
Query-based comparison of OBDA specifications

Meghyn Bienvenu1 and Riccardo Rosati2

1 Laboratoire de Recherche en Informatique
CNRS & Université Paris-Sud, France

2 Dipartimento di Ingegneria informatica, automatica e gestionale
Sapienza Università di Roma, Italy

Abstract. An ontology-based data access (OBDA) system is composed of one
or more data sources, an ontology that provides a conceptual view of the data, and
declarative mappings that relate the data and ontology schemas. In order to de-
bug and optimize such systems, it is important to be able to analyze and compare
OBDA specifications. Recent work in this direction compared specifications us-
ing classical notions of equivalence and entailment, but an interesting alternative
is to consider query-based notions, in which two specifications are deemed equiv-
alent if they give the same answers to the considered query or class of queries for
all possible data sources. In this paper, we define such query-based notions of en-
tailment and equivalence of OBDA specifications and investigate the complexity
of the resulting analysis tasks when the ontology is formulated in DL-LiteR.

1 Introduction

Ontology-based data access (OBDA) [13] is a recent paradigm that proposes the use
of an ontology as a conceptual, reconciled view of the information stored in a set of
existing data sources. The connection between the ontology and the data sources is
provided by declarative mappings, that relate the elements of the ontology with the
elements of the data sources. The ontology layer is the virtual interface used to access
data, through queries over the elements of the ontology.

Due to the recent availability of techniques and systems for query processing in this
setting [5, 14], the OBDA approach has recently started to be experimented in real ap-
plications (see e.g. [1, 7, 10]). In these projects, the construction, debugging and main-
tenance of the OBDA specification, consisting of the ontology, the schemas of the data
sources, and the mapping, is a non-trivial task. Actually, the size and the complexity of
the ontology and, especially, the mappings makes the management of such specifica-
tions a practical issue in these projects. Providing formal tools for supporting the above
activities is therefore very important for the successful deployment of OBDA solutions.

In addition, the OBDA specification plays a major role in query answering, since
the form of the specification may affect the system performance in answering queries:
different, yet semantically equivalent specifications may give rise to very different ex-
ecution times for the same query. So, the study of notions of equivalence and formal
comparison of OBDA specifications is also important for optimizing query process-
ing in OBDA systems. Indeed, some systems already implement forms of optimization
based on transformations of the OBDA specification (an example is [14]).

So far, most of the work in OBDA has focused on query answering, often in a
simplified setting without any mappings. Very little attention has been devoted to the
formal analysis of OBDA specifications. The first approach that explicitly focuses on
the formal analysis of OBDA specifications is [12], whose aim is the identification
of semantic anomalies in mappings. Such an approach is based on a classical notion
of logical equivalence and entailment between OBDA specifications. While it is very
natural to resort to such classical notions, a significant alternative in many cases may
be the adoption of query-based notions of equivalence and comparison, in which two
specifications are compared with respect to a given query or a given class of queries,
and are deemed equivalent if they give the same answers to the considered queries for
all possible extensions of the data sources. This idea has been already explored in the
data exchange and schema mapping literature (see, e.g., [9]) and for description logics
for comparing TBoxes and knowledge bases [11, 4]. To the best of our knowledge, it
has never been explicitly considered for OBDA specifications.

The majority of work on on OBDA has considered conjunctive queries (CQs) as the
query language. Therefore, a first natural choice would be to compare OBDA specifica-
tions with respect to the whole class of CQs. We thus define and study a notion of CQ-
entailment between OBDA specifications that formalizes this case. We also consider the
important subclass of instance queries (IQs), i.e., queries that ask for the instances of a
single concept or role, and analyze the notion of IQ-entailment between specifications.
Moreover, in many application contexts only a (small) set of predefined conjunctive
queries are of interest for the OBDA user(s): in such cases, it may be more appropriate
to tailor the comparison of specifications to a specific set of queries. For this reason, we
also study in this paper the notions of single CQ-entailment and single IQ-entailment,
which compare specifications with respect to a single CQ or IQ, respectively.

We present a first investigation of the computational complexity of deciding the
above forms of entailment for a pair of OBDA specifications. We study ontologies spec-
ified in DL-LiteR and three different mapping languages (linear, GAV and GLAV). In
all cases, we provide exact complexity bounds for the entailment problem. Our results
are summarized in Figure 1. As shown in the table, the complexity of the entailment
check ranges from NL (non-deterministic logarithmic space) for linear mappings and
IQ-entailment to EXPTIME for CQ-entailment. To obtain these results, we show that
instead of considering all possible data instances, it is sufficient to consider a small num-
ber of databases of a particular form. We also exploit connections to query containment
in the presence of signature restrictions [3] and KB query inseparability [4].

2 Preliminaries
We start from four pairwise disjoint countably infinite set of names: the set of concept
names NC, the set of role names NR, the set of relation names Nrel, the set of constant
names NI (also called individuals).

To introduce OBDA specifications, we first recall the notion of knowledge base
(KB) in description logics (DLs). A DL KB is a pair 〈T ,A〉, where: T , called the
TBox, is the intensional component of the KB, and is constituted by a finite set of
axioms expressing intensional knowledge; and A, called the ABox, is a finite set of
atomic concept and role assertions (set of ground facts). We assume that the concept,

role and constant names occurring in every TBox and ABox belong to NC, NR and
NI, respectively. We denote by sig(T) and sig(A) the set of concept and role names
occurring in T and A, respectively.

Although the definitions of Section 3 are general, in Section 4 we will focus on
the DL DL-LiteR [6]. A DL-LiteR TBox consists of a finite set of concept inclusions
B v C and role inclusions R v S, where B, C, R, and S are defined according to the
following syntax (where A is a concept name and P is a role name):

B → A | ∃R C → B | ¬B R→ P | P− S → R | ¬R

We now introduce OBDA specifications. As already explained, a mapping asser-
tion specifies the semantic relationship between elements of a DL ontology, specified
through a TBox, to elements of a database. Such a relationship is specified through
a pair of queries, one over the TBox signature, and the other one over the database
signature. In this paper, we focus on the case where both queries involved in the map-
ping assertion are conjunctive queries: such mapping assertions are called GLAV (for
‘global-as-view’) mappings in the literature [8].

Mappings are formally defined as follows. An atom is an expression r(t) where r
is a predicate and t is a tuple of variables and constants. Then, a (GLAV) mapping as-
sertion m is an expression of the form qs(x) → qo(x), where qs(x) (called the body
of m, body(m)) is a conjunction of atoms over predicates from Nrel and constants from
NI, qo(x) (called the head of m, head(m)) is a conjunction of atoms using predicates
from NC ∪ NR and constants from NI, and x, called the frontier variables of m, are the
variables that appear both in qo and in qs. The arity of m is the number of its frontier
variables. When qo(x) has the form p(x) (i.e., qo(x) is a single atom whose arguments
are x), we callm a GAV mapping assertion. A linear mapping assertion is a GAV asser-
tion whose body consists of a single atom. A (GLAV) mappingM is a set of mapping
assertions. A GAV mapping is a mapping constituted of GAV mapping assertions. A
linear mapping is a set of linear mapping assertions. Without loss of generality, we as-
sume that in every mappingM, every pair of distinct mapping assertions uses pairwise
disjoint sets of variables.

An OBDA specification is a pair Γ = 〈T ,M〉, where T is a TBox and M is a
mapping. Given a mapping assertion m of arity n and an n-tuple of constants a, we
denote by m(a) the assertion obtained from m by replacing the frontier variables with
the constants in a.

Given a set of atoms AT , the function gr returns a set gr(AT) of ground atoms
obtained from AT by replacing every variable symbol x with a fresh constant symbol
cx that does not occur in the considered mapping or database. We assume without loss
of generality that if AT 6= AT ′, then gr(AT) and gr(AT ′) use distinct fresh constants.

In this paper, a database (instance) is a set of ground atoms using relation names
from Nrel and constant names from NI. Given a mappingM and a database instance D,
we define the ABox for D andM, denoted as AM,D, as the following ABox:

{ β ∈ gr(head(m(a))) | m ∈M and D |= ∃y.body(m(a)) }

where we assume that y are the variables occurring in body(m(a)). Given an OBDA
specification Γ = 〈T ,M〉 and a database instance D, we define the models of Γ and

D, denoted asMods(Γ,D) as the set of models of the KB 〈T ,AM,D〉. When such a set
is empty, we write 〈T ,M, D〉 |= ⊥ (analogously, when a KB 〈T ,A〉 has no models,
we write 〈T ,A〉 |= ⊥).

We are interested in the problem of answering instance queries and conjunctive
queries over a pair composed of an OBDA specification and a database. A Boolean
conjunctive query (CQ) is an expression of the form ∃x(α1 ∧ . . .∧αn) where every αi
is an atom whose arguments are either constants or variables from x. For a non-Boolean
CQ q with answer variables v1, . . . , vk, a tuple of constants a = 〈a1, . . . , ak〉 occurring
in A is said to be a certain answer for q w.r.t. K just in the case that K |= q(a),
where q(a) is the Boolean query obtained from q by replacing each vi by ai. We call
instance query (IQ) a CQ consisting of a single atom of the form A(x) or R(x, y), with
A concept name, R role name, and x, y distinct free variables. We denote by sig(q) the
set of concept and role names occurring in a query q. We use CQ (resp. IQ) to refer the
set of all CQs (resp. IQs) over the DL signature NC ∪ NR.

Given an OBDA specification Γ = 〈T ,M〉, a database instance D, and a conjunc-
tive query q, we define the certain answers for q w.r.t. (Γ,D) as the tuples of constants
from D that are certain answers for q w.r.t. 〈T ,AM,D〉. In particular, for Boolean CQs,
we say that q is entailed by (Γ,D), denoted by (Γ,D) |= q (or 〈T ,M, D〉 |= q),
if I |= q for every I ∈ Mods(Γ,D). Note that for non-Boolean queries, we only
consider tuples of constants from D, in order to avoid including those fresh constants
introducing in AM,D by grounding existential variables in mapping heads.

3 Query-based Entailment for OBDA Specifications
We start by recalling the classical notion of entailment between OBDA specifications.

Definition 1 (Logical entailment). An OBDA specification 〈T1,M1〉 logically entails
〈T2,M2〉, written 〈T1,M1〉 |=log 〈T2,M2〉 if and only the first-order theory T1 ∪M1

logically entails the first-order theory T2 ∪M2.

We now define the formal notions of query-based entailment between OBDA spec-
ifications considered in this paper. First, we introduce a notion of entailment that com-
pares specifications based upon the constraints they impose regarding consistency.
Definition 2 (⊥-entailment). Let q be a query. An OBDA specification 〈T1,M1〉 ⊥-
entails 〈T2,M2〉, written 〈T1,M1〉 |=⊥ 〈T2,M2〉, iff, for every database D,

〈T2,M2, D〉 |= ⊥ ⇒ 〈T1,M1, D〉 |= ⊥
Next, we define a notion of query entailment between OBDA specifications with

respect to a single query.

Definition 3 (Single query entailment). Let q be a query. An OBDA specifica-
tion 〈T1,M1〉 q-entails 〈T2,M2〉, written 〈T1,M1〉 |=q 〈T2,M2〉, if and only if
〈T1,M1〉 |=⊥ 〈T2,M2〉 and for every database D,

〈T2,M2, D〉 |= q(a) ⇒ 〈T1,M1, D〉 |= q(a)

When q is an IQ, we call the entailment relation in the preceding definition single IQ-
entailment, while we call it single CQ-entailment if q is an arbitrary CQ.

We can generalize the previous definition to classes of queries as follows.

Definition 4 (Query entailment). Let L be a (possibly infinite) set of queries. An
OBDA specification 〈T1,M1〉 L-entails 〈T2,M2〉, written 〈T1,M1〉 |=L 〈T2,M2〉
iff 〈T1,M1〉 |=⊥ 〈T2,M2〉 and 〈T1,M1〉 |=q 〈T2,M2〉 for every query q ∈ L.

When L = IQ, we call the preceding entailment relation IQ-entailment, and for L =
CQ, we use the term CQ-entailment.

Note that, for each of the above notions of entailment, a notion of equivalence be-
tween OBDA specifications can be immediately derived, corresponding to entailment
in both directions (we omit the formal definitions due to space limitations).

The following property immediately follows from the above definitions.

Proposition 1. Let 〈T1,M1〉, 〈T2,M2〉 be two OBDA specifications, and let L1 be a
set of queries. Then, 〈T1,M1〉 |=log 〈T2,M2〉 implies 〈T1,M1〉 |=L1

〈T2,M2〉. More-
over, if L2 ⊆ L1, then 〈T1,M1〉 |=L1

〈T2,M2〉 implies 〈T1,M1〉 |=L2
〈T2,M2〉.

As a consequence of the above property, we have that logical entailment implies
CQ-entailment, and CQ-entailment implies IQ-entailment. The converse implications
do not hold, as the following examples demonstrate.

Example 1. We start by illustrating the difference between logical entailment
and CQ-entailment. Consider a database containing instances for the relation
EXAM(studentName,courseName,grade,date). Then, let Γ1 = 〈T1,M1〉, where

T1 = {Student v Person, PhDStudent v Student}
M1 = {EXAM(x, y, z, w)→ Student(x)}

and let Γ2 = 〈T2,M2〉, where T2 = {Student v Person} and M2 = M1. It is
immediate to verify that Γ2 6|=log Γ1. However, we have that Γ2 |=CQ Γ1. Indeed,
Γ2 |=CQ Γ1 can be intuitively explained by the fact that the mapping M1 does not
retrieve any instances of the concept PhDStudent (and there are no subclasses that can
indirectly populate it), so the presence of the inclusion PhDStudent v Student in T1
does not have any effect on query answering; in particular, every CQ that mentions
the concept PhDStudent cannot be entailed both under Γ1 and under Γ2. Notice also
that, if we modify the mappingM1 to map PhDStudent instead of Student (i.e., ifM1

were {EXAM(x, y, z, w)→ PhDStudent(x)}), then CQ-entailment between Γ2 and Γ1

would no longer hold.
Next, consider Γ3 = 〈T3,M3〉, where T3 = ∅ and

M3 = {EXAM(x, y, z, w)→ Student(x), EXAM(x, y, z, w)→ Person(x)}

Again, it it immediate to see that Γ3 6|=log Γ2, while we have that Γ3 |=CQ Γ2. Indeed,
Γ3 |=CQ Γ2 follows informally from the fact that the mapping M3 is able to “exten-
sionally” simulate the inclusion Student v Person of T2, which is sufficient for Γ3 to
entail every CQ in the same way as Γ2.

Example 2. We slightly modify the previous example to show the difference between
CQ-entailment and IQ-entailment. Consider Γ1 = 〈T1,M〉 and Γ2 = 〈T2,M〉 where

T1 = {Student v Person, Student v ∃takesCourse}
T2 = {Student v Person}
M = {EXAM(x, y, z, w)→ Student(x)}

Type of entailment Type of mapping Complexity

logical GAV / GLAV NP-complete
linear NL-complete

⊥ GAV / GLAV NP-complete
linear NL-complete

CQ GLAV EXPTIME-hard, in 2EXPTIME
linear / GAV EXPTIME-complete

IQ linear NL-complete
GAV / GLAV NP-complete

single CQ linear / GAV / GLAV Πp
2 -complete

single IQ linear NL-complete
GAV / GLAV NP-complete

Fig. 1. Complexity results for entailment between OBDA specifications in DL-LiteR

Then, it can be easily verified that Γ2 6|=CQ Γ1. Indeed, consider the Boolean CQ
∃x, y takesCourse(x, y): for every database D, this query is not entailed by the pair
(Γ2, D), while this is not the case when the specification is Γ1. On the other hand, we
have that Γ2 |=IQ Γ1: in particular, for every database D and for every pair of individ-
uals a, b, neither (Γ1, D) nor (Γ2, D) entails the IQ takesCourse(a, b). Finally, let q be
the non-Boolean CQ ∃x takesCourse(x, y): then, it can be easily verified that the single
CQ-entailment Γ2 |=q Γ1 holds; while for the CQ q′ of the form ∃y takesCourse(x, y),
the single CQ-entailment Γ2 |=q′ Γ1 does not hold.

4 Complexity Results for DL-LiteR
In this section, we investigate the computational properties of the different notions of
entailment between OBDA specifications defined in the previous section. For this first
study, we focus on the case in which the TBox is formulated in DL-LiteR [6], as it is
the basis for the OWL 2 QL profile and one of the most commonly considered DLs for
OBDA. The results of our complexity analysis are displayed in Figure 1.

In what follows, we formally state the different complexity results and provide some
ideas about the proofs. We begin by considering the complexity of deciding classical
entailment between OBDA specifications.

Theorem 1. Classical logical entailment for OBDA specifications based upon
DL-LiteR TBoxes is NP-complete for GAV or GLAV mappings, and NL-complete for
linear mappings.

Proof. Let Γ1 = 〈T1,M1〉, Γ2 = 〈T2,M2〉. First, it is easy to see that Γ1 |=log Γ2 iff
(i) T1 |= T2; and (ii) Γ1 |=log M2. Property (i) can be decided in NL [2]. Property (ii)
can be decided by an algorithm that, for every assertionm ∈M2, first builds a database
D corresponding to gr(body(m)) (i.e., obtained by “freezing” the body ofm), and then
checks whether 〈Γ1, D〉 entails the CQ corresponding to the head of m whose frontier
variables have been replaced by the corresponding constants. This algorithm runs in

NP in the case of GAV and GLAV mappings, and in NL in the case of linear mappings,
which implies the overall upper bounds in the theorem statement. The lower bound
for GAV mappings can be obtained through an easy reduction of conjunctive query
containment to logical entailment, while the one for linear mappings follows from a
reduction of the entailment of a concept inclusion axiom in a DL-LiteR TBox. ut

We next consider ⊥-entailment. Our upper bounds rely on the following result that
shows it is sufficient to consider a small number of small databases.

Theorem 2. Let q be a CQ, and let Γ1 = 〈T1,M1〉 and Γ2 = 〈T2,M2〉 be OBDA
specifications such that T1, T2 are formulated in DL-LiteR, and M1,M2 are GLAV
mappings. Then Γ1 |=⊥ Γ2 if and only if 〈T1,M1, D〉 |= ⊥ for every database D
satisfying the following condition:1

– Condition 1: D is obtained by (i) taking two mapping assertions m1,m2 from
M2, (ii) selecting atoms α1 and α2 from head(m1) and head(m2) respectively,
(iii) identifying in m1 and m2 some variables from α1 and α2 in such a way that
〈T , gr({α1, α2})〉 |= ⊥, (iv) setting D equal to gr(body(m1) ∪ body(m2)).

Proof. The one direction is immediate from the definitions. For the interesting direc-
tion, let us suppose that 〈T1,M1, D〉 |= ⊥ for every database D satisfying Condi-
tion 1. Let us further suppose that we have 〈T2,M2, D0〉 |= ⊥, where D0 may be
any database. We thus have 〈T2,AM2,D0〉 |= ⊥. It is well known that every minimal
inconsistent subset of a DL-LiteR KB contains at most two ABox assertions, so there
must exist a subset A′ ⊆ AM2,D with |A′| ≤ 2 such that 〈T2,A′〉 |= ⊥. Let γ be
the conjunction of atoms obtained by taking for each ABox assertion in A′, a mapping
assertion that produced it, identifying those variables (and only those variables) needed
to produce the ABox assertion(s), and then taking the conjunction of the atoms in the
bodies. We observe that by construction Dγ = gr(γ) satisfies Condition 1 and is such
that 〈T1,M1, Dγ〉 |= ⊥. By construction, there is a homomorphism of γ into the origi-
nal database D0. It follows that 〈T1,M1, D0〉 |= ⊥. ut

Using the preceding result, we can pinpoint the complexity of ⊥-entailment.

Theorem 3. The⊥-entailment problem is NP-complete for OBDA specifications based
upon DL-LiteR TBoxes and GAV / GLAV mappings, and NL-complete in the case of
linear mappings.

Proof. We know from Theorem 2 that Γ1 |=⊥ Γ2 iff 〈T1,M1, D〉 |= ⊥ for every
database D satisfying Condition 1. For the GAV / GLAV case, we compute these
databases in polynomial time and for every such database D, we guess a polynomial-
size proof that 〈T1,M1, D〉 |= ⊥. For the linear case, we observe that the databases
satisfying Condition 1 contain at most 2 tuples each and can be enumerated in loga-
rithmic space. For every such database D, we can check using an NL oracle whether
〈T1,M1, D〉 |= ⊥. Since LNL = NL, we obtain an NL procedure. ut

1 Recall that distinct mapping assertions in a mapping have no common variables.

Next we consider entailment with respect to a specific query. We again start by
showing it is sufficient to consider a finite number of databases of a particular form.

Theorem 4. Let q be a CQ, and let Γ1 = 〈T1,M1〉 and Γ2 = 〈T2,M2〉 be OBDA
specifications such that T1, T2 are formulated in DL-LiteR, and M1,M2 are GLAV
mappings. Then Γ1 |=q Γ2 if and only if Γ1 |=⊥ Γ2 and 〈T2,M2, D〉 |= q(a) implies
〈T1,M1, D〉 |= q(a) for every database D satisfying the following condition:

– Condition 2: D is obtained by (i) taking k ≤ |q| mapping assertions
m1,m2, . . . ,mk from M2, (ii) identifying some of the frontier variables in
m1,m2, . . . ,mk, (iii) letting D = gr(body(m1) ∪ body(m2) ∪ . . . ∪ body(mk)).

If q is an IQ, then the latter condition can be replaced by:

– Condition 3: D is obtained by (i) taking a mapping assertion m from M2 and
choosing an atom α ∈ head(m), (ii) possibly identifying in m the (at most two)
frontier variables appearing in α, and (iii) letting D = gr(body(m)).

Proof. Again the one direction is immediate. To show the non-trivial direction, let us
suppose that Γ1 |=⊥ Γ2 and that 〈T2,M2, D〉 |= q(c) implies 〈T1,M1, D〉 |= q(c)
for every tuple c and database D satisfying Condition 2 (we return later to the case
of IQs). Let us further suppose that we have 〈T2,M2, D0〉 |= q(a). The first pos-
sibility is that 〈T2,M2, D0〉 |= ⊥, in which case we have 〈T1,M1, D0〉 |= ⊥ be-
cause of Γ1 |=⊥ Γ2. We thus obtain 〈T1,M1, D0〉 |= q0(a). The other possibility
is that 〈T2,M2, D0〉 |= q0(a) and 〈T2,M2, D0〉 6|= ⊥. If 〈T1,M1, D0〉 |= ⊥, we
immediately obtain 〈T1,M1, D0〉 |= q0(a). Otherwise, let AM2,D0 be the ABox for
M2 and D0. Since 〈T2,M2, D0〉 |= q0(a), we have 〈T2,AM2,D0

〉 |= q0(a). It is
a well-known property of DL-LiteR that there exists a subset A′ ⊆ AM2,D0

with
|A′| ≤ |q0| such that 〈T2,A′〉 |= q0(a). Let |A′| = k, and let β1, . . . , βk be the
ABox assertions in A′. For each βi, we choose a mapping assertion mi ∈ M2 and
a homomorphism hi of body(mi) into D0 such that gr(hi(head(m))) contains βi.
We also select an atom αi ∈ head(m) such that gr(h(α)) = β. Let m′i be ob-
tained from mi by identifying frontier variables y and z if hi(y) = hi(z), and set
D′ = gr(body(m′1) ∪ . . . ∪ body(m′k)). It is easy to see that D′ satisfies Condition 2.
Moreover, by construction, the ABox AM2,D′ contains a subset A′′ that is isomorphic
toA′, and so 〈T2,M2, D

′〉 |= q0(a
′) where a′ is tuple corresponding to a according to

this isomorphism. Applying our assumption, we obtain 〈T1,M1, D
′〉 |= q0(a

′). Using
the fact that there is a homomorphism of body(m′1)∪ . . .∪ body(m′k) into D0 that is an
isomorphism on the frontier variables, we obtain 〈T1,M1, D〉 |= q0(a).

Finally, for the case of instance queries, we simply note that we have k = 1, and it
is only necessary to identify those variables in the head atom of the mapping that leads
to introducing the single ABox assertion of interest. This yields Condition 3. ut

We pinpoint the complexity of single CQ-entailment, showing it to beΠp
2 -complete.

Theorem 5. The single CQ-entailment problem is Πp
2 -complete for OBDA specifica-

tions based upon DL-LiteR TBoxes and GLAV mappings. The lower bound holds even
for linear mapping assertions and when both TBoxes are empty.

Proof. For the upper bound, consider two OBDA specifications Γ1 = 〈T1,M1〉 and
Γ2 = 〈T2,M2〉. From Theorems 2 and 4, we know that Γ1 6|=q Γ2 if and only if one of
the following holds:

– there is a database D satisfying Condition 2 such that 〈T1,M1, D〉 6|= ⊥;
– there is a database D satisfying Condition 2 such that 〈T2,M2, D〉 |= q(a),
〈T2,M2, D〉 6|= ⊥, and 〈T1,M1, D〉 6|= q(a).

The first item can be checked using an NP oracle (by Theorem 3). To check the sec-
ond item, we remark that the size of databases satisfying Condition 2 cannot exceed
max(2, |q|) · maxbody, where maxbody is the maximum number of atoms appearing
in the body of a mapping assertion inM2. It follows that to show that the second item
above is violated, we can guess a database D of size at most max(2, |q|) · maxbody
together with a tuple of constants a and a polynomial-size proof that 〈T2,M2, D〉 |=
q(a), and then we can verify using an NP oracle that 〈T1,M1, D〉 6|= q(a). We there-
fore obtain a Σp

2 procedure for deciding the complement of our problem.
For the lower bound, we utilize a result from [3] on query containment

over signature-restricted ABoxes. In that paper, it is shown how, given a 2QBF
∀u∃vϕ(u,v), one can construct a TBox T , Boolean CQs q1 and q2, and a signature
Σ such that ∀u∃vϕ(u,v) is valid iff T ,A |= q1 ⇒ T ,A |= q2 for all ABoxes A
with sig(A) ⊆ Σ. We will not detail the construction but simply remark that the same
TBox T = {T v V, F v V } is used for all QBFs, the signature Σ is given by
(sig(T) ∪ sig(q1) ∪ sig(q2)) \ {V }, and the query q2 is such that V 6∈ sig(q2).

In what follows, we will show how given T , q1, q2, and Σ as above, we can reduce
the problem of testing whether T ,A |= q1 implies T ,A |= q2 for all Σ-ABoxes to
the problem of single CQ entailment. We will use Σ for our database instances, and we
create two copies Σ1 = {P 1 | P ∈ Σ} and Σ2 = {P 2 | P ∈ Σ} of the signature
Σ to be used in the head of mapping assertions. Next, we define sets of mapping as-
sertions copy1(Σ) and copy2(Σ) that simply copies all of the predicates in Σ into the
corresponding symbol in Σ1 (resp. Σ2). Formally, for j ∈ {1, 2},

copyj(Σ) = {A(x)→ Aj(x) | A ∈ Σ ∩ NC} ∪ {R(x, y)→ Rj(x, y) | R ∈ Σ ∩ NR}

We further define, given a data signature Λ1 and DL signature Λ2, a set
populate(Λ1, Λ2) of mapping assertions that populates the relations in Λ2 using all
possible combinations of the constants appearing in tuples over Λ1:

populate(Λ1, Λ2) ={P (x1, . . . , xk)→ P ′(x′1, . . . , x
′
`) | P ∈ Λ1, arity(P) = k,

P ′ ∈ Λ2, arity(P
′) = `, {x′1, . . . , x′`} ⊆ {x1, . . . , xk)}

Using copy1(Σ), copy2(Σ), populate(Σ,Σ1), and populate(Σ,Σ2), we construct the
following mappings:

M1 = populate(Σ,Σ1) ∪ copy2(Σ)

M2 = copy1(Σ) ∪ populate(Σ,Σ2) ∪ {T (x)→ V (x), F (x)→ V (x)}

Observe that both mappings are linear. For the query, we let q′1 (resp. q′2) be obtained
from q1 (resp. q2) by replacing every predicate P by P 1(resp. P 2). We also rename

variables so that q′1 and q′2 do not share any variables. We then let q be the CQ obtained
by taking the conjunction of q′1 and q′2 and existentially quantifying all variables. In the
appendix, we show that 〈∅,M1〉 |=q 〈∅,M2〉 iff T ,A |= q1 ⇒ T ,A |= q2 for all
Σ-ABoxes. By combining this with the reduction from [3], we obtain a reduction from
universal 2QBF to the q-entailment problem, establishingΠp

2 -hardness of the latter. ut

If we consider IQs instead, the complexity drops to either NP- or NL-complete.

Theorem 6. The single IQ-entailment problem is NP-complete for OBDA specifica-
tions based upon DL-LiteR TBoxes and either GAV or GLAV mappings. It is NL-
complete if linear mappings are considered.

Proof. We give the arguments for GAV and GLAV mappings (for linear case, see the
appendix). For the NP upper bound, consider two OBDA specifications Γ1 = 〈T1,M1〉
and Γ2 = 〈T2,M2〉, and let q be an IQ. By Theorem 4, Γ1 |=q Γ2 if and only if Γ1 |=⊥
Γ2 and 〈T2,M2, D〉 |= α implies 〈T1,M1, D〉 |= α for all databases D satisfying
Condition 3 and for all Boolean IQs α obtained by instantiating the variable(s) in q
with constant(s) from D.

We already know that it is in NP to test whether Γ1 |=⊥ Γ2. For the second property,
observe that there are only polynomially many databases satisfying Condition 2, since
each corresponds to choosing a mapping assertion m inM2, an atom α ∈ head(m),
and deciding whether or not to identify variables in α. For every such database D, we
compute (in polynomial time) the set of Boolean IQs β obtained by instantiating the IQ
q with constants from D for which 〈T2,M2, gr(head(m))〉 |= β. For every such β, we
guess a polynomial-size proof that 〈T1,M1, D〉 |= β. If all of our polynomially many
guesses succeed, then the procedure returns yes, and otherwise no. By grouping all of
the guesses together, we obtain an NP decision procedure.

The NP lower bound is by reduction from the NP-complete CQ containment prob-
lem: given two CQs q1, q2 both having a single answer variable x, we have q1 ⊆
q2 iff 〈∅, {q2 → A(x)}〉 |=A(x) 〈∅, {q1 → A(x)}〉, where A is a concept name
that does not appear in either of q1 and q2. ut

Finally, we consider entailment with respect to entire classes of queries. Again, we
can show it is sufficient to consider a small number of databases of a particular form.

Theorem 7. Let Γ1 = 〈T1,M1〉 and Γ2 = 〈T2,M2〉 be as in Theorem 4. For L ∈
{CQ, IQ}, Γ1 |=L Γ2 if and only if Γ1 |=⊥ Γ2 and 〈T2,M2, D〉 |= q(a) implies
〈T1,M1, D〉 |= q(a) for every q ∈ L and every database D that satisfies Condition 3.

We show that testing CQ-entailment is much more difficult than for single CQs.
Both the upper and lower bounds use recent results on KB query inseparability [4].

Theorem 8. CQ-entailment is EXPTIME-complete for OBDA specifications based
upon DL-LiteR TBoxes and GAV / linear mappings; it is in 2EXPTIME for GLAV.

Proof. We start with the proof of the membership results. Consider OBDA specifica-
tions Γ1 = 〈T1,M1〉 and Γ2 = 〈T2,M2〉. By Theorem 7, Γ1 |=CQ Γ2 if and only if
Γ1 |=⊥ Γ2 and 〈T2,M2, D〉 |= q(a) implies 〈T1,M1, D〉 |= q(a) for every choice

of q(a) and every database D satisfying Condition 3. We know that testing Γ1 |=⊥ Γ2

can be done in NP (Theorem 3). To decide whether the second property holds, we con-
sider each of the (polynomially many) databases satisfying Condition 3. For every such
database D, we generate the two ABoxes AM1,D and AM2,D and the corresponding
KBs K1 = 〈T1,AM1,D〉 and K2 = 〈T2,AM2,D〉. In the case of GAV mappings, these
KBs are guaranteed to be of polynomial size, whereas for GLAV mappings, they may
be (single) exponentially large due to presence of existential variables in the heads of
mapping assertions. We then test whether it is the case that for every CQ q over sig(K2),
K2 |= q(a) implies K1 |= q(a), and we return no if this is not the case. The preceding
check corresponds to the Σ-query entailment problem for DL-LiteR KBs, which has
been recently studied in [4] and shown to be EXPTIME-complete. We therefore ob-
tain an EXPTIME (resp. 2EXPTIME) procedure for deciding CQ-entailment between
OBDA specifications involving GAV (resp. GLAV) mappings.

Our lower bound also makes use of the recent work on query inseparability of
DL-LiteR knowledge bases. In [4], the following problem is shown to be EXPTIME-
complete: given DL-LiteR TBoxes T1 and T2 that are consistent with the ABox {A(c)},
decide whether the certain answers for q w.r.t. 〈T2, {A(c)}〉 are contained in those
for 〈T1, {A(c)}〉 for every CQ q with sig(q) ⊆ sig(T2). To reduce this problem to
the CQ-entailment problem for OBDA specifications, we consider the following lin-
ear mapping that populates the concept A with all constants appearing in the unary
database relation A′ (refer to the proof of Theorem 5 for the definition of populate):
M1 =M2 = populate({A′}, {A}). To complete the proof, we show in the appendix
that 〈T1,M1〉 |=CQ 〈T2,M2〉 iff 〈T2, {A(c)}〉 |= q(a) implies 〈T1, {A(c)}〉 |= q(a)
for every CQ q sig(q) ⊆ sig(T2). ut

Our final result shows that IQ-entailment has the same complexity as single IQ-
entailment. The proof proceeds similarly to the proof of Theorem 6.

Theorem 9. IQ-entailment is NP-complete for OBDA specifications based upon
DL-LiteR TBoxes and either GAV or GLAV mappings. It is NL-complete if linear map-
pings are considered.

5 Conclusion and Future Work

In this paper, we have introduced notions of query-based entailment of OBDA spec-
ifications and have analyzed the complexity of checking query-based entailment for
different classes of queries and mappings and for TBoxes formulated in DL-LiteR.

The present work constitutes only a first step towards a full analysis of query-based
forms of comparing OBDA specifications, and can be extended in several directions:

– First, it would be interesting to extend the computational analysis of query entail-
ment to other DLs beyond DL-LiteR. For instance, one interesting question for DLs
with functional or cardinality restrictions concerns the impact of the Unique Name
Assumption on the complexity of (and the techniques for) query entailment.

– Second, other forms of mapping beyond GAV and GLAV could be analyzed. In par-
ticular, we would like to see whether decidability of query entailment is preserved
if we add some restricted form of inequality or negation to the mapping bodies.

– Third, we could introduce a query signature and only test entailment for queries
formulated in the given signature, as has been done for TBox and KB query insep-
arability [4]. In fact, all of the complexity upper bounds in this paper hold also if
we introduce a query signature, but this may not be the case for other DLs.

– Finally, to explore the impact of restricting the set of possible databases, we could
extend the computational analysis to database schemas with integrity constraints.

Acknowledgments. This research has been partially supported by the EU under FP7
project Optique (grant n. FP7-318338) and by the French National Research Agency
under ANR project PAGODA (grant n. ANR-12-JS02-007-01).

References

1. N. Antonioli, F. Castanò, C. Civili, S. Coletta, S. Grossi, D. Lembo, M. Lenzerini, A. Poggi,
D. F. Savo, and E. Virardi. Ontology-based data access: the experience at the Italian De-
partment of Treasury. In Proc. of the Industrial Track of the 25th Int. Conf. on Advanced
Information Systems Engineering (CAiSE), 2013.

2. A. Artale, D. Calvanese, R. Kontchakov, and M. Zakharyaschev. The DL-Lite family and
relations. J. of Artificial Intelligence Research, 36:1–69, 2009.

3. M. Bienvenu, C. Lutz, and F. Wolter. Query containment in description logics reconsidered.
In Proc. of the 13th Int. Conf. on the Principles of Knowledge Representation and Reasoning
(KR), 2012.

4. E. Botoeva, R. Kontchakov, V. Ryzhikov, F. Wolter, and M. Zakharyaschev. Query insepara-
bility for description logic knowledge bases. In Proc. of the 14th Int. Conf. on the Principles
of Knowledge Representation and Reasoning (KR), 2014.

5. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, M. Rodriguez-Muro,
R. Rosati, M. Ruzzi, and D. F. Savo. The Mastro system for ontology-based data access.
Semantic Web J., 2(1):43–53, 2011.

6. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable reasoning
and efficient query answering in description logics: The DL-Lite family. J. of Automated
Reasoning, 39(3):385–429, 2007.

7. D. Calvanese, M. Giese, P. Haase, I. Horrocks, T. Hubauer, Y. Ioannidis, E. Jiménez-Ruiz,
E. Kharlamov, H. Kllapi, J. Klüwer, M. Koubarakis, S. Lamparter, R. Möller, C. Neuenstadt,
T. Nordtveit, Ö. Özcep, M. Rodriguez-Muro, M. Roshchin, F. Savo, M. Schmidt, A. Soylu,
A. Waaler, and D. Zheleznyakov. Optique: OBDA solution for big data. In Revised Selected
Papers of ESWC 2013 Satellite Events, volume 7955 of Lecture Notes in Computer Science,
pages 293–295, 2013.

8. A. Doan, A. Y. Halevy, and Z. G. Ives. Principles of Data Integration. Morgan Kaufmann,
2012.

9. G. Gottlob, R. Pichler, and V. Savenkov. Normalization and optimization of schema map-
pings. Very Large Database J., 20(2):277–302, 2011.

10. E. Kharlamov, M. Giese, E. Jiménez-Ruiz, M. G. Skjæveland, A. Soylu, D. Zheleznyakov,
T. Bagosi, M. Console, P. Haase, I. Horrocks, S. Marciuska, C. Pinkel, M. Rodriguez-Muro,
M. Ruzzi, V. Santarelli, D. F. Savo, K. Sengupta, M. Schmidt, E. Thorstensen, J. Trame,
and A. Waaler. Optique 1.0: Semantic access to big data: The case of Norwegian Petroleum
Directorate’s FactPages. In Proc. of the ISWC Posters & Demos Track, pages 65–68, 2013.

11. B. Konev, R. Kontchakov, M. Ludwig, T. Schneider, F. Wolter, and M. Zakharyaschev. Con-
junctive query inseparability of OWL 2 QL TBoxes. In Proc. of the 25th AAAI Conf. on
Artificial Intelligence (AAAI), 2011.

12. D. Lembo, J. Mora, R. Rosati, D. F. Savo, and E. Thorstensen. Towards mapping analysis
in ontology-based data access. In Proc. of the 8th Int. Conf. on Web Reasoning and Rule
Systems (RR), pages 108–123, 2014.

13. A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati. Linking
data to ontologies. J. on Data Semantics, X:133–173, 2008.

14. M. Rodriguez-Muro, R. Kontchakov, and M. Zakharyaschev. Ontology-based data access:
Ontop of databases. In Proc. of the 12th Int. Semantic Web Conf. (ISWC), 2013.

A Additional Proof Details

We recall the notion of canonical model which we will use in some of our proofs. Let
I be a model of a DL-LiteR KB 〈T ,A〉. We call I a canonical model of 〈T ,A〉 if, for
every model J of 〈T ,A〉, there exists a homomorphism h : ∆I → ∆J , such that: (i)
for every constant name a, h(aI) = aJ ; (ii) for every d ∈ ∆I and for every concept
name A, if d ∈ AI then h(d) ∈ AJ ; (iii) for every pair of elements d, d′ ∈ ∆I and for
every role name R, if 〈d, d′〉 ∈ RI then 〈h(d), h(d′)〉 ∈ RJ .

It is well known that consistent DL-LiteR KBs possess canonical models; we re-
fer the reader to standard references for concrete constructions of canonical models
in DL-LiteR. Importantly, canonical models characterize conjunctive query answering
over DL-LiteR KBs. More precisely, it can be shown that for every CQ q and every tuple
a of constants occurring in A, 〈T ,A〉 |= q(a) iff I |= q(a) with I a canonical model
for 〈T ,A〉. This property immediately carries over to the OBDA setting as follows:
given an OBDA specification Γ = 〈T ,M〉, a database instance D, a canonical model
I for 〈T ,AM,D〉, a conjunctive query q and a tuple a of constants occurring inAM,D,
(Γ,D) |= q(a) iff I |= q(a).

The next lemma establishes the claim from the proof of Theorem 5.

Lemma 1. 〈∅,M1〉 |=q 〈∅,M2〉 iff T ,A |= q1 ⇒ T ,A |= q2 for all Σ-ABoxes.

Proof. First suppose that 〈∅,M1〉 |=q 〈∅,M2〉, and let A be an ABox such that
sig(A) ⊆ Σ and T ,A |= q1. Let D be the database instance consisting of the facts in
A. SinceM2 contains copy1(Σ) as well as {T (x)→ V (x), F (x)→ V (x)}, it follows
that 〈∅,M2, D〉 |= q′1. Moreover, because M2 contains populate(Σ,Σ2), the corre-
sponding ABox AM2,D contains all Σ2-facts that can be built using constants from
D (hence A). Using the fact that q′2 only uses predicates from Σ2, we can infer that
〈∅,M2, D〉 |= q′2 and hence that 〈∅,M2, D〉 |= q. By our assumption that 〈∅,M1〉 |=q
〈∅,M2〉, we obtain 〈∅,M1, D〉 |= q, which implies that 〈∅,M1, D〉 |= q′2. We then
observe that AM1,D contains P 2(c) iff A contains the corresponding assertion P (c).
It follows that the homomorphism witnessing that 〈∅,M1, D〉 |= q′2 can be reproduced
in A using the original predicates, so A |= q2.

For the other direction, suppose that for all Σ-ABoxes, T ,A |= q1 implies
T ,A |= q2. Let D be a database instance such that 〈∅,M2, D〉 |= q. It follows that
〈∅,M2, D〉 |= q′1. Note that since the left-hand side of mapping assertions in M2

only use predicates from Σ, we may assume w.l.o.g. that sig(D) ⊆ Σ. Let AD be
the Σ-ABox containing the facts in D. From 〈∅,M2, D〉 |= q′1 and the fact that the

two inclusions in T simulate the effect of the mapping assertions T (x) → V (x) and
F (x) → V (x), we can infer that T ,AD |= q1. Applying our assumption, we obtain
T ,AD |= q2, which yields 〈∅,M1, D〉 |= q′2 because of the mapping assertions in
copy2(Σ). We can also show that 〈∅,M1, D〉 |= q′1 using the mapping assertions in
populate(Σ,Σ1), from which we obtain 〈∅,M1, D〉 |= q, as desired. ut

We give the missing proof of the linear case for Theorem 6.

Proof of Theorem 6 (continued). In the case of linear mappings, we can again use
Theorem 4 to restrict the number and form of the databases that need to be considered.
By Theorem 2, we can check in NL whether Γ1 |=⊥ Γ2. We can next enumerate, in
logarithmic space, all of the databases satisfying Condition 3. We can then iterate over
all the relevant IQs based upon q and the constants in D and use a call to an NL oracle
to check whether the IQ is entailed from 〈Γ1, D〉. The procedure returns yes if all of the
checks succeed. Since LNL = NL, we obtain an NL decision procedure.

For the NL lower bound, we can reduce concept subsumption to single IQ entail-
ment with linear mappings as follows: T |= A v B iff 〈T , {A(x) → A(x)}〉 |=B(x)

〈T , {A(x)→ B(x)}〉. ut

We now give a detailed proof sketch for Theorem 7.

Proof of Theorem 7. We start by considering the case in which L = CQ. Suppose
that Γ1 |=⊥ Γ2 and 〈T2,M2, D〉 |= q(a) implies 〈T1,M1, D〉 |= q(a) for ev-
ery q ∈ CQ and every database D that satisfies Condition 3. Further suppose that
〈T2,M2, D0〉 |= q0(a), where D0 may be any database. The first possibility is that
〈T2,M2, D0〉 |= ⊥, in which case Γ1 |=⊥ Γ2 yields 〈T1,M1, D0〉 |= ⊥ and thus,
〈T1,M1, D0〉 |= q0(a). The other possibility is that 〈T2,M2, D0〉 |= q0(a) and
〈T2,M2, D0〉 6|= ⊥. If 〈T1,M1, D0〉 |= ⊥, we are done. Otherwise, let AM1,D0

and
AM2,D0

be the corresponding ABoxes, and let I1 and I2 be the canonical models of
〈T1,AM1,D0

〉 and 〈T2,AM2,D0
〉 respectively. Since 〈T2,M2, D0〉 |= q0(a), we have

I2 |= q0(a), and thus there must exist a match π for q0(a) in I2 (i.e., a homomorphism
of q0 into I2 that sends the answer variables x of q0 to a). This match gives rise to
an equivalence relation ∼π on the atoms in q, defined as follows: α ∼π α′ just in the
case that α and α′ share a variable v such that π(v) is not a constant. This equivalence
relation in turn induces a partition of q0 into connected subqueries q1, . . . , qn, where
each of the queries qi corresponds to one of the equivalence classes of ∼π . Each of the
queries qi satisfies exactly one of the following conditions:

– qi consists of a single atom all of whose variables are mapped by π to constants in
AM2,D;

– every atom in qi contains a variable that is not mapped to a constant of AM2,D,
and there is a unique constant ai in AM2,D to which one or more variables of qi is
mapped;

– qi contains no constants and none of its variables are mapped to constants in
AM2,D.

Using our assumptions, we can show that the matches for each of these subqueries
can be reproduced in I1 in such a way that we obtain a match for q0(a) in I1, yielding

〈T1,M1, D0〉 |= q0(a). The proof relies on standard arguments and known properties
of canonical models. For each query qi (1 ≤ i ≤ n), we proceed as follows:

1. We create a new query q′i which is obtained by identifying those variables in qi
that are mapped to the same constant (and leaving all other variables untouched).
If qi satisfied the first condition, then all of its variables are designated as answer
variables. If the second condition was satisfied, then only the unique remaining
variable that maps to a constant is considered as an answer variable. If the third
condition holds, then there are no answer variables. By construction, we have I2 |=
q′i(b), with b being the tuple of constants obtained by applying π to the answer
variables of q′i.

2. From I2 |= q′i(b), we have 〈T2,AM2,D〉 |= q′i(b). Using standard arguments based
upon canonical models, we can show that in fact there is a single ABox assertion
β ∈ AM2,D such that 〈T2, {β}〉 |= q′i(b). Note in particular that β must contain all
constants in the tuple b.

3. We now choose some mapping assertion m ∈ M2 and a homomorphism h of
body(m) into D0 such that gr(h(head(m))) contains β. We select an atom α ∈
head(m) such that the grounding of h(α) is β. We then let m′ be obtained from
m by identifying variables y and z if both belong to the atom α and h(y) = h(z)
(thus, we identify at most one pair of variables).

4. We let D′m = gr(m′), let h′ be the homomorphism that maps each variable in
body(m′) to the corresponding constant, let β′ be the grounding of h′(α), and let
b′ be the tuple obtained by substituting in b the corresponding constants from β′.
By construction, D′m satisfies Condition 3. Moreover, from 〈T2, {β}〉 |= q′i(b), we
can infer 〈T2, {β′}〉 |= q′i(b

′), hence 〈T2,M2, D
′
m〉 |= q′i(b

′).
5. Since D′m satisfies Condition 3, we can apply our assumption to obtain
〈T1,M1, D

′
m〉 |= q′i(b

′), from which we can infer 〈T1,M1, D0〉 |= qi(b).

It follows from the construction of the qi and Point 5 that 〈T1,M1, D0〉 |= q0(a).
So far, we have considered the case in which L = CQ, but the same reasoning can

be applied to show the result for IQ-entailment. Indeed, the only difference is that there
are fewer cases to consider, as the unique query atom must have all of its variables
mapped to ABox constants. ut

We next prove the claim from the proof of Theorem 8.

Lemma 2. 〈T1,M1〉 |=CQ 〈T2,M2〉 iff 〈T2, {A(c)}〉 |= q(a) implies 〈T1, {A(c)}〉 |=
q(a) for every CQ q with sig(q) ⊆ sig(T2).

Proof. First suppose that 〈T1,M1〉 |=CQ 〈T2,M2〉 and 〈T2, {A(c)}〉 |= q(a). Let D
be the data instance consisting of the single fact A′(c). Then AD,M2

= {A(c)}, so
〈T2,M2, D〉 |= q(a). Using our assumption that 〈T1,M1〉 |=CQ 〈T2,M2〉, we obtain
〈T1,M1, D〉 |= q(a), and hence, 〈T1, {A(c)}〉 |= q(a).

For the other direction, suppose that 〈T2, {A(c)}〉 |= q(a) implies 〈T1, {A(c)}〉 |=
q(a) for every CQ q with sig(q) ⊆ sig(T2), and let D be a data instance and q0 a CQ
with sig(q0) ⊆ sig(T2) such that 〈T2,M2, D〉 |= q0(a). Let I2 be a canonical model
for 〈T2,AD,M2

〉. Because of the form of the mapping M2, we know that I2 is the
disjoint union of the canonical models of the KBs 〈T2, A(d)}〉 over all constants d such

that A′(d) ∈ D. If q0 is connected, then there must exist a single constant d from D
such that 〈T2, {A(d)}〉 |= q0(a) (in which case a = 〈d, . . . , d〉). We can thus apply our
assumption to obtain 〈T1, {A(d)}〉 |= q0(a), hence 〈T1,M1, D〉 |= q0(a). If q0 has
several connected subqueries, then we can apply the same argument for each connected
subquery, again concluding that 〈T1,M1, D〉 |= q0(a). ut

We now give the proof of Theorem 9.

Proof of Theorem 9. Consider OBDA specifications Γ1 = 〈T1,M1〉 and Γ2 =
〈T2,M2〉. By Theorem 7, Γ1 |=IQ Γ2 if and only if Γ1 |=⊥ Γ2 and 〈T2,M2, D〉 |=
q(a) implies 〈T1,M1, D〉 |= q(a) for every IQ q and every databaseD satisfying Con-
dition 3. We can therefore use almost exactly the same arguments as in the proof of
Theorem 6 to obtain an NP upper bound for the GAV / GLAV case and NL for linear
mappings. The only difference in the argument is that we need to consider all polyno-
mially many (and logspace-enumerable) IQs that can be built using the constants in D
and the concept and role names from Γ2.

For the NP lower bound, we can use the same reduction from CQ containment
as in Theorem 6. The NL lower bound can be shown by a slight modification of the
reduction from Theorem 6: T |= A v B iff 〈T , {T (x) → A(x)}〉 |=IQ 〈T , {T (x) →
A(x), T (x)→ B(x)}〉. ut

