
New inconsistency-tolerant semantics for
robust ontology-based data access

Meghyn Bienvenu1 and Riccardo Rosati2

1 Laboratoire de Recherche en Informatique
CNRS & Université Paris-Sud, France

2 Dipartimento di Ingegneria Informatica, Automatica e Gestionale
Sapienza Università di Roma, Italy

1 Introduction

In ontology-based data access (OBDA) [17], an ontology provides an abstract and for-
mal representation of the domain of interest, which is used as a virtual schema when
formulating queries over the data. Current research in OBDA mostly focuses on ontol-
ogy specification languages for which conjunctive query answering is first-order (FO)
rewritable. In a nutshell, FO-rewritability means that query answering can be performed
by rewriting the input query into a first-order query which encodes the relevant knowl-
edge from the ontology, and then evaluating the resulting query over the data. Among
FO-rewritable ontology languages, description logics (DLs) of the DL-Lite family [8,
2] have played an especially prominent role and notably served as the inspiration for
the OWL 2 QL profile 3 of the latest version of the OWL web ontology language.

In real-world applications involving large amounts of data and/or multiple data
sources, chances are that the data will be inconsistent with the ontology. Standard
OBDA querying algorithms are next to useless in such circumstances, since first-order
logic semantics (upon which DLs and standard ontology languages are based) dictates
that everything can be derived from a contradiction. Appropriate mechanisms for han-
dling inconsistent data are thus critical to the success of OBDA in practice. Clearly, the
best solution is to restore consistency by removing the pieces of data that are responsi-
ble for the inconsistencies. However, this strategy cannot always be applied, since the
system may not have enough information to localize the errors, or may lack the autho-
rization to modify the data (as is often the case in information integration applications).
Thus, a robust OBDA system must be capable of providing meaningful answers to user
queries in the presence of inconsistent data.

Recently, several approaches have pursued the idea of adopting an inconsistency-
tolerant semantics for OBDA, taking inspiration from the work on consistent query an-
swering in databases [1, 4]. The most well-known and intuitive among such semantics,
which we will call the CQA semantics, considers as a repair of a knowledge base (KB)
consisting of an ontology T and a dataset A, a maximal subset of A that is consistent
with T . Query answering under the CQA semantics then amounts to computing those
answers that hold in every repair of the KB. Unfortunately, conjunctive query answer-
ing (as well as simpler forms of reasoning) under CQA semantics is computationally

3 http://www.w3.org/TR/owl2-profiles/

hard, even for extremely simple ontology languages for which reasoning under classical
semantics is tractable [13, 5].

To overcome this computational problem, approximations of the CQA semantics
have been recently proposed. In particular, [13, 14] introduces a sound approximation
(called IAR semantics) that evaluates queries over the intersection of all the repairs of
the CQA semantics. It was shown that conjunctive query answering under this seman-
tics is tractable (in particular, it is first-order rewritable) for logics of the DL-Lite family.
However, the IAR semantics has the drawback that it often constitutes a very rough ap-
proximation of the CQA semantics, and desirable query answers may be missed. In
an effort to obtain more answers than the IAR semantics, a family of parameterized
inconsistency-tolerant semantics, called k-lazy consistent semantics, was proposed in
[15] and shown to converge in the limit to the CQA semantics. However, since the con-
vergence is not monotone in k, these semantics are not sound approximations of the
CQA semantics. Moreover, these semantics do not retain the nice computational prop-
erties of the IAR semantics: the polynomial data complexity result shown for linear
Datalog+/- ontologies only holds for atomic queries, and it follows from results in [5]
that conjunctive query answering under k-lazy consistent semantics is coNP-hard in
data complexity, for every k ≥ 1.

In this paper, we address the above issues and provide the following contributions:
(i) we propose two new families of inconsistency-tolerant semantics, called k-defeater

and k-support semantics, that approximate the CQA semantics from above (complete
approximations) and from below (sound approximations), respectively, and converge to
the CQA semantics in the limit;

(ii) we study the data complexity of conjunctive query answering under the new
semantics, and show a general tractability result for a broad class of ontology languages
that includes all known first-order rewritable languages, in particular almost all DLs of
the DL-Lite family and several rule-based languages of the Datalog+/- family [6];

(iii) we analyze the combined complexity of conjunctive query answering under the
above semantics for ontology languages of the DL-Lite family.

The k-support and k-defeater semantics proposed in this paper provide the basis
for a semantically grounded and computationally tractable approximation of the CQA
semantics in OBDA systems. In particular, we envision a flexible, iterated execution
of query q under both k-support and k-defeater semantics with increasing values of k,
which stops as soon as the answers to q under both semantics coincide, or when the
user is not interested in (or does not want to pay further computational cost for) an
exact classification of the tuples that are answers to q under the CQA semantics.

2 Preliminaries

Ontologies and KBs An ontology T is a finite set of first-order logic sentences, and
an ontology (specification) language L is a (typically infinite) set of first-order logic
sentences. If T ⊆ L, then T is called an L ontology. A knowledge base (KB) is a pair
consisting of an ontology T and a finite set A of ground facts. A KB 〈T ,A〉 is said to
be consistent if the first-order theory T ∪ A has a model. Otherwise, it is inconsistent,
which we denote by 〈T ,A〉 |= ⊥.

We are interested in the problem of answering instance queries and conjunctive
queries over KBs. Without loss of generality, and for ease of exposition, we only con-
sider Boolean queries (i.e. queries without free variables). A first-order (FO) query,
or simply query, is a first-order sentence. An instance query (IQ) is a FO query con-
sisting of a single ground fact. A conjunctive query (CQ) is a FO query of the form
∃x(α1 ∧ . . . ∧ αn) where every αi is an atom whose arguments are either constants or
variables from x. A query q is entailed by a KB K under classical semantics (denoted
by K |= q) if q is satisfied in every model of K. The instance checking problem consists
in deciding, for a KB K and IQ q, whether K |= q. The conjunctive query entailment
problem is defined analogously, but with q a CQ.

We introduce some terminology for referring to sets of facts which are responsible
for inconsistency or query entailment. A set S of ground facts is called T -consistent if
〈T , S〉 6|= ⊥. A minimal T -inconsistent subset ofA is any S ⊆ A such that 〈T , S〉 |= ⊥
and every S′ (S is T -consistent. A set of facts S ⊆ A is said to be a T -support for
query q in A if S is T -consistent and 〈T , S〉 |= q, and it is called a minimal T -support
for q in A if no proper subset of S is a T -support for q in A. We sometimes omit “for
q” or “in A”, when these are understood.

Given a set of ground facts A, we define IA as the interpretation isomorphic to A,
i.e., the interpretation defined over the domain of constants occurring inA and such that
the interpretation of every relation R in IA is equal to the set {a | R(a) ∈ A}.

DL-Lite ontology languages We focus on DLs of the DL-Lite family [8, 2] and recall
the syntax and semantics of two specific dialects, called DL-Lite4 and DL-LiteHorn . A
DL-Lite ontology consists of a finite set of inclusions B v C, where B and C are
defined according to the following syntax:

B → A | ∃R C → B | ¬B R→ P | P−

with A a concept name (unary relation) and P a role name (binary relation). In a
DL-LiteHorn ontology, inclusions take the form B1 u . . . u Bn v C, with B1, . . . , Bn
and C as above.

The classical semantics of DL-Lite and DL-LiteHorn ontologies is obtained by trans-
lating inclusions into first-order sentences using the following function Φ:

Φ(A(x)) = A(x) Φ(¬B(x)) = ¬Φ(B(x))
Φ(∃P (x)) = ∃y(P (x, y)) Φ(B1 uB2(x)) = Φ(B1(x)) ∧ Φ(B2(x))

Φ(∃P−(x)) = ∃y(P (y, x)) Φ(C v D) = ∀x(Φ(C(x))→ Φ(D(x))

The classical semantics of a DL-LiteHorn KB 〈T ,A〉 (and in particular, the notions of
model, consistency, and entailment) corresponds to the semantics of the first-order KB
〈Φ(T),A〉. Note that when considering DL KBs, we assume as is standard that the
dataset A uses only unary and binary relations.

First-order rewritability We say that an ontology T is first-order (FO) rewritable
(for CQ answering) under semantics S if, for every CQ q, there exists an effectively
computable FO query q′ such that, for every set of ground facts A, 〈T ,A〉 entails q

4 This DL is referred to as DL-Litecore in [8, 2].

under semantics S iff q′ is satisfied in IA (in the classical sense). Such a query q′ is
called a FO-rewriting of q relative to T under semantics S. Moreover, we say that an
ontology language L is FO-rewritable (for CQ answering) under semantics S if, for
every ontology T ⊆ L, T is FO-rewritable for CQ answering under S.

Complexity There are two common ways of measuring the complexity of query entail-
ment. The first, called combined complexity, is with respect to the size of the whole input
(T ,A, q), whereas the second, called data complexity, is only with respect to the size
ofA. Our complexity results utilize standard complexity classes, such as NLSPACE, P,
NP, and coNP. We also require the following classes which may be less well-known:
AC0 (problems which can be solved by a family of circuits of constant depth and poly-
nomial size, with unlimited fan-in AND gates and OR gates), Πp

2 (problems whose
complement is solvable in non-deterministic polynomial time with access to an NP or-
acle), and ∆p

2[O(log n)] (problems which are solvable in polynomial time with at most
logarithmically many calls to an NP oracle).

3 Inconsistency-tolerant Semantics

In this section, we formally introduce the consistent query answering (CQA) semantics
and other relevant inconsistency-tolerant semantics. All of the semantics considered in
this paper rely on the notion of a repair, defined as follows:

Definition 1. A repair of a KB K = 〈T ,A〉 is an inclusion-maximal subset of A that is
T -consistent. We use Rep(K) to denote the set of repairs of K.

The repairs of a KB correspond to the different ways of achieving consistency while
retaining as much of the original data as possible. Hence, if we consider that the data is
mostly reliable, then it is reasonable to assume that one of the repairs accurately reflects
the correct portion of the data.

The consistent query answering semantics (also known as the AR semantics [13])
is based upon the idea that, in the absence of further information, a query can be con-
sidered to hold if it can be inferred from each of the repairs. Formally:

Definition 2. A query q is entailed by a KB K = 〈T ,A〉 under the consistent query
answering (CQA) semantics, written 〈T ,A〉 |=CQA q, if 〈T ,B〉 |= q for every repair
B ∈ Rep(K).

Example 1. Consider the DL-Lite ontology Tuniv:

Prof v Faculty Lect v Faculty Fellow v Faculty Prof v ¬Lect Prof v ¬Fellow
Lect v ¬Fellow Prof v ∃teaches Lect v ∃teaches ∃teaches− v ¬Faculty

which states that professors, lecturers, and research fellows are disjoint classes of fac-
ulty, that professors and lecturers must teach something, and that whatever is taught is
not faculty. Now let Asam be as follows: {Prof(sam), Lect(sam),Fellow(sam)}. It is
easy to see that KB 〈Tuniv,Asam〉 is inconsistent and has 3 repairs:R1 = {Prof(sam)},
R2 = {Lect(sam)} and R3 = {Fellow(sam)}. Observe that from each of the re-
pairs, we can infer q1 = Faculty(sam), so 〈Tuniv,Asam〉 |=CQA q1. However, q2 =

∃x.Faculty(sam) ∧ teaches(sam, x) is not entailed from 〈Tuniv,R3〉, so we have that
〈Tuniv,Asam〉 6|=CQA q2.

Unfortunately, while the CQA semantics is intuitively appealing, it is well-known
that answering queries under this semantics is usually intractable w.r.t. data complexity
[13, 5]. This stems from the fact that the number of repairs of 〈T ,A〉may be exponential
in the size of A, even when T is formulated in extremely simple ontology languages.

To overcome the computational problems of the CQA semantics, a sound approxi-
mation of it, called the IAR semantics, was proposed in [13].

Definition 3. A query q is entailed by a KB K = 〈T ,A〉 under the IAR semantics,
written 〈T ,A〉 |=IAR q, if 〈T ,D〉 |= q where D =

⋂
B∈Rep(K) B.

The IAR semantics is more conservative than the CQA semantics, as it only uses
those facts which are not involved in any contradiction. This has the advantage of yield-
ing query results which are almost surely correct, but also the drawback that some
plausible inferences may be missed, as demonstrated by the following example.

Example 2. Reconsider the KB 〈Tuniv,Asam〉 and CQ q1 from Example 1. The intersec-
tion of the repairsR1 ∩R2 ∩R3 is the empty set, so 〈Tuniv,Asam〉 6|=IAR q1, despite the
fact that all the information in Asam supports q1 being true.

From the computational perspective, the IAR semantics can be much better-behaved
than the CQA semantics. Indeed, it was shown in [14] that DL-LiteA is FO-rewritable
for CQ answering under the IAR semantics, and this result was recently extended to
linear Datalog +/- ontologies [16].

Finally, to obtain a natural overapproximation of the CQA semantics, we introduce
its brave version.

Definition 4. A query q is entailed by a KB K = 〈T ,A〉 under the brave semantics,
written 〈T ,A〉 |=brave q, if 〈T ,B〉 |= q for some repair B ∈ Rep(K).

Example 3. As q2 is entailed by 〈Tuniv,R1〉, we have 〈Tuniv,Asam〉 |=brave q2. Also note
that every fact inAsam appear in some repair, hence, all facts inAsam are entailed under
the brave semantics.

As Example 3 demonstrates, the brave semantics has the undesirable feature of
allowing contradictory statements to be entailed. Nonetheless, this semantics can still
serve a useful role by providing a means of showing that a query is not entailed under
the CQA semantics.

4 Approximations of the CQA Semantics

In this section, we propose two new families of inconsistency-tolerant semantics, which
provide increasingly fine-grained under- and over-approximations of the CQA seman-
tics. As these semantics will be shown in Section 5 to enjoy the same nice computational
properties as the IAR semantics, our new approach allows us to marry the advantages
of the IAR and CQA semantics.

We begin by presenting our new family of sound approximations of the CQA se-
mantics. The intuition is as follows: if a query q is entailed under the CQA semantics,
then this is because there is a set {S1, . . . , Sn} of T -supports for q such that every re-
pair contains some Si. The k-support semantics we propose is obtained by allowing a
maximum of k different supports to be used.

Definition 5. A query q is entailed by K = 〈T ,A〉 under the k-support semantics,
written K |=k-supp q, if there exist (not necessarily distinct) subsets S1, . . . , Sk of A
satisfying the following conditions:

– each Si is a T -support for q in A
– for every R ∈ Rep(K), there is some Si with Si ⊆ R

Example 4. The three repairs of 〈Tuniv,Asam〉 all use different supports for q1. We thus
have 〈Tuniv,Asam〉 |=3-supp q1, but 〈Tuniv,Asam〉 6|=2-supp q1.

The following theorem resumes the important properties of the family of k-support
semantics, showing that they interpolate between the IAR and CQA semantics.

Theorem 1. Let K = 〈T ,A〉 be a KB and q a query. Then:
1. K |=IAR q if and only if K |=1-supp q
2. K |=CQA q if and only if K |=k-supp q for some k
3. for every k ≥ 0, if K |=k-supp q, then K |=k+1-supp q

The k-support semantics allows us to approximate more and more closely the set of
queries entailed under the CQA semantics, but provides no way of showing that a par-
ticular query is not entailed under this semantics. This motivates the study of complete
approximations of the CQA semantics.

The observation underlying our new family of complete approximations is the fol-
lowing: if a query q is not entailed under the CQA semantics, this is because there is
a T -consistent set of facts which contradicts all of the T -supports of q. The k-defeater
semantics corresponds to there being no way to construct such a “defeating” set using
at most k facts.

Definition 6. A query q is entailed by K = 〈T ,A〉 under the k-defeater semantics,
written K |=k-def q, if there does not exist a T -consistent subset S of A with |S| ≤ k
such that 〈T , S ∪ C〉 |= ⊥ for every minimal T -support C ⊆ A of q.

Note that if q has no T -support, then it is not entailed under 0-defeater semantics
since one can simply take S = ∅.

Example 5. We have 〈Tuniv,Asam〉 6|=1-def q2, since by choosing S = {Fellow(sam)},
we can invalidate the minimal T -supports of q2, which are {Prof(sam)} and {Lect(sam)}.

The next theorem shows that the family of k-defeater semantics provides increas-
ingly closer over-approximations of the CQA semantics, starting from the brave seman-
tics presented in Section 3.

Theorem 2. Let K = 〈T ,A〉 be a KB and q a query. Then:
1. K |=brave q if and only if K |=0-def q
2. K |=CQA q if and only if K |=k-def q for every k
3. for every k ≥ 1, if K |=k+1-def q, then K |=k-def q

5 Data Complexity

In this section, we study the data complexity of conjunctive query answering under the
k-support and k-defeater semantics. Our main result is the following theorem which
shows that, for a broad class of ontology languages, conjunctive query answering un-
der these semantics can be done using FO-rewriting, and hence is in AC0 w.r.t. data
complexity.

Theorem 3. Let T be an ontology that is FO-rewritable for CQ answering under clas-
sical semantics and such that for every CQ q, there exist `,m such that for every A,
every minimal T -support for q relative to A has cardinality at most `, and every mini-
mal T -inconsistent subset of A has cardinality at most m. Then:
(i) for every k ≥ 1, T is FO-rewritable for conjunctive query answering under the

k-support semantics;
(ii) for every k ≥ 0, T is FO-rewritable for conjunctive query answering under the

k-defeater semantics.

Proof (sketch). Let T be as stated, and let q be a CQ. By assumption, we can find ` and
m such that for every A, the minimal T -supports for q relative to A have cardinality
at most `, and the minimal T -inconsistent subsets of A have cardinality bounded by
m. For point (i), a FO-rewriting of q relative to T for the k-support semantics can be
obtained by considering the first-order query ϕq = q1 ∨ . . . ∨ qn, where the disjuncts
qi correspond to the different possible choices of k T -supports for q of cardinality at
most `, and each qi asserts that the chosen supports are present in A and that there is
no T -consistent subset of A of cardinality at most km which conflicts with each of the
supports. For point (ii), the desired FO-rewriting of q takes the form ¬(q1 ∨ . . . ∨ qn),
where every qi asserts the existence of a T -consistent set of facts of cardinality at most
k which conflicts with every minimal T -support for q. Here we again utilize the fact
that the size of minimal T -supports is bounded by `, and hence there are only finitely
many types of supports to consider.

Theorem 3 significantly strengthens earlier positive results for the IAR semantics
[14, 15] by covering a full range of semantics and an entire class of practically rele-
vant ontology languages. Indeed, it is easy to verify that all ontology languages that
are currently known to be first-order rewritable under classical semantics satisfy the hy-
potheses of Theorem 3: that is, all logics of the original DL-Lite family [8] and almost
all members of the extended DL-Lite family [2], as well as all dialects of Datalog+/-
that are known to be FO-rewritable under classical semantics [7].

The following examples illustrate the construction of FO-rewritings for the k-support
and k-defeater semantics.

Example 6. We consider how to rewrite the CQ q1 under the k-support semantics.
When k = 1, we can take as our FO-rewriting the disjunction of the formulas:

Faculty(sam) ∧ ¬∃x teaches(x, sam)

Prof(sam) ∧ ¬∃x teaches(x, sam) ∧ ¬Lect(sam) ∧ ¬Fellow(sam)

Lect(sam) ∧ ¬∃x teaches(x, sam) ∧ ¬Prof(sam) ∧ ¬Fellow(sam)

Fellow(sam) ∧ ¬∃x teaches(x, sam) ∧ ¬Lect(sam) ∧ ¬Prof(sam)

Note that each disjunct expresses that one of the four possible T -supports is present and
is not contradicted by other facts. To obtain the rewriting for k = 2, we must introduce
additional disjuncts which assert that a pair of T -supports is present and cannot be
simultaneously contradicted. We obtain three new disjuncts (the other combinations
being subsumed by one of the other disjuncts):

Prof(sam) ∧ Lect(sam) ∧ ¬∃x teaches(x, sam) ∧ ¬Fellow(sam)

Lect(sam) ∧ Fellow(sam) ∧ ¬∃x teaches(x, sam) ∧ ¬Prof(sam)

Fellow(sam) ∧ Prof(sam) ∧ ¬∃x teaches(x, sam) ∧ ¬Lect(sam)

Finally, for k = 3, we must add further disjuncts to check for the existence of a triple
of T -supports which are present and cannot be defeated. In our case, this leads to one
new (non-subsumed) disjunct:

Prof(sam) ∧ Lect(sam) ∧ Fellow(sam) ∧ ¬∃x teaches(x, sam)

Note that this last disjunct is satisfied in IAsam , witnessing 〈Tuniv,Asam〉 |=3-supp q1.
Notice also that in this particular example, the CQA and 3-support semantics coincide,
and so the FO-rewriting for k = 3 is also a FO-rewriting under the CQA semantics.

Example 7. We now consider how to rewrite the query q2 under the k-defeater seman-
tics. When k = 0, the construction yields the following FO-rewriting:

¬
(
¬(∃xFaculty(sam) ∧ teaches(sam, x)) ∧ ¬Prof(sam)
∧ ¬Lect(sam) ∧ ¬(∃xFellow(sam) ∧ teaches(sam, x))

)
Inside the negation, there is a single disjunct which asserts that the empty set conflicts
with every T -support, or equivalently, that there are no T -supports. When k = 1, we
must add further disjuncts inside the negation to capture single facts which conflict with
all T -supports. In our case, we must add two new disjuncts:

∃x teaches(x, sam) Fellow(sam) ∧ ¬teaches(sam, x)

The first disjunct is needed since any fact of the form teaches(x, sam) contradicts
Faculty(sam), and hence, every T -support for q2. The second disjunct treats the case
where there is no atom teaches(x, sam), in which case the only possible T -supports
for q2 are Prof(sam) and Lect(sam), both of which are contradicted by Fellow(sam).
Notice that this last disjunct holds in IAsam , which proves that 〈Tuniv,Asam〉 6|= q2.

We briefly remark that polynomial data complexity is not preserved under the new
semantics. Indeed, in the lightweight DL EL⊥, CQ answering and unsatisfiability are
P-complete w.r.t. data complexity, but it was shown in [18] that instance checking under
the IAR (equiv. 1-support) semantics is coNP-hard w.r.t. data complexity, and it is not
hard to show intractability also for the brave (equiv. 0-defeater) semantics.

6 Combined Complexity

To gain further insight into the computational properties of the different inconsistency-
tolerant semantics considered in this paper, we study the combined complexity of in-
stance checking and CQ entailment for DL-Lite and DL-LiteHorn KBs under these se-
mantics. The results of our analysis are reported in Figure 1.

IAR k-supp (k > 1) CQA k-def (k > 0) brave

IC DL-Lite NLSPACE NLSPACE coNP NLSPACE NLSPACE

DL-LiteHorn coNP ≥ coNP coNP NP NP
≤ ∆p

2[O(log n)]

CQ DL-Lite NP NP Πp
2 NP NP

DL-LiteHorn ∆p
2[O(log n)] ∆p

2[O(log n)] Πp
2 NP NP

Fig. 1. Combined complexity of instance checking (IC) and conjunctive query entailment (CQ)
under various inconsistency-tolerant semantics. All results are completeness results, unless oth-
erwise noted.

Before presenting the results in more detail, let us begin with some general ob-
servations. First, it is interesting to note that for DL-Lite KBs, the complexities ob-
tained for the IAR, k-support, brave, k-defeater, and classical semantics all coincide,
and are strictly lower than the complexity w.r.t. the CQA semantics. By contrast, for
DL-LiteHorn KBs, instance checking under any of the considered inconsistency-tolerant
semantics is of higher complexity than under classical semantics. Moreover, we lose the
symmetry between the sound and complete approximations. Indeed, for CQ entailment,
the complexities of the sound approximations (IAR and k-support) is higher than for
the complete approximations (brave and k-defeater semantics).

Finally, we remark that in several cases, and in particular, for the k-support seman-
tics, the complexity for DL-LiteHorn is higher than for DL-Lite. This can be explained
by the fact that for DL-Lite KBs, the size of a minimal T -support of a query is linear in
the size of the query and independent of T , whereas for DL-LiteHorn KBs, the bound
on minimal T -supports depends also on the size of T . Overall, these results suggest
that while the k-support and k-defeater semantics are tractable w.r.t. data complexity
for both DL-Lite and DL-LiteHorn , it will likely be much easier to obtain practical al-
gorithms for DL-Lite KBs.

We now present our different complexity results and some brief ideas concerning
the proofs. We start by showing that for DL-Lite, instance checking under the proposed
semantics has the same low complexity as under classical semantics.

Theorem 4. In DL-Lite, instance checking under the k-support semantics is NLSPACE-
complete w.r.t. combined complexity, for every k ≥ 1. The same holds for the k-defeater
semantics, for every k ≥ 0.

Proof (idea). The proof exploits the fact that when T is a DL-Lite ontology, minimal
T -supports for IQs consist of single facts, and minimal T -inconsistent subsets contain
at most two facts. This means in particular that every k-tuple of minimal T -supports
contains at most k facts, and at most k facts are needed to contradict all k supports.
This enables a NLSPACE procedure which guesses k facts and verifies that each fact is
a T -support, and that there is no set with at most k facts which contradicts all of the
guessed facts. The upper bound for the k-defeater semantics uses similar ideas.

In DL-LiteHorn , instance checking is intractable already for the IAR and brave se-
mantics, and the lower bounds can be used to show intractability also for the k-support

and k-defeater semantics. For the k-defeater semantics, Theorem 6 provides a matching
upper bound, while the precise complexity for the k-support semantics remains open.

Theorem 5. Instance checking in DL-LiteHorn is coNP-complete w.r.t. combined com-
plexity under the IAR semantics, coNP-hard w.r.t. combined complexity under k-support
semantics, and NP-complete w.r.t. combined complexity under both the brave semantics
and k-defeater semantics.

Proof (idea). We sketch the coNP lower bound for the IAR semantics, which is by
reduction from UNSAT. Let ϕ = c1 ∧ . . . ∧ cn be a propositional CNF over variables
x1, . . . , xm. Consider the DL-LiteHorn KB with

T ={Ti v Cj | xi ∈ cj} ∪ {Fi v Cj | ¬xi ∈ cj}∪
{Ti u Fi v ⊥ | 1 ≤ i ≤ m}∪{A u C1 u . . . u Cn v ⊥}

andA = {A(a)}∪{Ti(a), Fi(a) | 1 ≤ i ≤ m}. Then it can be shown that 〈T ,A〉 |=IAR
A(a) if and only if the formula ϕ is unsatisfiable.

We next consider the complexity of CQ entailment under our proposed semantics.
For DL-Lite, we obtain precisely the same complexity as under the classical semantics.

Theorem 6. In DL-Lite, CQ entailment under the k-support semantics is NP-complete
w.r.t. combined complexity, for every k ≥ 1. For both DL-Lite and DL-LiteHorn , CQ
entailment under the k-defeater semantics is NP-complete w.r.t. combined complexity,
for every k ≥ 1.

Proof (idea). We sketch the upper bound for the k-defeater semantics. Fix a DL-LiteHorn

KB 〈T ,A〉 and a CQ q. Let S1, . . . , Sm be the T -consistent subsets of A with cardi-
nality at most k. Guess a sequence C1, . . . , Cm of subsets of A of cardinality at most
c = 2 · |q| · |T |, together with polynomial certificates that 〈T , Ci〉 |= q, for each Ci.
Output yes if for every 1 ≤ i ≤ m, the certificate is valid and Si ∪ Ci is T -consistent.
As m is polynomial in |A| (since k is fixed), and both conditions can be verified in
polynomial time for DL-LiteHorn KBs, we obtain an NP procedure. Correctness relies
on the fact that because T is a DL-LiteHorn ontology, every minimal T -support for q
has cardinality at most c.

For DL-LiteHorn , CQ entailment under the IAR and k-support semantics rises to
∆p

2[O(log n)]-complete.

Theorem 7. In DL-LiteHorn , CQ entailment under k-support semantics is∆p
2[O(log n)]-

complete w.r.t. combined complexity, for every k ≥ 1.

Proof (idea). The lower bound is by a non-trivial reduction from the Parity(SAT) prob-
lem [21]. For the upper bound, consider the following algorithm which takes as input a
DL-LiteHorn KB 〈T ,A〉 and CQ q:

1. For every k-tuple (α1, . . . , αk) ⊆ Ak of facts, use an NP oracle to decide whether
every repair contains some αi. Let S contain all k-tuples for which the test succeeds.

2. A final oracle call checks if there is a k-tuple (C1, . . . , Ck) of subsets of A of cardi-
nality at most c = 2 · |T | · |q| such that (i) every Ci is T -consistent and 〈T , Ci〉 |= q,
and (ii) every k-tuple (β1, . . . , βk) with βi ∈ Ci belongs to S. Return yes if the call
succeeds, else no.

Every minimal T -support for q contains at most c facts. It follows that the algorithm
returns yes if 〈T ,A〉 |=k-supp q. Conversely, if the output is yes, with (C1, . . . , Cn) the
k-tuple from Step 2, then by (i), every Ci is a T -support for q. Moreover, (ii) ensures
that every repair contains someCi, for it not, we could find some k-tuple (β1, . . . , βk) ∈
C1 × . . . × Cn which does not belong to S, contradicting (ii). Note that the algorithm
runs in polynomial time with an NP oracle, since there are only polynomially many
k-tuples of facts to consider, for fixed k. As the oracle calls can be organized into a tree,
membership in ∆p

2[O(log n)] follows by a result from [11].

Finally, we determine the combined complexity of instance checking and CQ en-
tailment for the CQA semantics (prior results only considered data complexity).

Theorem 8. For DL-Lite and DL-LiteHorn , instance checking (resp. CQ entailment)
under CQA semantics is coNP-complete (resp. Πp

2 -complete) for combined complexity.

Proof (idea). The upper bounds are easy: guess a repair and show that it does not en-
tail the query. The coNP-lower bound for instance checking follows from the coNP-
hardness of this problem w.r.t. data complexity. The Πp

2 -hardness result involves a non-
trivial reduction from 2-QBF validity.

We should point out that our proofs are quite generic and can be directly used (or
trivially extended) to obtain results for a whole rangle DL-Lite dialects (as well as other
ontology languages).

7 Future Work

The present work can be extended in several directions. First, we believe that our ap-
proach can have a practical impact on OBDA systems, so we aim to implement and
experiment with the approach. It would also be very interesting to investigate the con-
nections between our approach and approximate knowledge compilation [19]: in par-
ticular, it would be important (also for practical purposes) to study the possibility of
effectively “compiling” our semantics. Moreover, it is also relevant to extend our anal-
ysis to more complex OBDA systems, where the ontology elements are related to the
data sources through complex mappings [17]. Finally, while the present approach is
computationally attractive for all known FO-rewritable ontology languages, tractable
approximations of the CQA semantics for other tractable yet non-FO-rewritable ontol-
ogy languages (like EL⊥ [3]) are still missing.

Acknowledgments. The first author has been supported by a Université Paris-Sud At-
tractivité grant and ANR project PAGODA (ANR-12-JS02-007-01). The second author
has been partially supported by EU FP7 project Optique – Scalable End-user Access to
Big Data (grant n. FP7-318338).

References

1. Arenas, M., Bertossi, L.E., Chomicki, J.: Consistent query answers in inconsistent databases.
In: Proc. of PODS. pp. 68–79. ACM Press (1999)

2. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite family and re-
lations. Journal of Artificial Intelligence Research 36, 1–69 (2009)

3. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Proc. of IJCAI. pp. 364–369
(2005)

4. Bertossi, L.E.: Database Repairing and Consistent Query Answering. Synthesis Lectures on
Data Management, Morgan & Claypool Publishers (2011)

5. Bienvenu, M.: On the complexity of consistent query answering in the presence of simple
ontologies. In: Proc. of AAAI (2012)

6. Calı̀, A., Gottlob, G., Pieris, A.: New expressive languages for ontological query answering.
In: Proc. of AAAI (2011)

7. Calı̀, A., Gottlob, G., Pieris, A.: Towards more expressive ontology languages: The query
answering problem. Artificial Intelligence 193, 87–128 (2012)

8. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning
and efficient query answering in description logics: The DL-Lite family. Journal of Auto-
mated Reasoning 39(3), 385–429 (2007)

9. Eiter, T., Gottlob, G.: The complexity of logic-based abduction. J. ACM 42(1), 3–42 (1995)
10. Eiter, T., Gottlob, G.: The complexity class θp

2: Recent results and applications in AI and
modal logic. In: Proc. of FCT. pp. 1–18 (1997)

11. Gottlob, G.: Np trees and Carnap’s modal logic. Journal of the ACM 42(2), 421–457 (1995)
12. Immerman, N.: Nondeterministic space is closed under complementation. SIAM Journal of

Computing 17(5), 935–938 (1988)
13. Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Inconsistency-tolerant seman-

tics for description logics. In: Proc. of RR. pp. 103–117 (2010)
14. Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Query rewriting for inconsistent

dl-lite ontologies. In: Proc. of RR. pp. 155–169 (2011)
15. Lukasiewicz, T., Martinez, M.V., Simari, G.I.: Inconsistency handling in datalog+/- ontolo-

gies. In: Proc. of ECAI. pp. 558–563 (2012)
16. Lukasiewicz, T., Martinez, M.V., Simari, G.I.: Inconsistency-tolerant query rewriting for lin-

ear datalog+/-. In: Proc. of Datalog 2.0. pp. 123–134 (2012)
17. Poggi, A., Lembo, D., Calvanese, D., Giacomo, G.D., Lenzerini, M., Rosati, R.: Linking data

to ontologies. Journal of Data Semantics 10, 133–173 (2008)
18. Rosati, R.: On the complexity of dealing with inconsistency in description logic ontologies.

In: Proc. of IJCAI. pp. 1057–1062 (2011)
19. Selman, B., Kautz, H.A.: Knowledge compilation and theory approximation. Journal of the

ACM 43(2), 193–224 (1996)
20. Szelepcsényi, R.: The method of forcing for nondeterministic automata. Bulletin of the

EATCS 33, 96–99 (1987)
21. Wagner, K.W.: More complicated questions about maxima and minima, and some closures

of NP. Theoretical Computer Science 51, 53–80 (1987)

A Proof of Theorem 3

For the purposes of this section, an ontology T is a sentence in first-order (FO) logic
with equality built from a finite set of symbols drawn from a countable set VN of vari-
ables, a countable set CN of constant symbols, and a countable set RN of relation sym-
bols. Function symbols, other than constant symbols, are not permitted. A dataset A is
a finite set of ground facts, built using the symbols from CN and RN.

In what follows, we will assume that every ontology T has an associated finite
signature RNT , which can be any finite subset of RN which contains all relations in T .
The signature RNT will define the set of relations which may appear in datasets and
in queries. Note that the assumption of a finite relational signature is commonplace in
databases and realistic from the point of view of applications.

In keeping with common practice in description logics, we make the unique names
assumption (UNA), that is, we only consider as models of a KB 〈T ,A〉 those interpre-
tations I in which cI 6= dI for every pair c, d of distinct constant symbols appearing
in T ∪ A. We point out however that this assumption is not essential, and Theorem 3
applies also to the case where the UNA is not adopted.

We recall that for the sake of readability, we consider only Boolean queries, and so
in what follows we will take the term “query” to mean Boolean query. All results and
proofs can be straightforwardly extended to handle non-Boolean queries.

An ontology T is said to be first-order-rewritable for CQ answering under semantics
S if, for every CQ q, there exists an effectively computable FO query q′ such that,
for every ΣT -dataset A, 〈T ,A〉 entails q under semantics S iff q′ is satisfied in the
interpretation IA (denoted IA |= q′). Such a query q′ is called a (FO-)rewriting of
q relative to T under semantics S. If there exists an FO query q′ such that, for every
T -consistent ΣT -dataset A, 〈T ,A〉 entails q under semantics S iff IA |= q′, then we
say that T is first-order-rewritable for CQ answering and consistent datasets under
semantics S. Note that it is possible for a FO-rewriting to exist relative to consistent
datasets, while there is no FO-rewriting w.r.t. arbitrary datasets.

A union of conjunctive queries with inequality (UCQ 6=) is a first-order sentence
built from atomic formulas, equalities between terms, and inequalities between terms
using ∧, ∨, and ∃. If every CQ possesses a FO-rewriting relative to T (and consistent
datasets) under semantics S which takes the form of a UCQ 6=, then we say that T is
UCQ 6=-rewritable for CQ answering (relative to consistent datasets) under semantics
S. The notions of FO- and UCQ 6=-rewritability for unsatisfiability are defined in the
obvious way. For the sake of readability, we will often omit “under semantics S”, in
which case we mean classical FO semantics.

We consider the following possible properties of an ontology T :
B1 there is some ` such that for every A, every minimal T -inconsistent subset of A

has cardinality at most `
B2 for every CQ q, there is some m such that for every A, every minimal T -support

for q has cardinality at most m
U1 T is UCQ 6=-rewritable for unsatisfiability
U2 T is UCQ 6=-rewritable for CQ answering relative to consistent datasets
U3 T is UCQ 6=-rewritable for CQ answering

It is not hard to see that any ontology that satisfies U1 and U2 must also satisfy B1
and B2. Indeed, one can construct the desired bounds on the cardinality of minimal T -
inconsistent sets (resp. minimal T -supports of q) by considering the maximal number
of atoms appearing in the disjuncts of the UCQ 6=-rewriting of unsatisfiability (resp. of q
relative to consistent datasets). In preparation for the proof of Theorem 3, we establish
that B1 and B2 together imply properties U1, U2, and U3.

Lemma 1. If T satisfies condition B1, then it also satisfies condition U1.

Proof. Suppose that T satisfies condition B1, and so there is a bound ` on the size of
minimal T -inconsistent subsets. Let U1,U2, . . . be an enumeration of all minimal T -
inconsistent sets, and let CNT be the set of constant symbols appearing in T . Define an
equivalence relation ∼ on RNT -datasets by setting D1 ∼ D2 whenever there exists a
bijection f from the constant symbols in D1 to the constant symbols in D2 such that:

– for every relation R ∈ RNT : R(c1, . . . , ck) ∈ D1 iff R(f(c1), . . . , f(ck)) ∈ D2

– for every c ∈ CNT : c occurs in D1 iff c occurs in D2, and if c is present in D1, we
have f(c) = c

We note that since RNT and CNT are both finite, and the cardinality of the sets Ui
is bounded by `, we can choose a finite set {U ′1, . . . ,U ′k} of sets from the sequence
U1,U2, . . . such that every Ui is equivalent modulo ∼ to one of the U ′j .

Next we associate a query to each of the datasets D in {U ′1, . . . ,U ′k}. Specifically,
if D has constant symbols d1, . . . , dn, then we use the following query:

qD = ∃v1, . . . , vn
∧

1≤i<j≤n

vi 6= vj ∧
∧

di∈CNT

vi = di∧
∧

R(di1 ,...,dir)∈D

R(vi1 , . . . , vir)

We then define a UCQ 6=-query as follows:

q′ =
∨

1≤i≤k

qU ′
i

To complete the proof, we establish the following claim.

Claim: q′ is a rewriting of unsatisfiability relative to T .

Proof of claim: For the first direction, suppose that A is a RNT -dataset with IA |= q′.
Then there is some 1 ≤ i ≤ k such that IA |= qU ′

i
. It follows that there is some

assignment µ to the variables v1, . . . , vn of qU ′
i

which makes the conjuncts of qU ′
i

true
in IA. We aim to show that A is T -inconsistent. Suppose for a contradiction that this
is not the case. Let I be a model of T and A, and let J be the interpretation defined as
follows:

– the domain of J is the same as the domain of I
– every constant symbol cwhich does not appear in U ′i is interpreted as in I: cJ = cI

– every constant symbol dj in U ′i is interpreted as follows: dJj = µ(vj)
I

– every relation symbol R is interpreted exactly as in I: RJ = RI

First we show that J is a model of U ′i . If R(dj1 , . . . , djr) ∈ U ′i , then the satisfac-
tion of the third conjunct of qU ′

i
yields R(µ(vj1), . . . , µ(vjr)) ∈ A. We thus have

(µ(vj1)
I , . . . , µ(vjr)

I) ∈ RI , hence (dJj1 , . . . , d
J
jr
) ∈ RJ . To show that J is a model

of T , we first remark that whenever a constant symbol dj appears both in T and in U ′i ,
the second conjunct of qU ′

i
ensures that µ(vj) = dj . It follows that all constant symbols

in T are interpreted identically in I and J . Moreover, by construction, I and J have
the same domains and interpret all relation symbols identically. It follows that every FO
formula built using only the constant symbols in CNT and relation symbols in RNT
is interpreted identically in I and J . In particular, this means that J is a model of T .
Finally, we note that the UNA is satisfied in J for the KB 〈T ,U ′i〉 since it is satisfied
in I for the KB 〈T ,A〉 and for every pair dj , dr of distinct constant symbols in U ′i , the
first conjunct of qU ′

i
guarantees that dJj = µ(vj)

I 6= µ(vr)
I = dJr . We have thus con-

structed a model for 〈T ,U ′i〉, contradicting the fact that T ,U ′i |= ⊥. We can conclude
that 〈T ,A〉 |= ⊥.

For the other direction, suppose that 〈T ,A〉 |= ⊥, and let A′ be a minimal T -
inconsistent subset of A. It follows that there is some U ′i such that A′ ∼ U ′i , and this is
witnessed by some bijection f from the constant symbols in U ′i to the constant symbols
in A′. Let d1, . . . , dn be the constant symbols in U ′i and v1, . . . , vn the variables in qU ′

i
.

Define an assignment µ which sends vj to f(dj). The first conjunct of qU ′
i

is satisfied
in IA under assignment µ since f is a bijection, so f(dj) 6= f(dr) for j 6= r. The
second conjunct is also satisfied, since if d is a constant in U ′i which occurs in T , then
we must have f(d) = d. Finally, if the fact R(dj1 , . . . , djr) belongs to U ′i , then we
must have R(f(dj1), . . . , f(djr)), hence the third conjunct is also satisfied in IA under
µ. We have thus shown that qU ′

i
holds in IA, so IA |= q′. (end proof of claim)

Lemma 2. If T satisfies condition B2, then it also satisfies U2.

Proof. Suppose that T satisfies condition B2, and let q be a CQ. By condition B2, we
have a bound m on the size of minimal T -supports of q. Let S1,S2, . . . be an enu-
meration of all minimal T -supports of q, and let CNT ,q be the set of constant symbols
appearing in T or in q. As in the proof of Lemma 1, we define an equivalence relation
∼ on RNT -datasets by setting D1 ∼ D2 whenever there exists a bijection f from the
constant symbols in D1 to the constant symbols in D2 such that:

– for every R ∈ RNT : R(c1, . . . , ck) ∈ D1 iff R(f(c1), . . . , f(ck)) ∈ D2

– for every c ∈ CNT ,q: c occurs in D1 iff c occurs in D2, and if c is present in D1,
we have f(c) = c

Since RNT and CNT ,q are both finite, and the cardinality of the sets Si is bounded by
m, there can be only finitely many distinct equivalence classes which contain some Si.
For each such equivalence class, we choose a representative dataset Si, and we let
{S ′1, . . . ,S ′p} be the finite set of representatives. Note that for every i ≥ 1, we have
Si ∼ S ′j for some 1 ≤ j ≤ p.

Just as in the proof of Lemma 1, to every datasetD with constant symbols d1, . . . , dn,
we associate the query

qD = ∃v1, . . . , vn
∧

1≤i<j≤n

vi 6= vj∧
∧

di∈CNT ,q

vi = di∧
∧

R(di1 ,...,dir)∈D

R(vi1 , . . . , vir)

We then construct the following UCQ 6=-query:

q′ =
∨

1≤i≤p

qS′
i

Claim: q′ is a rewriting of q relative to T and consistent datasets.

Proof of claim: For the first direction, suppose that A is a T -consistent RNT -dataset
with IA |= q′. Then there is some 1 ≤ i ≤ p such that IA |= qS′

i
. We can thus find

an assignment µ to the variables v1, . . . , vn of qS′
i

which makes the conjuncts of qS′
i

hold in IA. We aim to show that 〈T ,A〉 |= q. Suppose for a contradiction that this is
not the case, and let I be a model of T and A in which q does not hold. Let J be the
interpretation which is the same as I except that:

– every constant symbol dj in U ′i is interpreted as follows: dJj = µ(vj)
I

Using the same arguments as in the proof of Lemma 1, one can show that J is a model
of the KB 〈T ,S ′i〉. By leveraging the fact that all constant symbols and relation symbols
appearing in q are interpreted identically in I and J , one can further show that q does
not hold in J , contradicting the fact that S ′i is a T -support for q. We can thus conclude
that 〈T ,A〉 |= q.

For the other direction, suppose that A is T -consistent and such that 〈T ,A〉 |= q.
Let A′ ⊆ A be a minimal T -support for q. It follows from the definition of the set
{S ′1, . . . ,S ′p} that there is some S ′j such that A′ ∼ S ′j . By using essentially the same
arguments as in the proof of Lemma 1, we can show that that qS′

j
holds in IA, which

yields IA |= q′. (end proof of claim)

Lemma 3. If T satisfies U1 and U3, then it also satisfies U2.

Proof. Suppose that T satisfies U1 and U3, and let q be a CQ. Then we can find a
UCQ 6=-rewriting Φ⊥ of unsatisfiability relative to T and a UCQ 6=-rewriting Φq of q
relative to T and consistent datasets. It is easily verified that Φ⊥ ∨ Φq is the desired
UCQ 6=-rewriting of q relative to T .

Combining Lemmas 1, 2, and 3, we have that every ontology T satisfying the hy-
potheses of Theorem 3 also satisfies conditions U1, U2, and U35. We now proceed to
the main part of the proof of Theorem 3, which consists in exploiting conditions U1 and
U2 to construct FO-rewritings under the k-support and k-defeater semantics.

Proof of Theorem 3. Let T be an ontology satisfying the hypotheses of Theorem 3, and
let q be a CQ. We denote by CNT (resp. CNT ,q) the set of constant symbols appearing
in T (resp. T or q). By Lemma 1, there is a UCQ 6=-rewriting Φ⊥ = κ1 ∨ . . . ∨ κu
of unsatisfiability relative to T . Examining the proof of Lemma 1, we can choose Φ⊥
so that: (i) Φ⊥ uses only constant symbols from CNT , and (ii) if a variable v appears
in some conjunct of κj , then v appears in an atomic formula in κj . By Lemma 2, we
can also find a UCQ 6= Φq = ϕ1 ∨ . . . ∨ ϕs which is a rewriting of q relative to T

5 Actually, we have shown that only two of the three hypotheses of Theorem 3 are required:
the hypotheses B1 and B2 guarantee U3, which in turn implies the third hypothesis, namely,
FO-rewritability of T for CQ answering.

and consistent datasets (under classical semantics) We can again assume w.l.o.g. that
Φq uses only constant symbols from CNT ,q , and that every variable v which occurs
in ϕj appears in some atom in ϕj . We can further assume that each disjunct ϕi holds
in some T -consistent dataset (indeed, one can simply check whether ϕi is contained
in the query Φ⊥ and remove it if this is the case). Let m be the maximum number of
variables in any disjunct κi and n the maximum number of variables in any ϕi. By
renaming variables, we ensure that all disjuncts in Φq use the same set of variables,
say x1, . . . , xn. Likewise, we can assume that the query Φ⊥ is over the set of variables
y1, . . . , ym.

The desired FO-rewriting of q relative to T under k-support semantics will take the
following form:

Ψk-supp =
∨

(i1,...,ik)∈[1,s]k
χ(i1,...,ik)

Intuitively, each tuple (i1, . . . , ik) ∈ [1, s]k corresponds to a choice of k supports, where
the disjuncts ϕi represent the different possible supports. Note that we allow the same
index to appear more than once. This allows us to capture the case in which less than k
distinct supports are used, or the case where the same type of support occurs multiple
times in the data using different sets of constants. The formula χ(i1,...,ik) states that
these k chosen supports are present in the dataset and that there is no way to simultane-
ously contradict them. This formula takes the following form:

χ(i1,...,ik) = ∃
1≤`≤n
1≤j≤k

xj`

 ∧
1≤j≤k

ϕij [x` 7→ xj`] ∧ ¬δ(i1,...,ik)


where ϕij [x` 7→ xj`] indicates that every variable x` in ϕij has been replaced with xj` .
The formula δ(i1,...,ik) will serve to check for the existence of a consistent set of facts
that conflict each of the chosen supports. To define δ(i1,...,ik), let S consist of all pairs
(D,E) whereD andE are sets of atomic formulas and (in)equalities respectively which
satisfy the following conditions:

– the atomic formulas in D use only relation symbols from RNT and constant sym-
bols from CNT

– the set VD of variables in D is a subset of {v1, . . . , vo}, where o = km

– the query
ζD =

∧
α∈D

α ∧
∧

v`,v`′∈VD

` 6=`′

v` 6= v`′ ∧
∧

v`∈VD,
a∈CNT

v` 6= a

is such that6

∃
v`∈VD

v` ζD 6⊆ Φ⊥

6 As usual, we use ⊆ to denote query containment: q1 ⊆ q2 signifies that for all RNT -datasets
D, we have ID |= q1 if and only if ID |= q2.

– E consists of equalities and inequalities of the forms xj` = vp, xj` 6= vp, where
vp ∈ VD, 1 ≤ ` ≤ n, and 1 ≤ j ≤ k

– for every 1 ≤ j ≤ k,

∃
v∈Vj

v (ζD ∧
∧
ε∈E

ε ∧ ϕij [x` 7→ xj`]) ⊆ Φ⊥

where Vj denotes the set of variables occurring in the left-hand-side query.
The query δ(i1,...,ik) is then defined as follows:

δ(i1,...,ik) = ∃v1, . . . , vkm
∨

(D,E)∈S

(ζD ∧
∧
ε∈E

ε)

Now that we have completed the definition of the query Ψk-supp, we turn to the prob-
lem of showing that Ψk-supp constitutes a rewriting of q relative to T under the k-support
semantics. First suppose that 〈T ,A〉 |=k-supp q. Then there exist subsets S1, . . . , Sk of
A such that each Si is a T -support for q in A, and every R ∈ Rep(K) contains some
Si. It follows that for every Sj , we have ISj

|= Φq , so there must exist ij such that
ISj |= ∃x1, . . . , xnϕij . Thus, for every 1 ≤ i ≤ k, we can find a variable assignment
µj for x1, . . . , xn such that ISj satisfies ϕij under µj , which we write ISj |=µj ϕij . We
wish to show that IA |= χ(i1,...,ik). First let µ be the variable assignment for x11, . . . , x

k
m

defined as follows: µ(xj`) = µj(x`). It is easy to see that IA |=µ
∧

1≤j≤k ϕij [x` 7→ xj`].
It remains to show that IA |=µ ¬δ(i1,...,ik). Suppose for a contradiction that this is not
the case. Then there must exist (D,E) ∈ S such that

IA |=µ ∃v1, . . . , vkm(ζD ∧
∧
ε∈E

ε)

and so there is a variable assignment µ′ for x11, . . . , x
k
m, v1, . . . , vo which extends µ and

is such that
IA |=µ

′
ζD ∧

∧
ε∈E

ε

Now let B be the set of facts obtained by applying µ′ to each atom in D. As IA |=µ
′∧

α∈D α, we know that B is a subset of A.

Claim 1. B is T -consistent.
Proof. Suppose for a contradiction that 〈T ,B〉 |= ⊥. As Φ⊥ is a rewriting of unsat-
isfiability w.r.t. T , we have IB |= Φ⊥. Let D be any RNT -dataset such that ID |=
∃v`∈VD

v` ζD. Then there must exist an assignment η to the variables in VD such
that ID |=η ζD. Let D′ be the subset of D consisting of those facts which can be
obtained by applying η to some atom in D. Define a mapping f from the constants
in B to the constants in D by setting f(b) = b if b ∈ CNT , and otherwise, setting
f(µ′(v`)) = η(v`). It is easily verified that f defines an isomorphism between IB and
ID. Since IB |= Φ⊥, we must also have ID′ |= Φ⊥. It follows thatD′ is T -inconsistent,
so D must also be T -inconsistent, which implies ID′ |= Φ⊥. We have thus shown that
the query ∃v`∈V(D) v` ζD is contained in Φ⊥, yielding the desired contradiction.

Claim 2. B ∪ Sj is T -inconsistent for every 1 ≤ j ≤ k.
Proof. Let 1 ≤ j ≤ k. It was previously shown that

IA |=µ
′
ζD ∧

∧
ε∈E

ε ∧ ϕij [x` 7→ xj`]

Since every variable in the latter query appears in some atom of D or ϕij [x` 7→ xj`],
and the image of these atoms under µ′ is contained in B ∪ Sj , we can infer that

IB∪Sj |= ∃
v∈Vj

v (ζD ∧
∧
ε∈E

ε ∧ ϕij [x` 7→ xj`])

We know from the definition of the set S that the preceding query is contained in Φ⊥,
so we immediately get IB∪Sj |= Φ⊥. Since Φ⊥ is a rewriting of unsatisfiability w.r.t. T ,
the latter implies that B ∪ Sj is T -inconsistent.

By Claim 1, B is T -consistent, so there must exist R ∈ Rep(T ,A) such that B ⊆
R. It follows from Claim 2 that for every 1 ≤ j ≤ k, R ∪ Sj is T -inconsistent, hence
Sj 6⊆ R. We have thus found a repair R which contains none of the sets Sj , a contra-
diction. We may thus conclude that IA |=µ ¬δ(i1,...,ik), and hence that IA |= χ(i1,...,ik).

For the other direction, suppose IA |= Ψk-supp. Then there must exist (i1, . . . , ik) ∈
[1, s]k such that

IA |= ∃
1≤`≤n
1≤j≤k

xj`

 ∧
1≤j≤k

ϕij [x` 7→ xj`] ∧ ¬δ(i1,...,ik)


so we can find an assignment µ to the variables xj` such that

IA |=µ
∧

1≤j≤k

ϕij [x` 7→ xj`] ∧ ¬δ(i1,...,ik)

For 1 ≤ j ≤ k, let Sj be the set of facts obtained by applying µ to the atoms in the
query ϕij [x` 7→ xj`].

Claim 3. Sj is a T -support for q, for every 1 ≤ j ≤ k.
Proof. Fix some 1 ≤ j ≤ k, and let Xij be the set of variables in ϕij . The first step is
to show that Sj is T -consistent. Assume for a contradiction that Sj is T -inconsistent,
in which case ISj

|= Φ⊥. Using arguments similar to those in Claim 1, we can show
that for any dataset D, if ID |= ϕij , then ID |= Φ⊥. This means that the query ϕij is
contained in Φ⊥, contradicting our earlier assumption. Next we remark that since every
variable which participates in ϕij appears in an atom of ϕij , and the image of these
atoms under µ is contained in Sj ⊆ A, we have

ISj
|= ∃

x`∈Xij

x` ϕij

As ϕij is a disjunct of Φq , it follows that ISj
|= Φq . Since Φq is a FO-rewriting of q

relative to T , we get 〈T , Sj〉 |= q, i.e. Sj is a T -support for q.

Claim 4. EveryR ∈ Rep(T ,A) contains some Sj .
Proof. Suppose for a contradiction that R ∈ Rep(T ,A) is such that Sj 6⊆ R for every
1 ≤ j ≤ k. Then by the maximality of repairs, it must be the case that R ∪ Sj is T -
inconsistent for every 1 ≤ j ≤ k. It follows that for each 1 ≤ j ≤ k, IR∪Sj |= Φ⊥,
and so we can find some disjunct κhj of Φ⊥ such that

IR∪Sj
|= κhj

where Yj is the set of variables in κhj
. Thus, for each 1 ≤ j ≤ k, we can find an

assignment ηj to the variables in Yj such that IR∪Sj |=ηj κhj . Let d1, . . . , do′ be an
enumeration of all constant symbols in {ηj(y) | 1 ≤ j ≤ k, y ∈ Yj} \ CNT . Note
that since each Yj contains at most m variables, o′ ≤ o = km. Define D′j as the set of
atomic formulas in κhj

whose image under ηj belongs to R. For every variable ye in
D′j , do the following:

– if ηj(ye) ∈ CNT , then replace ye by ηj(ye)
– if ηj(ye) = dg , then replace ye by vg

Call the resulting setDj , and setD equal toD1∪. . .∪Dk. Next define a setE consisting
of the following (in)equalities:

– vg = xj` , for every g, `, j such that µ(xj`) = dg

– vg 6= xj` , for every g, `, j such that µ(xj`) 6= dg
Let µ′ be the assignment which extends µ to v1, . . . , vo′ as follows: µ′(vg) = dg . Now
consider the different types of conjuncts in ζD ∧

∧
ε∈E ε:

– For each atom α ∈ D, there must exist 1 ≤ j ≤ k and an atom α′ ∈ κhj
such that

ηj maps α′ to R. Moreover, by construction, the image of α′ under ηj is the same
as the image of α under µ′. It follows that µ′ maps α to a fact in R ⊆ A, so the
atom α is satisfied in IA under µ′.

– For each pair of distinct variables v`, v`′ in ζD, we have µ′(v`) = d` and µ′(v′`) =
d`′ , hence µ′(v`) 6= µ′(v`′).

– For each variable v` in ζD, we have µ′(v`) = d` 6∈ CNT , so µ′(v`) 6= c for every
c ∈ CNT .

– For every equality vg = xj` in E, we have µ′(vg) = dg and µ(xj`) = dg , so
µ′(vg) = µ′(xj`).

– For every inequality vg 6= xj` in E, we have µ′(vg) = dg and µ(xj`) 6= dg , so
µ′(vg) = µ′(xj`).

We have thus shown that every conjunct in ζD ∧
∧
ε∈E ε holds in IA under the assign-

ment µ′. As µ′ extends µ, it follows that

IA |=µ ∃v1, . . . , vo′ζD ∧
∧
ε∈E

ε

It remains to show that (D,E) ∈ S. By construction, the first, second, and fourth
conditions are satisfied by D and E. For the third condition, we note that IR |= ζD.

SinceR is T -consistent, we have IR 6|= Φ⊥, so ζD is not contained in Φ⊥. Finally, for
the last condition, one can use IR∪Sj

|= κhj
and the definition of D and E to show

that the query ∃v∈Vj
v(ζD ∧

∧
ε∈E ε ∧ ϕij [x` 7→ xj`]) is contained in Φ⊥. We thus have

(D,E) ∈ S, from which we obtain IA |=µ δ(i1,...,ik), a contradiction.
From Claims 3 and 4, we immediately obtain T ,A |=k-supp q. This completes the

proof that Ψk-supp is an FO-rewriting of q relative to T under the k-support semantics.

Next we consider how to construct a rewriting of q under the k-defeater semantics.
The desired rewriting will take the following form:

Ψk-def =
∨
D∈Sk

χD

Each D ∈ Sk represents a choice of a consistent subset of at most k facts, and the
query χD checks that these facts are present in the data and conflict with all causes of
q. Formally, we let Sk contain those sets D of at most k atomic formulas which satisfy
the following conditions:

– the atomic formulas in D use only relation symbols from RNT and constant sym-
bols from CNT

– the set VD of variables in D is a subset of {v1, . . . , vk}
– the query

ζD =
∧
α∈D

α ∧
∧

v`,v`′∈VD

` 6=`′

v` 6= v`′ ∧
∧

v`∈VD,
a∈CNT

v` 6= a

is such that

∃
v`∈VD

v` ζD 6⊆ Φ⊥

For each D ∈ Sk and 1 ≤ i ≤ s, we define another set CD,i which intuitively corre-
sponds to all ways that a cause of type ϕi can be present in the data without contradict-
ing the chosen set D. Formally, CD,i contains all sets E of (in)equalities which satisfy
the following conditions:

– for every 1 ≤ ` ≤ k and 1 ≤ j ≤ n, either v` = x′j or v` 6= x′j belongs to E
– for every 1 ≤ j < ` ≤ k, either x′j = x′` or x′j 6= x′` is in E
– for every 1 ≤ j ≤ k and c ∈ CNT , either x′j = c or x′j 6= c is in E
– the query

γD,i,E = ϕi[x` 7→ x′`] ∧
∧
ε∈E

ε

is such that
∃v1, . . . , vk, x′1 . . . x′n ζD ∧ γD,i,E 6⊆ Φ⊥

We can then define the query χD as follows:

χD = ∃v1, . . . , vk ζD ∧ ¬

 ∨
1≤i≤s

∨
E∈CD,i

∃x′1 . . . x′n γD,i,E



Here the query ζD serves to check that the set of atomsD is instantiated in the data. The
query inside the negation is verified if there some ϕi which is made true in the data in
such a way that it does not conflict with the instantiation of D. Thus, the negated query
will hold just in the case that every cause for q is contradicted by the chosen set of facts
represented by D.

This completes the definition of the query Ψk-def . Using arguments similar to those
given for the k-support-semantics, one can show that Ψk-def is an FO-rewriting of q
relative to T under the k-defeater-semantics.

B Proofs for Section 6

Theorem 4 In DL-Lite, instance checking under the k-support semantics is in NLSPACE-
complete w.r.t. combined complexity, for every k ≥ 1. The same holds for the k-defeater
semantics, for every k ≥ 0.

Proof. The lower bounds stem from the NLSPACE-completeness of instance checking
under the classical semantics [2]. For the upper bounds, let K = 〈T ,A〉 be a DL-Lite
KB and q be an IQ. Note that because T is a DL-Lite ontology, every minimal T -support
for q inA contains a single fact, and every minimal T -inconsistent subset ofA contains
at most 2 facts. We first prove the upper bound for the k-support semantics, by giving
an NLSPACE procedure for deciding whether T ,A |=k-supp q. The algorithm begins by
guessing k facts α1, . . . , αk from A. By using a binary encoding, we need only log-
arithmic space to store this guess. Next, for each fact αi, we check whether {αi} is
T -consistent and 〈T , {αi}〉 |= q, outputting no if either condition fails to hold. Both
checks can be done in NLSPACE, since satisfiability and instance checking in DL-Lite
are NLSPACE-complete w.r.t. combined complexity. Finally we must verify that every
repairR ∈ Rep(K) contains some αi. Because minimal T -inconsistent subsets contain
at most two facts, it follows that there exists a repair which does not contain any αi just
in the case that there is a subset U of A of cardinality at most k which is T -consistent
and such that 〈T , U ∪ {αi}〉 |= ⊥ for every αi. Thus, we can decide in NLSPACE
whether such a repair exists by guessing such a subset U and checking whether it satis-
fies the required conditions. Using the well-known result that NLSPACE=coNLSPACE
[12, 20], we obtain a NLSPACE procedure for testing whether no such subset exists. If
the check succeeds, we return yes, else no. It is easy to see that the described procedure
returns yes if and only if T ,A |=k-supp q.

Now we turn to the upper bound for the k-defeater semantics. We give a NLSPACE
algorithm for checking whether 〈T ,A〉 6|=k-def q, then use NLSPACE=coNLSPACE to
obtain an NLSPACE algorithm for the complement. The first step is to guess a subset S
of A of cardinality at most k. We then test (in NLSPACE) whether S is T -consistent,
and return no if not. Next we must verify that S ∪ {α} is T -inconsistent for every
minimal T -support {α} of q, returning yes if this is the case, and no otherwise. This
can be done by defining a NLSPACE procedure for the complementary problem, which
works by guessing an assertion α ∈ A and verifying that {α} is a T -support of q and
that S ∪ {α} is T -consistent.

Theorem 5 Instance checking in DL-LiteHorn is coNP-complete w.r.t. combined com-
plexity under the IAR semantics, coNP-hard w.r.t. combined complexity under k-support

semantics, and NP-complete w.r.t. combined complexity under both the brave semantics
and k-defeater semantics.

Proof. We begin with the IAR semantics. For the coNP lower bound, we give a re-
duction from UNSAT. Let ϕ = c1 ∧ . . . ∧ cn be a propositional CNF over variables
x1, . . . , xm. Consider the DL-LiteHorn KB K = 〈T ,A〉 with

T ={Ti v Cj | xi ∈ cj} ∪ {Fi v Cj | ¬xi ∈ cj}∪
{Ti u Fi v ⊥ | 1 ≤ i ≤ m}∪{A u C1 u . . . u Cn v ⊥}

and A = {A(a)} ∪ {Ti(a), Fi(a) | 1 ≤ i ≤ m}. We aim to show that 〈T ,A〉 6|=IAR
A(a) if and only if the formula ϕ is satisfiable. For the first direction, note that if
〈T ,A〉 6|=IAR A(a), then A(a) 6∈

⋂
B∈Rep(K) B, and so there is some R ∈ Rep(K)

such that A(a) 6∈ R. Since R is a repair, it is a maximal T -consistent subset of A.
It follows from the maximality of R and the fact that A(a) 6∈ R that R ∪ {A(a)} is
T -inconsistent. By considering the inclusions in T , we see that the only possible way
for A(a) to provoke a contradiction is for each Ci(a) to be implied by 〈T ,R〉. Next we
note that the consistency of R with T means that for every 1 ≤ i ≤ m, at most one
of Ti(a) and Fi(a) is present in R. We can thus find a valuation7 V of the variables
x1, . . . , xm such that V (xi) = 1 whenever Ti(a) ∈ R and V (xi) = 0 whenever Fi(a).
Then we remark that 〈T ,R〉 |= Cj(a) implies that there is either some Ti(a) ∈ R
with Ti v Cj ∈ T (hence xi ∈ cj) or some Fi(a) ∈ R with Fi v Cj ∈ T (hence
¬xi ∈ cj). It follows that every clause cj is satisfied by V , so ϕ is satisfiable. For the
other direction, suppose ϕ is satisfiable, and let V be a satisfying valuation. Then define
a subsetR ofA which contains every Ti(a) such that V (xi) = 1, and every Fi(a) such
that V (xi) = 0. Clearly, R is T -consistent, and it follows from our choice of V that
〈T ,R〉 |= Cj(a) for every 1 ≤ j ≤ n. This means that no assertion in A \ R can
be added to R while preserving consistency. We have thus shown that R is a repair of
〈T ,A〉, and since 〈T ,R〉 |= A(a), we obtain 〈T ,A〉 6|=IAR A(a).

For the coNP upper bound, consider a DL-LiteHorn KB 〈T ,A〉 and an IQ α. To
show non-entailment, we guess a set S ⊆ A together with a subset Cβ ⊆ A for each
assertion β ∈ S. Then we return yes if the following conditions hold:
1. For every β ∈ S: Cβ is a minimal T -inconsistent subset of A which contains β
2. 〈T ,A \ S〉 6|= α

Point (1) ensures that the intersection of repairs contains only assertions from A \ S,
and (2) shows that we cannot infer α using only these assertions. Thus, if both (1) and
(2) hold, then 〈T ,A〉 6|=IAR α. Conversely, if α is not IAR-entailed, then we can satisfy
both conditions by letting S contain all assertions which do not belong to all repairs,
and letting Cβ be any minimal T -inconsistent subset containing β. Finally, we note that
conditions (1) and (2) can both be checked in polynomial time, yielding a NP procedure
for the complement of instance checking.

7 In the following, we call valuation of a set of variables X a function I : X → {0, 1}. A
valuation I of X satisfies a positive literal z (where z ∈ X) if I (z) = 1, and I satisfies a
negative literal ¬z if I (z) = 0. Finally, I satisfies a disjunction of literals using variables from
X if I satisfies at least one such literal.

Now we show the NP-completeness of instance checking under the brave seman-
tics. To show membership in NP, we can utilize a simple algorithm which guesses
some subset S of A, and checks that it is T -consistent and that it entails the instance
query given T . The NP lower bound is by reduction from the NP-complete solution
existence problem for Horn abduction [9]. An instance of this problem takes the form
P = 〈X,H,M, T 〉, where X is a set of propositional variables, H and M are subsets
ofX , and T is a (consistent) propositional Horn theory. The solution existence problem
is to determine whether P admits a solution, that is, a subset S ⊆ H such that T ∪ S is
consistent and T ∪ S |= m for every m ∈ M . Given such a problem P , we construct
the following DL-LiteHorn KB

T = T ∗ ∪ {
l

m∈M
m v Q} A = {h(a) | h ∈ H}

where the propositional variables in X are used as concept names, T ∗ is the obvious
translation of the Horn clauses in T into DL-LiteHorn inclusions, and Q is a fresh con-
cept name. Then it is easily verified that P has a solution if and only if 〈T ,A〉 |=brave

Q(a).
Finally, we explain how the arguments above yield coNP-hardness (resp. NP-hardness)

of instance checking in DL-LiteHorn under the k-support (resp. k-defeater) semantics.
First, we note that the coNP lower bound proof for the IAR semantics works also for
the k-support semantics (for every k > 1). This is because in the KB used for the reduc-
tion, there is a unique T -support for the IQ A(a) (which is A(a) itself). The NP lower
bound for the brave semantics needs a slight modification to be used for the k-defeater
semantics. Specifically, in the TBox T , we replace each inclusion B1 u . . . u Bn v ⊥
by the inclusion B1 u . . . u Bn u N1 u . . . u Nk+1 v ⊥, where N1, . . . , Nk+1 are
k + 1 fresh concept names. We also add to A the facts N1(a), . . . , Nk+1(a). Note that
by construction any minimal T -inconsistent subset must contain all of the assertions
N1(a), . . . , Nk+1(a), and hence has cardinality at least k + 1. We next remark that if
the Horn abduction problem has a solution S ⊆ H , then the set {s(a) | s ∈ S} is a
T -support which cannot be contradicted by any subset of A of size at most k, hence,
〈T ,A〉 |=k-def Q(a). Conversely, if no solution exists, then every repair R is such that
〈T ,R〉 6|= Q(a). It follows that 〈T ,A〉 6|=brave Q(a), and hence 〈T ,A〉 6|=k-def Q(a).

For Theorems 6, 7, and 8, we recall that CQ entailment is NP-complete w.r.t. com-
bined complexity for DL-Lite and DL-LiteHorn , cf. [2]. To simplify the presentation, we
will use this result as a black-box, simply assuming that a polynomial-size certificate
for CQ entailment exists and that the validity of such a certificate can be checked in
polynomial-time.

Theorem 6 In DL-Lite, CQ entailment under the k-support semantics is NP-complete
w.r.t. combined complexity, for every k ≥ 1. For both DL-Lite and DL-LiteHorn , CQ
entailment under the k-defeater semantics is NP-complete w.r.t. combined complexity,
for every k ≥ 0.

Proof. The lower bounds follow trivially from the NP-hardness of CQ entailment with-
out an ontology. For the upper bound for the k-support semantics, fix a DL-Lite KB

〈T ,A〉 and a CQ q. We define a NP procedure for deciding whether 〈T ,A〉 |=k-supp q.
First, guess subsets S1, . . . , Sk ofA, as well as certificates that 〈T , Si〉 |= q, for each Si.
Verify in polynomial time that each Si is T -consistent and that each certificate is valid.
Then check that some Si is present in each repair by considering all subsetsU ⊆ Awith
|U | ≤ k and testing whether U is T -consistent but U ∪ Si is T -inconsistent, for every
1 ≤ i ≤ k. If no such a set is found, output yes, otherwise output no. Note that since k is
fixed, the described procedure runs in non-deterministic polynomial time. Correctness
of the procedure utilizes the property that because T is formulated in DL-Lite, every
minimal T -inconsistent subset has at most 2 facts. Hence, if there is some repair R
which does not contain any Si, then we can find a subset U ⊆ R of cardinality at most
k which contradicts every Si (1 ≤ i ≤ k).

To show the upper bound for the k-defeater semantics, fix a DL-LiteHorn KB 〈T ,A〉
and a CQ q. Let S1, . . . , Sm be the T -consistent subsets of A having cardinality at
most k. We describe a NP procedure for deciding whether 〈T ,A〉 |=k-def q. The first
step is to guess a sequence C1, . . . , Cm of subsets of A, together with polynomial cer-
tificates that 〈T , Ci〉 |= q, for each Ci. The second step is to verify that for every
1 ≤ i ≤ m, the certificate is valid and Si ∪ Ci is T -consistent. If all of these checks
succeed, the procedure outputs yes, and otherwise it outputs no. As m is polynomial
in |A| (since k is fixed), and both conditions can be verified in polynomial time for
DL-LiteHorn KBs, we obtain an NP procedure. To show correctness, first assume that
the procedure outputs yes. Then for every subset Si of A containing at most k facts,
there exists a subset Ci ⊆ A such that Si ∪ Ci is T -consistent and 〈T , Ci〉 |= q. It
follows that there is no Si satisfying the conditions in Definition 6, so 〈T ,A〉 |=k-def q.
For the other direction, suppose that 〈T ,A〉 |=k-def q. Then for every subset Si of A
of cardinality at most k, there is some T -support Ci for q in A such that Si ∪ Ci is T -
consistent. Thus, in the first step of the procedure, we can guess these sets Ci, together
with valid certificates that 〈T , Ci〉 |= q. Since the guessed sets and certificates satisfy
the required conditions, the algorithm will return yes.

Theorem 7 In DL-LiteHorn , CQ entailment under k-support semantics is∆p
2[O(log n)]-

complete w.r.t. combined complexity, for every k ≥ 1.

Proof. Since the upper bound was explained in the body of the paper, we focus here on
the lower bound, which is by reduction from the ∆p

2[O(log n)]-complete Parity(SAT)
problem, cf. [21, 10]. We recall that an instance of this problem consists of a sequence
ϕ1, . . . , ϕn of propositional formulas, and the objective is to determine whether the
number of satisfiable formulas in ϕ1, . . . , ϕn is odd. It is known that it can be assumed
without loss of generality that the ϕi are 3CNF over disjoint sets of variables, such
that ϕi+1 is unsatisfiable whenever ϕi is unsatisfiable. Because of the latter condition,
the problem reduces to determining the existence of an odd integer k such that ϕk is
satisfiable and ϕk+1 is unsatisfiable.

Let Φ = ϕ1, . . . , ϕn be a Parity(SAT) instance satisfying the aforementioned re-
strictions, where each ϕi is a 3CNF over the variables xi,1, . . . , xi,gi composed of mi

clauses ci,1, . . . , ci,mi
, with each clause ci,j of the form `1i,j ∨ `2i,j ∨ `3i,j . We use v(`ui,j)

to denote the variable of literal `ui,j , i.e., v(`ui,j) = `ui,j if `ui,j is a positive literal, and
v(`ui,j) = xi,h if `ui,j = ¬xi,h.

We define a DL-LiteHorn ontology T which is similar to that used in the proof of
Theorem 5, except that now we must include axioms for each of the formulas ϕi:

T = {Ti,h v Ci,j | xi,h ∈ ci,j}∪
{Fi,h v Ci,j | ¬xi,h ∈ ci,j}∪
{Ti,h u Fi,h v ⊥ | 1 ≤ i ≤ n, 1 ≤ h ≤ gi}∪
{A u Ci,1 u . . . u Ci,mi

v ⊥ | 1 ≤ i ≤ n}

We define the datasetA in stages. First, for every pair (e, i) ∈ [1, n]2, we let Fe,i be the
dataset consisting of the following facts:

⋃
1≤j≤mi

{R(aei , ce,Vi,j), L1
j (c

e,V
i,j , V (v(`1i,j))),

L2
j (c

e,V
i,j , V (v(`2i,j))), L

3
j (c

e,V
i,j , V (v(`3i,j))) |

V a valuation of {v(`1i,j), v(`2i,j), v(`3i,j)} satisfying ci,j}

and let Ge,i be as follows:⋃
1≤j≤mi

{R(aei , cei,j)} ∪ {Lhj (cei,j , 0) | 1 ≤ h ≤ 3}

Next, for every odd e ∈ [1, n], we define the dataset Ae as:

{A(ae1)} ∪ {Te+1,h(a
e
1), Fe+1,h(a

e
1) | 1 ≤ h ≤ ge+1}∪

{N(aei , a
e
i+1) | 1 ≤ i < n} ∪

⋃
1≤i≤e

Fe,i ∪
⋃

e<i≤n

Ge,i

ThenA is defined as the disjoint union of theAe. Finally, we define the CQ q as follows

A(y1) ∧
n−1∧
i=1

N(yi, yi+1)∧

n∧
i=1

mi∧
j=1

(
R(yi, wi,j) ∧

3∧
h=1

Lhj (wi,j , v(`
h
i,j))

)
where all variables are existentially quantified. Note that T ,A, and q can be constructed
in polynomial time in Φ.

Claim: 〈T ,A〉 |=IAR q iff there is some odd f such that ϕf is satisfiable and ϕf+1 is
unsatisfiable.

For the first part of the claim, suppose that 〈T ,A〉 |=IAR q. Then 〈T ,B〉 |= q,
where B is the intersection of the repairs of 〈T ,A〉. We first remark that none of the
relations appearing in the query q occurs on the right-hand-side of an inclusion in T .
Thus, 〈T ,B〉 |= q and 〈T ,B〉 6|= ⊥ implies that 〈∅,B〉 |= q. Hence, we can find a
function π mapping the variables in q to constants in B such that (i) if D(u) ∈ q, then
D(π(u)) ∈ B, and (ii) if S(u, u′) ∈ q, then S(π(u), π(u′)) ∈ B. Since A(π(y1)) ∈ B,

we must have π(y1) = a1f for some odd f ∈ [1, n]. The presence of A(a1f) in B implies
that ϕf+1 is unsatisfiable (cf. proof of Theorem 5). Using the fact that π(y1) = a1f and
that N(π(yi), π(yi+1)) ∈ B for every 1 ≤ i < n, we can infer that π(yi) = aif , for
every 1 ≤ i ≤ n. Then for every 1 ≤ j ≤ mf , we have R(π(yf), π(wf,j)) ∈ B, and so
we can find a valuation Vj of {v(`1f,j), v(`2f,j), v(`3f,j)} which satisfies cf,j such that

π(wf,j) = c
f,Vj

f,j . Note that for each variable xf,h, either π(xf,h) = 0 or π(xf,h) = 1,
and so if cf,j and cf,j′ both use variable xf,h, then Vj and Vj′ must agree on the value of
xf,h. It follows that the Vj together define a valuation of xf,1, . . . , xf,gf which satisfies
ϕf = cf,1 ∧ . . . ∧ cf,gf . We have thus found an odd f such that ϕf is satisfiable and
ϕf+1 unsatisfiable.

To prove the second half of the claim, suppose that f is odd, ϕf is satisfiable, and
ϕf+1 is unsatisfiable. Let B be the intersection of the repairs of 〈T ,A〉. Since ϕf is
satisfiable, the conditions we imposed on Φ mean that all ϕi with 1 ≤ i < f are also
satisfiable. For every 1 ≤ i ≤ f , let Vi be a valuation of xi,1, . . . , xi,gi which satisfies
ϕi. We now use the valuations Vi to define a function π mapping variables in q to
constants in B:

– for every 1 ≤ i ≤ n: π(yi) = afi
– for every 1 ≤ i ≤ f and 1 ≤ j ≤ mi: π(wi,j) = c

f,Vi,j

i,j , where Vi,j is the restriction
of the valuation Vi to the variables in clause ci,j

– for every 1 ≤ i ≤ f and 1 ≤ h ≤ gi: π(xi,h) = Vi(xi,h)

– for every f < i ≤ n and 1 ≤ j ≤ mi: π(wi,j) = cfi,j
– for every f < i ≤ n and 1 ≤ h ≤ gi: π(xi,h) = 0

Since ϕf+1 is unsatisfiable, A(a1f) does not belong to any minimal T -inconsistent sub-
set (again, we refer to proof of Theorem 5 for the argument), and so A(a1f) belongs to
B. We thus have A(π(y1)) ∈ B. Using the definition of A, it is straightforward to show
that the image of each of the other atoms in q under mapping π belongs to B. We thus
have 〈∅,B〉 |= q, and hence 〈T ,A〉 |=IAR q.

Finally, we note that the above reduction also works if we replace the IAR semantics
by the k-support semantics, for any k > 1.

Theorem 8 For DL-Lite and DL-LiteHorn , instance checking (resp. CQ entailment)
under the CQA semantics is coNP-complete (resp. Πp

2 -complete) w.r.t. combined com-
plexity.

Proof. The coNP upper bound for instance checking is obtained by guessing subset
of the dataset and verifying in polynomial time that it is a repair and that it does not
entail the instance query. For the lower bound, we note that instance checking under
the CQA semantics is known to be coNP-hard already w.r.t. data complexity, cf. [13].
Membership inΠp

2 for CQ entailment is again shown by guessing a subset of the dataset
and verifying that it is a repair and does not entail the query. Since CQ entailment under
classical semantics is NP-complete w.r.t. combined complexity, the Πp

2 upper bound
follows.

To prove Πp
2 -hardness for CQ entailment, we reduce the problem of validity of

2-QBF formulas to our problem. Let Φ be a 2-QBF formula of the form

Φ = ∀x1, . . . , xm∃y1, . . . , ypϕ

where ϕ =
∧n
i=1 ci is a 3-CNF formula over the variables x1, . . . , xm, y1, . . . , yp,

where every ci is a clause of the form `1i ∨ `2i ∨ `3i . As in the proof of Theorem 7,
we use v(`ji) to denote the variable of literal `ji .

We define a DL-Lite KB 〈T ,A〉 and CQ q. The ontology T is as follows:

{∃GX i v ¬∃GX−i | 1 ≤ i ≤ m}

For the dataset A, we take the following set of facts:

n⋃
i=1

{L1
i (c

V
i , I (v(`

1
i))), L

2
i (c

V
i , I (v(`

2
i))), L

2
i (c

V
i , I (v(`

2
i))) |

I is a valuation of {v(`1i), v(`2i), v(`3i)} satisfying ci}

∪ {GX i(0, 1),GX i(1, 0) | 1 ≤ i ≤ m}

and for the query q, we use:

n∧
i=1

3∧
h=1

Lh
i (wi, v(`

h
i)) ∧

m∧
i=1

GX i(xi, zi)

with all variables exisentially quantified. Clearly, T , A, and q can all be constructed in
time polynomial in Φ.

Claim: Φ is valid if and only if 〈T ,A〉 |=CQA q.

To show the first part of the claim, suppose that Φ is valid. Let R be a repair of
〈T ,A〉. We remark that the minimal T -inconsistent subsets of 〈T ,A〉 are of the form
{GX i(0, 1),GX i(1, 0)} (for 1 ≤ i ≤ m). Thus, the repair R is obtained by removing
either GX i(0, 1) or GX i(1, 0) (but not both) for every 1 ≤ i ≤ m. Define a valua-
tion VX of the variables {x1, . . . , xm} by setting VX(xi) = 0 if GX i(0, 1) ∈ R and
VX(xi) = 1 if GX i(1, 0) ∈ R. Because Φ is valid, there exists a valuation VXY of the
variables {x1, . . . , xm, y1, . . . , yp} which extends VX and satisfies every clause in ϕ.
Define a function π mapping the variables in q to the constants inR, as follows:

– for every 1 ≤ i ≤ n: π(wi) = cVi
i where Vi is the restriction of VXY to variables

appearing in clause ci
– for every 1 ≤ i ≤ m: π(xi) = VXY (xi)

– for every 1 ≤ i ≤ p: π(yi) = VXY (yi)

– for every 1 ≤ i ≤ m: π(zi) = 0 if π(xi) = 1, and π(zi) = 1 if π(xi) = 0

It is easily verified that for every atom α in q, the image of α under π belongs to the
repair R. It follows that 〈∅,R〉 |= q, hence 〈T ,R〉 |= q. We thus obtain 〈T ,A〉 |=CQA

q.
To complete the proof of the claim, suppose that 〈T ,A〉 |=CQA q. Let VX be a

valuation of {x1, . . . , xm}. Consider the set of factsR defined as

A \ ({GX i(1, 0) | VX(xi) = 0} ∪ {GX i(0, 1) | VX(xi) = 1})

It is easy to see that R is a repair of 〈T ,A〉. Since 〈T ,A〉 |=CQA q, we must have
〈T ,R〉 |= q. We remark that the ontology T does not contain any positive inclusions.
Consequently, 〈T ,R〉 |= q and 〈T ,R〉 6|= ⊥ implies that 〈∅,R〉 |= q. We can thus find

a function π mapping variables in q to constants in R such that S(π(u), π(u′)) ∈ R
for every atom S(u, u′) ∈ q. Define a valuation VXY of {x1, . . . , xm, y1, . . . , yp} by
setting VXY (xi) = π(xi) and VXY (yi) = π(yi). Note that for every 1 ≤ i ≤ m,
GX i(π(xi), π(zi)) ∈ R implies that π(xi) = VX(xi), so VX and VXY coincide on the
value of xi. It follows that VXY extends the valuation VX . To show that VXY satisfies
the formula ϕ, consider some clause ci. We must have π(wi) = cVi

i for some valuation
Vi of the variables {v(`1i), v(`2i), v(`3i)}which satisfies ci. For each 1 ≤ h ≤ 3, we have
that Lhi (π(wi), Vi(v(`

h
1))) ∈ R. It follows that VXY coincides with Vi on the variables

{v(`1i), v(`2i), v(`3i)}, which means that VXY satisfies clause ci. We have thus shown
that every valuation VX of the variables {x1, . . . , xm} can be extended to a valuation
of {x1, . . . , xm, y1, . . . , yp} which satisfies ϕ. We can thus conclude that Φ is valid.

