precise complexity of answering C2RPQs was left open:
the ExpTime upper bound in combined complexity for more expressive Horn DLs does not
match the NP lower bound stemming of answering plain CQs, and it is not at all apparent
how to obtain better upper bounds for C2RPQs by adapting existing techniques. For the
DL-Lite family, the data complexity was also left open, with a gap between the NL-hardness
of RPQ answering inherited from the graph database setting and the P upper bound that
had been established for more expressive Horn DLs.

In this paper, we close these open questions by presenting algorithms and precise com-
plexity bounds for answering (C)2RPQs in the EL and DL-Lite families of lightweight DLs.
Many of our results were first announced in the conference version of this paper (Bienvenu,
Ortiz, & Šimkus, 2013), but here we provide full proofs of these results, additional exam-
ples, and a discussion of extensions of our results and their applicability to the OWL 2
profiles. We also strengthen some of the complexity lower bounds by considering more re-
stricted classes of queries (Proposition 4.5) or more succinct representations (Theorem 4.2)
and identify interesting restrictions that lead to better combined complexity for C2RPQs
(Theorems 6.10 and 6.11). Our main contributions can be summarized as follows:

• We establish a P lower bound in combined complexity for answering 2RPQs in
DL-Lite, as well as for RPQs in DL-LiteR, which can be contrasted with the NL-
completeness of instance checking in these logics. This result improves upon a similar
lower bound from the conference version of this paper by adopting the (less succinct)
regular expression representation of queries.

• We present an algorithm for answering 2RPQs over DL-LiteR and ELH knowledge
bases that runs in polynomial time in combined complexity. This tractability result
is extended to all single-atom C2RPQs, including those with existential variables.

• We show that answering CRPQs is PSpace-hard for both DL-Lite and EL. This result
had already been shown in the conference version, but here we provide a different
proof that holds even for the structurally-restricted class of strongly acyclic CRPQs
in which the regular expressions are disjunction-free and of star-height two. This
hardness result is interesting when compared with the graph database setting, where

317

Bienvenu, Ortiz, & Šimkus

C2RPQ answering is NP-complete (and thus not harder than CQs in the worst case)
and becomes feasible in polynomial time when restricted to strongly acyclic C2RPQs.

• We develop a query rewriting procedure for answering C2RPQs in DL-LiteR and
ELH, which we use to show that the problem is feasible in PSpace for both logics.
The PSpace upper bound for ELH is especially interesting, since C2RPQs allow for
inverse roles and it is well known that adding inverse roles to EL immediately leads to
ExpTime-hardness of query answering, even for instance queries. This result demon-
strates that by including inverses in the query language, rather than the ontology
language, it is possible to obtain algorithms that use only polynomial space.

• Using the same algorithm, we derive an NL upper bound in data complexity for DL-
LiteR and a P upper bound for ELH. In both cases, this is the lowest data complexity
that could be expected in light of existing results.

• We also identify cases where C2RPQ answering is feasible in NP, and thus not harder
than answering plain CQs. This is the case for queries whose existential variables do
not occur in joins (or only occur in joins in a restricted way), or for arbitrary C2RPQs
whenever the ontology is guaranteed to have a finite canonical model.

Our new complexity results (and relevant existing results) are summarized in Figure 1.

This paper is organized as follows. We begin in Section 2 by introducing the lightweight
description logics DL-LiteR and ELH (and relevant sublogics) and recalling some basic
notions related to regular languages and computational complexity. In Section 3, we define
the syntax and semantics of the different types of path queries considered in this paper.
Section 4 is dedicated to showing lower bounds, first for RPQs and then for CRPQs. In
both cases, we start by presenting some easy bounds that follow from known results, before
moving on to the main results. Section 5 presents algorithmic techniques and upper bounds
for 2RPQs, and then in Section 6, we show how these can be extended to handle C2RPQs.
In Section 7, we give a brief overview of related results for similar query languages and other
DLs and discuss the applicability of our results to the profiles of the OWL Web Ontology
Language. Conclusions and directions for future work are given in Section 8. To improve
the readability of the paper, one of the more technical proofs is deferred to the appendix.

2. Preliminaries

We briefly recall some basics of description logics, a few computational complexity classes
that are relevant in the paper, and some notation for regular languages.

2.1 Description Logics

We first recall the syntax and semantics of description logics, focusing on the lightweight
families of logics DL-Lite (Calvanese et al., 2007) and EL (Baader et al., 2005). We also
recall the definition of canonical model for these logics.

318

Regular Path Queries in Lightweight Description Logics

IQ (2)RPQ

data combined data combined

DL-LiteRDFS in AC0 NL-c NL-c NL-c

≥ (A) ≥ (A) ≤ Thm 5.2

DL-Lite(R) in AC0 NL-c NL-c P-c†

≤ (G) ≤ (G) ≤ Thm 5.9 ≥ Thm 4.2, ≤ Thm 5.9

EL(H) P-c P-c P-c P-c

≥ (E) ≤ (C) ≤ Thm 5.9 ≤ Thm 5.9

CQ C(2)RPQ

data combined data combined

DL-LiteRDFS in AC0 NP-c NL-c NP-c

≥ (B) ≤ Thm 6.8 ≤ Thm 6.8

DL-Lite(R) in AC0 NP-c NL-c PSpace-c

≤ (D) ≤ (D) ≤ Thm 6.8 ≥ Prop 4.5, ≤ Thm 6.8

EL(H) P-c NP-c P-c PSpace-c

≤ (F) ≤ (F) ≤ Thm 6.8 ≥ Prop 4.5, ≤ Thm 6.8

Figure 1: Complexity of query answering. The ‘c’ indicates completeness results, and ‘≤’
and ‘≥’ are used for upper and lower bounds respectively. New results are marked in bold.
The remaining annotations have the following meanings:
† P-hardness for RPQs applies only to DL-LiteR

(A) Easy reduction from the NL-complete directed reachability problem
(B) Follows from NP-hardness of CQ answering over relational databases
(C) Baader et al. (2005)
(D) Calvanese et al. (2007)
(E) Calvanese, De Giacomo, Lembo, Lenzerini, and Rosati (2006)
(F) Rosati (2007), Krisnadhi and Lutz (2007), Krötzsch and Rudolph (2007)
(G) Calvanese et al. (2007), Artale, Calvanese, Kontchakov, and Zakharyaschev (2009)

2.1.1 Description Logic Syntax

As usual, we assume countably infinite, mutually disjoint sets NC, NR, and NI of concept
names, role names, and individuals, respectively. An inverse role takes the form r− where
r ∈ NR. We will use N±R to refer to NR ∪ {r− | r ∈ NR}, and if R ∈ N±R , we use R− to mean
r− if R = r and r if R = r−.

A description logic knowledge base (KB) K = (T ,A) consists of a TBox T and an
ABox A. The former provides general domain knowledge, while the latter expresses facts

319

Bienvenu, Ortiz, & Šimkus

about particular entities. Sometimes we use the generic terms ontology and data(set) in
place of TBox and ABox.

Formally, a TBox is a finite set of inclusions, whose form depends on the DL in question.
In DL-Lite, TBoxes consist of a set of concept inclusions of the form B v C, with B and
C concepts constructed according to the following syntax:

B := A | ∃R C := B | ¬B

where A ∈ NC and R ∈ N±R . DL-LiteR additionally allows for role inclusions of the form
R1 v (¬)R2, where R1, R2 ∈ N±R . The logic DL-LiteRDFS is obtained from DL-LiteR by
disallowing inclusions that contain negation or have existential concepts (∃R) on the right-
hand side. DL-LiteR is the basis for the OWL 2 QL profile, and DL-LiteRDFS corresponds
to the fragment of DL-LiteR that is expressible in the RDF Schema ontology language
(Brickley & Guha, 2014).

In EL, concept inclusions have the form C1 v C2 where C1, C2 are complex concepts
constructed according to the following syntax:

C := > | A | C u C | ∃r.C

where A ∈ NC and r ∈ NR. The DL ELH additionally allows for role inclusions of the form
r1 v r2, where r1, r2 ∈ NR. Note that in EL(H) TBoxes, inverse roles are not permitted.

We will use sig(T) to denote the signature of a TBox T , that is, the set of all concept
and role names appearing in T . It will also prove useful to introduce the set BCT of basic
concepts for a TBox T , defined as follows: BCT = (NC∩sig(T))∪{∃r, ∃r− | r ∈ NR∩sig(T)}
if T is a DL-LiteR TBox, and BCT = (NC ∩ sig(T)) ∪ {>} if T is an ELH TBox.

In all of the considered DLs, an ABox is a finite set of concept assertions of the form
A(b) and role assertions of the form r(b, c), where A ∈ NC, r ∈ NR, and b, c ∈ NI. We use
Ind(A) to refer to the set of individuals appearing in the ABox A.

2.1.2 Description Logic Semantics

The semantics of DL KBs is defined in terms of interpretations, which take the form I =
(∆I , ·I), where ∆I is a non-empty set and ·I maps each individual a ∈ NI to aI ∈ ∆I , each
concept name A ∈ NC to AI ⊆ ∆I , and each role name r ∈ NR to rI ⊆ ∆I × ∆I . The
function ·I is extended to general concepts and roles as follows:

>I = ∆I (r−)I = {(c, d) | (d, c) ∈ rI}
(¬A)I = ∆I \AI (∃R)I = {c | ∃d : (c, d) ∈ RI}
(¬R)I = (∆I ×∆I) \RI (∃r.C)I = {c | ∃d : (c, d) ∈ rI , d ∈ CI}

An interpretation I satisfies an inclusion G v H, denoted I |= G v H, if GI ⊆ HI .
Similarly, I satisfies an assertion A(a) if aI ∈ AI , in symbols I |= A(a); I satisfies an
assertion r(a, b) if (aI , bI) ∈ rI , in symbols I |= r(a, b). An interpretation I is a model
of T , if I satisfies all inclusions in T ; it is a model of A if it satisfies all assertions in A;
and it is a model of (T ,A) if it is a model of T and A. A KB (T ,A) is satisfiable if it
possesses at least one model, else it is unsatisfiable. Note that ELH knowledge bases are

320

Regular Path Queries in Lightweight Description Logics

tramway:T1
TramwayLine

subway:U1
SubwayLine

tramway:T2
TramwayLine

stop:cathSq
Stop

stop:Volkstheater
GLStop

stop:opera
EquipStop

stop:cityPark
GLStop

stop:trainStation
EquipStop

sb
Su
b

sbSub

sbSub

sbHFT

sbHFT

sbHFT

sbL
FT

sb
LF
T

sbLFT

square:cathSq
Square

theater:Volkstheater
Theater

theater:opera
Theater

park:cityPark
Park

trainSt:ViennaCenter
trainStation

locIn

locIn

locIn

locIn

locIn

Cafe:Hawelka
Cafe

park:huberPark
Park,FamFriendly

Cafe:Sacher
Cafe

playgr:cityPark
Playground

shopping:cityMall
ShoppingCenter

locIn

locIn

locIn

locIn

locIn

Figure 2: Example ABox Amob

always satisfiable. If G is a TBox, ABox, or KB, and α an inclusion or assertion, we say
that G entails α, written G |= α, if I |= α for every model I of G.

Observe that we do not make the Unique Names Assumption (UNA), as our definition
of interpretation allows distinct individuals to be mapped to the same domain element. We
remark however that all of the results in this paper hold equally well under the UNA.

Example 2.1. As a motivating example, we consider the domain of public transport and
urban mobility. A partial database for this domain is presented in Figure 2. The nodes in
the two leftmost columns (shaded in blue) correspond to public transport lines and stations.
The arrows between them represent the existing connections, and are labeled according to
the type of transport line serving them: sbSub stands for ‘served by subway’, while sbLFT

and sbHFT respectively stand for ‘served by low-floor tramway’ and ‘served by high-floor
tramway’. Nodes are also labeled with classes in which they participate. In particular, the
labels GLStop and EquipStop indicate two specific kinds of public transport stops: ground-
level stops, and stops that are suitably equipped with ramps and elevators for passengers
with restricted mobility. The remaining columns contain places of interest, and the locIn-
labeled arrows between them represent the ‘located in’ relation. Note that this is nothing
else but a graphical representation of a DL ABox, which we call Amob , where each label A
on a node b corresponds to the concept assertion A(b), and an arc labeled r from node b to
node c corresponds to the role assertion r(b, c).

In our example, we assume that the information in the first two columns is provided and
maintained by the local public transport authorities, thus it is complete and well structured.
In contrast, the remaining data is crowd-sourced, thus it is likely to be incomplete and may
not adhere to a rigid, predefined structure.

In order to better respond to user queries, this data is enriched with domain knowledge
expressed by the EL ontology in Figure 3. The ontology defines subclass relations between
concepts like ‘stop’ and the more specialized ‘accessible stop’, ‘ground-level stop’, and it
defines new terms not present in the data but which may be useful at query time, such
as ‘food services’. It also enhances the possibly incomplete data by asserting the existence
of other places of interest. For example, a ‘family-friendly’ location has both dining and
playground facilities.

321

Bienvenu, Ortiz, & Šimkus

(1) An accessible stop (AccStop) is a public trans-
port stop (Stop). A ground-level stop (GLStop) or
a stop that is suitably equipped with ramps and
elevators (EquipStop) is an accessible stop.

(2) Restaurants and cafes are food services
(FoodServ).

(3) A place that is family friendly (FamFriendly)
has some food service and a playground.

(4) A shopping center has a supermarket and a
food court.

(5) A food court has some food service.

AccStopv Stop (1a)

GLStopv AccStop (1b)

EquipStopv AccStop (1c)

Restaurantv FoodServ (2a)

Cafev FoodServ (2b)

FamFriendly v ∃hasFacility.FoodServ (3a)

FamFriendly v ∃hasFacility.Playground (3b)

ShoppingCenter v ∃hasFacility.Foodcourt (4a)

ShoppingCenter v ∃hasFacility.Supermarket (4b)

Foodcourtv ∃hasFacility.FoodServ (5a)

Figure 3: Example DL-Lite TBox Tmob expressing domain knowledge

To keep the example compact, we have chosen to write the example ontology in EL,
but the same knowledge can be expressed in DL-LiteR by using auxiliary roles to simulate
the concept inclusions with qualified existential quantification on the right-hand-side. For
instance, the concept inclusion (3a) can be replaced by the following three inclusions in the
syntax of DL-Lite:

FamFriendly v ∃hasFoodServ
∃hasFoodServ− v FoodServ

hasFoodServ v hasFacility

and similarly for (3b), (4a), (4b), and (5a).

2.1.3 Normal Form for ELH TBoxes

To simplify the presentation, we will assume throughout the paper that ELH TBoxes are
in normal form, meaning that all concept inclusions are of one of the following forms:

A v B A v ∃r.B A1 uA2 v B ∃r.B v A

with A,A1, A2, B ∈ NC∪{>}. The following well-known property (see (Baader et al., 2005))
shows that this assumption is without loss of generality.

Proposition 2.2. For every ELH TBox T , one can construct in polynomial time an ELH
TBox T ′ in normal form (possibly using new concept names) such that T ′ is a model
conservative extension of T , that is, every model of T ′ is a model of T , and for every model
I of T , there is a model I ′ of T ′ such that I and I ′ have the same domain and coincide on
the interpretation of all concept and role names except those in sig(T ′) \ sig(T).

322

Regular Path Queries in Lightweight Description Logics

2.1.4 Canonical Models

Canonical models are a key technical tool used to study lightweight description logics, and
we will use them in the proofs of many of our results.

We recall the definition of the canonical model IT ,A (alternatively denoted IK) of a
satisfiable DL-LiteR or ELH KB K = (T ,A). The domain ∆IT ,A consists of sequences of
the form aR1C1 . . . RnCn (n ≥ 0), where a ∈ Ind(A), each Ci is a concept, and each Ri is a
(possibly inverse) role. The exact definition depends on which logic we consider:

(A) When T is a DL-LiteR TBox, the domain ∆IT ,A contains exactly those sequences
aR1∃R−1 . . . Rn∃R−n which satisfy:

– if n ≥ 1, then T ,A |= ∃R1(a)

– for 1 ≤ i < n, T |= ∃R−i v ∃Ri+1.

(B) When T is an ELH TBox,2 the domain ∆IT ,A contains exactly those sequences
ar1A1 . . . rnAn for which each ri ∈ NR, and:

– if n ≥ 1, then T ,A |= ∃r1.A1(a);

– for 1 ≤ i < n, T |= Ai v ∃ri+1.Ai+1.

For elements e ∈ ∆IT ,A \ Ind(A), we will use the notation Tail(e) to denote the final concept
in e. The set TCT of tail concepts for a TBox T is defined as follows: TCT = {∃r, ∃r− | r ∈
NR ∩ sig(T)} if T is a DL-LiteR TBox, and TCT = BCT = (NC ∩ sig(T)) ∪ {>} if T is an
ELH TBox. Clearly, if e ∈ ∆IT ,A \ Ind(A), then Tail(e) ∈ TCT .

To complete the definition of IT ,A, we must fix the interpretation of the individual
names, concept names, and role names. This is done as follows:

AIT ,A = {a ∈ Ind(A) | T ,A |= A(a)} ∪ {e ∈ ∆IT ,A \ Ind(A) | T |= Tail(e) v A}
rIT ,A = {(a, b) | T ,A |= r(a, b)} ∪ {(e1, e2) | e2 = e1S C and T |= S v r}∪

{(e2, e1) | e2 = e1S C and T |= S v r−}
aIT ,A = a for all a ∈ Ind(A)

Note that IT ,A is composed of a core consisting of the ABox individuals and an an-
onymous part consisting of (possibly infinite) trees rooted at the ABox individuals. We
will use IT ,A|e to denote the submodel of IT ,A obtained by restricting the domain to those
elements containing e as a prefix. Observe that, by construction, IT ,A|e and IT ,A|e′ are
isomorphic whenever Tail(e) = Tail(e′).

It can be verified that IK |= K for every satisfiable KB K. Moreover, it is well known
that the canonical model IK can be homomorphically embedded into any model of K.

Example 2.3. The canonical model of (Tmob ,Amob) from Example 2.1 is depicted in Fig-
ure 4. To satisfy the existential restrictions in the inclusions (3a) – (5a) of Tmob , the

2. Recall that throughout the paper, we assume that ELH KBs are in normal form, and for this reason, we
only need to consider existential concepts of the form ∃r.A with A ∈ NC ∪ {>}.

323

Bienvenu, Ortiz, & Šimkus

tramway:T1
TramwayLine

subway:U1
SubwayLine

tramway:T2
TramwayLine

stop:cathSq
Stop

stop:Volkstheater
GLStop,AccStop,Stop

stop:opera
EquipStop,AccStop,Stop

stop:cityPark
GLStop,AccStop,Stop

stop:trainStation
EquipStop,AccStop,Stop

sb
Su
b

sbSub

sbSub

sbHFT

sbHFT

sbHFT

sbL
FT

sb
LF
T

sbLFT

square:cathSq
Square

theater:Volkstheater
Theater

theater:opera
Theater

park:cityPark
Park

trainSt:ViennaCenter
trainStation

locIn

locIn

locIn

locIn

locIn

Cafe:Hawelka
Cafe,FoodServ

park:huberPark
Park,FamFriendly

e1
FoodServ

e2
Playground

Cafe:Sacher
Cafe,FoodServ

playgr:cityPark
Playground

shopping:cityMall
ShoppingCenter

e3
Foodcourt

e5
FoodServ

e4
Supermarket

locIn

locIn

hasFacility hasFacility

locIn

locIn

locIn

hasFacility

hasFacility hasFacility

Figure 4: Canonical model ITmob ,Amob
of the KB (Tmob ,Amob)

canonical model contains the following five anonymous elements e1, . . . e5, which form two
tree-shaped structures rooted at the nodes park:huberPark and shopping:cityMall:

e1 = park:huberPark hasFacility FoodServ

e2 = park:huberPark hasFacility Playground

e3 = shopping:cityMall hasFacility Foodcourt

e4 = shopping:cityMall hasFacility Supermarket

e5 = shopping:cityMall hasFacility Foodcourt hasFacility FoodServ

Example 2.4. To illustrate why canonical models can be infinite, we present in Figure 5
a simple DL-LiteR knowledge base (T ,A) and a depiction of its canonical model IT ,A. As
in the preceding example, we use names ei as abbreviations for the anonymous objects in
IT ,A. Note that the tree rooted at b2 is infinite, since every object that belongs to the
concept B has an r-child that also belongs to B.

2.2 Regular Languages

We assume the reader is familiar with regular languages, represented either by regular
expressions or nondeterministic finite state automata (NFAs). Regular expressions E over
alphabet Σ are defined by the grammar

E → ε | σ | E · E | E ∪ E | E∗

where σ ∈ Σ and ε denotes the empty word (i.e., the sequence of length 0). An NFA over an
alphabet Σ is a tuple α = (S,Σ, δ, s0, F), where S is a finite set of states, δ ⊆ S ×Σ×S the

324

Regular Path Queries in Lightweight Description Logics

T = { B v ∃r, ∃r− vB,
B v ∃r1, r1 v r−2 }

A = { r(a, b), r2(b, c), D(b) }

a b

B,D

cr r2

e1 B e2

r r1, r
−
2

e11 B e12

r r1, r
−
2

e111 B e112

r r1, r
−
2

...

Figure 5: Example DL-LiteR knowledge base (T ,A) and its canonical model IT ,A

transition relation, s0 ∈ S the initial state, and F ⊆ S the set of final states. We use L(E)
(resp.L(α)) to denote the language defined by the regular expression E (resp. the NFA α).

We recall that NFAs are exponentially more succinct than regular expressions, in that
there exists a polynomial translation of regular expressions into equivalent NFAs, while the
translation from NFAs to regular expressions may incur an exponential blowup (Ehrenfeucht
& Zeiger, 1974). Thus, to ensure that our complexity results hold regardless of the chosen
representation, we will prove our complexity lower bounds using the regular expression
representation, and for our upper bounds, we will adopt the NFA representation.

2.3 Computational Complexity

We assume familiarity with standard complexity classes, such as NL (problems solvable in
non-deterministic logarithmic space), P (problems solvable in polynomial time), NP (prob-
lems solvable in non-deterministic polynomial time), PSpace (problems solvable in poly-
nomial space), and NPspace (problems solvable in non-deterministic polynomial space).
We recall that by Savitch’s theorem, we have NPspace = PSpace. We shall also con-
sider the oracle classes NLNL and NLP consisting of problems solvable in non-deterministic
logarithmic space when given access to an NL (respectively, P) oracle. It is well-known
that NLNL = NL and NLP = P. The circuit complexity class AC0 that was mentioned in
Figure 1 comprises problems that can be computed by a family of unbounded fan-in circuits
of constant depth and polynomial size. The preceding classes are ordered as follows:

AC0 (NL ⊆ P ⊆ NP ⊆ PSpace

For precise definitions of these complexity classes, and other standard notions of compu-
tational complexity, we refer the reader to the recent textbook of Arora and Barak (2009)
and references therein.

3. Path Queries

In this section, we introduce the different query languages considered in this paper and
define the relevant computational problems.

325

Bienvenu, Ortiz, & Šimkus

q1(x, y) = AccStop? ·
(
(sbSub · sbSub−) ∪ (sbLFT · sbLFT−)

)∗ · AccStop?(x, y)

q2(x, y) = ∃z1, z2. AccStop? ·
(
(sbSub · sbSub−) ∪ (sbLFT · sbLFT−)

)∗ · AccStop?(x, y)

∧ locIn · (locIn−)∗ · hasFacility∗ · FoodServ? (x, z1)

∧ locIn · (locIn−)∗ · hasFacility∗ · Playground? (y, z2)

Figure 6: Example queries

3.1 Syntax of Path Queries

A conjunctive (two-way) regular path query (C2RPQ) has the form q(~x) = ∃~y. ϕ where ~x
and ~y are disjoint tuples of variables, and ϕ is a conjunction of atoms of the forms:

(i) A(t), where A ∈ NC and t ∈ NI ∪ ~x ∪ ~y

(ii) Λ(t, t′), where Λ is an NFA or regular expression defining a regular language over
N±R ∪ {A? | A ∈ NC}, and t, t′ ∈ NI ∪ ~x ∪ ~y

As usual, variables and individuals are called terms, the variables in ~x are called answer
variables, and the variables in ~y are called quantified variables. We use terms(q), vars(q),
avars(q), and qvars(q) to refer respectively to the sets of terms, variables, answer variables,
and quantified variables appearing in query q. A query with no answer variables is called a
Boolean query. Note that where convenient we will treat a query as its set of atoms.

Conjunctive (one-way) regular path queries (CRPQs) are obtained by disallowing sym-
bols from N±R \ NR in atoms of type (ii), and conjunctive queries (CQs) result from only
allowing type (ii) atoms of the form r(t, t′) with r ∈ NR. Two-way regular path queries
(2RPQs) consist of a single atom of type (ii) such that t and t′ are both answer variables.
Regular path queries (RPQs) are 2RPQs that do not use any symbols from N±R \NR. Finally,
instance queries (IQs) take the form A(x) with A ∈ NC, or r(x, y) with r ∈ NR.

Note that it will sometimes prove convenient to treat queries as sets of atoms, using the
notation α ∈ q to indicate that α is an atom of q.

Example 3.1. Figure 6 shows two example queries. The 2RPQ q1 retrieves pairs x, y
of public transport stops that have an accessible connection, that is, both x and y are
accessible stops, and there is a public transport route between them that uses only subway
and low-floor tramway. The query q2 retrieves pairs x, y of public transport stops that have
an accessible connection (as in q1) and such that there is a place to eat at the location of x
and a playground at the location of y.

Note that by using the Kleene star (∗), we can query for services such as restaurants and
playgrounds available at some location without having to take care of the different ways in
which places can be related. For example, a restaurant could be at the same location as a
stop, or it could be that it is in a food court inside some shopping center that is itself at
the same location as a stop. In both cases, q2 correctly identifies it as a food service at that
location. This is a very useful feature of RPQs and their extensions, particularly in cases
where the data does not comply to a rigid schema.

326

Regular Path Queries in Lightweight Description Logics

3.2 Semantics of Path Queries

We now proceed to define the semantics of C2RPQs. Given an interpretation I, a path from
e0 to en in I is a sequence e0u1e1u2 . . . unen with n ≥ 0 such that every ei is an element
from ∆I , every ui is a symbol from N±R ∪ {A? | A ∈ NC}, and for every 1 ≤ i ≤ n:

• If ui = A?, then ei−1 = ei ∈ AI ;

• If ui = R ∈ N±R , then (ei−1, ei) ∈ RI .

The label λ(p) of path p = e0u1e1u2 . . . unen is the word u1u2 . . . un. Note that if p = e0,
then we define λ(p) to be ε.

Then for every language L over N±R ∪ {A? | A ∈ NC}, the semantics of L w.r.t. interpre-
tation I is defined as follows:

LI = {(e0, en) | there is some path p from e0 to en with λ(p) ∈ L}

A match for a C2RPQ q in an interpretation I is a mapping π from the terms in q to
elements in ∆I such that

• π(c) = cI for each c ∈ NI,

• π(t) ∈ AI for each atom A(t) in q, and

• (π(t), π(t′)) ∈ L(Λ)I for each Λ(t, t′) in q.

Given a C2RPQ q with answer variables x1, . . . , xk, we say that a tuple of individuals
(a1, . . . , ak) from Ind(A) is a certain answer to q w.r.t. the KB K = (T ,A) just in the case
that in every model I of K there is a match π for q such that π(vi) = aIi for every 1 ≤ i ≤ k.
We use cert(q,K) to denote the set of certain answers to q w.r.t. the KB K. Note that if
q is a Boolean query, then either cert(q,K) = {()} (where () denotes the empty tuple) or
cert(q,K) = ∅. In the former case, we say that q is entailed from K, and we write K |= q.

We remark that the normal form for ELH TBoxes can also be assumed without loss of
generality for query answering. Indeed, we can always assume that the fresh symbols in
the TBox T ′ in normal form do not occur in q, and it follows from Proposition 2.2 and the
definition of certain answers that cert(q, (T ,A)) = cert(q, (T ′,A)) for every C2RPQ q that
does not use any symbols in sig(T ′) \ sig(T).

While the definition of certain answers involves all models of a KB, for the DLs consid-
ered in this paper, it is in fact sufficient to look for matches in the canonical model.

Lemma 3.2. For every DL-LiteR or ELH KB K = (T ,A), C2RPQ q(~x) of arity k, and
k-tuple ~a of individuals from A: ~a ∈ cert(q,K) if and only if there is a match π for q in IK
such that π(~x) = ~a.

Proof sketch. It is well known that the canonical model IK can be homomorphically em-
bedded into any model of K (Calvanese et al., 2007; Rosati, 2007; Krisnadhi & Lutz, 2007;
Krötzsch & Rudolph, 2007). It follows that whenever query matches are preserved under
homomorphisms, the existence of a match in IK implies the existence of a match in every
model. This has been often observed for CQs, and it applies equally well to C2RPQs (Cal-
vanese et al., 2014; Ortiz et al., 2011). Since the converse is trivially true, certain answers
coincide with the answers over the canonical model.

327

Bienvenu, Ortiz, & Šimkus

a b
D

c

e1 e2

e11 e12

e111 e112

e1111 e1112

...

s0 s0

s0

s0 sf

s0 s2

s1

r

r

r

r

r1 r2

r−

s′f

s′1

s′0

r−

r−

x

y

z D

α

β

s0 s1 s2 sf

r

r1 r2 r−α:

s′0 s′1 s′f
r− r−

β:

Figure 7: A match witnessing a ∈ cert(q,K) for q and K from Example 3.4

Example 3.3. In our urban mobility example, the stop at the cathedral square is not
known to be accessible (i.e., AccStop(stop:cathSq) is not entailed by (Tmob ,Amob)), hence
stop:cathSq cannot participate in any match for q1. The stop at the theater is accessible,
but it is only connected to other stops via high-floor tramway. Thus stop:Volkstheater only
participates in one mapping for q1 in ITmob ,Amob

, namely π(x) = π(y) = stop:Volkstheater.
Indeed, the path

stop:Volkstheater AccStop? stop:Volkstheater AccStop? stop:Volkstheater

witnesses that (stop:Volkstheater, stop:Volkstheater) ∈ LI1 for the language L1 specified in q1,
and there is no longer path starting or ending at stop:Volkstheater whose label belongs to L1.
The stops stop:opera, stop:cityPark, and stop:trainStation are all accessible and mutually con-
nected via accessible public transport (i.e., subway and low-floor tramway lines). Hence, we
can find a path between any pair of them whose label is in L1, and all such pairs are certain
answers to q1. Thus cert(q1, (Tmob ,Amob)) contains (stop:Volkstheater, stop:Volkstheater), and
all pairs of stops involving stop:opera, stop:cityPark, and stop:trainStation.

The certain answers to q2 are precisely those pairs (s1, s2) of stops that are an answer to
q1 such that there is some food service at the location of s1 and a playground at the location
of s2. Since in ITmob ,Amob

, we find both some food service and a playground at the loca-
tion of stop:Volkstheater, we have (stop:Volkstheater, stop:Volkstheater) ∈ cert(q2, (Tmob ,Amob)).
We also find food services at the locations of stop:opera and stop:trainStation, and a play-
ground at the location of stop:cityPark, hence cert(q2, (Tmob ,Amob)) also contains the pairs
(stop:opera, stop:cityPark) and (stop:trainStation, stop:cityPark).

Example 3.4. We also give an example of a query over the KB (T ,A) in Figure 5:

q(x) = ∃y, z. r∗ · r1 · r2 · r−(x, y) ∧ r− · r−(y, z) ∧ D(z)

We have cert(q,K) = {a, b}. To see why a is a certain answer, consider the mapping
π(x) = a, π(y) = e11, and π(z) = b. The path arbre1re11re111r1e1112r2e111r

−e11 witnesses
that (a, e11) ∈ L(r∗ · r1 · r2 · r−)IT ,A , while the path e11r

−e1r
−b witnesses that (e11, b) ∈

328

Regular Path Queries in Lightweight Description Logics

L(r− · r−)IT ,A . Since b ∈ DIT ,A , the mapping π is a match for q. This match is depicted
in Figure 7. To see that b is also a certain answer, consider π′(x) = π′(z) = b and π′(y) =
e11, and observe that π′ is also a match because bre1re11re111r1e1112r2e111r

−e11 witnesses
(b, e11) ∈ L(r∗ · r1 · r2 · r−)IT ,A .

Note that in both matches, y is mapped to an element in the anonymous part, and there
is no match mapping y to an individual. This illustrates that anonymous elements may play
a decisive role in query answering, and every complete query answering algorithm must
consider possible matches into the possibly infinite anonymous part of canonical models.

3.3 Computational Problems

In this paper, we will be interested in the problem of computing the certain answers to
C2RPQs, and more precisely, the associated decision problem of determining whether a
given tuple is a certain answer to a query. In what follows, for a query language Q ∈
{IQ, CQ, RPQ, CRPQ, 2RPQ, C2RPQ}, we will use the term Q answering to refer to the
problem of deciding given a KB K, tuple ~a, and query q from Q, whether ~a ∈ cert(q,K).

There are different ways of measuring the complexity of query answering, depending on
which of the three parameters of the problem (T , A, and q) are considered as inputs and
which are considered fixed. In this work, we consider the two most commonly used measures:
combined complexity and data complexity. Combined complexity treats all three parameters
as inputs, so the complexity is measured with respect to the total size |T |+ |A|+ |q| (we use
| · | to denote the size of an object, e.g. the length of its string representation according to
some suitable encoding). Data complexity takes A as input and assumes T and q to be fixed,
so the complexity is measured only with respect to |A|, with |T | and |q| treated as constants.

4. Lower Bounds

In this section, we establish the required complexity lower bounds. We begin with some
lower bounds for RPQs that can be straightforwardly obtained from existing results.

Proposition 4.1. RPQ answering is

1. NL-hard in data complexity for DL-LiteRDFS;

2. P-hard in data complexity for EL;

Proof. Statement (1) follows from the analogous result for graph databases (Consens &
Mendelzon, 1990). It can be shown by a simple reduction from the NL-complete directed
reachability problem: vertex b is reachable from vertex a in a directed graph G if and only
if (a, b) is a certain answer to the RPQ r∗(x, y) w.r.t. the KB (∅,AG), where

AG = {r(v1, v2) | there is a directed edge from v1 to v2 in G}.

Statement (2) is a direct consequence of the P-hardness in data complexity of instance
checking in EL (Calvanese et al., 2006), since the instance query A(x) can be computed
using the RPQ A?(x, y).

In the case of DL-Lite, we establish a P lower bound for 2RPQs, which contrasts with
the NL-completeness of instance checking. We remark that a similar result was given in

329

Bienvenu, Ortiz, & Šimkus

the conference version of this paper (Bienvenu et al., 2013), but the reduction required an
NFA representation of the regular language in the query. The complexity of 2RPQs using
the (less succinct) regular expression representation was left open and is resolved by the
following theorem.

Theorem 4.2. 2RPQ answering is P-hard in combined complexity for DL-Lite.

Proof. We give a reduction from the P-complete entailment problem for propositional defi-
nite Horn theories. Without loss of generality, we suppose that we are given a propositional
Horn theory Ψ over variables v1, . . . , vn that consists of

• a set of rules ρi = vi1 ∧ vi2 → vi3 (1 ≤ i ≤ m)

• a single “initialization” fact: v1, with v1 6= vn

Indeed, any arbitrary propositional definite Horn theory Ψ′ can be transformed into a
theory of the preceding form as follows: take a fresh variable v1 not appearing in Ψ′, add
v1 to the body of every rule in Ψ′, add the fact v1, and finally perform standard syntactic
manipulations (possibly introducing additional fresh variables) to ensure that all rules other
than the initialization fact v1 contain exactly two body variables.

In what follows, we show how to construct, given a propositional Horn theory Ψ of the
form above, a DL-Lite KB K = (T ,A) and Boolean 2RPQ q such that K |= q if and only
if Ψ |= vn. We first provide an informal description of the reduction, and then present it
formally. As is well known, Ψ |= vn just in the case that there exists a proof tree for vn
from Ψ, which can be defined as a binary tree T where each node is labeled with a variable
from v1, . . . , vn such that the following conditions are satisfied: (i) the root is labeled with
vn, (ii) the leaves are labeled with v1, and (iii) for any inner node d, if d is labeled with vk,
then there is a rule ρi ∈ Ψ such that vk = vi3 and the two children of d are labeled with
vi1 and vi2 , respectively. The existence of a node-labeled proof tree T as just described
is equivalent to the existence of an edge-labeled proof tree T ′, defined as a sibling-ordered
binary tree whose edges are labeled with rules from Ψ as follows. First, the two edges
outgoing from the root are labeled with a rule ρi with vi3 = vn. For a non-root node d`
which is the `-th child of its parent d, where ` ∈ {1, 2}, if the edge (d, d`) is labeled with ρi,
then either vi` = v1, or d` has two outgoing edges E1 and E2 that are both labeled with a
rule ρj such that vj3 = vi` .

We will next show how to construct K and q such that K |= q if and only if there exists
a edge-labeled proof tree T ′ for vn from Ψ. Roughly speaking, we use K to generate in
the anonymous part a tree that contains all possible edge-labeled proof trees. Since such
proof trees are based upon sibling-ordered trees, we need to distinguish between the first
and second children of a node, and so we use two roles ri,1 and ri,2 for each rule ρi. An
edge-labeled proof tree T ′ will thus map into a subtree of IK of the same structure, but with
label ρi replaced by either ri,1 or ri,2, depending on whether the edge leads to the first or
second child of the parent node. We then use a 2RPQ q to determine whether IK actually
contains such a subtree. The intuition is that every path that witnesses the satisfaction of
q corresponds to the complete depth-first traversal of (the representation of) a valid edge-
labeled proof tree that starts and ends at the root, and in which the left subtree of a node
is always visited before the right one.

330

Regular Path Queries in Lightweight Description Logics

E = (
⋃

1≤i≤m

ri,1) ·

 ⋃
1≤i≤m

ri,1 ∪
⋃

k∈F1

(r−k,1 · rk,2) ∪
⋃

k∈F2

(r−k,2 · (
⋃

1≤i≤m

r−i,2)∗ · (
⋃

1≤i≤m

(r−i,1 · ri,2) ∪ ε))

∗

Figure 8: Regular expression used in the proof of Theorem 4.2.

The ABox A consists of a single assertion A(a), and the TBox T contains the following
concept inclusions:

• A v ∃ri,`, where ` ∈ {1, 2} and 1 ≤ i ≤ m with vi3 = vn

• ∃r−i,` v ∃rk,j , where `, j ∈ {1, 2} and 1 ≤ i, k ≤ m such that vi` = vk3

For ` ∈ {1, 2}, we define the set

F` = {k | 1 ≤ k ≤ m, vk` = v1}.

Intuitively, F` contains the index of each rule where we can ‘turn back’ since its `-th variable
is the initial variable v1, (and so the corresponding child node in the proof tree would be a
leaf). We use F1 and F2 to define the regular expression E in Figure 8, which we then use
to define the following 2RPQ:

q = E(a, a).

We now prove the correctness of the reduction.

(⇒) Suppose that K |= q. Then by Lemma 3.2, there is a match for q in the canonical
model IK of K. This means that (a, a) = (aIK , aIK) ∈ L(E)IK , and so there exists a path
e0σ1 . . . σpep in IK whose label is in L(E) such that e0 = ep = a.

Claim 1. For every 2 ≤ j ≤ p:

1. If σj = ri,1, then there exists j′ > j with σj′ = r−i,2.

2. If σj = r−i,2, then there exists j′ < j such that σj′ = r−i,1.

3. If σj = r−i,1 and i 6∈ F1, then σj−1 = r−i′,2 where vi′3 = vi1 .

4. If σj = r−i,2 and i 6∈ F2, then σj−1 = r−i′,2 where vi′3 = vi2 .

Proof of claim. For Point 1, we remark that in IK all roles are directed away from the
ABox; formally, for every role name s, if (g, g′) ∈ sIK , then g′ = gs∃s−. It follows that if
σj = ri,1, then ej = ej−1ri,1∃r−i,1. Since the sequence of elements ej , . . . , ep defines a path
in IK from ej to ep = a, by continuity, there must be some j0 > j such that ej0−1 = ej
and ej0 = ej−1, in which case we must have σj0 = r−i,1. Next note that the structure of E
ensures that every occurrence of r−i,1 is immediately followed by ri,2. Then repeating the

same argument, substituting ri,2 for ri,1, we can find some j′ > j0 such that σj′ = r−i,2.
For Point 2, we again use the fact that roles in IK are directed away from the ABox.

Thus, if σj = r−i,2, then ej−1 = ejri,2∃r−i,2. The sequence e0, . . . , ej−1 of elements forms a

331

Bienvenu, Ortiz, & Šimkus

path in IK from e0 = a to ejri,2∃r−i,2. Thus, by continuity, there must exist some j′ < j

such that ej′ = ej , ej′+1 = ejri,2∃r−i,2, and σj′+1 = ri,2. By examining the structure of E , we

can see that any occurrence of ri,2 must be immediately preceded by r−i,1, and so σj′ = r−i,1.

To show Point 3, suppose that σj = r−i,1 and i 6∈ F1. The structure of E ensures

that the preceding symbol σj−1 takes the form r−i′,2. We thus have (ej , ej−1) ∈ rIKi,1 and

(ej−1, ej−2) ∈ rIKi′,2. Once again using the fact that elements in IK do not contain inverse

role names, we obtain ej−2 = ejri,1∃r−i,1ri′,2∃r
−
i′,2. It follows that T |= ∃r−i,1 v ∃ri′,2, which

can only be the case if vi′3 = vi1 .

Finally, for Point 4, suppose that σj = r−i,2 and i 6∈ F2. Examining the structure

of E , it is clear that the preceding symbol σj−1 must be of the form r−i′,2, and so we have

(ej , ej−1) ∈ rIKi,2 and (ej−1, ej−2) ∈ rIKi′,2. This means that T |= ∃r−i,2 v ∃ri′,2, and hence
vi′3 = vi2 . (end proof of claim)

It is easy to see that the first symbol σ1 must have the form ri,1, and so we have

(e0, e1) ∈ rIKi,1 . Since e0 = a, we have (a, ari,1∃r−i,1) ∈ rIKi,1 . This implies that T |= A v ∃ri,1,
and hence that vi3 = vn. Applying Points 1 and 2 of the preceding claim, we can find j, k
such that σj = r−i,1 and σk = r−i,2. To complete the proof of this direction, we establish the
following claim.

Claim 2. For every 1 ≤ j ≤ p and ` ∈ {1, 2}, if σj = r−i,`, then Ψ |= vi` .

Proof of claim. We proceed by induction on j. For the base case, suppose that σj = r−i,`,

and there is no j′ < j with σj′ = r−i′,`′ . It follows from Claim 1 that i ∈ F1 and ` = 1. We
thus have vi` = v1, so Ψ |= vi` trivially holds.

For the induction step, suppose that claim holds for all j < k, and consider σk = r−i,`.
We consider three cases:

• Case 1: σk = r−i,` and i ∈ F`
Since i ∈ F`, we have vi` = v1, so Ψ |= vi` follows immediately.

• Case 2: σk = r−i,1 and i 6∈ F1

By Point 3 of Claim 1, σk−1 = r−i′,2 where vi′3 = vi1 . Applying the induction hypothesis
to σk−1, we obtain Ψ |= vi′2 . From Point 2 of Claim 2, there exists some j < k such

that σj = r−i′,1. A second application of the induction hypothesis yields Ψ |= vi′1 . The
rule vi′1 ∧ vi′2 → vi′3 belongs to Ψ, so we must also have Ψ |= vi′3 . Then since vi′3 = vi1 ,
we obtain Ψ |= vi1 .

• Case 3: σk = r−i,2 and i 6∈ F2

We can use almost the same argument as for Case 2, except that we must use Point
4 of Claim 1, rather than Point 3. (end proof of claim)

As Ψ contains the rule vi1 ∧ vi2 → vi3 , it follows from Claim 2 that Ψ |= vn.

(⇐) If Ψ |= vn, then there must be exist an edge-labeled proof tree T ′ for vn from Ψ
as described at the beginning of the proof. We define a mapping f from the nodes of T ′ to
domain elements in IT ,A as follows:

332

Regular Path Queries in Lightweight Description Logics

• f(d) = a for d the root of T ′;

• for every non-root node d, if d is the first (resp., second) child of its parent dp and
(dp, d) is labeled ρi, then f(d) = f(dp)ri,1∃r−i,1 (resp. f(d) = f(dp)ri,2∃r−i,2).

We show the following claim:

Claim 3: For every non-leaf node d in T ′, (f(d), f(d)) ∈ L(E)IT ,A .

Proof of claim. For every non-leaf node d, we consider a depth-first traversal of the subtree
of T ′ rooted at d that always visits the left subtree of a node before visiting the right one,
and then returns to the root. Let d1, d2, . . . , dn be the sequence of nodes visited in this
traversal, with d1 = dn = d, and for every 2 ≤ i ≤ n, let σi−1,i be as follows:

– σi−1,i = rj,1 if di is the first child of di−1 and (di−1, di) is labeled with ρj ;

– σi−1,i = rj,2 if di is the second child of di−1 and (di−1, di) is labeled with ρj ;

– σi−1,i = r−j,1 if di−1 is the first child of di and (di, di−1) is labeled with ρj ;

– σi−1,i = r−j,2 if di−1 is the second child of di and (di, di−1) is labeled with ρj .

We now define a path pd as follows:

pd = f(d1)σ1,2f(d2)σ2,3 . . . σn−1,nf(dn)

To show the claim, it suffices to show the following for every non-leaf node d:

(∗) pd is a path in IT ,A with λ(pd) ∈ L(E).

This can be shown by induction on the minimal distance of d to a leaf in T ′. An important
observation is that, for ` ∈ {1, 2}, if the `th child d` of a node d of T ′ is a leaf, and the edge
from d to d` is labeled ρi, then by definition i ∈ F`.

In order to be able to more easily argue that some words belong to L(E), we give names
to the relevant subexpressions of E :

E1 =
⋃

1≤i≤m
ri,1

E2 =
⋃
k∈F1

(r−k,1 · rk,2)

E3 = (
⋃

1≤i≤m
r−i,2)∗

E4 = (
⋃

1≤i≤m
(r−i,1 · ri,2) ∪ ε)

E5 =
⋃
k∈F2

(r−k,2 · (
⋃

1≤i≤m
r−i,2)∗ · (

⋃
1≤i≤m

(r−i,1 · ri,2) ∪ ε)

E6 =

 ⋃
1≤i≤m

ri,1 ∪
⋃
k∈F1

(r−k,1 · rk,2) ∪
⋃
k∈F2

(r−k,2 · (
⋃

1≤i≤m
r−i,2)∗ · (

⋃
1≤i≤m

(r−i,1 · ri,2) ∪ ε))

∗

333

Bienvenu, Ortiz, & Šimkus

Note that we have E5 =
⋃
k∈F2

(r−k,2 · E3 · E4), E6 = (E1 ∪ E2 ∪ E5)∗, and E = E1 · E6.

Now we are ready to prove (∗). For the base case, when both children of d are leaves,
let ρi be the label of the edges from d to its children. By construction of IT ,A, f(d) has an
ri,1-child and an ri,2-child, so pd is a path in IT ,A with λ(pd) = ri,1 · r−i,1 · ri,2 · r

−
i,2. Both

children of d are leaves, so i ∈ F1 ∩ F2. We thus have ri,1 ∈ L(E1), r−i,1 · ri,2 ∈ L(E2), and

r−i,2 ∈ L(E5) = L(
⋃
k∈F2

(r−k,2 · E3 · E4)) (for the latter, observe that ε ∈ L(E3) and ε ∈ L(E4)).

Using E6 = (E1 ∪ E2 ∪ E5)∗, we get r−i,1 · ri,2 · r
−
i,2 ∈ L(E6), and using E = E1 · E6, we obtain

λ(pd) = ri,1 · r−i,1 · ri,2 · r
−
i,2 ∈ L(E).

For the induction step, let dL and dR be the left and right children of d respectively,
and let ρi be the rule that is used to label the edges from d to dL and from d to dR. By
construction of IT ,A and f , we know that f(dL) is an ri,1-child of f(d) and that f(dR) is
an ri,2-child of f(d). We distinguish three cases:

− If neither of the children dL and dR of d is a leaf, then we know from the induction
hypothesis that pdL and pdR are paths in IT ,A which start and end at f(dL) and
f(dR) respectively and are such that {λ(pdL), λ(pdR)} ⊆ L(E). It follows that pd =
f(d)ri,1pdLr

−
i,1f(d)ri,2pdRr

−
i,2f(d) is a path in IT ,A. We let ρkL (resp. ρkR) be the label

linking dL (resp. dR) to its two children. Note that by construction, λ(pdL) (resp.
λ(pdL)) ends with r−

kL,1
(resp. r−

kL,2
). It follows that λ(pdL) ∈ L(E1 · E6 · E5) and that

for the subexpression E4 = (
⋃

1≤i≤m(r−i,1 ·ri,2)∪ε) of the final E5, we must select ε. By

choosing to instantiate E4 with r−i,1ri,2 instead, we can show that λ(pdL) · r−i,1 · ri,2 ∈
L(E6). A similar argument for λ(pdR) can be used to show that λ(pdR) · r−i,2 ∈ L(E6).

We therefore obtain λ(pd) = ri,1 · λ(pd1) · r−i,1 · ri,2 · λ(pd1) · r−i,2 ∈ L(E1 · E6 · E6) ⊆ L(E).

− If dL is not a leaf but dR is, then we can apply the induction hypothesis to infer that
pdL is a path in IT ,A that starts and ends at f(dL) and is such that λ(pdL) ∈ L(E).
By using the same reasoning as in the previous case, we obtain that λ(pdL) ·r−i,1 ·ri,2 ∈
L(E6). As dR is a leaf, it follows that i ∈ F2, and hence r−i,2 ∈ L(E5) (here again we
choose ε to satisfy the subexpressions E3 and E4 of E5). Putting this together, we find
that λ(pd) = ri,1λ(pd1)r−i,1ri,2r

−
i,2 ∈ L(E1 · E6 · E5) ⊆ L(E).

− If dL is a leaf but dR is not, the argument is analogous to the previous case.
(end proof of claim)

Since f(d) = a for the root d of T ′, it follows from the preceding claim that (a, a) ∈
L(E)IT ,A , hence K |= q.

In DL-LiteR, we can strengthen Theorem 4.2 by using role inclusions to eliminate inverse
roles in the query.

Corollary 4.3. RPQ answering is P-hard in combined complexity in DL-LiteR.

Proof. Let q be a 2RPQ and (T ,A) be a DL-LiteR KB. For each inverse role r− appearing
in q, we introduce a new role name rinv. We then let q′ be the RPQ obtained by replacing
every occurrence of r− in the query by rinv, and let T ′ be the extension of T with the
role inclusions r− v rinv and rinv v r− for each new role name rinv. It is easy to see that
cert(q, (T ,A)) = cert(q′, (T ′,A)).

334

Regular Path Queries in Lightweight Description Logics

We leave open whether RPQ answering in DL-Lite is P-hard in combined complexity.

We next provide combined complexity lower bounds for CRPQs. As CRPQs general-
ize CQs, we inherit an NP lower bound from the well-known NP-hardness in combined
complexity of CQ answering in relational databases (see (Abiteboul, Hull, & Vianu, 1995)):

Proposition 4.4. CRPQ answering is NP-hard in combined complexity for DL-LiteRDFS.

For DL-Lite and EL, we show that CRPQ answering is PSpace-hard for combined
complexity, in contrast to CQ answering which is NP-complete. Interestingly, PSpace-
hardness holds even under strong restrictions. In particular, we consider the following
restrictions on the shape of the query and the form of the regular languages in query atoms:

• (Strong) acyclicity : a C2RPQ q is acyclic if its associated undirected graph Gq =
{{t, t′} | L(t, t′) ∈ q} is acyclic. It is strongly acyclic if additionally (i) it does
not contain any atoms of the form L(t, t) and (ii) for every pair of distinct atoms
L1(t1, t

′
1), L2(t2, t

′
2), we have {t1, t′1} 6= {t2, t′2}.

• Disjunction-freeness and star-height of regular expressions: a regular expression is
disjunction-free if it does not contain ∪. The star-height of a regular expression is
defined as the maximum nesting depth of stars appearing in the regular expression.

We point out that in the graph database setting, (strong) acyclicity leads to tractability:
acyclic C2RPQs can be evaluated in polynomial time in combined complexity (Barceló
et al., 2012), and for strongly C2RPQs, evaluation can even be done in linear time in the
size of the database (Barceló, 2013). By contrast, the following result shows that strong
acyclicity has no impact on the worst-case complexity of CRPQ answering in our setting:

Theorem 4.5. CRPQ answering is PSpace-hard in combined complexity for DL-Lite and
EL. This result applies even under the restriction to strongly acyclic CRPQs whose regular
languages are given by disjunction-free regular expressions of star-height two.

Proof. We give a reduction from the problem of emptiness of the intersection of an arbitrary
number of regular languages, which is known to be PSpace-hard. This result was first shown
by Kozen (1977) for regular languages given as deterministic NFAs. More recently, Bala
(2002) proved that this problem is also PSpace-hard when the regular languages are given
as disjunction-free regular expressions of star-height two. So, let E1, . . . , En be disjunction-
free regular expressions of star-height two over the alphabet Σ = {σ1, . . . , σm}. We will
use the symbols in Σ as role names, and we will also use concept names A and B. For our
reduction, we consider the following Boolean CRPQ:

q = ∃x1, . . . , xn, y. A(x1) ∧ . . . A(xn) ∧ E1(x1, y) ∧ . . . ∧ En(xn, y)

Observe that q satisfies the restrictions in the proposition statement. For the KB, we use
the ABox A = {A(a)} and a TBox T whose form depends on the logic in question. For
DL-Lite, we use

T = {A v ∃σi | σi ∈ Σ} ∪ {∃σ−i v ∃σj | σi, σj ∈ Σ}

335

Bienvenu, Ortiz, & Šimkus

and for EL, we use instead:

T = {A v B} ∪ {B v ∃σi.B | σi ∈ Σ}.

Notice that in both cases the canonical model IK of K = (T ,A) consists of an infinite tree
rooted at a such that every element in the interpretation has a unique σi-child for each
σi ∈ Σ (and no other children). Thus, we can associate to every domain element in IK the
word over Σ given by the sequence of role names encountered along the unique path from
a, and moreover, for every word w ∈ Σ∗ we can find an element ew such that the sequence
of role names on the path from a to ew is exactly w.

We claim that L(E1) ∩ . . . ∩ L(En) is non-empty if and only if K |= q. To see why, first
note that if w ∈ L(E1)∩ . . .∩L(En), then we can define a match for q in the canonical model
by mapping the variables x1, . . . , xn to a and y to ew. Conversely, if q is entailed from K,
then there is a match π of q in IK. Since AIK = {a}, we must have π(xi) = a for every
1 ≤ i ≤ n. It follows that the unique path from a to π(y) in IK is a word that belongs to
every L(Ei), which means that L(E1) ∩ . . . ∩ L(En) is non-empty.

We note that the proof of the preceding theorem from the conference version (Bienvenu
et al., 2013) uses a simpler query in which the variables xi are replaced by a and the atoms
A(xi) are dropped. However, that query is not strongly acyclic. We also remark that a
similar proof had already been used to establish PSpace hardness of CQs in an extension
of ELH that allows for regular role hierarchies (Krötzsch & Rudolph, 2007).

5. Upper Bounds for 2RPQs

In the next two sections, we provide concrete query answering algorithms for the considered
classes of path queries and DLs, which we leverage to derive matching upper bounds to
the complexity lower bounds from Section 4. The technical developments are presented in
stages. We begin this section by giving a simple algorithm for answering 2RPQs in DL-
LiteRDFS. The remainder of the section is then devoted to showing how this algorithm can
be extended to handle DL-LiteR and ELH. Afterwards, in Section 6, we introduce a query
rewriting procedure that, when combined with the algorithms from the present section,
yields a method for answering C2RPQs.

In this and the following section, we assume that all binary atoms take the form α(t, t′),
where α is an NFA over N±R ∪ {A? | A ∈ NC}. This is without loss of generality, since every
regular expression can transformed into an equivalent NFA; an examination of the standard
technique for constructing NFAs from regular expressions (Thompson, 1968) reveals that
the transformation can in fact be performed by a deterministic logspace transducer.

It will also be useful to introduce notation for NFAs that result from changing the initial
and final states of some other NFA. In what follows, given an NFA α = (S,Σ, δ, s0, F), we
will use αs,G to denote the NFA (S,Σ, δ, s,G), i.e., the NFA with the same states and
transitions as α but with initial state s and final states G. When there is a single final state
s′, we write αs,s′ in place of αs,{s′}.

336

Regular Path Queries in Lightweight Description Logics

Algorithm BasicEval
Input: NFA α = (S,Σ, δ, s0, F) with Σ ⊆ N±R ∪{A? | A ∈ NC}, DL-LiteRDFS KB (T , A),

(a, b) ∈ Ind(A)× Ind(A)

1. Initialize current = (a, s0) and count = 0. Set max = |A| · |S|.

2. While count < max and current 6∈ {(b, sf) | sf ∈ F}

(a) Let current = (c, s).

(b) Guess a pair (d, s′) ∈ Ind(A)× S and a transition (s, σ, s′) ∈ δ
• If σ ∈ N±R , then verify that T ,A |= σ(c, d), and return no if not.

• If σ = A?, then verify that c = d and T ,A |= A(c), and return no if not.

(c) Set current = (d, s′) and increment count.

3. If current = (b, sf) for some sf ∈ F , return yes. Else return no.

Figure 9: Non-deterministic algorithm for 2RPQ answering in DL-LiteRDFS.

5.1 Warm-up: 2RPQ Answering in DL-LiteRDFS

A standard technique for answering 2RPQs in the absence of an ontology is to non-
deterministically guess a path between a pair of individuals that is labeled by a word from
the specified regular language. Such a procedure can be made to run in logarithmic space
by only keeping a small portion of the path in memory at any time.

In Figure 9, we present a simple non-deterministic algorithm BasicEval for answering
2RPQs over DL-LiteRDFS knowledge bases that implements this idea. The algorithm takes
as input an NFA α = (S,Σ, δ, s0, F), a DL-LiteRDFS KBK = (T ,A), and a pair of individuals
(a, b) from A, and it decides whether (a, b) ∈ cert(α(x, y),K). In Step 1, we initialize current
with the pair (a, s0) and the counter count to 0. We also compute the maximum value max
of the counter, which corresponds to the largest length of path that needs to be considered.
At every iteration of the while loop (Step 2), we start with a single pair (c, s) stored in
current and then proceed to guess a new pair (d, s′) together with a transition of the form
(s, σ, s′). The idea is that we would like to append σd to the path guessed so far, but to
do so, we must ensure that the conditions of paths are satisfied. This is the purpose of the
entailment checks in Step 2(b). If the applicable check succeeds, then we place (d, s′) in
current and increment count. We exit the while loop once we have reached the maximum
counter value or the pair in count takes the form (b, sf) with sf a final state. In the latter
case, we have managed to guess a path with the required properties, and so the algorithm
returns yes.

The use of the counter ensures that the algorithm terminates, and the following propo-
sition proves that it always outputs the correct result.

Proposition 5.1. For every 2RPQ q = α(x, y), DL-LiteRDFS KB K = (T ,A), and pair of
individuals (a, b) from Ind(A): (a, b) ∈ cert(q,K) if and only if there is some execution of
BasicEval(α,K, (a, b)) that returns yes.

337

Bienvenu, Ortiz, & Šimkus

Proof. Consider a 2RPQ q = α(x, y) with α = (S,Σ, δ, s0, F), a DL-LiteRDFS KB K =
(T ,A), and a pair of individuals (a, b) from Ind(A).

First suppose that (a, b) ∈ cert(q,K). Then there is a path p = e0u1 . . . unen in IK such
that e0 = a, en = b, and λ(p) ∈ L(α). We may assume without loss of generality that there
is no path of shorter length than p that satisfies these conditions. As T is a DL-LiteRDFS

TBox, we know that ∆IK = Ind(A), so every ei ∈ Ind(A). Since λ(p) ∈ L(α), we can
find a sequence of states s0s1 . . . sn from S such that sn ∈ F and for every 1 ≤ i ≤ n,
(si−1, ui, si) ∈ δ. Because of our minimality assumption, we know that (ei, si) 6= (ej , sj)
for i 6= j, so the sequence of pairs (e0, s0)(e1, s1) . . . (en, sn) has length at most |A| · |S|. It
is easily verified that by guessing this sequence of pairs, together with the corresponding
transitions (si−1, ui, si), we obtain an execution of BasicEval that returns yes.

For the other direction, suppose that there is some execution of BasicEval(α,K, (a, b))
that returns yes, and let (c0, s0)(a1, s1) . . . (cn, sn) be the sequence of pairs that were guessed
by this execution. Then we must have c0 = a, cn = b, and sn ∈ F . Moreover, for every
1 ≤ i ≤ n, there must exist a transition (si−1, ui, si) ∈ δ such that T ,A |= ui(ci−1, ci)
if ui ∈ N±R , or ci−1 = ci and T ,A |= A(ci) if ui = A?. It follows that the sequence
p = c0u1c1 . . . uncn is a path in IK with λ(p) ∈ L(α), and so (c0, cn) = (a, b) ∈ cert(q,K).

By analyzing the complexity of the procedure BasicEval, we obtain an NL upper bound,
which matches the NL lower bound from Proposition 4.1.

Theorem 5.2. 2RPQ answering is in NL in combined complexity for DL-LiteRDFS.

Proof. By Proposition 5.1, we know that BasicEval is a decision procedure for 2RPQ an-
swering in DL-LiteRDFS. To see why BasicEval runs in non-deterministic logarithmic space,
we note that (i) by utilizing a binary encoding, only logarithmic space is needed to store
the value of count, the old and new values of current, and the guessed transition from δ, and
(ii) the entailment checks in 2(b) can be performed in non-deterministic logarithmic space.
The latter follows from the fact that instance checking is in NL in combined complexity in
the superlogic DL-LiteR (Calvanese et al., 2007).

5.2 2RPQ Answering in DL-LiteR and ELH

We now turn to the problem of answering 2RPQs over DL-LiteR and ELH knowledge bases.
The following example shows that the basic evaluation algorithm we used for DL-LiteRDFS is
incomplete for these logics. Intuitively, the problem lies in the fact that the algorithm only
considers paths along ABox individuals, whereas to satisfy the query it may be necessary
to consider paths that pass through the anonymous part.

Example 5.3. In the remaining of the paper, we will consider the KB (T ,A) with T =
{B v ∃r, ∃r− vB,B v ∃r1, r1 v r−2 } and A = {r(a, b), r2(b, c), D(b)} from Example 2.4. As
an example 2RPQ, we consider q′(x, y) = α(x, y), where α = 〈S,Σ, δ, s0, {sf}〉 with

S = {s0, s1, s2, sf}
Σ = {r, r1, r2, r

−}
δ = {(s0, r, s0), (s0, r1, s1), (s1, r2, s2), (s2, r

−, sf)}

338

Regular Path Queries in Lightweight Description Logics

a b
D

c

e1 e2

e1111 e1112

...

s0 sf s0 s2

s1

r

r1

r2

r− x

y

α
s0 s1 s2 sf

r

r1 r2 r−α:

Figure 10: A match witnessing (a, a) ∈ cert(q,K) for q(x, y) = α(x, y)

The NFA α is depicted in the upper right-hand-side of Figure 10. Observe that L(α) =
L(r∗ ·r1 ·r2 ·r−) (i.e., the same language as in the first atom of the C2RPQ q of Example 3.4).
Note that (a, a) ∈ cert(q, (T ,A)), but this is only witnessed by the path arbr1e2r2br

−a,
which passes by the element e2 in the anonymous part of IT ,A. On this input, the algorithm
BasicEval would start from (a, s0). In the first iteration of the while loop, it could guess the
pair (b, s0) and the transition (s0, r, s0), and the entailment check in the first item of Step
2(b) would succeed since T ,A |= r(a, b). However, in the next iteration the only transitions
from s0 are (s0, r, s0), (s0, r1, s1), but there is no d ∈ Ind(A) such that T ,A |= r(b, d) or
T ,A |= r1(b, d). Hence there is no good pair to guess in Step 2(b) and the algorithm would
fail. Since there are no other possible guesses in the first iteration that satisfy the entailment
check, the algorithm incorrectly returns no.

Our aim is to modify the evaluation algorithm to take into account detours through the
anonymous part. We observe that any path between two ABox individuals in IK can be
decomposed into a sequence of paths of two types:

• paths whose elements all belong to the ABox

• paths that begin and end with the same ABox individual and whose intermediate
points all belong to the anonymous part

Paths of the first type are already handled by the evaluation algorithm. To handle paths of
the second type, we will show how to check whether there is a path of this form that starts
and ends at a given individual a and takes the query automaton from state s to state s′. If
such a “loop” exists at the individual a, then during query evaluation, we will be allowed
to jump directly from (a, s) to (a, s′). By modifying the evaluation algorithm to allow such
shortcuts in addition to normal transitions, we can ensure that all possible paths in the
canonical model are taken into account.

A key observation is that to decide whether a loop is available at a given ABox individual
a it is sufficient to consider the basic concepts that hold at a. This leads us to define a
table ALoopα in which the entry ALoopα[s, s′] contains the set of all basic concepts C that
force the existence of a path of the second type whose label takes the query automaton from
state s to state s′. In order to define ALoopα, we will require a second table Loopα that will
contain for each pair of states (s, s′), a set of tail concepts that guarantee the existence of

339

Bienvenu, Ortiz, & Šimkus

a path from an anonymous element e to itself that takes the query automaton from s to s′

while never leaving the subtree of IK rooted at e (note that we do allow e to occur multiple
times along the path).

Let us now proceed to the definition of the tables ALoopα and Loopα. If T is a DL-LiteR
TBox, then Loopα is defined inductively using the following rules:

(L1) For every s ∈ S: Loopα[s, s] = TCT .

(L2) If C ∈ Loopα[s1, s2] and C ∈ Loopα[s2, s3], then C ∈ Loopα[s1, s3].

(L3) If C ∈ TCT , T |= C v A, and (s1, A?, s2) ∈ δ, then C ∈ Loopα[s1, s2].

(L4) If C ∈ TCT , T |= C v ∃R, T |= R v R′, T |= R− v R′′, (s1, R
′, s2) ∈ δ, ∃R− ∈

Loopα[s2, s3], and (s3, R
′′, s4) ∈ δ, then C ∈ Loopα[s1, s4].

and the table ALoopα is constructed from Loopα using the rule:

(L5) If C ∈ BCT , T |= C v ∃R, T |= R v R′, T |= R− v R′′, (s1, R
′, s2) ∈ δ, ∃R− ∈

Loopα[s2, s3], and (s3, R
′′, s4) ∈ δ, then C ∈ ALoopα[s1, s4].

For ELH, we use the same definitions, except that the rules 4 and 5 are replaced by:

(L4’) If C ∈ TCT , T |= C v ∃r.D, T |= r v r′, T |= r v r′′, (s1, r
′, s2) ∈ δ, D ∈

Loopα[s2, s3], and (s3, r
′′−, s4) ∈ δ, then C ∈ Loopα[s1, s4].

(L5’) If C ∈ BCT , T |= C v ∃r.D, T |= r v r′, T |= r v r′′, (s1, r
′, s2) ∈ δ, D ∈

Loopα[s2, s3], and (s3, r
′′−, s4) ∈ δ, then C ∈ ALoopα[s1, s4].

Note that since TCT = BCT in ELH, the only difference between (L4’) and (L5’) is that
the former adds concepts to the table Loopα, while the latter adds concepts to ALoopα.

The following example illustrates the construction of the tables Loopα and ALoopα.

Example 5.4. Observe that in our running example TCT = {∃r, ∃r−,∃r1,∃r−1 , ∃r2, ∃r−2 }
and BCT = {B} ∪ TCT . In the first step of the loop computation for the 2RPQ q′ from
Example 5.3, we get Loopα[s, s] = TCT for every s ∈ {s0, s1, s2, sf}. We can infer that
∃r− ∈ Loopα[s0, s2] using rule L4 and the following facts:

T |= ∃r− v ∃r1 T |= r1 v r1 T |= r−1 v r2

(s0, r1, s1) ∈ δ ∃r−1 ∈ Loopα[s1, s1] (s1, r2, s2) ∈ δ

Intuitively, every element e that satisfies ∃r− has an r1-child e′ (by T |= ∃r− v ∃r1),
and e′ is in turn an r2-child of e (by r−1 v r2). Hence, starting from such an element e, we
can always use the transition (s0, r1, s1) to go to the child e′ and then return to e using the
transition (s1, r2, s2), i.e., there is a loop from s0 to s2 at e.

In a further step, we can infer ∃r− ∈ Loopα[s0, s3] by using rule L4 together with:

T |= ∃r− v ∃r T |= r v r T |= r− v r−

(s0, r, s0) ∈ δ ∃r− ∈ Loopα[s0, s2] (s2, r
−, sf) ∈ δ

340

Regular Path Queries in Lightweight Description Logics

This reflects that whenever an element satisfies ∃r−, there is a loop from s0 to s3 as follows:
we can move to some r-child (which exists by T |= ∃r− v ∃r) staying in state s0 with
(s0, r, s0), then use the previously computed loop to jump to s2 at the same element, and
then go back up to e with the transition (s2, r

−, sf).
One can verify that no further loops can be inferred with the rules, so we obtain:

Loopα[si, si] = TCT for 0 ≤ i ≤ 3 Loopα[s0, s2] = {∃r−} Loopα[s0, s3] = {∃r−}

Now we compute ALoopα. First we note that there are applications of L5 analogous
to the two described applications of L4, which respectively result in ∃r− ∈ ALoopα[s0, s2]
and ∃r− ∈ ALoopα[s0, s3]. Moreover, similar applications but using T |= B v ∃r1 instead
of T |= ∃r− v ∃r1 and T |= B v ∃r instead of T |= ∃r− v ∃r yield B ∈ ALoopα[s0, s2] and
B ∈ ALoopα[s0, s3]. Further applications of L5 yield no new loops, hence we obtain:

ALoopα[s0, s2] = {∃r−, B} ALoopα[s0, s3] = {∃r−, B}

We observe that the tables Loopα and ALoopα can be constructed in polynomial time
in |T | and |α| since entailment of inclusions is in P for both DL-LiteR and ELH (Calvanese
et al., 2007; Baader et al., 2005). The following propositions show that Loopα and ALoopα
have the desired meaning:

Proposition 5.5. For every DL-LiteR or ELH KB K = (T ,A) and d ∈ ∆IK \ Ind(A), the
following are equivalent:

1. Tail(d) ∈ Loopα[s, s′];

2. There is a path p = e0u1e1 . . . unen in IK such that λ(p) ∈ L(αs,s′), e0 = en = d, and
ei ∈ ∆IK|d for every 0 ≤ i ≤ n.

Proof. Consider a KB K = (T ,A) and an automaton α = (S,Σ, δ, s, F). We begin by
proving that the first statement implies the second. Fix a sequence of applications of the
rules L1, L2, L3, and L4 (or L4’) which generates the full table Loopα, and let k be the
length of this sequence. It then suffices to show the following claim for all 1 ≤ i ≤ k:

Claim: If C is inserted into Loopα[s, s′] on the i-th rule application and d ∈ ∆IT ,A \ Ind(A)
is such that Tail(d) = C, then there is a path p = e0u1e1 . . . unen in IK such that λ(p) ∈
L(αs,s′), e0 = en = d, and ei ∈ ∆IK|d for every 0 ≤ i ≤ n.

Proof of claim. The proof is by induction on i. First suppose that C is inserted into
Loopα[s, s′] with the first rule application and d ∈ ∆IT ,A \ Ind(A) is such that Tail(d) = C.
Then either rule L1 or rule L3 must have been applied. In the former case, we have s = s′,
so the path p = d satisfies the required conditions (recall that in this case λ(p) ∈ ε). If
instead it was rule L3 that was applied, then we must have T |= C v A and (s,A?, s′) ∈ δ
for some concept name A. Since Tail(d) = C, we must have d ∈ AIT ,A . It follows that
p = dA?d is a path satisfying the required conditions.

For the induction step, suppose that the statement holds for all 1 ≤ i < k, and let
d ∈ ∆IT ,A \ Ind(A) be such that C = Tail(d) is inserted into Loopα[s, s′] on the k-th rule
application. The first possibility is that the k-th rule application involves rules L1 or L3,
in which case we proceed as in the base case. The next possibility is that rule L2 was

341

Bienvenu, Ortiz, & Šimkus

applied. Then there must exist s′′ such that after the first k − 1 rule applications, we have
C ∈ Loopα[s, s′′] and C ∈ Loopα[s′′, s′]. Applying the induction hypothesis, we find paths
p1 and p2 that both begin and end with d, contain only elements from ∆IK|d , and are such
that λ(p1) ∈ L(αs,s′′) and λ(p2) ∈ L(αs′′,s′). Let p3 be the path obtained by taking p1 then
adding p2 with its first occurrence of d removed. Then p3 begins and ends at d, contains
only elements from ∆IK|d , and is such that λ(p3) ∈ L(αs,s′).

The final possibility is that the k-th rule application involves rule L4. Here the proof
differs depending on whether T is formulated in DL-LiteR or ELH. We give the proof
only for DL-LiteR; the proof for ELH proceeds analogously. We first note that since an
application of rule L4 leads to the insertion of C into Loopα[s, s′] at stage k, it must be the
case that we can find R,R′, R′′ ∈ N±R and s′′, s′′′ ∈ S such that

• T |= C v ∃R, T |= R v R′, T |= R− v R′′,

• (s,R′, s′′) ∈ δ and (s′′′, R′′, s′) ∈ δ, and

• ∃R− ∈ Loopα[s′′, s′′′] (after k − 1 rule applications).

As Tail(d) = C and T |= C v ∃R, the element d′ = dR∃R− must belong to ∆IT ,A . Then
by applying the induction hypothesis, we can infer that there is a path p′ that begins and
ends at d′, contains only elements from ∆IK|d′ , and is such that λ(p′) ∈ L(αs′′,s′′′). It
follows that the path p = dR′p′R′′d satisfies all requirements, and in particular, is such that
λ(p) ∈ L(αs,s′). (end proof of claim)

To show the other direction, we proceed by induction on the length of the path p =
e0u1e1 . . . unen. The first base case is when n = 0, i.e., when λ(p) = ε. Then ε ∈ L(αs,s′),
which implies that s = s′. By rule L1 of the definition of Loopα, we must have Tail(d) ∈
Loopα[s, s′]. The second base case is when n = 1, i.e., p = dA?d. Since p is a path, we
must have d ∈ AIT ,A , which means that T |= Tail(d) v A. We also know that λ(p) = A? ∈
L(αs,s′), which implies that (s,A?, s′) ∈ δ. We have thus shown that the conditions of rule
L3 are satisfied, and so Tail(d) ∈ Loopα[s, s′].

For the induction step, suppose that the second direction holds for all 0 ≤ ` < k, and
suppose that there is a path p = e0u1e1 . . . ukek in IK with k > 2 such that λ(p) ∈ L(αs,s′),
e0 = ek = d, and ei ∈ ∆IK|d for every 0 ≤ i ≤ k. First suppose that there exists some
ej with 0 < j < k such that ej = d. Let p1 = e0u1e1 . . . ej and p2 = ejuj . . . ek. We
know that λ(p) = λ(p1)λ(p2) ∈ L(αs,s′), so there must exist some state s′′ such that
λ(p1) ∈ L(αs,s′′) and λ(p2) ∈ L(αs′′,s′). Applying the induction hypothesis to p1 and p2,
we obtain Tail(d) ∈ Loopα[s′′, s′] and Tail(d) ∈ Loopα[s, s′′]. Hence, by rule L2 of the
construction of Loopα, we must have Tail(d) ∈ Loopα[s, s′].

Now let us consider the second possibility, which is that ej 6= d for all 0 < j < k. Since
IT ,A|d is tree-shaped, and p is a path, it must be the case that e1 = ek−1 = dRC ∈ ∆IT ,A|d .
At this point, the proof slightly differs depending on whether we are in DL-LiteR or ELH.
We present the proof for the case of ELH, in which case we have R = r ∈ NR and T |=
Tail(d) v ∃r.C. As λ(p) = u1 . . . uk ∈ L(αs,s′), e0 = ek = d, and e1 = ek−1 = dRC, it must
be the case that

• u1 ∈ N±R and T |= r v u1, and

342

Regular Path Queries in Lightweight Description Logics

• uk ∈ N±R and T |= r v t where uk = t−.

We also know that there must exist states s′′, s′′′ ∈ S such that

• (s, u1, s
′′) ∈ δ and (s′′′, uk, s

′) ∈ δ, and

• u2 . . . uk−1 ∈ L(αs′′,s′′′).

We can apply the induction hypothesis to p′ = e1u1 . . . uk−1ek−1 to infer that Tail(e1) =
C ∈ Loopα[s′′, s′′′]. We thus satisfy all of the required conditions for applying rule L4’ to
obtain Tail(d) ∈ Loopα[s, s′]. The proof for DL-LiteR is analogous.

Proposition 5.6. For every DL-LiteR or ELH KB K = (T ,A), NFA α containing states
s, s′, and a ∈ Ind(A), the following statements are equivalent:

1. There is a concept C ∈ ALoopα[s, s′] such that T ,A |= C(a).

2. There is a path p = e0u1e1u2 . . . unen in IK such that λ(p) ∈ L(αs,s′), e0 = en = a,
n > 1, and ei 6∈ Ind(A) for 0 < i < n.

Proof. Fix a DL-LiteR TBox T and an NFA α = (S,Σ, δ, s, F) (the proof for ELH is similar
and left to reader). For the first direction, suppose that there is a concept C ∈ ALoopα[s, s′]
such that T ,A |= C(a). It follows from the definition of ALoopα that there exists roles
R,R′, R′′ ∈ N±R and states s′′, s′′′ ∈ S such that T |= C v ∃R, T |= R v R′, T |= R− v
R′′, (s,R′, s′′) ∈ δ, ∃R− ∈ Loopα[s′′, s′′′], and (s′′′, R′′, s′) ∈ δ. Since T ,A |= C(a) and
T |= C v ∃R, it follows from the definition of IK that aR∃R− ∈ ∆IK . By Proposition 5.5,
∃R− ∈ Loopα[s′′, s′′′] implies that there is a path p = e0u0 . . . unen in IK|aR∃R− with e0 =
en = aR∃R− and λ(p) ∈ L(αs′′,s′′′). Then it can be verified that by taking p′ = aR′pR′′a,
we obtain a path in IK that satisfies the conditions of the second statement. In particular,
since (s,R′, s′′) ∈ δ, λ(p) ∈ L(αs′′,s′′′), and (s′′′, R′′, s′) ∈ δ, we have λ(p′) ∈ L(αs,s′).

For the second direction, suppose that there is a path p = e0u1e1u2 . . . unen in IK such
that λ(p) ∈ L(αs,s′), e0 = en = a, n > 1, and ei 6∈ Ind(A) for 0 < i < n. Since n > 1,
e1 6∈ Ind(A), and p is a path, it must be the case that e1 = aR∃R− for some R ∈ N±R .
Moreover, since IK|a is a tree, we must have en−1 = e1. Then by the definition of paths, it
must be the case that

• u1 ∈ N±R and T |= R v u1, and

• un ∈ N±R and T |= R− v un.

We also know that there must exist states s′′, s′′′ ∈ S such that:

• (s, u1, s
′′) ∈ δ and (s′′′, un, s

′) ∈ δ

• u2 . . . un−1 ∈ L(αs′′,s′′′)

By applying Proposition 5.5 to p′ = e1u1 . . . un−1en−1, we can infer that ∃R− ∈ Loopα[s′′, s′′′].
Since aR∃R− ∈ ∆IK , the definition of IK ensures that there is some C ∈ BCT such that a ∈
CIK and T |= C v ∃R. The conditions of Rule 5 are thus satisfied, so C ∈ ALoopα[s, s′].

343

Bienvenu, Ortiz, & Šimkus

Algorithm EvalAtom
Input: NFA α = (S,Σ, δ, s0, F) with Σ ⊆ N±R ∪ {A? | A ∈ NC}, DL-LiteR or ELH KB

(T , A), (a, b) ∈ Ind(A)× Ind(A)

1. Test whether (T , A) is satisfiable, output yes if not.

2. Initialize current = (a, s0) and count = 0. Set max = |A| · |S|+ 1.

3. While count < max and current 6∈ {(b, sf) | sf ∈ F}

(a) Let current = (c, s).

(b) Guess a pair (d, s′) ∈ Ind(A) × S together with either (s, σ, s′) ∈ δ or B ∈
ALoopα[s, s′].

(c) If (s, σ, s′) was guessed

• If σ ∈ N±R , then verify that T ,A |= σ(c, d), and return no if not.

• If σ = A?, then verify that c = d and T ,A |= A(c), and return no if not.

(d) If B was guessed, then verify that c = d and T ,A |= B(c), and return no if not.

(e) Set current = (d, s′) and increment count.

4. If current = (b, sf) for some sf ∈ F , return yes. Else return no.

Figure 11: Non-deterministic algorithm for 2RPQ answering in DL-LiteR and ELH.

Now that we have a means to determine which loops through the anonymous part are
available from a given ABox individual, we are ready to present the extended evaluation
algorithm EvalAtom in Figure 11 that handles DL-LiteR and ELH KBs. The algorithm
EvalAtom differs from BasicEval in two respects. First, because DL-LiteR KBs may contain
contradictions, there is an initial consistency check in Step 1 to determine whether the input
KB is satisfiable (this step can be skipped for ELH KBs, which are always satisfiable). If
the KB is shown to be unsatisfiable, then the query trivially holds, so the algorithm outputs
yes. The second difference occurs in Step 3(b) within the while loop, where we now have
the choice between guessing a pair (d, s′) ∈ Ind(A) × S (as before) and guessing a concept
B ∈ ALoopα[s, s′]. The first option corresponds to taking a step in the ABox, whereas the
second corresponds to a shortcut through the anonymous part. If we choose the second
option, then we must check that the selected concept is entailed at the current individual.
The exit conditions for the while loop and the criterion for outputting yes in Step 4 remain
unchanged.

Example 5.7. Algorithm EvalAtom correctly returns yes on the input (a, a) together with
our example query and KB, in contrast to BasicEval (as was shown in Example 5.3). Indeed,
a successful execution (illustrated pictorially in Figure 12) starts from (a, s0) and guesses
the pair (b, s0) and the transition (s0, r, s0) in the first iteration of the while loop. The
checks in Step 3(c) succeed as T ,A |= r(a, b). In the next iteration, it can guess (b, s2) and,
as ∃r− ∈ ALoopα[s0, s2], it can also guess the concept ∃r−. The checks in Step 3(d) succeed
because T ,A |= ∃r−(b). In the third iteration, it guesses the pair (a, sf) and the transition

344

Regular Path Queries in Lightweight Description Logics

a b
D

c

e1 e2

e1111 e1112

...

s0 sf s0 s2

s1

r

r1

r2

r−

(s0, s2)-loop

x

y

α

s0 s1 s2 sf

r

r1 r2 r−α:

∃r− ∈ ALoopα[s0, s2]

Figure 12: Establishing (a, a) ∈ cert(q,K) using EvalAtom for q(x, y) = α(x, y)

(s2, r
−, sf). As T ,A |= r−(b, a), the checks in Step 3(c) succeed again. Since sf ∈ F , this

is the last iteration, and in Step 4 the algorithm returns yes.

Proposition 5.8. For every 2RPQ q = α(x, y), DL-LiteR or ELH KB K = (T ,A), and
pair of individuals (a, b) from Ind(A): (a, b) ∈ cert(q,K) if and only if there is some execution
of EvalAtom(α,K, (a, b)) that returns yes.

Proof. Consider a 2RPQ q = α(x, y) with α = (S,Σ, δ, s0, F), a DL-LiteR or ELH KB
K = (T ,A), and a pair of individuals (a, b) from Ind(A).

For the first direction, suppose that (a, b) ∈ cert(q,K). Then there is a path p =
e0u1 . . . unen in IK such that e0 = a, en = b, and λ(p) ∈ L(α). We may assume without
loss of generality that there is no shorter path with these properties. Since λ(p) ∈ L(α), we
can find a sequence of states s0s1 . . . sn from S such that sn ∈ F and for every 1 ≤ i ≤ n,
(si−1, ui, si) ∈ δ. Let j1 < . . . < jm be all of the indices i such that ei ∈ Ind(A), and
consider the sequence of pairs Γ = (ej1 , sj1)(ej2 , sj2) . . . (ejm , sjm). Observe that j1 = 0 and
jm = n, so we have ej1 = a, ejm = b, and sjm ∈ F . Also observe that we must have
(ej` , sj`) 6= (ejk , sjk) whenever ` 6= k, since otherwise, we could construct a shorter path
with the same properties as p, contradicting our minimality assumption. It follows that the
sequence Γ contains at most |A| · |S| pairs. Thus, to prove that the sequence Γ leads to an
execution of EvalAtom that returns yes, it only remains to show that it is always possible to
guess a transition or concept in 3(b) such that the checks in 3(c) and 3(d) succeed. Thus,
let us suppose that current = (ej` , sj`) and we guess the pair (ej`+1

, sj`+1
) in 3(b). There are

three cases to consider:

• Case 1: j`+1 = j`+1 and uj`+1
= R ∈ N±R . From earlier, we have that (sj` , R, sj`+1

) ∈ δ,
and since p is a path, we know that (ej` , ej`+1

) ∈ RIK . The latter implies that
T ,A |= R(ej` , ej`+1

), so by choosing the transition (sj` , R, sj`+1
) in 3(b), we can ensure

that the entailment check will succeed in 3(c).

• Case 2: j`+1 = j` + 1 and uj`+1
= A?. From earlier, we have that (sj` , A?, sj`+1

) ∈ δ,
and since p is a path, we know that ej` = ej`+1

∈ AIK . By choosing the transition
(sj` , A?, sj`+1

), we can ensure that the conditions of 3(c) are satisfied.

• Case 3: j`+1 > j` + 1. In this case, the path p′ = ej`uj`+1 . . . uj`+1
ej`+1

is such that
λ(p′) ∈ L(αsj` ,sj`+1

), ej` = ej`+1
∈ Ind(A), and for every j` < i < j`+1, we have

345

Bienvenu, Ortiz, & Šimkus

ei 6∈ Ind(A). We can thus apply Lemma 5.6 to find a concept C ∈ ALoopα[sj` , sj`+1
]

such that T ,A |= C(ej`). By choosing C in 3(b), we can be sure that the entailment
check in 3(d) will succeed.

For the other direction, consider some execution of EvalAtom(α,K, (a, b)) that returns
yes, and let (c0, s0)(a1, s1) . . . (cn, sn) be the sequence of pairs that were guessed by this
execution. Then we must have c0 = a, cn = b, and sn ∈ F . To complete the proof, it
suffices to establish the following claim:

Claim: For every 0 ≤ i ≤ n, there is a path pi from c0 to ci in IK such that λ(pi) ∈ L(αs0,si).

Proof of claim. The proof is by induction on i. For the base case (i = 0), we can simply
take the path p0 = c0 since λ(p0) = ε and ε ∈ L(αs0,s0). For the induction step, we
suppose that pk−1 is a path from c0 to ck−1 such that λ(pk−1) ∈ L(αs0,sk−1

), and we show
how to construct a path pk with the required properties. There are three cases to consider
depending on which transition or concept was guessed together with (ck, sk) in Step 3(b).

• Case 1: the transition (sk−1, R, sk) ∈ δ was guessed. Since the check in 3(c) succeeded,
we have T ,A |= R(ck1 , ck). Then pk = pk−1Rck is a path in IK from c0 to ck such
that λ(pk) ∈ L(αs0,sk).

• Case 2: the transition (sk−1, A?, sk) ∈ δ was guessed. Then since the check in 3(c)
succeeded, we have ck = ck−1 and T ,A |= A(ck1). Then pk = pk−1A?ck is a path in
IK from c0 to ck such that λ(pk) ∈ L(αs0,sk).

• Case 3: the concept B ∈ ALoopα[sk−1, sk] was guessed. Since the check in 3(d)
succeeded, we have ck = ck−1 and T ,A |= B(ck−1). By applying Lemma 5.6, we
can find a path p′ = e0u1e1u2 . . . unen in IK such that λ(p′) ∈ L(αsk−1,sk) and e0 =
en = ck−1. Then pk = pk−1u1e1u2 . . . unen is a path from c0 to ck with λ(pk) =
λ(pk−1)λ(p′) ∈ L(αs0,sk).

By analyzing the complexity of our modified evaluation procedure, we obtain upper
bounds that match the lower bounds from Section 4.

Theorem 5.9. 2RPQ answering is in

1. NL in data complexity for DL-LiteR;

2. P in combined complexity for DL-LiteR;

3. P in combined and data complexity for ELH.

Proof. The procedure EvalAtom involves three different types of checks: the consistency
check performed in Step 1 and the entailment and loop checks that take place in Step 3.
The cost of these checks depends on the choice of the DL and the complexity measure.
Aside from these checks, the base procedure runs in non-deterministic logarithmic space
in combined complexity, as only logarithmic space is needed to keep track of the value of
count, the old and new values of current, and the guesses of transitions and concepts.

For DL-LiteR, we know from existing results (Calvanese et al., 2007) that the consistency
and entailment checks can be performed in non-deterministic logarithmic space in combined

346

Regular Path Queries in Lightweight Description Logics

complexity (and hence also for data complexity). We have also seen that the table ALoopα
can be constructed in polynomial time in |T | and α, so the loop checks can be performed
in constant time in |A| and in polynomial time w.r.t. the whole input. It follows that
EvalAtom runs in non-deterministic logarithmic space w.r.t. |A|, yielding Statement (1).
Regarding Statement (2), we note that EvalAtom can be viewed as an NL procedure that
uses a P oracle to handle the loop checks. Since NLP = P, this yields a P upper bound on
the combined complexity of 2RPQ answering in DL-LiteR. The proof of Statement (3) is
similar. We simply note that when the input TBox is formulated in ELH, all three types
of checks can be performed in polynomial time w.r.t. the whole input (Baader et al., 2005).
Using NLP = P, we may conclude that EvalAtom provides a polynomial-time procedure for
2RPQ answering in ELH.

6. Upper Bounds for C2RPQs

The main objective of this section is to define a procedure for deciding, given a KB K =
(T ,A), C2RPQ q(~x) of arity k, and k-tuple ~a of individuals from A, whether there is
a match π for q in IK such that π(~x) = ~a. A näıve approach might consist in guessing a
mapping π from the query variables to the individuals in the core of IT ,A and then checking
that π is a match by running the EvalAtom algorithm on α(π(t), π(t′)) for every query atom
α(t, t′). Such an algorithm would properly take into account paths between individuals that
pass by the anonymous part, but because it does not consider matches that send variables
to anonymous objects, it would still be incomplete. In particular, such a procedure would
not return a or b as answers in Example 3.4. To regain completeness, one could instead
guess matches into the entire domain of IT ,A, but this would not yield a decision procedure
since the latter may be infinite. Moreover, since matches of C2RPQs can involve domain
elements that are arbitrarily far apart, it is not apparent how to identify a suitable finite
subset of the domain that is guaranteed to contain a match for the query if one exists.
To address these challenges, the procedure we propose in this section comprises two main
steps. As a first step, we rewrite the input query q into a set Q of C2RPQs such that there
is a match π for q in IT ,A with π(~x) = ~a if and only if there is a match π′ for some q′ ∈ Q
in IT ,A with π′(~x) = ~a. The advantage of the rewritten queries is that we will only need
to consider matches π′ which map query variables to Ind(A). The second step decides the
existence of such restricted matches for the rewritten queries using the EvalAtom procedure
defined in Section 5.

For the purposes of this section, it will prove convenient to work with DL-LiteR TBoxes
that satisfy the following condition: for every role name r ∈ sig(T), there exists concept
names Ar, A

−
r such that T contains the inclusions Ar v ∃r, ∃r v Ar, Ar− v ∃r−, ∃r− v

Ar− , and these are the only inclusions in T involving the concept names Ar and Ar− . Note
that if T does not satisfy this condition, then we can simply choose fresh concepts Ar, Ar−
for each role name r ∈ sig(T) and add the corresponding inclusions to T . The resulting
TBox T ′ is a model conservative of extension of T , hence for every ABox A and every
C2RPQ q with sig(q)∩ (sig(T ′) \ sig(T)) = ∅, we have cert(q, (T ,A)) = cert(q, (T ′,A)). We
may therefore assume without any loss of generality that all DL-LiteR TBoxes considered
in this section satisfy this syntactic condition. In what follows, when we use a concept name
AR, with R ∈ N±R , we will assume the TBox contains the inclusions AR v ∃R and ∃R v AR.

347

Bienvenu, Ortiz, & Šimkus

6.1 Query Rewriting

Our aim is to rewrite our query in such a way that we do not need to map any variables
to the anonymous part of the model. We draw our inspiration from a query rewriting
procedure for Horn-SHIQ introduced by Eiter, Ortiz, Šimkus, Tran, and Xiao (2012). The
main intuition is as follows. Suppose we have a match π for q which maps some variable
y to the anonymous part, and no other variable is mapped below π(y). Then we modify q
in such a way that the resulting query q′ has a match π′ that is the same as π except that
those variables mapped to π(y) by π are now mapped by π′ to the (unique) parent of π(y)
in IT ,A. The delicate point is that we must “split” atoms of the form α(t, t′) with y ∈ {t, t′}
into the parts which are satisfied in the subtree IT ,A|π(y), and those which occur above
π(y), whose satisfaction still needs to be determined and thus must be incorporated into
the new query. With each iteration of the rewriting procedure, we obtain a query which
has a match which maps variables “closer” to the core of IT ,A, until eventually we obtain
a query that has a match which maps all terms to Ind(A).

In Figure 13, we implement this intuition by defining an algorithm OneStep that per-
forms a single (non-deterministic) rewriting step. We illustrate the functioning of OneStep
in the following examples.

Example 6.1. Recall the query q(x) = ∃y, z. r∗ · r1 · r2 · r−(x, y)∧ r− · r−(y, z)∧D(z) from
Example 3.4, and the KB (T ,A) from Example 2.4.

To illustrate the rewriting algorithm, we first disregard the first atom and consider the
simpler Boolean query q1 = ∃y, z. β(y, z)∧D(z), where β is the NFA with language r− · r−
depicted in Figure 14. The figure shows a match π for q1 with π(y) = e11 and π(z) = b.
Since y is a leaf of the image of q1 under π, we want to modify q1 into a query q′1 that
has a match π′ which only differs from π in having π′(y) = e1, where e1 is the parent of
π(y) = e11. Intuitively, this is done using OneStep by choosing Leaf = {y} as the only
variable to be ‘moved up’. Then we choose the concept B because if it holds at e1, then
this enforces the existence of an r− role from a child of e1 (namely, e11) to e1. Hence, by
checking that B holds at e1, we implicitly check that the first r− needed to satisfy β holds
below e1. This rewriting step is illustrated in the upper part of Figure 14. Formally, in
Step 1 we choose Leaf = {y}. Then in Step 2 we choose ∃r− (since, intuitively, this is
the tail concept that ‘causes’ everything that holds at e11). In Step 3, we simply take the
final state s′f , so the atom β(z, y) remains the same, and in Step 4 we do nothing. These
two steps are so simple in this example because there are no complex paths in our query
match that need to be deeper than e11. Next, in Step 5, we choose B, since T |= ∃r, that
is, B enforces the existence of a node that satisfies the tail concept ∃r− that we guessed
above. In Step 5b we only need to take care of the atom β(y, z). We choose s′1 and in
Step 6, we replace β by βs′1,s′f . In Step 7, we add the atom B(y), and we output the query

B(y) ∧ βs′1,s′f (y, z) ∧D(z).

The lower part of the figure illustrates a successive application of OneStep in which we
proceed analogously, dropping the second r− of β, and adding again an atom B(y). This
results in the query q′′1 = ∃y, z.B(y)βs′f ,s

′
f
(y, z)∧D(z), which has a match π′′(z) = π′′(y) = b

ranging over individuals only. Note that L(βs′f ,s
′
f
) = {ε} so this query is equivalent to

∃y.B(y) ∧D(y).

348

Regular Path Queries in Lightweight Description Logics

Algorithm OneStep
Input: C2RPQ q with all binary atoms specified by NFAs, DL-LiteR or ELH TBox T

1. Guess a non-empty set Leaf ⊆ qvars(q) and y ∈ Leaf.
Rename all variables in Leaf to y.

2. Guess C ∈ TCT such that T |= C v B for every atom B(y) ∈ q. Drop all such atoms
from q.

3. For each atom α(t, t′) where α = (S,Σ, δ, s, F) is an NFA and y ∈ {t, t′},

• Guess a sequence s1, . . . , sn−1 of distinct states from S and a state sn ∈ F .

• Replace α(t, t′) by the atoms αs,s1(t, y), αs1,s2(y, y), . . . , αsn−2,sn−1(y, y),
αsn−1,sn(y, t′).

4. Drop all atoms αs,s′(y, y) such that C ∈ Loopα[s, s′].

5. Guess some D ∈ BCT and R ∈ N±R such that:

(a) C = ∃R− and T |= D v ∃R (if T is a DL-LiteR TBox)
R ∈ NR and T |= D v ∃R.C (if T is an ELH TBox)

(b) For each atom α(y, t) with α = (S,Σ, δ, s, F), there exists s′ ∈ S and U ∈ N±R
with (s, U−, s′)∈ δ and T |= R v U .

(c) For each atom α(t, y) with α = (S,Σ, δ, s, F), there exists s′′ ∈ S, sf ∈ F , and
U ∈ N±R with (s′′, U, sf) ∈ δ and T |= R v U .

For atoms of the form α(y, y), conditions (b) and (c) must both be satisfied.

6. Replace

• each atom α(y, t) with t 6= y by αs′,F (y, t)

• each atom α(t, y) with t 6= y by αs,s′′(t, y)

• each atom α(y, y) by αs′,s′′(y, y)

with s, s′, s′′, F as in Step 5.

7. If D ∈ NC is the concept chosen in Step 5, add D(y) to q. If D = ∃P− was the chosen
concept, add AP−(y) to q. Output q.

Figure 13: Non-deterministic query rewriting algorithm OneStep.

Example 6.2. Now we illustrate two rewriting steps for q(x) = ∃y, z. r∗ · r1 · r2 · r−(x, y)∧
r− · r−(y, z) ∧D(z) (see Figure 15). First, recall the match π from Figure 7, which is also
reproduced in the top part of Figure 15. Observe that π(y) = e11 is a leaf in the image of
π. To move the match up one step, we make the same initial choices as in Example 6.1,
setting Leaf = {y} in Step 1 and selecting the tail concept ∃r− that characterises e11 in

349

Bienvenu, Ortiz, & Šimkus

a b
D

c

e1 e2

e11 e12

...

s′f

s′1

s′0

r−

r−
y

z D

β

s′0 s′1 s′f
r− r−

β:

B v ∃r

⇒

a b
D

c

e1B e2

e11 e12

...

s′f

s′1
r−

y B

z D

βs′1,s
′
f

s′1 s′f
r−βs′1,s′f :

a b
D

c

e1B e2

e11 e12

...

s′f

s′1
r−

y B

z D

βs′1,s
′
f

s′1 s′f
r−βs′1,s′f :

B v ∃r

⇒

a b
B,D

c

e1B e2

e11 e12

...

s′f
y B

z D

βs′
f
,s′

f

s′fβs′f ,s′f :

Figure 14: Two successive applications of OneStep to q1 = ∃y, z. r− · r−(y, z) ∧D(z)

Step 2. However, because the path that satisfies α goes deeper than π(y) = e11, in Step 3,
we will need to separate the path into the parts that occur below e11 and those that occur
above it. We choose the sequence of states s0, sf as these correspond to the states of the
automata when it visits e11, and we replace α(x, y) by αs0,s0(x, y) and αs0,sf (y, y). Note
that this intermediate query is illustrated at the top of Figure 15. Since ∃r− ∈ Loopα[s0, sf]
(see Example 5.4), we drop the second atom in Step 4. Now we can ‘move up’ y similarly
as above, but considering simultaneously atoms αs0,s0(x, y) and β(y, z). In Step 5, we again
choose the concept B, since it satisfies T |= B v ∃r. For the atom β(y, z) we choose s′1 and
U = r (Step 5(b)) and for αs0,s0(x, y), we choose s0 and U = r (Step 5(c)). In Step 6, we
replace the two query atoms by αs0,s0(x, y) and βs′1,s′f (y, z), and in Step 7, we add the atom

B(y) and output the resulting query αs0,s0(x, y) ∧B(y) ∧ βs′1,s′f (y, z), which is displayed in

the middle of Figure 15. The lower part of this figure depicts a second, similar application
of OneStep that outputs a query that has a match ranging over the individuals only.

Slightly abusing notation, we will use OneStep(q, T) to denote the set of queries that are
output by some execution of OneStep on input (q,T). We then consider the set Rewrite(q, T)
consisting of all queries that can be obtained from (q,T) by zero or more applications of
OneStep. Formally, we define Rewrite(q, T) as the smallest set that contains the initial
query q and is closed under applications of OneStep, i.e., if q′ ∈ Rewrite(q, T) and q′′ ∈
OneStep(q′, T), then q′′ ∈ Rewrite(q, T).

The next proposition shows that using Rewrite(q, T), we can reduce the problem of
finding an arbitrary query match to finding a match involving only ABox individuals.

350

Regular Path Queries in Lightweight Description Logics

a b
D

c

e1 e2

e11 e12

e111 e112

e1111 e1112

...

s0 s0

s0

s0 sf

s0 s2

s1

(s0, sf)-loop

r

r

r

r

r1 r2

r−

s′f

s′1

s′0

r−

r−

x

y

z D

αs0,s0

αs0,sf

β

s0

r

αs0,so:

s0 s1 s2 sf

r

r1 r2 r−αs0,sf :

s′0 s′1 s′f
r− r−

β:

⇓ ∃r− ∈ Loopα[s0, s′f], B v ∃r,

a b
D

c

e1
B

e2

e11 e12

...

s0 s0

s0

r

r

s′f

s′1
r−

x

y B

z D

αs0,s0

βs′1,s
′
f

s0

r

αs0,so:

s′1 s′f
r−βs′1,s′f :

⇓ B v ∃r

a b
B,D

c

e1 e2

...

s0 s0r s′f

x

y B

z D

αs0,s0

βs′
f
,s′

f

s0

r

αs0,so:

s′fβs′f ,s′f :

Figure 15: Two rewriting steps for q(x) = ∃y, z. r∗ · r1 · r2 · r−(x, y) ∧ r− · r−(y, z) ∧D(z)

Proposition 6.3. For every satisfiable DL-LiteR or ELH KB (T ,A) and C2RPQ q:
~a ∈ cert(q, (T ,A)) if and only if there exists a query q′(~x) ∈ Rewrite(q, T) and a match
π for q′ in IT ,A such that π(~x) = ~a and π(z) ∈ Ind(A) for every variable z in q′.

We split Proposition 6.3 into two lemmas, the first showing completeness of Rewrite,
and the second showing its correctness.

Lemma 6.4. If ~a ∈ cert(q, (T ,A)), then there exists a query q′(~x) ∈ Rewrite(q, T) and a
match π for q′ in IT ,A such that π(~x) = ~a and π(z) ∈ Ind(A) for every variable z in q′.

351

Bienvenu, Ortiz, & Šimkus

Proof. Consider a knowledge base (T ,A) and its canonical model IT ,A. For every ele-
ment e ∈ ∆IT ,A , we define the distance dist(e) of e from the core of IT ,A as follows:
dist(aR1C1 . . . RnCn) = n. Observe that dist(e) = 0 implies e ∈ Ind(A). Using this notion of
distance, we can define the cost of a match µ of some query in IT ,A as Σv∈dom(µ) distT ,A(µ(v)),
where dom(µ) the domain of µ. We remark that a match has cost equal to zero just in the
case that it maps all query variables to ABox individuals.

Suppose that ~a ∈ cert(q, (T ,A)), and π is a match for q in IT ,A such that π(~x) = ~a. If
π maps all variables in q to Ind(A), then we are done. Otherwise, there must exist some
variable y such that π(y) = eSC and there is no z ∈ vars(q) such that π(y) is a proper
prefix of π(z). We aim to construct a match π′ for some query q′ ∈ OneStep(q, T) such that

(c1) π′(t) = π(t) for every t ∈ terms(q) such that π(t) 6= π(y); and

(c2) π′(t) = e for every t ∈ terms(q) with π(t) = π(y).

In other words, π′ is essentially the same as π except that it maps each t with π(t) = π(y)
one step closer to the ABox. Observe that (c1) and (c2) together ensure that the cost of
π′ is strictly inferior to the cost of π. Thus, by repeatedly applying this operation, we will
eventually obtain a query q∗ ∈ Rewrite(q, T) and a match π∗ for q∗ that has cost zero, i.e.,
such that π∗(z) ∈ Ind(A) for every variable z in q∗.

We now show how to obtain a query q′ ∈ OneStep(q, T) and match π′ with properties
(c1) and (c2). In Step 1, we set Leaf = {t ∈ terms(q) | π(t) = π(y) = eSC}. Note
that Leaf ⊆ qvars(q) since eSC 6∈ Ind(A). We define a function σ as follows: σ(t) = t if
π(t) 6= π(y), else σ(t) = y. At the end of Step 1, we have the query:

{B(σ(t)) | B(t) ∈ q0} ∪ {α(σ(t), σ(t′)) | α(t, t′) ∈ q0}

In Step 2, we choose the concept C (note that C ∈ TCT because π(y) = eSC). Consider
some atom B(y) that is present at the end of Step 1. The existence of atom B(y) at the
end of this step means that there must have existed an atom B(v) ∈ q with v ∈ Leaf. Since
π is a match for q, we know that π(v) = π(y) ∈ BIT ,A . As π(y) = eSC, it follows from the
definition of IT ,A that T |= C v B, as required by Step 2.

Next we show how to select states s1, . . . , sn in Step 3. Consider an atom α(t1, t2) which
is present in the query at the start of Step 3, such that y ∈ {t1, t2} and α = (S,Σ, δ, s0, F).
Then we know that there is an atom α(t′1, t

′
2) in the input query q such that t1 = σ(t′1) and

t2 = σ(t′2). Since π is a match for q with π(t1) = π(t′1) and π(t2) = π(t′2), we know that
(π(t1), π(t2)) ∈ L(α)IT ,A . It follows that we can find a path p = e0u1e1 . . . umem such that
e0 = π(t1), em = π(t2), and λ(p) ∈ L(α). We assume without loss of generality that m is
minimal, i.e., we cannot find a path satisfying the same properties but of shorter length.
Now let j1 < . . . < jn−1 be all of the indices 0 < ` < m such that e` = π(y), and consider
the following paths:

• p1 = e0u1 . . . uj1ej1

• pi = eji−1uji−1+1 . . . ujieji for 1 < i < n

• pn = ejn−1ujn−1+1 . . . umem

352

Regular Path Queries in Lightweight Description Logics

We also define a sequence of states s1, . . . , sn such that

• λ(p1) ∈ L(αs0,s1),

• λ(pi) ∈ L(αsi−1,si) for 1 < i ≤ n, and

• sn ∈ F .

Note that such a sequence of states must exist since λ(p) = λ(p1)λ(p2) . . . λ(pn) ∈ L(α) and
α has start state s0 and final states F . Using the fact that eji = π(y) for 1 ≤ i < n, we
have the following:

• (π(t1), π(y)) = (π(t′1), π(y)) ∈ L(αs0,s1)IT ,A .

• (π(y), π(y)) ∈ L(αsi−1,si)
IT ,A , for 2 ≤ i < n. (?)

• (π(y), π(t2)) = (π(y), π(t′2)) ∈ L(αsn−1,sn)IT ,A .

We aim to show that si 6= sj for every 1 ≤ k < ` < n. Suppose for a contradiction that
sk = s` for some 1 ≤ k < ` < n, and consider the path p′ = e0u1 . . . ujkejkuj`+1ej`+1 . . . umem.
As λ(p′) = u1 . . . ujkuj`+1 . . . um, u1 . . . ujk ∈ L(αs0,sk), uj`+1 . . . um ∈ L(αs`,sn) = L(αsk,sn),
and sn ∈ F , it follows that λ(p′) ∈ L(α). However, this means that p′ satisfies the same con-
ditions as p but has strictly shorter length, contradicting our minimality assumption. Hence
all states in the sequence s1, . . . , sn−1 must be distinct. We can thus choose this sequence
of states in Step 3, and replace the atom α(t1, t2) = α(σ(t′1), σ(t′2)) with the atoms:

αs0,s1(σ(t′1), y), αs1,s2(y, y), αsn−2,sn−1(y, y), αsn−1,sn(y, σ(t′2)).

The final choices to be made occur in Step 5, where we must choose a concept D ∈ BCT
and role R ∈ N±R such that conditions (a), (b), and (c) are satisfied. We set R = S (recall
that π(y) = eSC). If e 6∈ Ind(A), then we let D be the unique concept such that e = e′PD.
Note that if we are in DL-LiteR, then D = ∃P−. It follows from the definition of canonical
models that T |= D v ∃S (if we are in DL-LiteR) or T |= D v ∃S.C (for ELH), so
condition (a) holds. If instead we have e ∈ Ind, then the definition of canonical models,
together with our normal form for ELH TBoxes, guarantees that there is some D ∈ BCT
such that e ∈ DIT ,A and T |= D v ∃S (if we are in DL-LiteR) or T |= D v ∃S.C (for
ELH). Note that in the case of DL-LiteR, T ,A |= ∃S(e) implies that one of the following
holds: (i) there is a concept assertion A(e) ∈ A such that T |= A v ∃S, (ii) there is a role
assertion S′(e, e′) ∈ A such that T |= ∃S′ v ∃S, or (iii) there is a role assertion S′(e′, e) ∈ A
such that T |= ∃(S′)− v ∃S. Thus, it is always possible to choose D such that A |= D(e),
and we will assume in what follows that D has this property.

It remains to show that conditions (b) and (c) are verified when R = S. For (b),
consider some binary atom β(y, t) which belongs to the query at the start of Step 5. Then
we know that there must exist an atom α(t′1, t

′
2) ∈ q with α = (S,Σ, δ, s0, F) such that

β(y, t) is equal to one of the following atoms which replaced α(σ(t′1), σ(t′2)) during Step 3:
αs0,s1(σ(t′1), y), αs1,s2(y, y), . . . , αsn−2,sn−1(y, y), αsn−1,sn(y, σ(t′2)). Thus, we have an atom
of the form αsi−1,si(y, t). Using property (?) and considering the different possible values
for t, we can infer that (π(y), π(t)) ∈ L(αsi−1,si)

IT ,A , as witnessed by the path pi =

353

Bienvenu, Ortiz, & Šimkus

eji−1uji−1+1 . . . ujieji . We also know that e` 6= π(y) for every ji−1 < ` < ji. In particular,
this means that either the path pi is entirely contained in the subtree rooted at π(y) or
it never visits any element below π(y). The former option cannot hold, since it would
imply that t = y and that C ∈ Loopα[si, si+1], so the atom would have been removed in
Step 4. Thus, it must be the case that the first “step” in the path pi goes from π(y) to its
parent e. It follows that uji−1+1 = U− for some U ∈ N±R such that (e, π(y)) ∈ UIT ,A . Since
π(y) = eSC, we must have T |= S v U . Since λ(pi) ∈ L(αsi−1,si), there must exist a state
s′ ∈ S such that (si−1, U

−, s′)∈ δ and uji−1+2 . . . uji ∈ L(αs′,si). This shows that condition
(b) is satisfied, and also that (e, π(t)) ∈ L(αs′,s)

IT ,A

We now consider condition (c). Take some atom of the form β(t, y) which appears
in the query at the start of Step 5. Then we know from earlier that we can find some
atom α(t′1, t

′
2) ∈ q (where α = (S,Σ, δ, s0, F)) such that β(t, y) is equal to one of the

following atoms that replaced α(σ(t′1), σ(t′2)) during Step 3: αs0,s1(σ(t′1), y), αs1,s2(y, y),
. . . , αsn−2,sn−1(y, y), αsn−1,sn(y, σ(t′2)). It follows that β(t, y) has the form αsi,si+1(t, y).
Using property (?), and considering the two possible values for t, we can deduce that
(π(t), π(y)) ∈ L(αsi,si+1)IT ,A , as witnessed by the path pi = eji−1uji−1+1 . . . ujieji . Arguing
as we did for (b), we can show that the path pi is entirely contained in the subtree rooted at
π(y) or the path never visits any element below π(y). The former option would imply that
t = y and that C ∈ Loopα[si, si+1], so the atom would have been removed in Step 5. Thus,
it must be the case that the last “step” in the path is from e to π(y), so uji = U for some
U ∈ N±R such that (e, π(y)) ∈ UIT ,A . Since π(y) = eSC, we must have T |= S v U . Since
λ(pi) ∈ L(αsi,si+1), we also know that there must exist a state s′′ such that (s′′, U, si+1) ∈ δ
and uji−1+1 . . . uji−1 ∈ L(αsi,s′′). This shows that condition (c) is satisfied, and also that
(π(t), e) ∈ L(αsi,s′′)

IT ,A . It is also important to note that if t = y, then we can apply the
arguments for conditions (b) and (c) together to show that (e, e) ∈ L(αs′,s′′)

IT ,A (with state
s′ as in (b), and s′′ as required for (c)).

Now let q′ be the query we obtain at the end of Step 7 when all non-deterministic choices
are made in the manner that we have described. Consider the mapping π′ defined as follows:

• π′(t) = π(t) for every t ∈ terms(q) with π(t) 6= π(y).

• π′(t) = e for every t ∈ terms(q) with π(t) = π(y).

Note that the mapping π′ satisfies the properties (c1) and (c2). It remains to show that π′

is a match for q′.

Consider first a concept atom B(t) ∈ q′. There are two possibilities. Either B(t) appears
in q and t 6∈ Leaf, or B(t) was introduced in Step 7. In the former case, we know that π
satisfies B(t), and since π′(t) = π(t) (since t 6∈ Leaf), the same is true of π′. In the latter
case, we must have t = y and either B = D if D ∈ NC or B = AP− if D = ∃P−. If B = D,
then we can use the fact that π′(t) = e and D was chosen so that e ∈ DIT ,A to infer that
π′ satisfies B(t). If B = AP− , then we have that e ∈ (∃P−)IT ,A . Since IT ,A is a model of

T and ∃P− v AP− ∈ T , we also have e ∈ AIT ,A
P− , which means that π′ satisfies B(t).

Now consider an atom γ(t′, t′′) ∈ q′. If y 6∈ {t′, t′′}, then γ(t′, t′′) ∈ q. As π is a
match for q in IT ,A, it must be the case that (π(t′), π(t′′)) ∈ L(γ)IT ,A . Since π′(t′) = π(t′)
and π′(t′′) = π(t′′), the same holds for π′, and so the atom γ(t′, t′′) is satisfied by π′. Next

354

Regular Path Queries in Lightweight Description Logics

suppose that y ∈ {t′, t′′}. An examination of Rewrite shows that γ(t′, t′′) must have replaced
some atom during Step 6. We distinguish three cases:

• Case 1: γ(t′, t′′) replaces αsi,si+1(y, t) with t 6= y. Then γ(t′, t′′) must have the form
αs′,si+1

(y, t), where s′ is the state that was chosen to ensure condition (b) in Step 5.
We recall that s′ is such that (e, π(t)) ∈ L(αs′,si+1

)IT ,A . Since t 6= y, we know that
t 6∈ Leaf, and so π(t) = π′(t). It follows that (π′(y), π′(t)) ∈ L(αs′,si+1

)IT ,A , so the
atom γ(t′, t′′) is satisfied by π′.

• Case 2: γ(t′, t′′) replaces αsi,si+1(t, y) with t 6= y. Then γ(t′, t′′) must have the form
αsi,s′′(t, y), where s′′ is the state that was used in condition 5(c). We showed earlier
when examining condition (c) that (π(t), e) ∈ L(αsi,s′′)

IT ,A . Using the fact that
π′(t) = π(t) and π′(y) = e, we can infer that (π′(t), π′(y)) ∈ L(αsi,s′′)

IT ,A , hence π′

satisfies the atom γ(t′, t′′).

• Case 3: γ(t′, t′′) replaces αsi,si+1(y, y). Then γ(t′, t′′) must have the form αs′,s′′(y, y),
where s′ is the state from 5(b) and s′′ is the state from 5(c). We have (π′(y), π′(y)) =
(e, e) ∈ L(αs′,s′′)

IT ,A , which means that π′ satisfies the atom γ(t′, t′′).

As we have shown that every atom in q′ is satisfied by the mapping π′, it follows that
π′ is a match for q′ in IT ,A, which completes the proof.

Lemma 6.5. If ~a ∈ cert(q′, (T ,A)) for some q′ ∈ Rewrite(q, T), then ~a ∈ cert(q, (T ,A)).

Proof. It is sufficient to show that if q′ ∈ OneStep(q, T) and ~a ∈ cert(q′, (T ,A)), then ~a ∈
cert(q, (T ,A)). Fix a C2RPQ q and a DL-LiteR or ELH TBox T , and let q′ ∈ OneStep(q, T)
be such that ~a ∈ cert(q′, (T ,A)). By Lemma 3.2, there exists a match π′ for q′ in IT ,A such
that π′(~x) = ~a, with ~x the answer variables of q′.

Consider the execution of OneStep(q, T) that leads to the query q′ being output. Let Leaf
be the non-empty subset of qvars(q) that was selected in Step 1, let y be the variable from
Leaf chosen in Step 1, let C ∈ TCT be the concept selected in Step 2, and let D ∈ BCT and
R be the concept and role selected in Step 5. In Step 7, if D ∈ NC, then D(y) was added, and
if D=∃P−, then AP−(y) was added. In the former case, we know that π′(y) ∈ DIT ,A and
that either (i) T |= D v ∃R and C = ∃R−, or (ii) T |= D v ∃R.C, hence there must exist

an R-child e of π′(y) in IT ,A with Tail(e) = C. In the latter case, we have π′(y) ∈ AIT ,A
P− . By

our assumption on DL-LiteR TBoxes, T must contain the inclusion AP− v ∃P−. Since IT ,A
is a model of T , this yields π′(y) ∈ (∃P−)IT ,A , and hence π′(y) ∈ DIT ,A . We then use the
fact that T |= Dv∃R where C =∃R− to find an R-child e of π′(y) in IT ,A with Tail(e) = C.

We define a mapping π : terms(q) → ∆IT ,A by setting π(t) = e for every t ∈ Leaf and
setting π(t) = π′(t) for every t ∈ terms(q′) \ {y}. This mapping is well-defined since every
term in q either belongs to Leaf or appears in q′. Observe that π(~x) = ~a since π′(~x) = ~a and
Leaf does not contain answer variables. We aim to show that π is a match for q in IT ,A.
To this end, consider some concept atom B(t) ∈ q. First suppose that t ∈ Leaf. Then we
know that the concept C selected in Step 2 is such that T |= C v B. We then use the fact
that since t ∈ Leaf, we have π(t) = e ∈ CIT ,A . If t 6∈ Leaf, then B(t) ∈ q′. As π′ is a match
for q′, we have π′(t) ∈ BIT ,A . Since π′(t) = π(t), we get π(t) ∈ BIT ,A .

355

Bienvenu, Ortiz, & Šimkus

Now consider some atom of the form α(t, t′) ∈ q, where α = (S,Σ, δ, s0, F). If both
t 6∈ Leaf and t′ 6∈ Leaf, then it can be verified that α(t, t′) ∈ q′. As π′ is a match for
q′ in IT ,A, it must be the case that (π′(t), π′(t′)) ∈ L(α)IT ,A . Since π′(t) = π(t) and
π′(t) = π(t), the same holds for π. Let us next consider the more interesting case in which
{t, t′} ∩ Leaf 6= ∅. In Step 3, we have a query containing α(σ(t), σ(t′)), where the mapping
σ is defined as follows: σ(t′′) = t′′ for t′′ 6∈ Leaf and σ(t′′) = y for t′′ ∈ Leaf. Note that
since {t, t′} ∩ Leaf 6= ∅, at least one of σ(t) and σ(t′) must be y. It follows that in Step 3,
we will guess a sequence s1, . . . , sn−1 of distinct states from S and a state sn ∈ F , and
we will replace α(σ(t), σ(t′)) by the atoms: αs0,s1(σ(t), y), αs1,s2(y, y), . . . , αsn−2,sn−1(y, y),
αsn−1,sn(y, σ(t′)). Let us denote this set of atoms by Qα. Slightly abusing terminology,
we use the phrase match for Qα to refer to a match for the Boolean query given by the
conjunctions of all atoms in Qα. We now establish the following claim:

Claim 1. If π is a match for Qα in IT ,A, then π is a match for α(t, t′) in IT ,A.

Proof of claim. Suppose that π is a match for the atoms in Qα in IT ,A. This means that

• (π(σ(t)), π(y)) ∈ L(αs0,s1)IT ,A,

• (π(y), π(y)) ∈ L(αsi,si+1)IT ,A for every 1 ≤ i < n− 1, and

• (π(y), π(σ(t′))) ∈ L(αsn−1,sn)IT ,A .

We then remark that the language consisting of all words w1 . . . wn such that w1 ∈ L(αs0,s1),
wi ∈ L(αsi,si+1) for every 1 ≤ i < n − 1, and wn ∈ L(αsn−1,sn) is a subset of the language
L(αs0,sn), and hence of L(α). Thus, by composing the paths witnessing each of the state-
ments in the preceding list, we can show that (π(σ(t), π(σ(t′)) ∈ L(α)IT ,A . Then to complete
the proof, we simply note that π(σ(t)) = π(t) and π(σ(t′)) = π(t), because of the way we
defined π and σ. (end proof of claim)

Because of Claim 1, to complete the proof that π is a match for q in IT ,A, it is sufficient
to show that π is a match for Qα, which is established by the following claim:

Claim 2. For every αs,s′(u, u
′) ∈ Qα: (π(u), π(u′)) ∈ L(αs,s′)

IT ,A .

Proof of claim. Take some αs,s′(u, u
′) ∈ Qα. We start with the case where u = u′ = y

and C ∈ Loopα[s, s′]. As π(y) = e and Tail(e) = C, we have Tail(π(y)) = C. We can
thus apply Proposition 5.5 to infer that (π(y), π(y)) ∈ L(αs,s′)

IT ,A , which yields the desired
result given that u = u′ = y. Next suppose that either u 6= y, u′ 6= y, or C 6∈ Loopα[s, s′].
Then we will not remove αs,s′(u, u

′) in Step 4, so it will still be present in Step 5. There
are three cases depending on which of u and u′ equals y. We treat each case separately:

• Case 1: u = y and u′ 6= y. It follows that π(u) = e and π(u′) = π′(u′). In Step 6, we
will replace αs,s′(u, u

′) with αs′′,s′(u, u
′) where s′′ ∈ S is such that (s, U−, s′′)∈ δ for

some U ∈ N±R with T |= R v U . Using the facts that (π′(y), e) ∈ RIT ,A , π(u) = e, T |=
R v U , and (s, U−, s′′)∈ δ, we can infer that (π(u), π′(y)) ∈ L(αs,s′′)

IT ,A . We also
know that the atom αs′′,s′(u, u

′) belongs to q′, and so it must be satisfied by π′, which
yields(π′(u), π′(u′)) ∈ L(αs′′,s′)

IT ,A . By combining (π(u), π′(y)) ∈ L(αs,s′′)
IT ,A and

(π′(u), π′(u′)) ∈ L(αs′′,s′)
IT ,A , and using the fact that (π′(u), π′(u′)) = (π′(y), π(u′)),

we can infer that (π(u), π(u′)) ∈ L(αs,s′)
IT ,A .

356

Regular Path Queries in Lightweight Description Logics

• Case 2: u 6= y and u′ = y. It follows that π(u) = π′(u) and π(u′) = e. In Step 6, we will
replace αs,s′(u, u

′) with an atom αs,s′′(u, u
′) where s′′ ∈ S is such that (s′′, U, s′) ∈ δ

for some U ∈ N±R with T |= R v U . Using similar arguments to Case 1, we can show
that (π(u), π′(y)) ∈ L(αs,s′′)

IT ,A and (π′(y), π(u′)) ∈ L(αs′′,s′)
IT ,A , from which we can

deduce that (π(u), π(u′)) ∈ L(αs,s′)
IT ,A .

• Case 3: u = u′ = y. It follows that π(u) = π(u′) = e. In Step 6, we will replace
αs,s′(u, u

′) with an atom αs′′,s′′′(u, u
′) where s′′, s′′′ are such that (s, U−, s′′)∈ δ and

(s′′, U ′, s′) ∈ δ for some roles U,U ′ ∈ N±R with T |= R v U and T |= R v U ′. By ap-
plying similar reasoning to that used in Cases 1 and 2, we can show that (π(u), π′(y)) ∈
L(αs,s′′)

IT ,A , (π′(y), π′(y)) ∈ L(αs′′,s′′′)
IT ,A , and (π′(y), π(u′)) ∈ L(αs′′′,s′)

IT ,A . From
this, we can infer that (π(u), π(u′)) ∈ L(αs,s′)

IT ,A .

Together, Lemmas 6.4 and 6.5 establish Proposition 6.3. We remark that the number
of possible atoms appearing in the queries in Rewrite(q, T) is polynomially bounded by
|q|+ |T |. This is the key property used to show the following:

Proposition 6.6. There are only exponentially many queries in Rewrite(q, T), each having
size polynomial in |q|+ |T |.

Proof. Consider a DL-LiteR or ELH TBox T , a C2RPQ q, and q′ ∈ Rewrite(q, T). We first
note that OneStep never introduces any fresh variables, so vars(q′) ⊆ vars(q). We next note
that OneStep does not introduce any fresh concept names, and it only introduces binary
atoms whose NFAs are obtained from one of the original NFAs by changing the initial and
finite states. Thus, every atom in q′ takes one of the following forms:

• A(v), where A ∈ NC ∩ sig(T) and v ∈ vars(q)

• αs,s′(v, v′), where α appears in q, s, s′ are states of α, and v, v′ ∈ vars(q)

It is easy to see that the number of such atoms is bounded polynomially in |T | + |q|, and
thus, there are at most single-exponentially many distinct queries in Rewrite(q, T).

6.2 Query Evaluation

In Figure 16, we present a non-deterministic algorithm EvalQuery for C2RPQ answering in
DL-LiteR and ELH. The algorithm starts by checking whether the input KB is satisfiable.
If the check succeeds, then the algorithm guesses a query from Rewrite(q, T) and a variable
assignment and calls the evaluation algorithm3 EvalAtom from Section 5 to check whether
this assignment yields a match for this query in IK. The following proposition establishes
the correctness of EvalQuery.

Proposition 6.7. For every C2RPQ q, DL-LiteR or ELH KB K = (T ,A), and tuple of
individuals ~a from Ind(A) of same arity as q: ~a ∈ cert(q,K) if and only if there is some
execution of EvalQuery(q,K,~a) that returns yes.

3. As we check KB satisfiability in the first step of EvalQuery, we may skip the satisfiability checks in the
calls to EvalAtom.

357

Bienvenu, Ortiz, & Šimkus

Algorithm EvalQuery

Input: C2RPQ q(x1, . . . , xk), DL-LiteR or ELH KB K = 〈T ,A〉, tuple ~a ∈ Ind(A)k

1. Test whether K is satisfiable, output yes if not.

2. Guess some q′ ∈ Rewrite(q, T) and an assignment ~b of individuals to qvars(q′).

(a) Let q′′ be the query obtained by substituting ~a for (x1, . . . , xk) and~b for qvars(q′),
then replacing each atom of the form B(a) by the atom αB?(a) where αB? is an
NFA with L(αB?) = {B?} consisting on an initial state sB0 , a single final state
sBf , and a single transition (sB0 , B?, sBf).

(b) For every atom α(a, b) in q′′

check if EvalAtom(α,K, (a, b)) = yes

(c) If all checks succeed, return yes.

3. Return no.

Figure 16: Non-deterministic C2RPQ answering algorithm EvalQuery.

Proof. Let ~x be the set of answer variables of q.

To show the first direction, consider an execution of EvalQuery on input (q,K,~a) that
returns yes. If the algorithm returns yes in Step 1, then K is unsatisfiable, so we trivially
have ~a ∈ cert(q,K). Otherwise, in Step 2, the algorithm will guess a query q′ ∈ Rewrite(q, T)
and assignment ~b for the quantified variables ~y of q′. Let q′′ be the query obtained by
substituting ~a for ~x and ~b for ~y, and writing all atoms in the form α(a, b) with α an NFA.
In Step 2(c), for every atom α(a, b) in q′′, we call EvalAtom on input (α,K, (a, b)). Since
the algorithm returns yes in Step 3, it must be the case that all of these calls return yes,
and so by Proposition 5.8, (a, b) ∈ cert(q,K) for every atom α(a, b) in q′′. It follows that
the mapping π sending ~x to ~a and ~y to ~b defines a match for q′ in IK, so ~a ∈ cert(q′,K).
Applying Proposition 6.3, we obtain ~a ∈ cert(q,K).

Next suppose that ~a ∈ cert(q,K). If K is unsatisfiable, then the algorithm will return
yes in Step 1. Otherwise, we know from Proposition 6.3 that there exists a query q′ ∈
Rewrite(q, T) and a match π for q′ in IT ,A that maps all variables to Ind(A) and is such
that π(~x) = ~a. In Step 2, we choose the query q′ and tuple π(~y), where ~y is the set of
quantified variables in q′. Let q′′ be the query obtained by substituting ~a for ~x and ~b for ~y,
and writing all atoms in the form α(a, b) with α an NFA. Because of the match π we know
that (a, b) ∈ cert(q,K) for every atom α(a, b) in q′′. It follows then by Proposition 5.8 that
all of the calls to EvalAtom will return yes, and EvalQuery will return yes in Step 2(c).

By analyzing the complexity of the algorithm EvalQuery, we obtain the following upper
bounds for C2RPQ answering, which match the lower bounds given in Section 4.

Theorem 6.8. C2RPQ answering is in

1. NL in data complexity for DL-LiteR and DL-LiteRDFS;

358

Regular Path Queries in Lightweight Description Logics

2. P in data complexity for ELH;

3. NP in combined complexity for DL-LiteRDFS;

4. PSpace in combined complexity for DL-LiteR and ELH.

Proof. For Statement (1), we consider the resources required to run EvalQuery on input
(T ,A, q), where T is formulated in DL-LiteR. The consistency check in Step 1 can be
performed in non-deterministic logarithmic space in |A| (Calvanese et al., 2007). If T and q
are treated as fixed, then computing Rewrite(q, T) requires only constant time (and space)
in |A|. It follows that the guessed query q′ and tuple ~b and the set of atoms at the end of
Step 2(a) can be stored using logarithmic space in |A|. In Step 2(b), we call EvalAtom on
each of the stored atoms. By Theorem 5.9, EvalAtom runs in non-deterministic logarithmic
space in |A|. Since NLNL = NL, we obtain the desired NL upper bound in data complexity.

To show Statement 2, consider what happens if the input TBox T is formulated in ELH.
In this case, the consistency check in Step 1 takes constant time (since every ELH KB is
satisfiable), and by Theorem 5.9, EvalAtom runs in polynomial time in |A|. We thus have a
decision procedure for C2RPQ answering in ELH that runs in non-deterministic logarithmic
space in |A| with access to a P oracle. Since NLP = P, this yields membership in P for
data complexity.

To establish Statement (3), we first note that if T is a DL-LiteRDFS TBox, then the
query cannot be rewritten, i.e., Rewrite(q, T) = {q} (we cannot choose a D as required in
Step 5 of Algorithm OneStep because T does not entail any inclusions of the form Dv∃R).
Thus, in Step 2 of EvalQuery, we only need to guess a tuple ~b whose size is polynomial in |A|
and |q|. The calls to EvalAtom in Step 2(b) run in polynomial time in the input (Theorem
5.2), so the overall procedure runs in NP.

For Statement (4), instead of computing the whole set Rewrite(q, T), which can contain
exponentially many queries, we generate a single q′ ∈ Rewrite(q, T) non-deterministically.
By Proposition 6.6, every query in Rewrite(q, T) can be generated after at most exponen-
tially many steps, so we can use a polynomial-size counter to check when we have reached
this limit. Since each rewritten query is of polynomial size (Proposition 6.6), and we keep
only one query in memory at a time, the generation of a single query in Rewrite(q, T) requires
only polynomial space. We can then proceed as for statement 3, guessing a (polynomial-
size) tuple ~b and performing a polynomial number of polynomial-time evaluation checks
(Theorem 5.9). This yields a non-deterministic polynomial space procedure for deciding
~a ∈ cert(q, (T ,A)). Using the well-known fact that NPSpace = PSpace, we obtain the
desired PSpace upper bound.

6.3 Cases with Lower Complexity

Given the substantial jump in combined complexity – from NP to PSpace – when moving
from CQs to C(2)RPQs, it is natural to look for interesting subcases that offer lower com-
plexity. We pinpoint two such subcases, the first obtained by restricting the query language,
and the second obtained by restricting the class of KBs.

359

Bienvenu, Ortiz, & Šimkus

Let us recall that 2RPQs are single-atom C2RPQs that do not contain quantified vari-
ables. The following theorem shows that this restriction is inessential, as our complexity
results for 2RPQs hold also for single-atom queries with quantified variables.4

Theorem 6.9. The results in Theorem 5.9 hold also for single-atom C2RPQs.

Proof. Fix a DL-LiteR or ELH KB K = (T ,A). There are six types of single-atom queries
to consider: ∃y. α(a, y) (with a an individual), ∃y. α(x, y) (with x an answer variable),
∃y. α(y, a) (with a an individual), ∃y. α(y, x) (with x an answer variable), ∃x, y. α(x, y)
(with x 6= y), and ∃y. α(y, y). For the first five types of queries, there are simple reductions
to 2RPQs. When q = ∃x, y. α(x, y) (with x 6= y), we can simply replace q by the 2RPQ
q′(x, y) = α′(x, y), where

L(α′) = (N±R ∩ sig(T))∗ · L(α) · (N±R ∩ sig(T))∗.

The following claim establishes the correctness of this reduction.

Claim. K |= q if and only if cert(q′,K) 6= ∅.
Proof of claim. First suppose that K |= q. If K is unsatisfiable, then we trivially have
cert(q′,K) 6= ∅. Otherwise, there is a match π for q in IK. This means that (π(x), π(y)) ∈
L(α)IK , and so there must exist some path p0 from π(x) to π(y) with λ(p0) ∈ L(α). Let
a be such that π(x) is either equal to a or begins by a, and let p1 be any path from a to
π(x). Since π(y) is reachable from π(x), it must also be reachable from a, and so we can
find a path p2 from π(y) to a. We may choose p1 and p2 so that λ(p1) and λ(p2) belong
to (N±R ∩ sig(T))∗. By combining the paths p1, p0 and p2 (in that order), we obtain a path
from a to a whose label belongs to (N±R ∩ sig(T))∗ · L(α) · (N±R ∩ sig(T))∗. It follows that
(a, a) ∈ cert(q′,K).

Suppose next that (a, b) ∈ cert(q′,K) for two (not necessarily distinct) individuals a, b. If
K is unsatisfiable or ε ∈ L(α), then we trivially have K |= q. Otherwise, there is a path p =
e0u1e1u2 . . . unen in IK with e0 = a, en = b, and λ(p) ∈ (N±R ∩sig(T))∗ ·L(α) ·(N±R ∩sig(T))∗.
Since ε 6∈ L(α), there exists 0 < i < j ≤ n such that ui . . . uj−1 ∈ L(α). By setting
π(x) = ei−1 and π(y) ∈ ej , we obtain a match for q in IK. (end proof of claim)

The other four types of queries containing distinct terms can be handled similarly:

• For ∃y. α(x, y), we use the 2RPQ q′′(x, y) = α′′(x, y), where L(α′′) = L(α) · (N±R ∩
sig(T))∗. Arguing as in the claim, we can show that b ∈ cert(∃y. α(x, y),K) iff (b, c) ∈
cert(q′′(x, y),K) for some c ∈ Ind(A).

• For ∃y. α(a, y), we have K |= ∃y. α(a, y) iff a ∈ cert(∃y. α(x, y),K), so we can reuse
the 2RPQ from the preceding point.

• For ∃y. α(y, x), we use the 2RPQ q′′′(x, y) = α′′′(y, x) with L(α′′′) = (N±R ∩ sig(T))∗ ·
L(α). Using a similar argument to that used in the preceding claim, we can show that
b ∈ cert(∃y. α(y, x),K) iff (b, c) ∈ cert(q′′′(x, y),K) for some c ∈ Ind(A).

4. In the preliminary version of this paper, we in fact used the more general notion of single-atom queries
(possibly with quantified variables) as the definition of 2RPQs (Bienvenu et al., 2013).

360

Regular Path Queries in Lightweight Description Logics

• For ∃y. α(y, a), we have K |= ∃y. α(y, a) iff a ∈ cert(∃y. α(y, x),K), so we can reuse
the 2RPQ from the preceding point.

For queries of the form ∃x. α(x, x), the proof is more involved and passes by the definition
of an alternative rewriting procedure for 2RPQs, which is similar in spirit to the algorithm
Rewrite but guaranteed to run in polynomial time. Details are given in the appendix.

More interestingly, we can adapt the techniques from the preceding proof in order to
provide an NP upper bound for the class of C2RPQ s that do not contain any existential-join
variables, i.e., existentially quantified variables that occur more than once in a query.

Theorem 6.10. C2RPQ answering is in NP in combined complexity for DL-LiteR and
ELH knowledge bases when restricted to C2RPQs without existential-join variables.

Proof. Consider a DL-LiteR or ELH KB K = (T ,A) and a C2RPQ q with answer variables
~x and existential variables ~y such that every variable in ~y occurs exactly once in q. We let
q′ be the C2RPQ obtained from q as follows:

• Replace every atom α(y1, y2) such that y1, y2 are both existential variables by the
atom α′(y1, y2) where L(α′) = (N±R ∩ sig(T))∗ · L(α) · (N±R ∩ sig(T))∗.

• Replace every atom α(t, y) such that y is an existential variable and t is an individual
or answer variable by the atom α′′(t, y) where L(α′′) = L(α) · (N±R ∩ sig(T))∗.

• Replace every atom α(y, t) such that y is an existential variable and t is an individual
or answer variable by the atom α′′′(y, t) where L(α′′′) = (N±R ∩ sig(T))∗ · L(α).

• Add ~y to the set of answer variables.

Clearly, it takes only polynomial time to construct the C2RPQ q′. By exploiting the fact
that every existential variable in q occurs at most once, and applying similar reasoning to
that used in the proof of Theorem 6.9, we can show that ~a ∈ cert(q,K) iff (~a,~b) ∈ cert(q′,K)
for some tuple of individuals ~b of the same arity as ~y. To decide whether the latter holds,
we non-deterministically guess a tuple ~b and let π be the variable assignment that maps ~x
to ~a and ~y to ~b. We then use EvalAtom to verify that (π(t1), π(2)) ∈ cert(α(t1, t2),K) for
every atom α(t1, t2) ∈ q′, and we return yes if this is the case. Correctness of the described
procedure follows from the correctness of EvalAtom (Proposition 5.8). Since EvalAtom can
be implemented so as to run in polynomial time for both DL-LiteR and ELH (Theorem 5.9),
we obtain an NP procedure for answering C2RPQs without existential-join variables.

The preceding result can be extended a bit further to allow for simple chains of existen-
tial variables. Indeed, we remark that if a C2RPQ q contains atoms α1(x, y) and α2(y, z)
with z an existential-join variable and y an existential variable appearing only in these two
atoms, then we can replace {α1(x, y), α2(y, z)} by α3(x, z) where L(α3) = {w1w2 | w1 ∈
L(α1), w2 ∈ L(α2)} (such an NFA α3 is easily constructed from α1, α2 in polynomial time).
By performing this and similar polynomial-time equivalence-preserving transformations, we
can eliminate some existential-join variables and thereby enlarge the class of C2RPQs that
can be handled using an NP procedure.

361

Bienvenu, Ortiz, & Šimkus

Finding further interesting classes of computationally well-behaved queries will likely
prove difficult, given that the PSpace lower bound in Section 4 was shown to hold even
under strong structural restrictions on C2RPQs. This suggests that it may be more fruit-
ful to consider restrictions on knowledge bases. The next proposition identifies a natural
restriction on knowledge bases that leads to an improved NP upper bound.

Theorem 6.11. C2RPQ answering is in NP in combined complexity for DL-LiteR and
ELH knowledge bases whose canonical models have finite domains.

Proof. Let K = (T ,A) be a satisfiable DL-LiteR or ELH knowledge base whose canonical
model IK contains only finitely many elements (note that if K is unsatisfiable, then it is
trivial to perform query answering). It follows the construction of IK and the fact that ∆IK

is finite that every element aR1C1 . . . RnCn ∈ ∆IK is such that Ci 6= Cj for i 6= j, which
implies in particular that n ≤ |TCT | (indeed, if Ci = Cj for i < j, then the domain of IT ,A
would contain the element aR1C1 . . . RjCj(Ri+1Ci+1 . . . RjCj)

m for every m ≥ 0). We rely
on this property to devise a non-deterministic algorithm for deciding ~a ∈ cert(q,K) that
runs in polynomial time in the combined size of the inputs.

Without loss of generality, we may suppose that the input query q contains only binary
atoms of the form α(t, t′) with α an NFA. In a first step, we guess a mapping π from the terms
in q to sequences of the form aR1C1 . . . RnCn where each Ri is a role, each Ci is a concept
from TCT , and 0 ≤ n ≤ |TCT |. In a second step, we verify that π is indeed a match for q.
First, we check that π(b) = b for every individual b in q, and that π(~x) = ~a where ~x is the
tuple of answer variables of q. Next, we check whether π(z) ∈ ∆IT ,A for every z ∈ qvars(q).
This can be done with a polynomial number of (polynomial-time) entailment checks that
verify conditions (A) and (B) of the definition of canonical models in Section 2.1.4. It only
remains to check that all of the query atoms are satisfied under the mapping π. To this end,
we construct a new ABox Aπ as follows. Let Eπ be the set containing each aR1C1 . . . RjCj
with 1 ≤ j ≤ n such that there is some aR1C1 . . . RjCj . . . RnCn in the range of π. We
introduce a fresh individual name be for each e ∈ Eπ, and let Aπ be the ABox obtained by
adding to A the following assertions:

− R(a, be) if R ∈ NR and R−(be, a) if R− ∈ NR for each e = aRC ∈ Eπ where a ∈ NI

− R(be, be′) if R ∈ NR and R−(be′ , be) if R− ∈ NR, for each e′ = eRC ∈ Eπ where e ∈ Eπ
− C(be′) for each e′ = eRC ∈ Eπ where e ∈ Eπ ∪ NI and C ∈ NC

Define the mapping π′ from terms in q to individuals in Aπ as follows: π′(t) = π(t) if
π(t) ∈ Ind(A) and π′(t) = bπ(t) otherwise. For every atom α(t, t′) in q, we call EvalAtom on
input (α, (T ,Aπ), (π′(t), π′(t′))); by Theorem 5.9, each of these calls needs only polynomial
time. We output yes just in the case that every call to EvalAtom returns yes.

It should be clear that the algorithm just described runs in non-deterministic polynomial
time. To show that the algorithm is sound, consider an execution of the algorithm that
returns yes, and let π be the mapping that was guessed. Since the algorithm returned
yes, we know that for every atom α(t, t′) in q, there is a successful execution of EvalAtom
on input (α, (T ,Aπ), (π′(t), π′(t′))). Since EvalAtom is known to be correct (Theorem 6.7),
this shows π′ is a match for q in IT ,Aπ . It follows from the way we defined Aπ and the
construction of canonical models that IT ,Aπ can be homomorphically embedded into IT ,A.
Moreover, we can choose the homomorphism h such that h(be) = e for each of the new

362

Regular Path Queries in Lightweight Description Logics

individuals be in Aπ. Since matches of C2RPQs are preserved under homomorphisms, it
follows that π is a match for q in IT ,A with π(~x) = ~a, so ~a ∈ cert(q, (T ,A)).

To show completeness, suppose that π is a match for q in IT ,A. By construction, there is
a homomorphism h from IT ,A to IT ,Aπ that maps every individual a ∈ Ind(A) to itself and
every e ∈ Eπ to the individual be. Using the fact that query matches are preserved under
homomorphisms, we have that π′ is a match for q in IT ,Aπ . It follows that for every atom
α(t, t′) in q, there is an execution of EvalAtom on (α, (T ,Aπ), (π′(t), π′(t′))) that returns
yes, and so the algorithm returns yes after guessing the mapping π.

We point out that the class of knowledge bases considered in Theorem 6.11 is of prac-
tical relevance. Indeed, several important large-scale ELH terminologies, like the medical
ontology SNOMED5, are acyclic terminologies (see, e.g., (Haase & Lutz, 2008)), which
are guaranteed to have finite canonical models. Moreover, it has been recently argued
that real-world DL-LiteR ontologies often yield canonical models of shallow depth (Kikot,
Kontchakov, Podolskii, & Zakharyaschev, 2013).

7. Beyond C2RPQs and Lightweight DLs

In this section, we discuss some of the implications of our results and give a brief overview
of related results for similar settings.

7.1 Extensions of C2RPQs

We have argued in this paper that C2RPQs provide significantly more expressiveness than
plain CQs as languages for querying ontologies, at a moderate computational cost. However,
C2RPQs also have many limitations, and several application domains seem to call for even
more expressive query languages. We now discuss some extensions to C2RPQs.

7.1.1 Complex Labels

In a preliminary version of the present work, we added to C2RPQs the ability to talk about
combinations of concepts and roles that appear along a path (Bienvenu, Ortiz, & Šimkus,
2012). In that language, which we called C2RPQs with complex labels, one can use, for
example, the expression (sbLFT ∧ sbLFSub)∗ to find paths between stations that are served
by both low-floor tramway and subway. Complex labels provide a more concise and flex-
ible syntax for many queries, and in fact they increase the expressiveness of C2RPQs. In
particular in DLs that do not support role conjunction, like the ones considered here, with
standard C2RPQs we can query for pairs of stations that are connected by two different
means of transport, but we cannot require the existence of one route between them that is
fully served by both. All the algorithms described in this paper can be extended straight-
forwardly to C2RPQs with complex labels, and the given complexity results apply also to
that more expressive query language. However, the extension to complex labels causes a
significant overhead in the notation and the technicalities of the algorithms. Hence, for the
sake of readability, we decided not to include such an extension in this paper.

5. http://www.ihtsdo.org/snomed-ct/

363

Bienvenu, Ortiz, & Šimkus

7.1.2 RPQs with Nesting

Recent works in the database field advocate the extension of RPQs with nesting, allowing
one to require that objects along a path satisfy complex conditions, in turn expressed
through (nested) 2RPQs, in line with the XML query language XPath. RPQs with nesting
were proposed as the basic component of the navigational language nSPARQL for RDF
(Pérez, Arenas, & Gutierrez, 2010) and they have received some attention in the setting of
graph databases (Reutter, 2013; Barceló, Pérez, & Reutter, 2012).

Building on the conference version of this work, we recently studied the query answering
problem for nested (C)2RPQs in the presence of DL ontologies (Bienvenu, Calvanese, Ortiz,
& Šimkus, 2014). We establish tight complexity bounds in data and combined complexity
for a variety of DLs, ranging from the lightweight DLs DL-Lite and EL considered in the
present paper, up to highly expressive DLs. We show that adding nesting to (C)2RPQs does
not increase the worst-case data complexity of query answering, but it leads to ExpTime-
hardness in combined complexity, even for (non-conjunctive) 2RPQs and the lightweight
DLs DL-Lite or EL. This contrasts sharply with the tractability result we obtained in this
paper for the same setting but without nesting.

Other authors have considered nested navigational queries over DL KBs. Stefanoni,
Motik, Krötzsch, and Rudolph (2014) studied the complexity of answering certain types
of nested path queries over knowledge bases formulated in OWL 2 EL, which extends
ELH with a number of constructs, most notably complex role inclusions. They establish
PSpace membership for a query language that roughly corresponds to the nested (C)RPQs
mentioned earlier extended with unary complex labels, and they show P membership for
the non-conjunctive fragment. These results demonstrate that nesting is computationally
simpler when inverse roles are allowed neither in queries, nor in the ontology language.
Kostylev, Reutter, and Vrgoc (2015) have recently investigated the complexity of the so-
called DLXPath family of query languages over knowledge bases expressed in lightweight
DLs, with a particular emphasis on the connection to propositional dynamic logic (PDL)
and the effects of negation. The most expressive variant of DLXPath can be used to test
Boolean conditions on nodes and edges (and thus fully captures the complex labels of
the previous subsection), but unfortunately, answering such queries is undecidable even in
the simplest of settings. Disallowing negation of binary relations restores decidability, but
query answering remains coNP-hard in data complexity if negation of unary expressions is
permitted. We finally note that Bourhis, Krötzsch, and Rudolph (2014) have recently ex-
plored several highly expressive extensions of RPQs with nesting for which query answering
remains decidable in the presence of DL ontologies.

7.1.3 Path Variables and Path Relations

In the area of graph databases, it has been argued that C2RPQs are sometimes too weak
since they can neither output the witnessing paths, nor talk about the relationships holding
between different paths. This has motivated the recent extension of C2RPQs with path
variables and relations among tuples of paths (Barceló et al., 2012; Barceló & Muñoz,
2014). The introduction of path variables makes it possible to refer to the specific paths
(or more precisely, the labels of those paths) that are used to witness the satisfaction of
query atoms. By using a path variable in multiple atoms, one can enforce that paths with

364

Regular Path Queries in Lightweight Description Logics

the same label are used to connect different pairs of points. Moreover, path variables can
appear as answer variables in the query, in which case a compact representation of the
labels of witnessing paths is given as output (Barceló et al., 2012). A further extension
allows queries to enforce that a tuple of path labels belongs to a given relation, either via
regular relations such as prefix or equal length (Barceló et al., 2012), or using some common
non-regular relations like subword and subsequence (Barceló & Muñoz, 2014).

An in-depth study of these extensions in the presence of DL ontologies is ongoing work,
but our preliminary results suggest that the addition of ontological knowledge makes things
significantly harder. For instance, even in the presence of very simple DL-Lite ontologies,
the labels of paths witnessing a query answer may form a non-regular language, as illustrated
by the following example.

Example 7.1. Consider the DL-Lite KB K consisting of the TBox {A v ∃R,∃R− v ∃R}
and ABox {A(a)}, and let q be the 2RPQ E(x, y) with E = r∗ · (r−)∗. There are infinitely
many paths witnessing that (a, a) is an answer to q in IK, each obtained by taking n steps
away from a via r, then n steps back up to a via r−. It follows that the set of labels of the
witnessing paths forms the non-regular language {rn · (r−)n | n ≥ 0}.

The previous example crucially uses inverse roles, but non-regular (indeed, non-context-
free!) languages can also be enforced using shared path variables:

Example 7.2. Consider the EL KB K consisting of the TBox {A v ∃r.A,A v ∃s.A}
and ABox {A(a)}. Let q be the Boolean CRPQ ∃x, y, z. E(x, y) ∧ E(y, z) ∧ E(x, z) with
E = (r ∪ s)∗, and further suppose that we use path variables to require that the label of
the path from x to y is the same as the label of the path from y to z. Then every triple
of paths (pxy, pyz, pxz) witnessing the satisfaction of q is such that λ(pxy) = λ(pyz) and
λ(pxz) = λ(pxy)λ(pyz). It follows that the set of labels of witnessing paths for the third
atom yields the language {ww | w ∈ L((r ∪ s)∗)}, which is neither regular nor context-free.

While these examples may seem artificial, they highlight the difficulties that arise when
combining path variables and ontologies. In particular, they demonstrate that we cannot
use NFAs as a compact representation of path labels (as was the case for graph databases),
and even if all path variables are existentially quantified, the sharing of path variables will
likely require significant modification of our query answering algorithms. Interestingly, it
seems that some of the techniques based on word equations with regular constraints that
were recently explored for handling non-regular path relations (Barceló & Muñoz, 2014) may
be relevant in the presence of ontologies already for answering queries with (existentially
quantified) path variables, and possibly also simple regular relations.

7.2 Other DLs

Our rewriting algorithm for C2RPQs is inspired by a technique first proposed for answering
CQs in the DL Horn-SHIQ (Eiter et al., 2012), and it can be extended to all the constructs
in that logic. In fact, a similar algorithm for nested C2RPQs was already developed for
the DL ELHI⊥ which subsumes both DL-LiteR and ELH (Bienvenu et al., 2014). ELHI⊥
contains many of the constructors of Horn-SHIQ, and they behave similarly in terms of
computational complexity. We point out that transitive roles, which are often problematic

365

Bienvenu, Ortiz, & Šimkus

for query answering algorithms, are not a major issue in this setting. They can be easily ac-
commodated in the ELHI⊥ algorithm by combining the known techniques for axiomatizing
in the TBox the transitivity of roles, and the machinery for handling the transitive closure
constructor in the queries. The extension of our algorithm to ELHI⊥ or Horn-SHIQ runs
in polynomial time in the size of the data, and it is thus worst-case optimal in data com-
plexity. Naturally, in combined complexity, it may require exponential time in some cases,
but it always runs in single-exponential time, which again is worst-case optimal for these
DLs. Moreover, we conjecture that if implemented smartly, this exponential behavior will
rarely occur for real-world ontologies.

7.3 OWL 2 Profiles and Query Answering for the Semantic Web

The Web Ontology Language is a family of languages for specifying ontologies, endorsed as
a standard by the W3C. The current version of the standard, called OWL 2 (OWL Working
Group, 2009), features three profiles (Motik et al., 2012) or sublanguages that restrict the
expressivity in such a way that logical inference over ontologies can be achieved by efficient
algorithms. The three profiles provide different modeling capabilities, making them suitable
for different applications: the EL profile is the preferred language for life science ontologies,
the QL profile is geared towards applications that enrich relational data with ontological
information, and the RL profile is used mostly for reasoning with Web data. For more
information about the profiles, their modeling capabilities and supported inference services,
we refer the reader to the introductory text by Krötzsch and references therein (Krötzsch,
2012). The EL and DL-Lite families of lightweight description logics studied in the present
paper provide the logical underpinnings of the EL and QL profiles (the third profile, RL,
is based upon Datalog). As a consequence, our results are immediately relevant to the
problem of answering regular path queries over OWL 2 knowledge bases formulated using
the QL and EL profiles. In particular, our algorithms can be adapted for querying datasets,
such as RDF triplestores, enriched with ontological knowledge expressed in the fragments
of the profiles that correspond to DL-LiteR and ELH.

8. Conclusion and Future Work

In this paper, we have provided algorithms and tight complexity bounds for answering var-
ious forms of regular path queries over knowledge bases formulated in lightweight DLs from
the DL-Lite and EL families. Our results demonstrate that the query answering problem
for these richer query languages is often not much harder than for the CQs and IQs typi-
cally considered. Indeed, for both DL-LiteR and ELH, query answering remains tractable
in data complexity and in PSPACE in combined complexity for the highly expressive class
of C2RPQs, and for 2RPQs, we even retain tractability in combined complexity. This
computational price does not seem too high, particularly if we consider that the rich nav-
igational features of these queries can partially compensate for the limited expressiveness
of lightweight ontology languages. We thus believe that C2RPQs constitute a promising
language for ontology-mediated query answering.

An important challenge for future work is to implement and experimentally evaluate
the developed algorithms. Although C2RPQs is the natural query language to aim at, we
believe that it makes more sense to start with a prototype implementation of the algorithm

366

Regular Path Queries in Lightweight Description Logics

for (2)RPQs. Indeed, not only does the algorithm for (2)RPQs have a significantly lower
worst-case complexity, but it is also considerably simpler than the rewriting-based approach
for C2RPQs, and we are confident that it can be easily translated into a practical procedure.
By contrast, the rewriting algorithm used to establish the PSpace upper bound for C2RPQs
involves a considerable amount of non-determinism, and a näıve implementation can be
expected to perform poorly. We nonetheless believe that the proposed rewriting approach,
when suitably modified to avoid unnecessary non-deterministic guesses, provides a good
basis for the development of practical methods for C2RPQ answering. Finally, identifying
further restrictions on queries and ontologies that lead to lower combined complexity is
another interesting problem for future study.

Acknowledgments

The authors would like to thank the anonymous reviewers for their very careful reading
of the paper and their many helpful comments. This work was supported by the French
National Research Agency (ANR) project PAGODA 12-JS02-007-01, the Austrian Science
Fund (FWF) project T515, the FWF project P25518 and the Vienna Science and Technol-
ogy Fund (WWTF) project ICT12-015.

Appendix A. Proof of Theorem 6.9

To complete the proof of Theorem 6.9, we must show how to handle queries of the form
∃x. α(x, x). As there does not seem to be a simple reduction to 2RPQs for queries of this
form, we propose instead an approach based upon query rewriting.

To define our new query rewriting algorithm and prove its correctness, we will require
the following notion. Given two concepts C,D from BCT , we say that C causes D w.r.t.
a TBox T , denoted C T D, if for every ABox A and any model I of T and A, we have
that CI 6= ∅ implies DI 6= ∅. It is not difficult to see that checking C T D is feasible in
polynomial time:

Lemma A.1. The following problem is in P: given a DL-LiteR or ELH TBox T and
concepts C,D ∈ BCT , decide whether C T D.

Proof. We start with the case where T is a DL-LiteR TBox. It is easy to see that C T D
iff T |= C v D or there exists a sequence of role names R1, . . . , Rn such that
− T |= C v ∃R1,
− T |= ∃R−n v D, and
− for 1 ≤ i < n, T |= ∃R−i v ∃Ri+1.

We then observe that the existence of a sequence R1, . . . , Rn satisfying these conditions can
be decided in polynomial time by (i) initializing a set Reach with all roles R1 such that
T |= C v ∃R1, (ii) saturating Reach by adding role S to Reach whenever T |= ∃U− v ∃S
for some U ∈ Reach, and (iii) checking whether there is some U ∈ Reach such that T |=
∃U− v D. Since TBox reasoning is tractable for DL-LiteR, the procedure we have just
described can be performed in polynomial time.

Assume T is an ELH TBox. We have that C T D iff T |= C v D or there exists a
sequence of concepts ∃r1.A1, . . . ,∃rn.An, where {A1, . . . , An} ⊆ NC, such that

367

Bienvenu, Ortiz, & Šimkus

− T |= C v ∃r1.A1,
− T |= An v D, and
− for 1 ≤ i < n, T |= Ai v ∃ri+1.Ai+1.

The existence of a sequence ∃r1.A1, . . . ,∃rn.An satisfying the above conditions can be de-
cided in polynomial time, using a saturation procedure analogus to the one used for DL-
LiteR (recall that TBox reasoning is tractable for ELH).

In Figure 17, we present a deterministic query rewriting algorithm PolyRewrite that takes
as input an NFA α and a DL-LiteR or ELH TBox T and outputs a set of queries, which will
be denoted PolyRewrite(α, T). As was the case in Section 6, the purpose of query rewriting
is to ensure that we only need to consider query matches that map answer variables to
ABox individuals. Since we are only interested in queries of the form ∃x. α(x, x), it turns
out that aside from the trivial rewriting α(x, x), it is sufficient to consider rewritings of the
forms C(x) or C(x) ∧ αs1,s2(x, x) in which C is a basic concept and s1 and s2 are states in
α. In Step 1, we initialize Frontier with all tuples (C, s0, sf) such that C is a basic concept,
s0 is the initial state of α, and sf is a final state. Then, at each iteration of the while loop,
we remove a tuple (C, s1, s2) from Frontier and add it to Visited to record that it has already
been examined. If C ∈ Loopα[s1, s2], then the corresponding query C(x) ∧ αs1,s2(x, x) is
equivalent (under T) to the simpler query C(x), and so we add to Q all queries D(x) that
ensure that ∃x.C(x) holds. If C 6∈ Loopα[s1, s2], then we add the corresponding query
C(x) ∧ αs1,s2(x, x) to Q. We next add to Frontier all those unvisited tuples (D, s5, s6) such
that a match for D(x) ∧ αs5,s6(x, x) that maps x to e implies the existence of a match
for C(x) ∧ αs1,s2(x, x) that maps x to a child of e in the anonymous part. This operation
intuitively ‘moves’ the query match one step closer to the ABox and can be viewed as the
analogue of Steps 6 and 7 in the algorithm Rewrite from Section 6.

A simple inspection of the algorithm PolyRewrite reveals that each tuple in BCT ×S×S
is examined at most once, and so there can be at most |BCT | · |S|2 iterations of the while
loop in Step 2. Since we know that all of the loop, entailment, and causation checks can be
carried out in polynomial time, we obtain the following:

Lemma A.2. The algorithm PolyRewrite runs in polynomial time in |α| and |T |, and hence
PolyRewrite(α, T) contains a polynomial number of queries.

The next two lemmas establish the correctness of the rewriting procedure.

Lemma A.3. If T ,A |= ∃x. α(x, x), then there exists a query q(x) ∈ PolyRewrite(α, T)
which has a match π in IT ,A with π(x) ∈ Ind(A).

Proof. Suppose that T ,A |= ∃x. α(x, x), and let π be a match for ∃x. α(x, x) in IT ,A. If
π(x) ∈ Ind(A), then the statement trivially holds since α(x, x) is added to Q in Step 1.
Thus, suppose that π(x) 6∈ Ind(A). We start by proving the following claim, which captures
how query matches in the anonymous part of the canonical model can be moved up closer
to individuals:

Claim: Suppose that (C, s1, s2) is added to Frontier at some point during the execution of
PolyRewrite on input (α, T). Further suppose that C 6∈ Loopα[s1, s2], and there is a match
τ for αs1,s2(x, x) in IT ,A such that τ(x) = dRC for some d ∈ ∆IT ,A . Then there is a tuple

368

Regular Path Queries in Lightweight Description Logics

Algorithm PolyRewrite(α, T)

Input: NFA α = (S,Σ, δ, s0, F), DL-LiteR or ELH TBox T

1. Set Q = {α(x, x)}, Visited = ∅, and Frontier = {(C, s0, sf) | C ∈ BCT , sf ∈ F}.

2. While Frontier 6= ∅

(a) Move a tuple (C, s1, s2) from Frontier to Visiteda.

(b) If C ∈ Loopα[s1, s2], then

• For every D ∈ BCT such that D T C, add D(x) to Q.

(c) If C 6∈ Loopα[s1, s2], then

• Add C(x) ∧ αs1,s2(x, x) to Q.

• For every tuple (D,R, s3, s4, s5, s6) ∈ BCT × N±R × S
4 such that

– C ∈ Loopα[s1, s3] and C ∈ Loopα[s4, s2],

– T |= D v ∃R and C = ∃R− [DL-LiteR] or T |= D v ∃R.C [ELH],

– there exist roles R′, R′′ with T |= R− v R′, T |= R v R′′, (s3, R
′, s5)∈ δ,

and (s6, R
′′, s4)∈ δ, and

– (D, s5, s6) 6∈ (Frontier ∪ Visited),

add (D, s5, s6) to Frontier.

3. Output Q.

a. We choose the least tuple in Frontier according to some arbitrary lexicographic ordering on BCT×S×S.
We note however that the particular choice of a tuple does not affect the output of the procedure.

Figure 17: Query rewriting algorithm PolyRewrite.

(D, s5, s6) that is added to Frontier at some point such that the query D(x) ∧ αs5,s6(x, x)
has a match τ ′ such that τ ′(x) = d, T |= D v ∃R.C, and either d ∈ Ind(A) or Tail(d) = D.

Proof of claim. Suppose that (C, s1, s2) and τ satisfy the conditions of the claim. Since
τ(x) = dRC, it follows from the definition of canonical models that there is a concept
D ∈ BCT such that d ∈ DIT ,A and either T |= D v ∃R and C = ∃R− (if T is formulated
in DL-LiteR), or T |= D v ∃R.C (for T an ELH TBox). Moreover, we may choose D
such that D = Tail(d) if d 6∈ Ind(A). We also know that τ is a match for αs1,s2(x, x), so
there exists a path p = e0u1e1u2 . . . unen with e0 = en = τ(x) whose label λ(p) belongs to
L(αs1,s2). Since λ(p) ∈ L(αs1,s2), we can find a sequence of states s′0s

′
1 . . . s

′
n with s′0 = s1

and s′n = s2 such that for every 1 ≤ i ≤ n, (s′i−1, ui, s
′
i) ∈ δ. Because C 6∈ Loopα[s1, s2], we

know that the match τ is not fully contained within IT ,A|π(x). Thus, there must be at least
one occurrence of the parent d of π(x) in the path p. Let ej and ek respectively be the first
and last occurrences of d in p (if there is a single occurrence of d, then j = k). Observe
that ej−1 = ek+1 = π(x). Set s3 = s′j−1, s4 = s′k+1, s5 = s′j , and s6 = s′k. The paths

e0u1e1 . . . uj−1ej−1 and ek+1uk+2ek+2 . . . unen witness that (π(x), π(x)) ∈ L(αs1,s3)IT ,A and
(π(x), π(x)) ∈ L(αs4,s2)IT ,A . As the paths e0 . . . ej−1 and ek+1 . . . en begin and end at π(x)

369

Bienvenu, Ortiz, & Šimkus

and are fully contained within IT ,A|π(x), we obtain C ∈ Loopα[s1, s3] and C ∈ Loopα[s4, s2].
Finally, we know from the definiton of paths and the construction of the canonical model
that there must exist roles R′, R′′ with T |= R− v R′, T |= R v R′′, (s3, R

′, s5)∈ δ, and
(s6, R

′′, s4)∈ δ.
By assumption, the tuple (C, s1, s2) is added to Frontier at some point, and it will

eventually be selected during Step 2. Moreover, since C 6∈ Loopα[s1, s2], we will enter 2(c)
when examining (C, s1, s2). From what we have shown above, we know that the tuple
(D,R, s3, s4, s5, s6) satisfies the first three requirements of the for-loop in Step 2(c). If the
fourth requirement also holds, then this means that (D, s5, s6) is added to Frontier, and
if it fails, then this is because this triple has already been added to Frontier earlier in the
execution of the algorithm. To complete the proof of the claim, we remark that the path
ejuj+1 . . . ukek witnesses that (d, d) ∈ L(αs5,s6)IT ,A . Moreover, we have seen that d ∈ DIT ,A .
It follows that by setting τ ′(x) = d, we obtain a match for the query D(x) ∧ αs5,s6(x, x)
with the required properties. (end proof of claim)

Observe that if τ ′ as described in the claim exists, then τ ′(x) is the parent of τ(x) in
the canonical model IT ,A. We can now finalize the proof. Indeed, since π(x) 6∈ Ind(A), we
have π(x) = dRC for some R ∈ N±R and C ∈ BCT . As π is a match for α(x, x), it must also
be a match for αs0,sf (x, x) for some sf ∈ F . In Step 1, the tuple (C, s0, sf) will be added to
Frontier. Repeated applications of the claim either yield a query q(x) ∈ PolyRewrite(α, T)
having a match τ mapping x to the ABox, or result in the insertion of a tuple (D, s1, s2) into
Frontier such that D(x)∧αs1,s2(x, x) has a match in IT ,A and D ∈ Loopα[s1, s2]. In the latter
case, let τ be a match for D(x)∧αs1,s2(x, x), and let a ∈ Ind(A) be such that τ(x) ∈ IT ,A|a.
Then it follows from the definition of canonical models that there is some E ∈ BCT such
that E T D and a ∈ EIT ,A . Thus, there is a match for E(x) ∈ PolyRewrite(α, T) that
maps x to a ∈ Ind(A).

Lemma A.4. If q(x) ∈ PolyRewrite(α, T) and π is a match for q(x) in IT ,A with π(x) ∈
Ind(A), then T ,A |= ∃x. α(x, x).

Proof. To simplify presentation we introduce the notion of containment of Boolean queries
w.r.t. a TBox. Given a TBox T and two Boolean queries q1, q2, we write q1 ⊆T q2 if for
every ABox A we have that T ,A |= q1 implies T ,A |= q2. With a slight abuse of notation
we allow q1 and q2 to contain atoms of the form ∃R(x). Each occurrence of ∃R(x) in a
query q is a shorthand for R(x, y) where y is a variable that occurs once in q.

We start by establishing the following claim:

Claim: If (C, s1, s2) is added to Frontier at some point during the execution of PolyRewrite
on input (α, T), then ∃x.C(x) ∧ αs1,s2(x, x) ⊆T ∃x. α(x, x).

Proof of claim. The proof is by induction on the precedence relation obtained by setting
(C, s, s′) ≺ (D, s′′, s′′′) if the tuple (D, s′′, s′′′) is added to Frontier during the examination
of tuple (C, s, s′). For the base case, we have the tuples (C, s0, sf) which are inserted in
Step 1. Every such tuple has the form (C, s0, sf), where sf ∈ F , and thus we trivially
have ∃x.C(x) ∧ αs0,sf (x, x) ⊆T ∃x. α(x, x). Next suppose that we have already shown the
property for (C, s1, s2), and let (D, s5, s6) be such that (C, s1, s2) ≺ (D, s5, s6). Further
suppose that there is a match π for D(x) ∧ αs5,s6(x, x) in IT ,A. Then we can find a path
p0 = e0u1e1u2 . . . unen with e0 = en = π(x) such that λ(p) ∈ L(αs5,s6). It follows that

370

Regular Path Queries in Lightweight Description Logics

there must exist a sequence of states s′0s
′
1 . . . s

′
n with s′0 = s5 and s′n = s6 such that for

every 1 ≤ i ≤ n, (s′i−1, ui, s
′
i) ∈ δ. Because (C, s1, s2) ≺ (D, s5, s6), there must exist

a tuple (D,R, s3, s4, s5, s6) such that (D, s5, s6) was added to Frontier when examining
(D,R, s3, s4, s5, s6). We know that this tuple must have satisfied the four conditions, and
so we must have

• T |= D v ∃R and C = ∃R− [DL-LiteR] or T |= D v ∃R.C [ELH],

• C ∈ Loopα[s1, s3] and C ∈ Loopα[s4, s2], and

• there exist roles R′, R′′ with T |= R− v R′, T |= R v R′′, (s3, R
′, s5)∈ δ, and

(s6, R
′′, s4)∈ δ.

By the first point, the element π(x)RC belongs to the canonical model, and by the second
point, we can find paths p1 = e′0 . . . u

′
me
′
m and p2 = e′′0 . . . u

′′
` e
′′
` such that e′0 = e′′0 = e′m =

e′′` = π(x)RC, λ(p1) ∈ L(αs1,s3), and λ(p2) ∈ L(αs4,s2). Using this and the third point, we
can show that the path p∗ = p1R

′p0R
′′p2 is such that λ(p∗) ∈ L(αs1,s2). Since p∗ begins

and ends at π(x)RC and π(x)RC ∈ CIT ,A , it follows that T ,A |= ∃x.C(x) ∧ αs1,s2(x, x).
By the induction hypothesis, ∃x.C(x) ∧ αs1,s2(x, x) ⊆T ∃x. α(x, x), so we must also have
T ,A |= ∃x. α(x, x). This establishes the desired containment ∃x.D(x) ∧ αs5,s6(x, x) ⊆T
∃x. α(x, x). (end proof of claim)

Now suppose that π is a match for q(x) ∈ PolyRewrite(α, T) in IT ,A such that π(x) ∈
Ind(A). There are three possibilities. The first is that q(x) = α(x, x), in which case we
trivially have T ,A |= ∃x. α(x, x). The next possibility is that q(x) = ∃x.C(x) ∧ αs,s′(x, x),
in which case we can apply the preceding claim to show that T ,A |= ∃x. α(x, x). The final
possibility is that q(x) = D(x), in which case there must have been some (C, s, s′) ∈
Frontier such that C ∈ Loopα[s, s′] and ∃x.D(x) ⊆T ∃x.C(x). In this case, we have
∃x.D(x) ⊆T ∃x.C(x), ∃x.C(x) ⊆T ∃x.C(x) ∧ αs,s′(x, x) (since C ∈ Loopα[s, s′]), and
∃x.C(x) ∧ αs,s′(x, x) ⊆T ∃x. α(x, x) (by the claim). Putting these statements together, we
obtain ∃x.D(x) ⊆T ∃x. α(x, x), which yields T ,A |= ∃x. α(x, x).

To complete the argument, we observe that the queries output by PolyRewrite are either
2RPQs or take the form C(x) or C(x)∧αs,s′(x, x), and queries of the latter forms are trivially
transformed into 2RPQs. It follows that we can answer a query of the form ∃x. α(x, x) by
(i) computing the set PolyRewrite(α, T), and (ii) using EvalAtom to check, for each 2RPQ
α′(x, x) obtained from PolyRewrite(α, T), whether cert(α′(x, x), (T ,A)) 6= ∅. Correctness of
this procedure follows from Proposition 5.8 and Lemmas A.3 and A.4, and the complexity
bounds then follow from Lemma A.2 and Theorem 5.9.

References

Abiteboul, S., Hull, R., & Vianu, V. (1995). Foundations of Databases. Addison-Wesley.

Arora, S., & Barak, B. (2009). Computational Complexity - A Modern Approach. Cambridge
University Press.

Artale, A., Calvanese, D., Kontchakov, R., & Zakharyaschev, M. (2009). The DL-Lite family
and relations. Journal of Artificial Intelligence Research (JAIR), 36, 1–69.

371

Bienvenu, Ortiz, & Šimkus

Baader, F., Brandt, S., & Lutz, C. (2005). Pushing the EL envelope. In Proceedings of the
Nineteenth International Joint Conference on Artificial Intelligence (IJCAI 2005).

Bala, S. (2002). Intersection of regular languages and star hierarchy. In Proceedings of the
Twenty-Ninth International Colloquium on Automata, Languages and Programming
(ICALP 2002).

Barceló, P. (2013). Querying graph databases. In Proceedings of the Thirty-Second Sympo-
sium on Principles of Database Systems (PODS 2013).

Barceló, P., Libkin, L., Lin, A. W., & Wood, P. T. (2012). Expressive languages for path
queries over graph-structured data. ACM Transactions on Database Systems (TODS),
37 (4), 31.

Barceló, P., & Muñoz, P. (2014). Graph logics with rational relations: The role of word
combinatorics. In Proceedings of the Twenty-Ninth Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS 2014).

Barceló, P., Pérez, J., & Reutter, J. L. (2012). Relative expressiveness of nested regular
expressions. In Proceedings of the Sixth Alberto Mendelzon International Workshop
on Foundations of Data Management (AMW 2012).

Berglund, A., Boag, S., Chamberlin, D., Fernández, M. F., Kay, M., Robie, J., & Siméon,
J. (2007). XML Path Language (XPath) 2.0. W3C Recommendation. Available at
http://www.w3.org/TR/xpath20/.

Bienvenu, M., Calvanese, D., Ortiz, M., & Šimkus, M. (2014). Nested regular path queries
in description logics. In Proceedings of the Fourteenth International Conference on
the Principles of Knowledge Representation and Reasoning (KR 2014).

Bienvenu, M., Ortiz, M., & Šimkus, M. (2012). Answering expressive path queries over
lightweight DL knowledge bases. In Proceedings of the Twenty-Fifth International
Workshop on Description Logics (DL 2012).

Bienvenu, M., Ortiz, M., & Šimkus, M. (2013). Conjunctive regular path queries in
lightweight description logics. In Proceedings of the Twenty-Third International Joint
Conference on Artificial Intelligence (IJCAI 2013).

Bourhis, P., Krötzsch, M., & Rudolph, S. (2014). How to best nest regular path queries.
In Proceedings of the Twenty-Seventh International Workshop on Description Logics
(DL 2014).

Brickley, D., & Guha, R. (2014). RDF Schema 1.1. W3C Recommendation. Available at
http://www.w3.org/TR/rdf-schema/.

Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., & Rosati, R. (2006). Data
complexity of query answering in description logics. In Proceedings of the Tenth
International Conference on Principles of Knowledge Representation and Reasoning
(KR 2006).

Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., & Rosati, R. (2007). Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
Journal of Automated Reasoning, 39 (3), 385–429.

372

Regular Path Queries in Lightweight Description Logics

Calvanese, D., De Giacomo, G., & Lenzerini, M. (1998). On the decidability of query con-
tainment under constraints. In Proceedings of the Seventeenth Symposium on Princi-
ples of Database Systems (PODS 1998).

Calvanese, D., Eiter, T., & Ortiz, M. (2007). Answering regular path queries in expressive
description logics: An automata-theoretic approach. In Proceedings of the Twenty-
Second AAAI Conference on Artificial Intelligence (AAAI 2007).

Calvanese, D., Eiter, T., & Ortiz, M. (2009). Regular path queries in expressive descrip-
tion logics with nominals. In Proceedings of the Twenty-First International Joint
Conference on Artificial Intelligence (IJCAI 2009).

Calvanese, D., Eiter, T., & Ortiz, M. (2014). Answering regular path queries in expressive
description logics via alternating tree-automata. Information and Computation, 237,
12–55.

Consens, M. P., & Mendelzon, A. O. (1990). GraphLog: A visual formalism for real life
recursion. In Proceedings of the Ninth Symposium on Principles of Database Systems
(PODS 1990).

Ehrenfeucht, A., & Zeiger, P. (1974). Complexity measures for regular expressions. In
Proceedings of the Sixth Annual ACM Symposium on Theory of Computing (STOC
1974).

Eiter, T., Ortiz, M., Šimkus, M., Tran, T., & Xiao, G. (2012). Query rewriting for Horn-
SHIQ plus rules. In Proceedings of the Twenty-Sixth AAAI Conference on Artificial
Intelligence (AAAI 2012).

Florescu, D., Levy, A., & Suciu, D. (1998). Query containment for conjunctive queries with
regular expressions. In Proceedings of the Seventeenth Symposium on Principles of
Database Systems (PODS 1998).

Haase, C., & Lutz, C. (2008). Complexity of subsumption in the EL family of descrip-
tion logics: Acyclic and cyclic TBoxes. In Proceedings of the Eighteenth European
Conference on Artificial Intelligence (ECAI 2008).

Harris, S., & Seaborne, A. (2013). SPARQL 1.1 Query Language. W3C Recommendation.
Available at http://www.w3.org/TR/sparql11-query/.

Kikot, S., Kontchakov, R., Podolskii, V. V., & Zakharyaschev, M. (2013). Query rewriting
over shallow ontologies. In Proceedings of the Twenty-Sixth International Workshop
on Description Logics (DL 2013).

Kostylev, E. V., Reutter, J. L., & Vrgoc, D. (2015). XPath for DL ontologies. In Proceedings
of the Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI 2015).

Kozen, D. (1977). Lower bounds for natural proof systems. In Proceedings of the Eighteenth
Annual Symposium on Foundations of Computer Science (SFCS 1977).

Krisnadhi, A., & Lutz, C. (2007). Data complexity in the EL family of DLs. In Proceedings
of the Twentieth International Workshop on Description Logics (DL 2007).

Krötzsch, M. (2012). OWL 2 Profiles: An introduction to lightweight ontology languages.
In Proceedings of the Eighth Reasoning Web Summer School (RW 2012).

373

Bienvenu, Ortiz, & Šimkus

Krötzsch, M., & Rudolph, S. (2007). Conjunctive queries for EL with composition of roles.
In Proceedings of the Twentieth International Workshop on Description Logics (DL
2007).

Levy, A. Y., & Rousset, M. (1996). The limits on combining recursive Horn rules with
description logics. In Proceedings of the Thirteenth National Conference on Artificial
Intelligence and Eighth Innovative Applications of Artificial Intelligence Conference
(AAAI 96).

Lutz, C. (2008). The complexity of conjunctive query answering in expressive description
logics. In Proceedings of the Fourth Joint Conference on Automated Reasoning (IJCAR
2008).

Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., & Lutz, C. (2012). OWL 2
Web Ontology Language Profiles. W3C Recommendation. Available at http://www.
w3.org/TR/owl2-profiles/.

Ortiz, M. (2013). Ontology based query answering: The story so far. In Proceedings of the
Seventh Alberto Mendelzon International Workshop on Foundations of Data Manage-
ment (AMW 2013).

Ortiz, M., Rudolph, S., & Šimkus, M. (2011). Query answering in the Horn fragments of
the description logics SHOIQ and SROIQ. In Proceedings of the Twenty-Second
International Joint Conference on Artificial Intelligence (IJCAI 2011).

Ortiz, M., & Šimkus, M. (2012). Reasoning and query answering in description logics. In
Proceedings of the Eighth Reasoning Web Summer School (RW 2012).

Ortiz, M., & Šimkus, M. (2014). Revisiting the hardness of query answering in expressive
description logics. In Proceedings of the Eighth International Conference on Web
Reasoning and Rule Systems (RR 2014).

OWL Working Group, W. (2009). OWL 2 Web Ontology Language: Document Overview.
W3C Recommendation. Available at http://www.w3.org/TR/owl2-overview/.

Pérez, J., Arenas, M., & Gutierrez, C. (2010). nSPARQL: A navigational language for RDF.
Journal of Web Semantics, 8 (4), 255–270.

Reutter, J. L. (2013). Containment of nested regular expressions. CoRR, abs/1304.2637.

Rosati, R. (2007). On conjunctive query answering in EL. In Proceedings of the Twentieth
International Workshop on Description Logics (DL 2007).

Stefanoni, G., Motik, B., Krötzsch, M., & Rudolph, S. (2014). The complexity of answering
conjunctive and navigational queries over OWL 2 EL knowledge bases. Journal of
Artificial Intelligence Research (JAIR), 51, 645–705.

Thompson, K. (1968). Regular expression search algorithm. Communications of the ACM,
11 (6), 419–422.

374

