
Query-based Comparison of Mappings in Ontology-based Data Access

Meghyn Bienvenu
LIRMM - CNRS, INRIA,

& Université de Montpellier
Montpellier, France

Riccardo Rosati
DIAG

Sapienza Università di Roma
Rome, Italy

Abstract

An ontology-based data access (OBDA) system is composed
of one or more data sources, an ontology that provides a con-
ceptual view of the data, and declarative mappings that re-
late the data and ontology schemas. In order to debug and
optimize such systems, it is important to be able to analyze
and compare OBDA specifications. Recent work in this direc-
tion compared specifications using classical notions of equiv-
alence and entailment, but an interesting alternative is to con-
sider query-based notions, in which two specifications are
deemed equivalent if they give the same answers to the con-
sidered query or class of queries for all possible data sources.
In this paper, we define such query-based notions of entail-
ment and equivalence of OBDA specifications and investigate
the complexity of the resulting analysis tasks when the ontol-
ogy is formulated in (fragments of) DL-LiteR.

1 Introduction
Ontology-based data access (OBDA) (Poggi et al. 2008) is
a recent paradigm that proposes the use of an ontology as
a conceptual, reconciled view of the information stored in a
set of existing data sources. The connection between the on-
tology and the data sources is provided by declarative map-
pings that relate the elements of the ontology with the ele-
ments of the data sources. The ontology layer is the virtual
interface used to access data, through queries formulated in
the vocabulary of the ontology.

Due to the recent availability of techniques and systems
for query processing in this setting (Calvanese et al. 2011;
Rodriguez-Muro, Kontchakov, and Zakharyaschev 2013),
the OBDA approach has begun to be experimented in real
applications (see e.g. (Antonioli et al. 2013; Kharlamov et
al. 2013; Giese et al. 2015)). In these projects, the construc-
tion, debugging and maintenance of the OBDA specification,
consisting of the ontology, the schemas of the data sources,
and the mapping, is a non-trivial task. In fact, the size and
the complexity of the ontology and, especially, the mappings
makes the management of such specifications a practical is-
sue in these projects. Providing formal tools for supporting
the above activities is therefore crucial for the successful de-
ployment of OBDA solutions.

In addition, the OBDA specification plays a major role in
query answering, since its form may affect the system per-
formance in answering queries: different, yet semantically

equivalent specifications may give rise to very different exe-
cution times for the same query. Thus, the study of notions of
equivalence and formal comparison of OBDA specifications
is also important for optimizing query processing in OBDA
systems. Indeed, some systems already implement forms
of optimization based on such transformations (see, e.g.,
(Rodriguez-Muro, Kontchakov, and Zakharyaschev 2013)).

Most of the work on OBDA thus far has focused on the
query answering task, often in a simplified setting without
mappings. Very little attention has been devoted to the for-
mal analysis of OBDA specifications. The first approach that
explicitly focuses on the formal analysis of OBDA specifica-
tions is (Lembo et al. 2014; 2015), whose aim is the discov-
ery of redundancies and inconsistencies in mappings. That
work utilizes the classical notions of logical equivalence and
entailment to compare OBDA specifications. While it is very
natural to resort to such classical notions, an appealing al-
ternative in many applications is to adopt query-based no-
tions of equivalence and entailment, in which two specifica-
tions are compared with respect to a given query or a given
class of queries, and are deemed equivalent if they give the
same answers to the considered queries for all possible data
sources. This idea has already been investigated in several
works by the DL community for the purpose of comparing
TBoxes and knowledge bases (Konev et al. 2009; Lutz and
Wolter 2010; Kontchakov, Wolter, and Zakharyaschev 2010;
Konev et al. 2011; Botoeva et al. 2014; 2015), as well as in
the data exchange and schema mapping literature (Fagin et
al. 2008; Gottlob, Pichler, and Savenkov 2011). To the best
of our knowledge, it has never been explicitly considered for
OBDA specifications.

Conjunctive queries (CQs) are the type of queries most
commonly considered in OBDA. Therefore, a first natural
choice would be to compare OBDA specifications with re-
spect to the whole class of CQs. We thus define a notion
of CQ-entailment between OBDA specifications, which is a
natural generalization of previously studied notions of query
entailment between ontologies. We also consider the impor-
tant subclass of instance queries (IQs) and analyze the no-
tion of IQ-entailment between specifications. Moreover, in
many application contexts, only a (small) set of predefined
queries are available or of interest to the user(s). In such
cases, it may be more appropriate to tailor the comparison
of specifications to a specific set of queries. For this reason,

we also study the notions of single CQ-entailment and single
IQ-entailment, which compare specifications with respect to
a single CQ or IQ.

Each of the preceding notions of entailment induces a cor-
responding notion of equivalence of OBDA specifications.
Being weaker than classical logical equivalence, such query-
based notions of equivalence lay the formal foundations for
more powerful types of optimizations of OBDA specifica-
tions, as it is possible to consider a larger set of semantically
well-founded transformations and simplifications of the on-
tology and mapping. The notions of equivalence based upon
particular queries can be used to check that modifications to
the specification do not inadvertently impact the answers to
queries that should not be concerned by the changes.

We present a first investigation of the computational com-
plexity of deciding the above forms of entailment for a pair
of OBDA specifications. We consider three different lan-
guages (linear, GAV and GLAV) for expressing mappings
in OBDA. As ontology languages, we focus on lightweight
description logics (DLs) from the DL-Lite family (Calvanese
et al. 2007; Artale et al. 2009), which are a popular choice
for OBDA. More precisely, we consider the logic DL-LiteR
(also known as DL-LiteHcore), which is the basis for the OWL
2 QL profile (Motik et al. 2012), as well as its fragments
DL-Litecore and DL-LiteRDFS. The latter is the DL analogue
of the RDFS standard (Guha and Brickley 2014).

The paper is structured as follows. After some prelimi-
naries, we formally define in Section 3 the different notions
of entailment between OBDA specifications. In Section 4,
we provide characterization results that allow us to restrict
the number and form of databases and ABoxes that need to
be considered when deciding entailment. These results will
be used in Section 5 as central tools in our analysis of the
complexity of query entailment between OBDA specifica-
tions formulated in the DL and mapping languages men-
tioned above. To obtain our complexity results, we also ex-
ploit connections to query containment in the presence of
signature restrictions (Bienvenu, Lutz, and Wolter 2012) and
KB query inseparability (Botoeva et al. 2014). The results
of our complexity analysis are summarized in Figure 1. As
shown in the table, the complexity of query-based entail-
ment between OBDA specifications ranges from NL (non-
deterministic logarithmic space) for (single) IQ-entailment
with linear mappings (and the three considered DL-Lite di-
alects) to EXPTIME for CQ-entailment in DL-LiteR (for the
three types of mapping).

For lack of space, some proofs have been deferred to the
appendix of the long version (Bienvenu and Rosati 2016).

2 Preliminaries
We start from four pairwise disjoint countably infinite sets
of names: the set NC of concept names (unary predicates),
the set NR of role names (binary predicates), the set Nrel

of relation names (predicates of arbitrary arity), and the set
NI of constant names (also called individuals). We will call
NC ∪ NR the DL signature and Nrel the database signature.
Given a syntactic object O, we denote by sig(O) the set of
concept names, role names, and relation names occurring

in O, and by const(O) the set of constant names occurring
in O. If ~a is a tuple of constants and Ξ ⊆ NI, then the nota-
tion ~a ⊆ Ξ means that every constant in ~a belongs to Ξ. As
usual, we use |O| for the size of O, i.e. the total number of
occurrences of symbols in O.

We recall that a DL knowledge base (KB) is a pair 〈T ,A〉
composed of a TBox T , expressing intensional knowledge,
and an ABoxA, specifying factual information about partic-
ular individuals. Formally, the TBox is a finite set of axioms
built from NC and NR, whose form depends on the DL in
question. The ABox A is a finite set of concept and role as-
sertions (ground facts) of the forms A(a) and R(a, b), with
a, b ∈ NI, A ∈ NC, and R ∈ NR.

As mentioned in the introduction, we focus on the de-
scription logic DL-LiteR and on two fragments of this logic.
A DL-LiteR TBox consists of a finite set of concept inclu-
sions B v C and role inclusions S v Q, where B, C, S,
and Q are defined according to the following syntax (where
A is a concept name and R is a role name):

B → A | ∃S C → B | ¬B S → R | R− Q→ S | ¬S

A DL-Litecore TBox only allows for concept inclusions of
the form B v C, while a DL-LiteRDFS TBox allows for
concept inclusions B v A and role inclusions S v S′.

The semantics of DL KBs is based upon interpretations,
which take the form I = (∆I , ·I), where ∆I is a non-empty
set, and the function ·I maps every A ∈ NC to AI ⊆ ∆I ,
every R ∈ NR to RI ⊆ ∆I × ∆I , and every c ∈ NI to
cI ∈ ∆I . The function ·I is straightforwardly extended to
arbitrary concepts and roles, e.g. (∃R)I = {e1 | (e1, e2) ∈
RI} and (R−)I = {(e2, e1) | (e1, e2) ∈ RI}. An interpre-
tation I satisfies an inclusion G v H if GI ⊆ HI , and it
satisfies an assertion A(a) (resp. R(a, b)) if aI ∈ AI (resp.
(aI , bI) ∈ RI). We call I a model of a KB 〈T ,A〉 if it sat-
isfies all inclusions in T and assertions in A. If 〈T ,A〉 has
no models, it is unsatisfiable, written 〈T ,A〉 |= ⊥.

Every satisfiable DL-LiteR KB (T ,A) possesses a canon-
ical model IT ,A constructed as follows. The domain ∆T ,A

of IT ,A consists of all words aR1 . . . Rn (n ≥ 0) such that
a ∈ const(A), Ri ∈ {R,R− | R ∈ NR}, and:

• if n ≥ 1, then T ,A |= ∃R1(a);
• for 1 ≤ i < n, T |= ∃R−i v ∃Ri+1 and R−i 6= Ri+1.

The interpretation function is defined as follows:

aIT ,A = a for all a ∈ NI

AIT ,A = {a ∈ const(A) | T ,A |= A(a)}
∪ {aR1 . . . Rn | n ≥ 1 and T |= ∃R−n v A}

RIT ,A = {(a, b) | R(a, b) ∈ A}∪
{(w1, w2) | w2 = w1S and T |= S v R}∪
{(w2, w1) | w2 = w1S and T |= S− v R}

Observe that the elements of ∆T ,A can be naturally viewed
as a set of trees, rooted at the constants.

We now introduce OBDA specifications, which consist
of a DL ontology and a mapping, with the latter serving to
specify the semantic relationship holding between elements

of the DL and database vocabularies. In this paper, we fo-
cus on the well-known class of GLAV (‘global-and-local-
as-view’) mappings (Doan, Halevy, and Ives 2012).

Mappings are formally defined as follows. An atom is an
expression P (~t) where P is a predicate and ~t is a tuple of
terms (variables and constants). A (GLAV) mapping asser-
tion m is an expression of the form qs(~x) → qo(~x), where
qs(~x) (the body of m, denoted body(m)) is a conjunction of
atoms over predicates from Nrel and constants from NI, qo(~x)
(called the head of m, head(m)) is a conjunction of atoms
using predicates from NC ∪ NR and constants from NI, and
~x, called the frontier variables of m, are the variables that
appear both in qo and in qs. We use fvars(m) (resp. vars(m),
terms(m)) to refer to the frontier variables (resp. variables,
terms) ofm. The arity ofm is the number of its frontier vari-
ables. When qo(~x) has the form P (~x) (i.e., qo(~x) is a single
atom whose arguments are ~x), we call m a GAV mapping
assertion. A linear mapping assertion is a GAV assertion
whose body consists of a single atom. A (GLAV) mapping
M is a set of mapping assertions. A GAV (resp. linear) map-
ping is a mapping constituted of GAV (resp. linear) mapping
assertions. Without loss of generality, we assume that in ev-
ery mapping M, every pair of distinct mapping assertions
uses pairwise disjoint sets of variables.

An OBDA specification is a pair Γ = 〈T ,M〉, where T
is a TBox andM is a mapping. Given a mapping assertion
m of arity n and an n-tuple of constants ~a, we denote by
m(~a) the assertion obtained fromm by replacing the frontier
variables with the constants in ~a.

Given a set of atoms AT , the function gr returns a set
gr(AT) of ground atoms obtained from AT by replacing
every variable symbol xwith a fresh constant symbol cx that
does not occur in the considered mapping or database. We
assume without loss of generality that if AT 6= AT ′, then
gr(AT) and gr(AT ′) use distinct fresh constants. Note that
there is a natural isomorphism from AT to gr(AT) which
maps every constant in AT to itself and every variable x to
the corresponding constant symbol cx in gr(AT).

In this paper, a database (instance) is a finite set of ground
atoms using relation names from Nrel and constant names
from NI. Given a mappingM and a database D, we define
the ABox for D andM, denoted as AM,D, as follows:

{β ∈ gr(head(m(~a))) | m ∈M and D |= ∃~y.body(m(~a))}
where we assume that ~y are the variables occurring in
body(m(~a)). If A ⊆ AM,D, then we denote by const∃(A)
the constants inA that occur neither in D nor inM (i.e., the
fresh constants introduced when grounding mapping heads).
Remark 1. In the case of GAV mappings, the ABoxAM,D

is guaranteed to be of polynomial size, whereas for GLAV
mappings, it can be exponentially large due to presence of
existential variables in mapping heads. Indeed, take D =
{Ti(0), Ti(1) | 1 ≤ i ≤ n} and supposeM contains

T1(x1) ∧ . . . ∧ Tn(xn)→ ∃zR1(z, x1) ∧ . . . ∧Rn(z, xn)

For each τ = (v1, . . . , vn) ∈ {0, 1}n, we create a fresh con-
stant cτ and include R1(cτ , v1), . . . , Rn(cτ , vn) in AM,D.

Given an OBDA specification Γ = 〈T ,M〉 and a
database D, we define the models of Γ and D, denoted

Mods(Γ, D), as the set of models of the KB 〈T ,AM,D〉.
When Mods(Γ, D) = ∅, we write 〈T ,M, D〉 |= ⊥.

We are interested in the problem of answering instance
queries and conjunctive queries over a pair composed of an
OBDA specification and a database. A conjunctive query
(CQ) takes the form q(~x) = ∃~y(α1 ∧ . . . ∧ αn) where ev-
ery αi is an atom whose arguments are either constants or
variables from ~x ∪ ~y. The free variables ~x are called answer
variables, and a CQ is called Boolean if it has no answer
variables. For a non-Boolean CQ q with answer variables
x1, . . . , xk, a tuple of constants ~a = 〈a1, . . . , ak〉 occurring
in A is said to be a certain answer for q w.r.t. K just in the
case that K |= q(~a), where q(~a) is the Boolean query ob-
tained from q by replacing each xi by ai. An instance query
(IQ) is a CQ consisting of a single atom of the form A(x)
or R(x, y), with A concept name, R role name, and x, y dis-
tinct answer variables. We use CQ (resp. IQ) to refer the set
of all CQs (resp. IQs) over the DL signature NC ∪ NR.

Given an OBDA specification Γ = 〈T ,M〉, a database
D, and a CQ q, we define the certain answers for q w.r.t.
(Γ, D) as the tuples of constants from const(D)∪const(M)
that are certain answers for q w.r.t. 〈T ,AM,D〉. In particu-
lar, for Boolean CQs, we say that q is entailed by (Γ, D),
denoted by (Γ, D) |= q (or 〈T ,M, D〉 |= q), if I |= q for
every I ∈Mods(Γ, D). Note that for non-Boolean queries,
we only consider constants occurring either in D or in M
and thereby exclude the fresh constants in const∃(AM,D).

Importantly, canonical models characterize CQ answering
over DL-LiteR KBs. More precisely: for every CQ q and ev-
ery tuple ~a of constants occurring in A, 〈T ,A〉 |= q(~a) iff
IT ,A |= q(~a). Given an OBDA specification Γ = 〈T ,M〉
and a data instance D, we use IΓ,D to denote the canoni-
cal model for the KB 〈T ,AM,D〉. The preceding property
immediately carries over to the OBDA setting:
Proposition 1. Given a DL-LiteR OBDA specification Γ =
〈T ,M〉, a database D, a CQ q and a tuple ~a ⊆ const(D)∪
const(M), we have (Γ, D) |= q(~a) iff IΓ,D |= q(~a).

3 Query-based Entailment for OBDA
Specifications

We start by recalling the classical notion of entailment be-
tween OBDA specifications.
Definition 1 (Logical entailment). An OBDA specification
〈T1,M1〉 logically entails 〈T2,M2〉, written 〈T1,M1〉 |=log

〈T2,M2〉 if and only the first-order theory T1∪M1 logically
entails the first-order theory T2 ∪M2.

We next formally define the different notions of query-
based entailment between OBDA specifications considered
in this paper. First, we introduce a notion of entailment that
compares specifications based upon the constraints they im-
pose regarding consistency.
Definition 2 (⊥-entailment). An OBDA specification
〈T1,M1〉 ⊥-entails 〈T2,M2〉, written 〈T1,M1〉 |=⊥
〈T2,M2〉, iff, for every database D,

〈T2,M2, D〉 |= ⊥ ⇒ 〈T1,M1, D〉 |= ⊥
Next, we define a notion of query entailment between

OBDA specifications with respect to a single query.

Definition 3 (Single query entailment). Let q be a query. An
OBDA specification 〈T1,M1〉 q-entails 〈T2,M2〉, written
〈T1,M1〉 |=q 〈T2,M2〉, iff 〈T1,M1〉 |=⊥ 〈T2,M2〉 and
for every databaseD and tuple ~a ⊆ const(D)∪const(M2):

〈T2,M2, D〉 |= q(~a) ⇒ 〈T1,M1, D〉 |= q(~a)

When q is an IQ (resp. CQ), we call the preceding entailment
relation single IQ-entailment (resp. single CQ-entailment).

We can generalize the previous definition to classes of
queries as follows.
Definition 4 (Query entailment). Let L be a (possibly in-
finite) set of queries. An OBDA specification 〈T1,M1〉
L-entails 〈T2,M2〉, written 〈T1,M1〉 |=L 〈T2,M2〉 iff
〈T1,M1〉 |=⊥ 〈T2,M2〉 and 〈T1,M1〉 |=q 〈T2,M2〉 for
every query q ∈ L. When L = IQ, we call the preceding
entailment relation IQ-entailment, and for L = CQ, we use
the term CQ-entailment.

Note that each notion of entailment induces a notion of
equivalence between OBDA specifications, corresponding
to the case when the entailment holds in both directions (we
omit the formal definitions due to space limitations).

The following property immediately follows from the pre-
ceding definitions.
Proposition 2. Let 〈T1,M1〉, 〈T2,M2〉 be two OBDA
specifications, and let L1 be a set of queries. Then,
〈T1,M1〉 |=log 〈T2,M2〉 implies 〈T1,M1〉 |=L1

〈T2,M2〉.
Moreover, if L2 ⊆ L1, then 〈T1,M1〉 |=L1

〈T2,M2〉 im-
plies 〈T1,M1〉 |=L2 〈T2,M2〉.

As a consequence of Proposition 2, we have that logical
entailment implies CQ-entailment, and CQ-entailment im-
plies IQ-entailment. The converse implications do not hold,
as the following examples demonstrate.
Example 1. We start by illustrating the difference
between logical entailment and CQ-entailment. Con-
sider a database containing instances for the rela-
tion EXAM(studentName,courseName,grade,date). Then,
let Γ1 = 〈T1,M1〉, where

T1 = {Student v Person, PhDStudent v Student}
M1 = {EXAM(x, y, z, w)→ Student(x)}

and let Γ2 = 〈T2,M2〉, where T2 = {Student v Person}
andM2 = M1. It is immediate to verify that Γ2 6|=log Γ1.
However, we have that Γ2 |=CQ Γ1. Indeed, Γ2 |=CQ Γ1 can
be intuitively explained by the fact that the mapping M1

does not retrieve any instances of the concept PhDStudent
(and there are no subclasses that can indirectly populate it),
so the presence of the inclusion PhDStudent v Student in
T1 does not have any effect on query answering; in particu-
lar, every CQ that mentions the concept PhDStudent can-
not be entailed both under Γ1 and under Γ2. Notice also
that, if we modify the mappingM1 to map PhDStudent in-
stead of Student (i.e., if M1 were {EXAM(x, y, z, w) →
PhDStudent(x)}), then CQ-entailment between Γ2 and Γ1

would no longer hold.
Next, consider Γ3 = 〈T3,M3〉, where T3 = ∅ and

M3 = {EXAM(x, y, z, w)→ Student(x),

EXAM(x, y, z, w)→ Person(x)}

Again, it it immediate to see that Γ3 6|=log Γ2, while we have
that Γ3 |=CQ Γ2. Indeed, Γ3 |=CQ Γ2 follows informally
from the fact that the mapping M3 is able to “extension-
ally” simulate the inclusion Student v Person of T2, which
is sufficient for Γ3 to entail every CQ in the same way as Γ2.
Example 2. We slightly modify Example 1 to show the
difference between CQ-entailment and IQ-entailment. Con-
sider Γ1 = 〈T1,M〉 and Γ2 = 〈T2,M〉 where

T1 = {Student v Person, Student v ∃TakesCourse}
T2 = {Student v Person}
M = {EXAM(x, y, z, w)→ Student(x)}

It is easily verified that Γ2 6|=CQ Γ1. Indeed, take the
Boolean CQ ∃x, y TakesCourse(x, y): for every databaseD,
this query is not entailed by the pair (Γ2, D), while this is
not the case when the specification is Γ1. On the other hand,
we have that Γ2 |=IQ Γ1: in particular, for every database
D and for every pair of individuals a, b, neither (Γ1, D)
nor (Γ2, D) entails the IQ TakesCourse(a, b). Finally, let q
be the non-Boolean CQ ∃xTakesCourse(x, y): then, it can
be easily verified that the single CQ-entailment Γ2 |=q Γ1

holds; while for the CQ q′ of the form ∃y TakesCourse(x, y),
the single CQ-entailment Γ2 |=q′ Γ1 does not hold.

Some of our proofs will exploit results about query en-
tailment for DL knowledge bases, a problem which was first
investigated in (Botoeva et al. 2014) and further studied in
(Botoeva et al. 2015). The latter work introduces a gener-
alized notion of entailment parameterized both by a query
signature and a set of constants, which is defined as follows:
Definition 5. Let Σ be a DL signature and Υ a set of con-
stants. A DL KB 〈T1,A1〉 (Σ-Υ)-entails a DL KB 〈T2,A2〉
iff 〈T2,A2〉 |= q(~a) implies 〈T1,A1〉 |= q(~a) for every CQ
q with sig(q) ⊆ Σ and every tuple ~a ⊆ Υ ∩ const(A2).

The relationship between the two notions of query entail-
ment is witnessed by the following property:
Proposition 3. Let 〈T1,M1〉, 〈T2,M2〉 be two OBDA spec-
ifications. Then, 〈T1,M1〉 |=CQ 〈T2,M2〉 iff, for every
database D, the KB K1 = 〈T1,AM1,D〉 (Σ-Υ)-entails the
KB K2 = 〈T2,AM2,D〉, where Σ = sig(K2) and Υ =
const(AM2,D) \ const∃(AM2,D).

4 Characterization Results
A key difficulty in developing procedures for checking the
various notions of entailment from the previous section is
that the definitions quantify over all possible databases D.
In this section, we show that when ontologies are formu-
lated in DL-LiteR, it is sufficient to consider a finite set of
databases. The exact number and shape of these databases
will depend on the notion of entailment considered.

To simplify the exposition, we will assume throughout
this section that Γ1 = 〈T1,M1〉 and Γ2 = 〈T2,M2〉
are OBDA specifications such that T1, T2 are formulated in
DL-LiteR, andM1,M2 are GLAV mappings.

We first consider ⊥-entailment and show that it can be
characterized in terms of a small number of small databases.
Theorem 1. Γ1 |=⊥ Γ2 if and only if 〈T1,M1, D〉 |= ⊥ for
every database D obtained by:

(i) taking two mapping assertions m1,m2 fromM2,
(ii) selecting atoms α1 ∈ head(m1) and α2 ∈ head(m2),

(iii) identifying in m1 and m2 some variables from α1 and
α2 in such a way that 〈T , gr({α1, α2})〉 |= ⊥, and

(iv) setting D equal to gr(body(m1) ∪ body(m2)).

Proof. The one direction is immediate from the definitions.
For the other direction, let us suppose that 〈T1,M1, D〉 |=
⊥ for every database D obtained as in the theorem state-
ment. Let us further suppose that 〈T2,M2, D0〉 |= ⊥, where
D0 may be any database. We thus have 〈T2,AM2,D0

〉 |= ⊥.
It is well known that every minimal unsatisfiable subset of a
DL-LiteR KB contains at most two ABox assertions, so there
must exist a subset A′ ⊆ AM2,D with |A′| ≤ 2 such that
〈T2,A′〉 |= ⊥. Let γ be the conjunction of atoms obtained by
taking for each ABox assertion in A′, a mapping assertion
that produced it, identifying those variables (and only those
variables) needed to produce the ABox assertion(s), and then
taking the conjunction of the atoms in the bodies. We ob-
serve that by construction Dγ = gr(γ) satisfies the condi-
tions of the theorem and is such that 〈T1,M1, Dγ〉 |= ⊥. By
construction, there is a homomorphism of Dγ into the orig-
inal database D0. It follows that 〈T1,M1, D0〉 |= ⊥.

Next we consider entailment with respect to a specific CQ
and show that it suffices to consider a finite (but exponential)
number of small databases. We further show that, instead of
considering all query answers obtainable from AM2,D, we
can focus on a polynomial subset A2 ⊆ AM2,D.

Theorem 2. Let q be a CQ. Then Γ1 |=q Γ2 iff Γ1 |=⊥ Γ2

and 〈T2,A2〉 |= q(~a) implies 〈T1,M1, D〉 |= q(~a) for every
databaseD, every tuple ~a from const(D)∪const(M2), and
every ABox A2 ⊆ AM2,D obtained as follows:

(i) take k ≤ |q| mapping assertions m1, . . . ,mk ∈M2,
(ii) identify some of the variables in ∪ki=1fvars(mi), and

(iii) let D = gr(∪ki=1body(mi)) with natural isomor-
phism f , and1 A2 = ∪ki=1gr(f(head(mi)).

Proof. Again the one direction is immediate. To show the
non-trivial direction, let us suppose that Γ1 |=⊥ Γ2 and that
〈T2,M2, D〉 |= q(~c) implies 〈T1,M1, D〉 |= q(~c) for ev-
ery tuple ~c and database D satisfying the conditions of the
theorem. Further suppose that 〈T2,M2, D0〉 |= q0(~a). We
focus on the interesting case in which 〈T2,M2, D0〉 6|= ⊥
and 〈T1,M1, D0〉 6|= ⊥. Since 〈T2,M2, D0〉 |= q0(~a), we
have 〈T2,AM2,D0〉 |= q0(~a). It is a well-known property
of DL-LiteR that there exists a subset A2 ⊆ AM2,D0

with
|A2| ≤ |q0| such that 〈T2,A2〉 |= q0(~a). Let ∼ be the least
equivalence relation over the assertions in A2 such that β ∼
γ for every pair of assertions β, γ ∈ A2 that share a con-
stant from const∃(A2). Next let B1, . . . ,Bk be the ABoxes
corresponding to the equivalence classes of ∼. By construc-
tion,A2 is the disjoint union of B1, . . . ,Bk; in particular, we
have that k ≤ |A2| (hence, k ≤ |q0|). Moreover, it follows
from the definition of ∼ and the construction of AM2,D0

that for every Bi, there exists a mapping assertionmi ∈M2

and a homomorphism hi of body(mi) into D0 such that

1By f(head(m)) we mean the result of replacing v ∈ fvars(m)
in head(m) by f(v) (and leaving all other terms untouched).

Bi ⊆ gr(hi(head(mi))). Now let FV = ∪ki=1fvars(mi),
and let ≡ be the smallest equivalence relation on FV that
satisfies the following property: u ≡ v if u and v appear
in mi and mj respectively, and hi(u) = hj(v). Select one
variable from each equivalence class, and letm′1, . . . ,m

′
k be

obtained from m1, . . . ,mk by replacing each frontier vari-
able by the representative of its equivalence class (i.e., we
merge those frontier variables that are mapped to the same
constants). Define a function h from ∪ki=1terms(body(m′i))
to const(D0) by mapping constants to themselves, every
v ∈ vars(m′i) \ fvars(m′i) to hi(v), and every v ∈ fvars(m′i)
to hj(v), where v ∈ fvars(mj) (note that at least one such
j must exist, and if v occurs in more than one mj , the re-
sult will be the same no matter which we choose). Observe
that for every 1 ≤ i ≤ k, h is a homomorphism from
body(m′i) to D0 that is injective on fvars(m′i), and such that
h(head(m′i)) = hi(head(mi)).

We set D′ = gr(body(m′1) ∪ . . . ∪ body(m′k)). We then
let f be the natural isomorphism from ∪ki=1body(m′i) to
D′, and set A′2 = ∪ki=1gr(f(head(m′i)). Clearly, D′ and
A′2 satisfy the conditions of the theorem statement. We can
define an isomorphism g from ∪ki=1gr(h(head(m′i))) to
A′2 = ∪ki=1gr(f(head(m′i)) as follows:

• g(c) = c for every constant c in head(m′i)
• g(dv) = d′v for every v ∈ vars(head(m′i)) \ fvars(m′i)

which is grounded to the constant dv (resp. d′v) in
∪ki=1gr(hi(head(m′i))) (resp. A′2)

• g(h(v)) = f(v) for every v ∈ fvars(m′i)

As 〈T2,A2〉 |= q0(~a), A2 ⊆ ∪ki=1gr(hi(head(mi))),
and h(head(m′i)) = hi(head(mi)), it follows that
〈T2,A′2〉 |= q0(g(~a)). Applying our assumption, we ob-
tain 〈T1,M1, D

′〉 |= q0(g(~a)). We next remark that the
function which maps d ∈ const(D′) to h(f−1(d)) de-
fines a homomorphism from D′ to D0. Moreover, if we
take the tuple g(~a) and replace every constant d in g(~a) ∩
const(D′) by h(f−1(d)), we get the tuple ~a. We thus obtain
〈T1,M1, D0〉 |= q0(~a).

If we replace CQs by IQs, the preceding theorem can be
refined as follows:

Theorem 3. Let q be an IQ. Then Γ1 |=q Γ2 iff Γ1 |=⊥ Γ2

and 〈T2,A2〉 |= q(~a) implies 〈T1,M1, D〉 |= q(~a) for every
databaseD, every tuple ~a from const(D)∪const(M2), and
every ABox A2 ⊆ AM2,D obtained as follows:

(i) taking a mapping assertion m fromM2 and choosing
an atom α ∈ head(m),

(ii) possibly identifying in m the (at most two) frontier
variables appearing in α, and

(iii) lettingD = gr(body(m)) with natural isomorphism f ,
and A2 = gr(f(head(m))).

Proof. We simply note that in the proof of Theorem 2, if
we restrict our attention to instance queries, then we have
k = 1, and it is only necessary to identify those variables in
the head atom of the mapping that leads to introducing the
single ABox assertion of interest.

We now consider entailment with respect to query classes.
For CQ-entailment, the characterization is actually a bit sim-
pler than for single-CQ entailment, since we only need to
consider the database-ABox pairs induced from single map-
ping assertions (rather than sets of mapping assertions).

Theorem 4. Γ1 |=CQ Γ2 iff Γ1 |=⊥ Γ2 and 〈T2,A2〉 |= q(~a)
implies 〈T1,M1, D〉 |= q(~a) for every CQ q, every database
D, every tuple ~a from const(D) ∪ const(M2), and every
ABox A2 ⊆ AM2,D obtained as follows:

(i) take a mapping assertion m fromM2,
(ii) possibly identify some of the variables in fvars(m), and

(iii) let D = gr(body(m)) with natural isomorphism f ,
and A2 = gr(f(head(m))).

Proof. Suppose that Γ1 |=⊥ Γ2 and 〈T2,A2〉 |= q(~a)
implies 〈T1,M1, D〉 |= q(~a) for every CQ q and every
database D and ABox A2 ⊆ AM2,D obtained as in the
theorem statement. Further suppose that 〈T2,M2, D0〉 |=
q0(~a). We focus on the interesting case in which both
〈T2,M2, D0〉 6|= ⊥ and 〈T1,M1, D0〉 6|= ⊥. We let
AM1,D0

and AM2,D0
be the corresponding ABoxes, and

let I1 and I2 be the canonical models of 〈T1,AM1,D0
〉 and

〈T2,AM2,D0〉 respectively. Since 〈T2,M2, D0〉 |= q0(~a),
we have I2 |= q0(~a) by Proposition 1, and thus there must
exist a match π for q0(~a) in I2 (i.e., a homomorphism of
q0 into I2 that sends the answer variables ~x of q0 to ~a).
This match gives rise to an equivalence relation ∼π on
the atoms in q, defined as follows: α ∼π α′ just in the
case that α and α′ share a variable v such that π(v) ∈
(∆I2 \ const(AM2,D0

)) ∪ const∃(AM2,D0
) that is, π(v) is

not a constant from D0 nor M2. This equivalence relation
in turn induces a partition of q0 into connected subqueries
q1, . . . , qn, where every qi corresponds to one of the equiva-
lence classes of ∼π . By construction, each of the queries qi
satisfies exactly one of the following conditions:

• qi consists of a single atom all of whose variables are
mapped by π to constants from const(D0) ∪ const(M2);

• every atom in qi contains a variable that is not mapped to
a constant occurring in D0 orM2, and at least one term
in qi is mapped to a constant in AM2,D;

• qi contains no constants and none of its variables are
mapped to constants in AM2,D.

We associate a tuple ~xi of answer variables with each qi.
If qi satisfies the first or second condition, then every vari-
able in qi that is mapped to a constant from const(D0) ∪
const(M2) is designated as an answer variable. If the third
condition holds, then qi has no answer variables. By con-
struction, we have I2 |= qi(~bi), where~bi = π(~xi).

Our aim is to show that 〈T1,M1, D0〉 |= q0(~a). Because
of the way we defined the queries qi(~xi) and tuples ~bi, it
is sufficient to show that 〈T1,M1, D0〉 |= qi(~bi), for every
1 ≤ i ≤ n. Indeed, suppose this is the case, and let π′i be a
match of qi(~bi) in the canonical model I1 of 〈T1,AM1,D0

〉.
If v ∈ ~xi ∩ ~xj , then we must have π′i(v) = π′j(v) = π(v). It
follows that we can define a match π′ for q0 in I0 by setting
π′(v) = π′i(v), where i is chosen such that v ∈ ~xi.

We briefly sketch the argument that 〈T1,M1, D0〉 |=
qi(~bi) (details are in the appendix). The key step is to show,
using properties of canonical models, that there exists a
mapping assertion mi ∈ M2 and a homomorphism hi
of body(mi) into D0 such that 〈T2, gr(hi(head(mi)))〉 |=
qi(~bi). We let m′i be obtained from mi by identifying fron-
tier variables y, z whenever hi(y) = hi(z). We apply the
assumption to the pair consisting of the database Dm′

i
=

gr(body(m′i)) and the ABox gr(fi(head(m′i))) (with fi the
natural isomorphism) to obtain 〈T1,M1, Dm′

i
〉 |= qi(~b

′
i),

with~b′i the tuple of constants from Dm′
i

corresponding to~bi.
From this, we can derive 〈T1,M1, D0〉 |= qi(~bi).

For IQ entailment, it suffices to consider the same
databases and ABoxes as for the single IQ case.

Theorem 5. Γ1 |=IQ Γ2 if and only if Γ1 |=⊥ Γ2 and
〈T2,A2〉 |= q(~a) implies 〈T1,M1, D〉 |= q(~a) for every
IQ q and every database-ABox pair (D,A2) and tuple of
constants ~a that satisfies the conditions of Theorem 3.

Finally, we close this section with the following result,
which shows that if CQ entailment holds, then this is wit-
nessed by a polynomial-size subset of the ABox AM1,D.

Theorem 6. Let A2 ⊆ AM2,D, and suppose that
〈T2,A2〉 |= q(~a) implies 〈T1,M1, D〉 |= q(~a) for every
Boolean CQ q(~a) with ~a ⊆ const(D) ∪ const(M2). Then
there exists a subset A1 ⊆ AM1,D with |A1| ≤ 2|T2| ·
((2|T2|+ 1) · |M1| · (|A2|+ 2|T2| · (|D|+ |M1|)))2, such
that 〈T2,A2〉 |= q(~a) implies 〈T1,A1〉 |= q(~a) for every
q(~a) as above.

Proof. Let A2 ⊆ AM2,D be such that 〈T2,A2〉 |= q(~a) im-
plies 〈T1,M1, D〉 |= q(~a) for every Boolean CQ q(~a) such
that ~a ⊆ const(D) ∪ const(M2). We consider the interest-
ing case in which 〈T1,M1, D〉 6|= ⊥ and 〈T2,A2〉 6|= ⊥. We
let I1 and I2 be the canonical models of 〈T1,AM1,D〉 and
〈T2,AM2,D〉 respectively. By assumption, 〈T2,A2〉 |= q(~a)
implies 〈T1,M1, D〉 |= q(~a) for every Boolean CQ q(~a)
with ~a ⊆ const(D) ∪ const(M2). It follows from results
in (Botoeva et al. 2015) that the latter property is true iff
there is a homomorphism from I2 to I1 that is the identity
on the constants in D andM2, or more precisely, a function
h : ∆I2 → ∆I1 such that:

• h(e) = e for every e ∈ const(D) ∪ const(M2)
• e ∈ AI2 implies h(e) ∈ AI1
• (e, e′) ∈ RI2 implies (h(e), h(e′)) ∈ RI1

Note that the constants in const∃(AM2,D) need not be
mapped to themselves.

Our objective is to show how to use h to construct a ho-
momorphism g from I2 to I1 with the property that the set
Θ = {a | aw ∈ range(g)} has size polynomially bounded
in the size of D, A2, T2, and M1. This will allow us to
identify a small subset of AM1,D that is sufficient to in-
fer all of the queries involving constants from D or M2

that are entailed by 〈T2,A2〉. To construct the desired ho-
momorphism g, we will define a sequence g0, g1, g2 . . . of

entailment mapping DL-LiteRDFS DL-Litecore DL-LiteR

logical
linear NL NL NL

G(L)AV NP NP NP

⊥
linear trivial NL NL

G(L)AV trivial NP NP

(single) IQ
linear NL NL NL

G(L)AV NP NP NP

CQ
linear NL NL-hard, in PTIME EXPTIME
GAV NP NP EXPTIME

GLAV NP NP-hard, in Πp
2 EXPTIME

single CQ
linear Πp

2 Πp
2 Πp

2

G(L)AV Πp
2 Πp

2 Πp
2

Figure 1: Complexity of query-based entailment between
OBDA specifications. All results are completeness results,
unless otherwise indicated.

partial homomorphisms from I2 to I1 such that gi+1 ex-
tends gi for every i ≥ 0 (that is, dom(gi) ⊆ dom(gi+1) and
gi+1(e) = gi(e) for all e ∈ dom(gi)). We will ensure that
for every e ∈ ∆I2 , there is some i such that e ∈ dom(gi),
which allows us to take g to be the limit of this sequence.

For the initial partial homomorphism g0, we include in
the domain dom(g0): (i) all constants in const(A2), and (ii)
all elements awR such that h(e) 6∈ const(D) ∪ const(M1)
for every e that is a prefix of awR, and set g0(e) = h(e)
for every e ∈ dom(g0). Intuitively, g0 copies the value of
h for all constants in A2 as well as for all elements e such
that every ‘ancestor’ of e is mapped to an element of ∆I1 \
(const(D) ∪ const(M1)).

At each stage i ≥ 1, we will extend gi−1 to some addi-
tional elements from ∆I2 \ const(A2) in such a way that
the cardinality of the set {a | aw ∈ range(gi)} does not
exceed the required polynomial bound. The construction is
lengthy and rather involved (see the appendix for details),
but the basic intuition is as follows: we exploit the regularity
of canonical models in order to identify subtrees of I2 that
are similar in structure, and we modify the homomorphism h
so similar subtrees are mapped in the same way into I1.

5 Complexity Results
In this section, we investigate the computational properties
of the different notions of entailment between OBDA speci-
fications defined in the previous section.

The results of our complexity analysis are displayed in
Figure 1. In what follows, we formally state the different
complexity results and provide some ideas about the proofs.

We begin by considering the complexity of deciding clas-
sical entailment between OBDA specifications.
Theorem 7. For DL-LiteRDFS, DL-Litecore and DL-LiteR,
logical entailment between OBDA specifications is NP-
complete for GAV and GLAV mappings, and NL-complete
for linear mappings.

Proof. Let Γ1 = 〈T1,M1〉, Γ2 = 〈T2,M2〉. First, it is easy
to see that Γ1 |=log Γ2 iff (i) T1 |= T2; and (ii) Γ1 |=log M2.
In the case of a DL-LiteR TBox, property (i) can be decided
in NL (Artale et al. 2009). Property (ii) can be decided by
an algorithm that, for every assertionm ∈M2, first builds a

database D corresponding to gr(body(m)), and then checks
whether 〈Γ1, D〉 entails the CQ corresponding to the head of
m whose frontier variables have been replaced by the corre-
sponding constants. This algorithm runs in NP in the case
of GAV and GLAV mappings. and it can be made to run in
NL in the case of linear mappings (see the appendix for de-
tails), which implies the overall upper bounds in the theorem
statement. For both DL-Litecore and DL-LiteRDFS TBoxes,
the lower bound for GAV mappings can be obtained through
an easy reduction of CQ containment to logical entailment,
while the lower bounds for linear mappings follow from a
reduction of the entailment of a concept inclusion axiom in
a TBox that is both in DL-Litecore and in DL-LiteRDFS.

Using Theorem 1, we can pinpoint the complexity of
⊥-entailment. We remark that ⊥-entailment is trivial in
DL-LiteRDFS, since every KB in this logic is satisfiable.

Theorem 8. For both DL-LiteR and DL-Litecore TBoxes,
the ⊥-entailment problem between OBDA specifications is
NP-complete in the case of GAV / GLAV mappings, and NL-
complete in the case of linear mappings.

Proof. We know from Theorem 1 that Γ1 |=⊥ Γ2 iff
〈T1,M1, D〉 |= ⊥ for every database D satisfying the con-
ditions of the theorem statement. For the GAV / GLAV case,
we compute these databases in polynomial time and for ev-
ery such database D, we guess a polynomial-size proof that
〈T1,M1, D〉 |= ⊥. For the linear case, we observe that the
databases satisfying the conditions of Theorem 1 correspond
to taking the conjunction of two single-atom mapping bodies
and possibly performing a bounded number of variable uni-
fications, and (representations of) such databases can be enu-
merated in logarithmic space. For every such databaseD, we
can check using an NL oracle whether 〈T1,M1, D〉 |= ⊥.
Since LNL = NL, we obtain an NL procedure.

We next analyze the complexity of single CQ-entailment,
showing it to be Πp

2-complete for all of the DLs and mapping
languages considered in this paper.

Theorem 9. The single CQ-entailment problem is Πp
2-

complete for OBDA specifications based upon DL-LiteR
TBoxes and GLAV mappings. The lower bound holds even
for linear mappings and when both TBoxes are empty,

Proof. For the upper bound, consider two OBDA specifica-
tions Γ1 = 〈T1,M1〉 and Γ2 = 〈T2,M2〉. From Theorems
1 and 2, we know that Γ1 6|=q Γ2 if and only if one of the
following holds:
• there is a database D satisfying the conditions of Theo-

rem 1 such that 〈T1,M1, D〉 6|= ⊥;
• there is a pair (D,A2) satisfying the conditions of The-

orem 2 such that 〈T2,A2〉 |= q(~a), 〈T2,A2〉 6|= ⊥, and
〈T1,M1, D〉 6|= q(~a).

The first item can be checked using an NP oracle (by The-
orem 8). To check the second item, we remark that for ev-
ery pair (D,A2) satisfying the conditions of Theorem 2, the
number of facts inD (resp.A2) cannot exceed |q| ·maxbody
(resp. |q| ·maxhead) where maxbody (resp. maxhead) is the
maximum number of atoms appearing in the body (resp.

head) of a mapping assertion in M2. It follows that to
show that the second item above is violated, we can guess
a pair (D,A2) respecting these size bounds, together with
a tuple of constants ~a and a polynomial-size proof that
〈T2,A2〉 |= q(~a), and then we can verify using an NP or-
acle that 〈T1,M1, D〉 6|= q(~a). We therefore obtain a Σp2
procedure for deciding the complement of our problem.

For the lower bound, we utilize a result from (Bien-
venu, Lutz, and Wolter 2012) on query containment over
signature-restricted ABoxes. In that paper, it is shown how,
given a 2QBF ∀~u∃~vϕ(~u,~v), one can construct a TBox
T , Boolean CQs q1 and q2, and a signature Σ such that
∀~u∃~vϕ(~u,~v) is valid iff T ,A |= q1 ⇒ T ,A |= q2 for all
Σ-ABoxesA. We will not detail the construction but simply
remark that the same TBox T = {T v V, F v V } is used
for all QBFs, the signature Σ is given by (sig(T)∪ sig(q1)∪
sig(q2)) \ {V }, and the query q2 is such that V 6∈ sig(q2).

In what follows, we will show how given T , q1, q2, and
Σ as above, we can reduce the problem of testing whether
T ,A |= q1 implies T ,A |= q2 for all Σ-ABoxes to the prob-
lem of single CQ entailment. We will use Σ for our database
instances, and we create two copies Σ1 = {P 1 | P ∈ Σ}
and Σ2 = {P 2 | P ∈ Σ} of the signature Σ to be used in
the head of mapping assertions. Next, we define sets of map-
ping assertions copy1(Σ) and copy2(Σ) that simply copy all
of the predicates in Σ into the corresponding symbol in Σ1

(resp. Σ2). Formally, for j ∈ {1, 2},

copyj(Σ) ={A(x)→ Aj(x) | A ∈ Σ ∩ NC}∪
{R(x, y)→ Rj(x, y) | R ∈ Σ ∩ NR}

We further define, given a data signature Λ1 and DL signa-
ture Λ2, a set pop(Λ1,Λ2) of mapping assertions that pop-
ulates the relations in Λ2 using all possible combinations of
the constants appearing in tuples over Λ1:

pop(Λ1,Λ2)={P (~x)→ A(x) |P ∈ Λ1, A∈Λ2∩NC, x∈~x}
∪{P (~x)→ R(x, x) |P ∈Λ1,

R ∈ Λ2 ∩ NR, x ∈~x}

Using copy1(Σ), copy2(Σ), pop(Σ,Σ1), and pop(Σ,Σ2),
we construct the following mappings:

M1 =pop(Σ,Σ1 ∪ {V }) ∪ copy2(Σ)

M2 =copy1(Σ) ∪ pop(Σ,Σ2)

∪ {T (x)→ V (x), F (x)→ V (x)}
Observe that both mappings are linear. For the query, we let
q′1 (resp. q′2) be obtained from q1 (resp. q2) by replacing ev-
ery predicate P by P 1(resp. P 2). We also rename variables
so that q′1 and q′2 do not share any variables. We then let q be
the CQ obtained by taking the conjunction of q′1 and q′2 and
existentially quantifying all variables. In the appendix, we
show that 〈∅,M1〉 |=q 〈∅,M2〉 iff T ,A |= q1 ⇒ T ,A |=
q2 for all Σ-ABoxes. By combining this with the reduction
from (Bienvenu, Lutz, and Wolter 2012), we obtain a reduc-
tion from universal 2QBF to the single CQ-entailment prob-
lem, establishing Πp

2-hardness of the latter.

If we consider IQs instead, the complexity drops to either
NP- or NL-complete.

Theorem 10. For DL-LiteRDFS, DL-Litecore and DL-LiteR,
the single IQ-entailment problem between OBDA specifica-
tions is NP-complete for both GAV and GLAV mappings, and
is NL-complete for linear mappings.

Proof. We give the arguments for GAV and GLAV map-
pings (for the linear case, see the appendix). For the NP
upper bound, consider specifications Γ1 = 〈T1,M1〉 and
Γ2 = 〈T2,M2〉, and let q be an IQ. By Theorem 3,
Γ1 |=q Γ2 iff Γ1 |=⊥ Γ2 and 〈T2,A2〉 |= q(~a) implies
〈T1,M1, D〉 |= q(~a) for every database-ABox pair (D,A2)
obtained in the manner described by the theorem statement.

We already know that it is in NP to test whether Γ1 |=⊥
Γ2. For the second property, observe that there are only poly-
nomially many pairs (D,A2) satisfying the required con-
ditions, since each corresponds to choosing a mapping as-
sertion m in M2, an atom α ∈ head(m), and deciding
whether or not to identify the (at most two) variables in
α. For every such pair (D,A2), we compute in polynomial
time the set of Boolean IQs β obtained by instantiating the
IQ q with constants from const(D) ∪ const(M2) for which
〈T2,A2〉 |= β. For every such β, we guess a polynomial-
size proof that 〈T1,M1, D〉 |= β. If all of our polynomially
many guesses succeed, the procedure returns yes; else it re-
turns no. By grouping the guesses together, we obtain an NP
decision procedure.

The NP lower bound is by reduction from the NP-
complete CQ containment problem: given two CQs q1, q2

both having a single answer variable x, we have that q1 is
contained in q2 just in the case that 〈∅, {q2 → A(x)}〉 |=A(x)

〈∅, {q1 → A(x)}〉, where A 6∈ sig(q1) ∪ sig(q2).

Finally, we consider entailment with respect to entire
classes of queries. We show that testing CQ-entailment is
significantly more difficult than for single CQs. Both the up-
per and lower bounds use recent results on KB query insep-
arability (Botoeva et al. 2014; 2015).

Theorem 11. For DL-LiteR, the CQ-entailment problem be-
tween OBDA specifications is EXPTIME-complete for lin-
ear, GAV and GLAV mappings.

Proof. We start with the proof of the membership results.
Consider OBDA specifications Γ1 = 〈T1,M1〉 and Γ2 =
〈T2,M2〉. By Theorem 4, Γ1 |=CQ Γ2 if and only if Γ1 |=⊥
Γ2 and 〈T2,A2〉 |= q(~a) implies 〈T1,M1, D〉 |= q(~a) for
every query q(~a) and database-ABox pair (D,A2) satis-
fying the conditions of the theorem statement. We know
that testing Γ1 |=⊥ Γ2 can be done in NP (Theorem
8). To decide whether the second property holds, we con-
sider each of the single exponentially many database-ABox
pairs (D,A2), and for every such pair, we set ND,A2 =

2|T2|·((2|T2|+ 1) · |M1|·(|A2|+ 2|T2| · (|D|+ |M1|)))2.
By Theorem 6 and Proposition 3, we know that 〈T2,A2〉 |=
q(~a) implies 〈T1,M1, D〉 |= q(~a) for every CQ q(~a)
with ~a ⊆ const(D) ∪ const(M2) iff there is a subset
A1 ⊆ AM1,D with |A1| ≤ ND,A2

such that the KB
K1 = 〈T1,A1〉 (Σ,Υ)-entails the KBK2 = 〈T2,A2〉, where
Σ = sig(K2) and Υ = const(A2) \ const∃(A2). The latter

check can be performed in EXPTIME, as proven in (Boto-
eva et al. 2015). We thus obtain an EXPTIME procedure
by iterating over all exponentially many pairs (D,A2) and
ABoxes A1 ⊆ AM1,D with |A1| ≤ ND,A2

, performing the
KB query entailment check for every such combination, and
outputting yes if for every pair (D,A2), there is some ABox
A1 for which the entailment check succeeds.

Our lower bound also exploits recent results on query
inseparability of DL-LiteR KBs. In (Botoeva et al. 2014),
the following problem is shown to be EXPTIME-complete:
given DL-LiteR TBoxes T1 and T2 that are consistent with
the ABox {A(c)}, decide whether the certain answers for q
w.r.t. 〈T2, {A(c)}〉 are contained in those for 〈T1, {A(c)}〉
for every CQ q with sig(q) ⊆ sig(T2). To reduce this prob-
lem to the CQ-entailment problem for OBDA specifications,
we take the following linear mapping which populates the
conceptAwith all constants appearing in the unary database
relation A′ (refer to the proof of Theorem 9 for the defini-
tion of pop):M1 = M2 = pop({A′}, {A}). To complete
the proof, we prove in the appendix that 〈T1,M1〉 |=CQ

〈T2,M2〉 iff 〈T2, {A(c)}〉 |= q(~a) implies 〈T1, {A(c)}〉 |=
q(~a) for every CQ q with sig(q) ⊆ sig(T2).

The complexity of CQ-entailment is significantly lower
for DL-Litecore and DL-LiteRDFS:

Theorem 12. For DL-LiteRDFS, the CQ-entailment prob-
lem between OBDA specifications is NL-complete for linear
mappings and NP-complete for GAV and GLAV mappings;
for DL-Litecore , the problem is in PTIME for linear map-
pings, NP-complete for GAV mappings, and in Πp

2 for GLAV
mappings.

Proof. We give the arguments for DL-Litecore (the rest of
the proof is in the appendix). For linear mappings, mem-
bership in PTIME easily follows from the fact that, by
Theorem 4, to check 〈T1,M1〉 |=CQ 〈T2,M2〉 it is suffi-
cient to construct in polynomial time each of the databases
D from the theorem statement, together with the corre-
sponding ABoxes AM1,D and A2, and then check whether
the KB 〈T1,AM1,D〉 (sig(K2), const(A2))-entails the KB
〈T2,A2〉 (note: that since we consider linear mappings,
const∃(A2) = ∅). We return yes if all of these checks suc-
ceed. Since KB query entailment without constant restric-
tions was proven to be in PTIME for DL-Litecore KBs (Boto-
eva et al. 2014), membership in PTIME follows.

For GAV mappings, NP-hardness can be proven by an
easy reduction of the CQ containment problem. As for
the upper bound, we know from Theorem 4 that to check
〈T1,M1〉 |=CQ 〈T2,M2〉 it is sufficient to check a poly-
nomial number of database-ABox pairs (D,A2). For each
such pair (D,A2), we guess a subset A′ ⊆ AM1,D (to-
gether with a polynomial proof that every α ∈ A′ be-
longs to AM1,D) and then check in PTIME that 〈T1,A′〉
(sig(K2), const(A2))-entails the KB 〈T2,A2〉, returning yes
if all checks succeed. By grouping all of the above guesses
into a single one, we obtain an NP decision procedure.

Finally, in the case of GLAV mappings, we can
show membership in Πp

2 as follows. By Theorem 4,
〈T1,M1〉 |=CQ 〈T2,M2〉 iff 〈T1,M1〉 |=⊥ 〈T2,M2〉

(which can be checked in NP by Theorem 8) and for ev-
ery pair (D,A2) constructed according to the theorem state-
ment, we have 〈T2,A2〉 |= q(~a) implies 〈T1,M1, D〉 |=
q(~a) for every Boolean CQ q(~a) with ~a ⊆ const(D) ∪
const(M2). Because of Theorem 6, we know that the lat-
ter holds iff there exists a subset A1 ⊆ AM1,D whose
size is bounded polynomially in |D|, |A2|, |T2|, and |M1|
such that the KB K1 = 〈T1,A1〉 (Σ,Υ)-entails the KB
K2 = 〈T2,A2〉, where Σ = sig(K2) and Υ = const(A2) \
const∃(A2). Since KB entailment with both signature and
constant restrictions is NP-complete for DL-Litecore KBs
(Botoeva et al. 2015), it is in NP to decide whether such a
subset A1 exists. We can thus define a Πp

2 procedure which
ranges over all possible pairs (D,A2), and for every such
pair, uses an NP oracle to check both that 〈T1,M1〉 |=CQ

〈T2,M2〉 and that there exists a subset A1 ⊆ AM1,D with
the required properties.

Our final result shows that IQ-entailment has the same
complexity as single IQ-entailment. The proof exploits The-
orem 5 and proceeds similarly to the proof of Theorem 10.

Theorem 13. For DL-LiteRDFS, DL-Litecore and DL-LiteR,
the IQ-entailment problem between OBDA specifications is
NP-complete for both GAV and GLAV mappings, and is NL-
complete for linear mappings.

6 Conclusion and Future Work
In this paper, we have introduced notions of query-based
entailment of OBDA specifications and have analyzed the
complexity of checking query-based entailment for different
classes of queries and mappings and for TBoxes formulated
in DL-LiteR and its sublogics DL-Litecore and DL-LiteRDFS.

The present work constitutes only a first step towards
a full analysis of query-based forms of comparing OBDA
specifications and can be extended in several directions:
• First, we could introduce a query signature and only test

entailment for queries formulated in the given signature,
as has been done for TBox and KB query inseparability
(Botoeva et al. 2014). In fact, for GAV mappings (which
are the most commonly used in practice), our complexity
upper bounds continue to hold in the presence of a query
signature. We leave open whether this is the case for CQ-
entailment with GLAV mappings.

• Second, it would be interesting to extend the computa-
tional analysis of query entailment to other DLs beyond
DL-LiteR. We expect that the techniques from this paper
can be extended to handle Horn versions of DL-Lite, but
that fundamentally new ideas will be needed for DLs al-
lowing for role functionality or recursion.

• Third, other forms of mapping beyond GAV and GLAV
could be analyzed. In particular, we would like to see
whether decidability of query entailment is preserved if
we add some restricted form of inequality or negation
to the mapping bodies. This is especially relevant in the
context of R2RML (Das, Cyganiak, and Sundara 2012),
the W3C language for mapping relational databases to
RDF. The query-based comparison of specifications based
upon R2RML mappings is in general undecidable, since

R2RML can express arbitrary SQL queries over the
database. It would thus be interesting to identify frag-
ments for which query-based entailment is decidable.

• Fourth, to explore the impact of restricting the set of pos-
sible databases, we could extend the computational anal-
ysis to database schemas with integrity constraints.

• Finally, it would be interesting to develop and experiment
practical algorithms for comparing OBDA specifications
using query-based notions of entailment.

7 Acknowledgements
This work was partially supported by the EU (FP7 project
Optique, grant n. FP7-318338) and the French National Re-
search Agency (ANR JCJC grant n. ANR-12-JS02-007-01).

References
Antonioli, N.; Castanò, F.; Civili, C.; Coletta, S.; Grossi,
S.; Lembo, D.; Lenzerini, M.; Poggi, A.; Savo, D. F.; and
Virardi, E. 2013. Ontology-based data access: the experi-
ence at the Italian Department of Treasury. In Proc. of the
25th Int. Conf. on Advanced Information Systems Engineer-
ing (CAiSE), Industrial Track, 9–16.
Artale, A.; Calvanese, D.; Kontchakov, R.; and Za-
kharyaschev, M. 2009. The DL-Lite family and relations.
J. Artif. Intell. Res. (JAIR) 36:1–69.
Bienvenu, M., and Rosati, R. 2016. Long version of this
paper (with appendix). Available at http://www.lirmm.
fr/˜meghyn/papers/BieRos-KR16-long.pdf.
Bienvenu, M.; Lutz, C.; and Wolter, F. 2012. Query con-
tainment in description logics reconsidered. In Proc. of the
13th Int. Conf. on the Principles of Knowledge Representa-
tion and Reasoning (KR).
Botoeva, E.; Kontchakov, R.; Ryzhikov, V.; Wolter, F.; and
Zakharyaschev, M. 2014. Query inseparability for descrip-
tion logic knowledge bases. In Proc. of 14th Int. Conf. on
the Principles of Knowledge Representation and Reasoning
(KR).
Botoeva, E.; Kontchakov, R.; Ryzhikov, V.; Wolter, F.; and
Zakharyaschev, M. 2015. Games for query inseparability of
description logic knowledge bases. To appear in Artif. Intell.
J. (AIJ).
Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.;
and Rosati, R. 2007. Tractable reasoning and efficient query
answering in description logics: The DL-Lite family. J. of
Autom. Reasoning (JAR) 39(3):385–429.
Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.;
Poggi, A.; Rodriguez-Muro, M.; Rosati, R.; Ruzzi, M.; and
Savo, D. F. 2011. The Mastro system for ontology-based
data access. Semantic Web J. 2(1):43–53.
Das, S.; Cyganiak, R.; and Sundara, S. 2012.
R2RML: RDB to RDF mapping language. W3C rec-
ommendation, W3C. http://www.w3.org/TR/2012/
REC-r2rml-20120927/.
Doan, A.; Halevy, A. Y.; and Ives, Z. G. 2012. Principles of
Data Integration. Morgan Kaufmann.

Fagin, R.; Kolaitis, P. G.; Nash, A.; and Popa, L. 2008. To-
wards a theory of schema-mapping optimization. In Proc.
of the 27th Symposium on Principles of Database Systems
(PODS), 33-42.
Giese, M.; Soylu, A.; Vega-Gorgojo, G.; Waaler, A.; Haase,
P.; Jiménez-Ruiz, E.; Lanti, D.; Rezk, M.; Xiao, G.; Özçep,
Ö. L.; and Rosati, R. 2015. Optique: Zooming in on big
data. IEEE Computer 48(3):60–67.
Gottlob, G.; Pichler, R.; and Savenkov, V. 2011. Normal-
ization and optimization of schema mappings. Very Large
Database J. 20(2):277–302.
Guha, R., and Brickley, D. 2014. RDF schema 1.1. W3C
recommendation, W3C. http://www.w3.org/TR/2014/
REC-rdf-schema-20140225/.
Kharlamov, E.; Giese, M.; Jiménez-Ruiz, E.; Skjæveland,
M. G.; Soylu, A.; Zheleznyakov, D.; Bagosi, T.; Console,
M.; Haase, P.; Horrocks, I.; Marciuska, S.; Pinkel, C.;
Rodriguez-Muro, M.; Ruzzi, M.; Santarelli, V.; Savo, D. F.;
Sengupta, K.; Schmidt, M.; Thorstensen, E.; Trame, J.; and
Waaler, A. 2013. Optique 1.0: Semantic access to big data:
The case of Norwegian Petroleum Directorate’s FactPages.
In Proc. of the ISWC Posters & Demos Track, 65–68.
Konev, B.; Lutz, C.; Walther, D.; and Wolter, F. 2009. For-
mal properties of modularisation. In Modular Ontologies:
Concepts, Theories and Techniques for Knowledge Modu-
larization, LNCS vol. 5445, 25–66.
Konev, B.; Kontchakov, R.; Ludwig, M.; Schneider, T.;
Wolter, F.; and Zakharyaschev, M. 2011. Conjunctive query
inseparability of OWL 2 QL TBoxes. In Proc. of the 25th
AAAI Conf. on Artificial Intelligence (AAAI).
Kontchakov, R.; Wolter, F.; and Zakharyaschev, M. 2010.
Logic-based ontology comparison and module extraction,
with an application to DL-Lite. Artif. Intell. J. (AIJ)
174(15):1093–1141.
Lembo, D.; Mora, J.; Rosati, R.; Savo, D. F.; and
Thorstensen, E. 2014. Towards mapping analysis in
ontology-based data access. In Proc. of the 8th Int. Conf.
on Web Reasoning and Rule Systems (RR), 108–123.
Lembo, D.; Mora, J.; Rosati, R.; Savo, D. F.; and
Thorstensen, E. 2015. Mapping analysis in ontology-based
data access: Algorithms and complexity. In Proc. of the 14th
Int. Semantic Web Conf. (ISWC), 217–234.
Lutz, C., and Wolter, F. 2010. Deciding inseparability and
conservative extensions in the description logic EL. J. Symb.
Comput. (JSC) 45(2):194–228.
Motik, B.; Grau, B. C.; Horrocks, I.; Fokoue, A.; and Wu,
Z. 2012. OWL 2 Web Ontology Language profiles (2nd
edition). W3C recommendation, W3C. http://www.w3.
org/TR/2012/REC-owl2-profiles-20121211/.
Poggi, A.; Lembo, D.; Calvanese, D.; De Giacomo, G.;
Lenzerini, M.; and Rosati, R. 2008. Linking data to on-
tologies. J. on Data Semantics X:133–173.
Rodriguez-Muro, M.; Kontchakov, R.; and Zakharyaschev,
M. 2013. Ontology-based data access: Ontop of databases.
In Proc. of the 12th Int. Semantic Web Conf. (ISWC), LNCS
vol. 8218, 558–573.

A Proof details for Section 4

We complete the proof of Theorem 4.

Proof of Theorem 4 (continued). Suppose that Γ1 |=⊥ Γ2

and 〈T2,A2〉 |= q(~a) implies 〈T1,M1, D〉 |= q(~a) for ev-
ery CQ q and every database D and ABox A2 ⊆ AM2,D

obtained as in the theorem statement. Let us further sup-
pose that 〈T2,M2, D0〉 |= q0(~a), where D0 is another
database. The first possibility is that 〈T2,M2, D0〉 |= ⊥,
in which case Γ1 |=⊥ Γ2 yields 〈T1,M1, D0〉 |= ⊥
and thus, 〈T1,M1, D0〉 |= q0(~a). The other possibility is
that 〈T2,M2, D0〉 |= q0(~a) and 〈T2,M2, D0〉 6|= ⊥. If
〈T1,M1, D0〉 |= ⊥, we are done.

Otherwise, we are in the case in which both
〈T2,M2, D0〉 6|= ⊥ and 〈T1,M1, D0〉 6|= ⊥. The be-
ginning of the argument for this case was given in the
body of the text. We complete the proof by showing that
〈T1,M1, D0〉 |= qi(~bi), for every 1 ≤ i ≤ n.

We begin by establishing the following claim, which
shows that only a small number of assertions in AM2,D0

are needed to derive qi(~bi).

Claim. For every 1 ≤ i ≤ n, there exists a mapping asser-
tion mi ∈ M2 and a homomorphism hi of body(mi) into
D0 such that 〈T2, gr(hi(head(mi)))〉 |= qi(~bi).
Proof of claim. First suppose that qi is of the first type. Then
qi = α for some atom α ∈ q0 such that all variables in
α are mapped by π to constants from D0 or M2. It is a
well-known property of DL-LiteR (see e.g., (Calvanese et al.
2007)) that there must exist an assertion β ∈ AM2,D0

such
that 〈T2, {β}〉 |= π(α). Since β ∈ AM2,D0

, there is some
mapping mi ∈ M2 and a homomorphism hi of body(mi)
into D0 such that β ∈ gr(hi(head(mi))), and hence such
that 〈T2, gr(hi(head(mi)))〉 |= qi(~bi).

Next suppose that qi is of the second type. We know that
for every pair of atoms α, α′ ∈ qi, there exists a sequence
of atoms α = α0, α1, . . . , α`−1, α` = α′ such that for every
0 ≤ j < `, there exists vi ∈ vars(αj)∩vars(αj+1) such that
h(vi) ∈ (∆I2 \ const(AM2,D0)) ∪ const∃(AM2,D0). We
then note that an element aw ∈ (∆I2 \ const(AM2,D0

)) is
only connected via roles to elements of the form aw′ (with
w′ possibly empty), and constants from const∃(AM2,D0

)
can only be connected via roles to constants that occur in
the same mapping head. It follows that there must exist a
mapping assertion mi ∈ M2 and a homomorphism hi of
body(mi) into D0 such that all constants in {a | ∃v ∈
vars(qi), h(v) = aw} appear in gr(hi(head(mi))).

Finally, consider the third case, in which qi contains no
constants and none of its variables are mapped to constants
in AM2,D. In this case, we know that {h(v) | v ∈ qi}
forms a connected subset of ∆I2 \const(AM2,D0), and thus
there must exist a constant a ∈ const(AM2,D) and a role R
such that every element in {h(v) | v ∈ qi} takes the form
aRw for some (possibly empty) word w. Since a occurs in
AM2,D0

, there must exist a mapping assertion mi ∈ M2

and a homomorphism hi of body(mi) into D0 such that
a ∈ const(gr(hi(head(mi)))). (end proof of claim)

Let mi and hi be as in the preceding claim, and let m′i be
obtained from mi by identifying all pairs of frontier vari-
ables y, z such that hi(y) = hi(z). By construction, hi
is an injective homomorphism of body(m′i) into D0, and
〈T2, gr(hi(head(m′i)))〉 |= qi(~bi).

We set Dm′
i

= gr(body(m′i)), and we let fi be the nat-
ural isomorphism from body(m′i) into Dm′

i
that maps each

variable in body(m′i) to the corresponding constant in Dm′
i
.

Observe that Dm′
i

= fi(body(m′i)). We define two further
functions relating constants in D0 and Dm′

i
:

• a function gi mapping the constants in Dm′
i

to constants
in D0 defined by setting gi(c) = hi(f

−1
i (c));

• a function g′i mapping the constants in D0 that occur in
the image of hi to constants in Dm′

i
defined by setting

g′i(c) = fi(h
−1
i (c)).

Note that this definition relies upon the injectivity of hi and
fi, which ensures that h−1

i and f−1
i are well defined.

We can extend g′i to all of the constants occurring
in gr(hi(head(m′i))) by mapping the unique constant in
gr(hi(head(m′i))) corresponding to the existentially quan-
tified variable u in head(m′i) to the unique constant in
gr(fi(head(m′i))) corresponding to u. Observe that g′i
defines a homomorphism (in fact, an isomorphism) of
gr(hi(head(m′i))) into gr(fi(head(m′i))).

From 〈T2, gr(hi(head(m′i)))〉 |= qi(~bi)
and the fact that g′i is a homomorphism of
gr(hi(head(m′i))) into gr(fi(head(m′i))), it fol-
lows that 〈T2, gr(fi(head(m′i)))〉 |= qi(g

′
i(
~bi)), and

hence 〈T2,M2, Dm′
i
〉 |= qi(g

′
i(
~bi)). By construction,

Dm′
i

satisfies the conditions of the theorem state-
ment, so we can apply our initial assumption to obtain
〈T1,M1, Dm′

i
〉 |= qi(g

′
i(
~bi)).

As f−1
i (Dm′

i
) = body(m′i) and hi(body(m′i)) ⊆ D0,

it follows that gi(Dm′
i
) ⊆ D0. In other words, gi de-

fines a homomorphism of Dm′
i

into D0. It follows that
〈T1,M1, D0〉 |= qi(gi(g

′
i(
~bi))). Since gi(g′i(~bi)) = ~bi, this

yields 〈T1,M1, D0〉 |= qi(~bi).

Proof of Theorem 5. We can use a similar argument to that
used in the proof of Theorem 4. The main differences can be
summarized as follows:
• We do not need to break down the instance query q0 into

subqueries, as it consists of a single atom, all of whose
variables are mapped to constants from D0 orM2.

• We prove the following stronger claim: there exists a map-
ping assertionm ∈M2, an atom α ∈ m, and a homomor-
phism h of body(m) into D0 such that 〈T2, gr(h(α))〉 |=
q0(~a).

• Since we are only concerned with the head atom α, we let
m′ be the mapping obtained by unifying the at most two
variables occurring in α, if they are mapped to the same
constant by h.

The latter point ensures that the database Dm′ is of the re-
quired form.

In preparation for the proof of Theorem 6, we introduce
some additional notation and recall some facts about the
canonical model construction.

The notation ≤ will be used to indicate the prefix relation
between words (or domain elements): u < u′ means that
there exists a (possibly empty) word u′′ such that u′ = uu′′;
for the strict prefix relation (when u′′ must be non-empty),
we use < instead. Note that if e, e′ ∈ ∆T ,A and e ≤ e′, then
e and e′ begin with the same constant. By construction, the
set of elements in ∆T ,A is prefix-closed: if e′ ∈ ∆T ,A and
e ≤ e′, then e′ ∈ ∆T ,A. Thus, the elements of ∆T ,A can
be naturally viewed as a set of trees. We call w ∈ ∆T ,A an
ancestor of w′ ∈ ∆T ,A if w < w′; w is the parent of w′ if
w′ = wR.

With every element e ∈ ∆T ,A is naturally associated a
subinterpretation IT ,A |e obtained by restricting IT ,A to
those elements e′ of ∆I such that e ≤ e′. Observe that if
e = awR and e = bw′R are elements of ∆T ,A that end with
the same role R, then the function f mapping awRw′′ to
bw′Rw′′ defines an isomorphism from IT ,A |e to IT ,A |e′ .

In the following proof, given a (partial) function f , we
will use dom(f) to refer to the domain of f (i.e., the ele-
ments for which f is defined), and we will use range(f) to
refer to the range of f .

For the sake of readability, we provide the full proof of
Theorem 6 (including the parts that were included in the
proof sketch in the main text).
Proof of Theorem 6. Suppose that A2 ⊆ AM2,D and that
〈T2,A2〉 |= q(~a) implies 〈T1,M1, D〉 |= q(~a) for every
Boolean CQ q(~a) such that ~a ⊆ const(D) ∪ const(M2).
First consider the case in which 〈T1,M1, D〉 |= ⊥, and
hence 〈T1,AM1,D〉 |= ⊥. It is well known that if an ABox is
inconsistent with a DL-LiteR TBox, then there exists a sub-
set of the ABox of cardinality at most two that is inconsistent
with the TBox. We can thus extract a subset A1 ⊆ AM1,D

such that |A1| ≤ 2 and 〈T1,A1〉 |= ⊥.
Let us now consider the more interesting case in which

〈T1,M1, D〉 6|= ⊥. By definition, 〈T2,M2, D〉 6|= ⊥, so
〈T2,A2〉 6|= ⊥. We let I1 and I2 be the canonical models
of 〈T1,AM1,D〉 and 〈T2,AM2,D〉 respectively. By assump-
tion, 〈T2,A2〉 |= q(~a) implies 〈T1,M1, D〉 |= q(~a) for ev-
ery Boolean CQ q(~a) with ~a ⊆ const(D) ∪ const(M2). It
follows from results in (Botoeva et al. 2015) that the latter
property is true just in the case that there is a homomorphism
from I2 to I1 that is the identity on the constants from D
andM2. More precisely, there is a function h : ∆I2 → ∆I1

such that:

• h(e) = e for every e ∈ const(D) ∪ const(M2)

• e ∈ AI2 implies h(e) ∈ AI1

• (e, e′) ∈ P I2 implies (h(e), h(e′)) ∈ P I1

Note that the constants in const∃(AM2,D) need not be
mapped to themselves.

Our objective is to show how to use h to construct a ho-
momorphism g from I2 to I1 with the property that the set
Θ = {a | aw ∈ range(g)} has size polynomially bounded
in the size of D, A2, T2, andM1 (more precisely: of size at
most |A2| · |M1|+ 2|D| · |T2| · |M1|). This will allow us to

identify a small subset ofAM1,D that is sufficient to infer all
of the queries involving constants fromD orM2 that are en-
tailed by 〈T2,A2〉. To construct the desired homomorphism
g, we will define a sequence g0, g1, g2 . . . of partial homo-
morphisms from I2 to I1 such that gi+1 extends gi for every
i ≥ 0 (that is, dom(gi) ⊆ dom(gi+1) and gi+1(e) = gi(e)
for all e ∈ dom(gi)). We will ensure that for every e ∈ ∆I2 ,
there is some i such that e ∈ dom(gi), which allows us to
take g to be the limit of this sequence. In what follows, we
will use Θi to refer to the set {a | aw ∈ range(gi)}.

For the initial partial homomorphism g0, we set dom(g0)
equal to

const(A2) ∪ {awR | h(e) 6∈const(D) ∪ const(M1)

for all e < awR}

and set g0(e) = h(e) for every e ∈ dom(g0). Intuitively, g0

copies the value of h for all constants in A2 as well as for
all elements e such that every ancestor of e is mapped to an
element of ∆I1 \ (const(D) ∪ const(M1)). Because of the
way we defined dom(g0) and the fact that roles can only link
constants from const∃(AM1,D) to constants issuing from
the same grounded mapping head, we know that if g0(b) =
h(b) = au, bw ∈ dom(g0), and g0(bw) = h(bw) = a′u′,
then there exists a mapping assertion m ∈ M1 such that
D |= ∃~y.body(m(~a)) and a, a′ ∈ const(gr(head(m(~a)))).
Thus, |Θ0| ≤ |A2| · |M1|.

At each stage i ≥ 1, we will extend gi−1 to some addi-
tional elements from ∆I2 \const(A2). The idea is to exploit
the regularity of canonical models in order to identify sub-
trees of I2 with similar structure and to modify the homo-
morphism h so that similar subtrees are mapped in the same
way into I1. We will use a table MapTrees to keep track
of how we have mapped some representative subtrees and to
reuse this information when extending our partial homomor-
phisms. Formally, MapTrees will contain tuples of the form
(d,R,W, σ, e) where:

• d is a constant from const(D) ∪ const(M1)

• R ∈ N±R ∩ sig(T2)

• W is a (possibly infinite) prefix-closed set of words over
the alphabet N±R ∩ sig(T2)

• σ is a function mapping words in W to elements in ∆I1

• e is an element from ∆I2

where we use N±R as an abbreviation for {P, P− | P ∈ NR}.
Intuitively, the tuple (d,R,W, σ, e) means that when the
parent of an element e′ ∈ ∆I2 is mapped to d and the
final letter in e′ is R, then we need to extend the homo-
morphism to all elements in {e′w | w ∈ W} by mapping
e′w to σ(w). The final argument e indicates that σ copies
information from the subtree rooted at e (this will be for-
malized below). Like g, the table MapTrees will be con-
structed in stages; we will use MapTreesi to denote the state
of MapTrees at the end of stage i. We start with an empty
table (MapTrees0 = ∅), and at every stage, we will add
zero or one new tuples (MapTreesi−1 ⊆ MapTreesi and
|MapTreesi \MapTreesi−1| ≤ 1).

For correctness and to achieve the required bound on the
cardinality of the sets Θi, we will ensure that the following
conditions are satisfied by gi and MapTreesi for every i ≥ 0:
(P1) If MapTreesi \ MapTreesi−1 = {(d,R,W, σ, e)},

then:
• MapTreesi−1 does not contain any tuple (d,R, . . .)

• e ∈ dom(gi−1) and gi−1(e) = d

• for every w ∈ W : eRw ∈ ∆I2 \ dom(gi−1), eRw ∈
dom(gi), and gi(eRw) = h(eRw) = σ(w)

• dom(gi) \ dom(gi−1) = {eRw | w ∈W}
(P2) If MapTreesi = MapTreesi−1, then there exists

(d,R,W, σ, e) ∈ MapTreesi−1 and e′R ∈ ∆I2 \
dom(gi−1) such that:
• e′ 6= e, e′ ∈ dom(gi−1), and gi−1(e′) = d

• for every w ∈ W , e′Rw ∈ ∆I2 , e′Rw ∈ dom(gi),
gi(e

′Rw) = σ(w)

• dom(gi) \ dom(gi−1) = {e′Rw | w ∈W}
(P3) For every tuple (d,R,W, σ, e) ∈ MapTreesi and every

leaf w ∈ W (that is, there is no w′ ∈ W with w < w′),
we have σ(w) ∈ const(D) ∪ const(M2).

(P4) gi is a partial homomorphism from I2 to I1 that is the
identity on constants from D andM2.

(P5) For every function σ appearing in the fourth column
of MapTreesi, there exists a mapping assertion m ∈
M1 such that D |= ∃~y.body(m(~a)) and {a | aw ∈
range(σ)} ⊆ const(gr(head(m(~a)))).

Observe that the preceding properties are trivially satisfied
by the initial function g0 and table MapTrees0.

We now explain how to construct gi and MapTreesi start-
ing from gi−1 and MapTreesi−1. We first select an ele-
ment awR ∈ ∆I2 such that aw ∈ dom(gi−1), awR 6∈
dom(gi−1), and there is no a′w′R′ ∈ ∆I2 with a′w′ ∈
dom(gi−1) and aw′R′ 6∈ dom(gi−1) such that either:
• |a′w′| < |aw|, or
• |a′w′| = |aw| and there exists j such that a′w′ ∈ dom(gj)

but aw 6∈ dom(gj).
It follows from properties (P1)-(P3) and the definition of
g0 that gi−1(aw) ∈ const(D) ∪ const(M1). There are two
cases to consider:
Case 1: MapTreesi−1 does not contain any tuple of the form
(gi−1(aw), R,W, σ, e)

We define a set of WR
aw of words as follows:

WR
aw ={w′ | for every w′′ < w′,

h(awRw′) 6∈ const(D) ∪ const(M2)}

and we set σRaw(w′) = h(awRw′) for every w′ ∈
WR
aw. We let MapTreesi be the result of adding the tuple

(gi−1(aw), R,WR
aw, σ

R
aw) to MapTreesi−1, and we extend

gi1 to the set of elements {awRw′ | w′ ∈ WR
aw} by set-

ting gi(awRw′) = h(awRw′) (equivalently, gi(awRw′) =
σRaw(w′)). By construction, gi and MapTreesi satisfy prop-
erties (P1) and (P3), and (P2) trivially holds. It remains to
show that (P5) and (P4) hold.

For property (P4), we begin by showing that gi−1(aw) =
h(aw). Suppose for a contradiction that this is not the case.
Then we know that aw 6∈ dom(g0) (since g0(e) = h(e)
for all e ∈ dom(g0)). Let j be such that aw ∈ dom(gj) \
dom(gj−1). We must have MapTreesj = MapTreesj−1,
since otherwise, by property (P1), we would have gj(aw) =
h(aw), hence gi−1(aw) = h(w). By properties (P1) and
(P2), there exist (c, S,W, σ, e) ∈ MapTreesj−1 and auR ∈
∆I2 \ dom(gj−1) such that:
• au ∈ dom(gj−1) and gj−1(au) = c

• there exists u′ ∈W such that aw = auSu′

• gj(aw) = gj(auSu
′) = σ(u′)

Since (c, S,W, σ, e) ∈ MapTreesj−1 and u′ ∈ W , the ele-
ment eSu′ belongs to dom(gj−1) by (P1), whereas aw =
auSu′ 6∈ dom(gj−1). Moreover, because of the way we
select elements for treatment, we know that |e| ≤ |au|,
hence |eSu′| ≤ |auSu′| = |aw|. It follows that at stage i,
our strategy for selecting elements would lead us to choose
eSu′ rather than aw, a contradiction. We have thus estab-
lished that gi−1(aw) = h(aw). Since aw is the only ele-
ment in dom(gi−1) that is connected via a role to an ele-
ment in dom(gi) \ dom(gi−1), gi(e′′) = h(e′′) for every
e′′ ∈ dom(gi) \ dom(gi−1), and h is a homomorphism from
I2 to I1, it follows that gi is a partial homomorphism from
I2 to I1. Thus, gi satisfies property (P4).

Finally, we consider property (P5). Recall that we have
defined dom(σRaw) = WR

aw and σRaw(w′) = h(awRw′) for
every w′ ∈ WR

aw. Thus, {b | bv ∈ range(σRaw)} = {b |
h(awRw′) = bv for some w′ ∈ WR

aw}. Since gi is a partial
homomorphism (property (P4)), we know that if two ele-
ments e1, e2 ∈ {awRw′ | w′ ∈ WR

aw} are related by a role
in I2, then h(e1) and h(e2) must also be related by a role
in I1. By the structure of the ABox AM1,D and the defini-
tion of canonical models, if there is a role between h(e1) and
h(e2), then one of the following must hold:
• h(e2) = h(e1)T for some role T
• h(e1) = h(e2)T for some role T
• h(e1), h(e2) ∈ const(AM1,D) and there exists a mapping

assertion m ∈ M1 such that D |= ∃~y.body(m(~a)) and
h(e1), h(e2) occur in a role assertion in gr(head(m(~a))).

Note that in the first two cases, h(e1) and h(e2) share
the same initial constant. Recall also that by construction,
gi(awRw

′) 6∈ const(D) ∪ const(M1) for every w′ ∈
WR
aw that is not a leaf of WR

aw, and by property (P3),
gi(awRw

′) ∈ const(D) ∪ const(M1) for every leaf w′ ∈
WR
aw. It follows that every path from h(awR) to h(awRw′)

with w′ ∈ WR
aw a leaf in WR

aw contains exactly one el-
ement from const(D) ∪ const(M1), namely, h(awRw′).
Earlier in the path, we can move between adjacent ele-
ments in the tree rooted at a constant, between constants
from const∃(AM1,D) that occur in the same grounded map-
ping head, or at the end of the path, from a constant from
const∃(AM1,D) to a constant from const(D)∪ const(M1).
Thus, there must exist a single mapping assertion m ∈ M1

such that D |= ∃~y.body(m(~a)) and {b | h(awRw′) =
bv for some w′ ∈WR

aw} ⊆ const(gr(head(m(~a)))).

Case 2: MapTreesi−1 contains (gi−1(aw), R,W, σ, e)

We extend gi to set of elements {awRw′ | w′ ∈ W} by
setting gi(awRw′) = σ(w′). We do not modify the table:
MapTreesi = MapTreesi−1. Properties (P1), (P3), and (P5)
are trivially satisfied for gi and MapTreesi. For (P2), we
note that since (gi−1(aw), R,W, σ, e) ∈ MapTreesi−1 but
awR 6∈ dom(gi−1), we must have aw 6= e. The remainder
of the first bullet, as well as the other two bullets, are satis-
fied by construction. To show the remaining property (P4),
first note that by property (P1), we have gi(aw) = gi−1(e)
and gi(awRw′) = gi−1(eRw′) for every w′ ∈ W Since
gi−1 satisfies (P4), we know that gi−1 is a partial homomor-
phism. To conclude the argument, we recall that the subinter-
pretation I2|awR is isomorphic to I2|eR, with isomorphism
f given by f(awRw′) = ewRw′.

We have defined the sequence of partial homomorphisms
g0, g1, g2, . . . from I2 to I1. Our selection strategy ensures
that for every element e ∈ ∆I2 there exists i such that e ∈
dom(gi). Moreover, if e ∈ dom(gi), then gi(e) = gj(e) for
every j ≥ i. We can thus define g as follows: g(e) = gi(e)
for some (equivalently, every) i with e ∈ dom(gi). Since
every gi is a partial homomorphism, it follows that g is a
(total) homomorphism from I2 to I1 that is the identify on
const(D) ∪ const(M2).

Let us now show that Θ = {a | aw ∈ range(g)} is of
size at most |A2| · |M1| + 2|T2| · |M1| · (|D| + |M1|).
As noted earlier, |Θ0| ≤ |A2| · |M1|. Let us now consider
the size of Θ \ Θ0 = {a | aw ∈ range(g) \ range(g0)}.
We know from properties (P1) and (P2) that for every e ∈
dom(gi) \ dom(gi−1), there exists a tuple (d,R,W, σ, e′) ∈
MapTreesi such that gi(e) ∈ range(σ). Thus, we need to
determine the cardinality of

{a | aw ∈ range(σ) for some (d,R,W, σ, e′) ∈ MapTrees}

Since there can be at most one tuple of the form
(d,R,W, σ, e′) per pair (d,R), the total number of dif-
ferent functions σ cannot exceed 2|T2| · (|const(D)| +
|const(M1)|) (here 2|T2| is used to bound the possible
values of R). By property (P5), for every such function
σ, there exists a mapping assertion m ∈ M1 such that
D |= ∃~y.body(m(~a)) and {a | aw ∈ range(σ)} ⊆
const(gr(head(m(~a)))). The cardinality of the latter set
cannot exceed the maximal number of terms appearing in the
head of a mapping assertion in M1, and hence is bounded
above by |M1|. Putting all of this together yields the desired
bound of |A2| · |M1|+ 2|T2| · |M1| · (|D|+ |M1|).

Now we let A0 be the restriction of AM1,D to the con-
stants in Θ. To define A1, for every constant c ∈ A0 such
that there exists d with (c, d) ∈ RI1 , we pick one such con-
stant d, which we will refer to by wit(c,R). Then the ABox
A1 is defined as follows:

A1 =A0∪{R(c,wit(c,R)) |c ∈ const(A0),∃dR(c, d) ∈ A0}

Note that R may be an inverse role r−, in which case we
useR(a, b) to refer to the assertion r(b, a). Take I ′2 to be the
restriction of I2 to {aw | a ∈ Θ}, and let J be the canonical
model of the KB 〈T1,A1〉. It is readily verified, using the
definition of canonical models and of the ABox A1, that the

identify function is a homomorphism of I ′2 into J . Since g
is a homomorphism of I1 into I2 whose range is contained
in {aw | a ∈ Θ}, g must also be a homomorphism of I1 into
I ′2, and hence also into J . Moreover, g maps all constants in
const(D)∪const(M2) to themselves. We can thus conclude
that 〈T2,A2〉 |= q(~a) implies 〈T1,A1〉 |= q(~a) for every
Boolean CQ q(~a) with ~a ⊆ const(D) ∪ const(M2).

B Proof details for Section 5

We provide details of the argument for the NL upper bound
in the proof of Theorem 7.

Proof of Theorem 7 (continued).

Proof. We consider the case in which Γ1 = 〈T1,M1〉,
Γ2 = 〈T2,M2〉 both have linear mappings, and we explain
how to decide in NL whether Γ1 |=log M2. The procedure
will consider in turn each of the mapping assertions inM2,
which can be done in logarithmic space by keeping only the
id of mapping assertions in memory, rather than the asser-
tions themselves. For each mapping assertion m ∈ M2,
we do not build the database D = gr(body(m)) explicitly,
but instead exploit the fact that D has precisely the same
structure as body(m), which is available in the input. In
other words, instead of replacing every variable by a con-
stant, we simply treat the existing variables as constants.
We store in memory (a binary representation of) the atom
α = head(m); this requires only logarithmic space since the
arity of α is at most two. Our aim is to determine whether
〈Γ1, body(m)〉 |= α, where the variables in body(m) and α
are treated as constants. Because T1 is a DL-LiteR TBox, we
know that this entailment holds iff there exists a mapping
assertion m′ ∈M1 and a homomorphism h from body(m′)
to body(m) such that 〈T1, h(head(m′))〉 |= α. Moreover,
since we are working with linear mappings, both body(m′)
and body(m) consist of a single atom, which means that
body(m′) and body(m) must use the same relation name and
h is the unique function such that h(body(m′)) = body(m).
We can thus proceed as follows:

1. We guess the (id of a) mapping assertion m′ ∈M1.
2. We check in the input that body(m) and body(m′) use the

same relation name.
3. We iterate over the positions 1 ≤ i ≤ arity(P) and over

positions i < j ≤ arity(P) (by representing the posi-
tions in binary, we need only logarithmic space to store
the pair (i, j)). If body(m′) contains the same term in po-
sitions i and j, then we check that the term in position i
of body(m) is the same as that in position j.

4. We compute and store binary representations of the (at
most two) frontier variables in m′ Then, for each frontier
variable v, we scan body(m′) for the first position i in
which v occurs, and we memorize the term occurring in
position i of body(m).

5. We let β be obtained by taking head(m′) and replacing
each frontier variable v by the term in m that we memo-
rized in the previous step. A binary representation of the
atom β can be stored in logarithmic space.

6. Finally, since IQ answering in DL-LiteR is in NL, we can
make a call to an NL oracle to verify that 〈T1, β〉 |= α.

7. If all of the preceding checks succeeded, we return yes.
Otherwise, we return no.

Note that if the checks in Steps 2 and 3 succeed,
then the atom β constructed in Step 5 is precisely
h(head(m′)). Thus, the procedure correctly checks whether
〈Γ1, body(m)〉 |= α. Moreover, since the procedure runs in
logarithmic space with access to an NL oracle and LNL =
NL, we obtain an NL procedure.

The next lemma establishes the claim from the proof of
Theorem 9.

Lemma 1. 〈∅,M1〉 |=q 〈∅,M2〉 iff 〈T ,A〉 |= q1 ⇒
〈T ,A〉 |= q2 for all Σ-ABoxes.

Proof. First suppose that 〈∅,M1〉 |=q 〈∅,M2〉, and let A
be an ABox such that sig(A) ⊆ Σ and 〈T ,A〉 |= q1. Let D
be the database instance consisting of the facts in A. Since
M2 contains copy1(Σ) as well as {T (x)→ V (x), F (x)→
V (x)}, it follows that 〈∅,M2, D〉 |= q′1. Moreover, be-
cause M2 contains pop(Σ,Σ2), the corresponding ABox
AM2,D contains for every constant c in D (equiv. A), every
Σ2-fact whose only constant is c. More precisely, for every
such constant c, the ABox AM2,D contains A2(c) for ev-
ery concept name A ∈ Σ and R2(c, c) for every role name
R ∈ Σ. Using the fact that q′2 is Boolean and only uses
predicates from Σ2, we can infer that 〈∅,M2, D〉 |= q′2
and hence that 〈∅,M2, D〉 |= q. By our assumption that
〈∅,M1〉 |=q 〈∅,M2〉, we obtain 〈∅,M1, D〉 |= q, which
implies that 〈∅,M1, D〉 |= q′2. We then observe thatAM1,D

contains P 2(~c) iff A contains the corresponding assertion
P (~c). It follows that the homomorphism witnessing that
〈∅,M1, D〉 |= q′2 can be reproduced in A using the origi-
nal predicates, so A |= q2.

For the other direction, suppose that for all Σ-ABoxes,
〈T ,A〉 |= q1 implies 〈T ,A〉 |= q2. Let D be a
database instance such that 〈∅,M2, D〉 |= q. It follows that
〈∅,M2, D〉 |= q′1. Note that since the left-hand sides of
mapping assertions in M2 only use predicates from Σ, we
may assume w.l.o.g. that sig(D) ⊆ Σ. Let AD be the Σ-
ABox containing the facts inD. From 〈∅,M2, D〉 |= q′1 and
the fact that the two inclusions in T simulate the effect of the
mapping assertions T (x) → V (x) and F (x) → V (x), we
can infer that 〈T ,AD〉 |= q1. Applying our assumption, we
obtain 〈T ,AD〉 |= q2, which yields 〈∅,M1, D〉 |= q′2 be-
cause of the mapping assertions in copy2(Σ). We can also
show that 〈∅,M1, D〉 |= q′1 using the mapping assertions in
pop(Σ,Σ1 ∪ {V }), from which we obtain 〈∅,M1, D〉 |= q,
as desired.

We give the missing proof of the linear case for Theo-
rem 10.

Proof of Theorem 10 (continued). In the case of linear
mappings, we can again use Theorem 3 to restrict the num-
ber and form of the databases that need to be considered. By
Theorem 8, we can check in NL whether Γ1 |=⊥ Γ2. We
can next iterate over all of pairs (D,A2) constructed in the

manner specified in Theorems 3. Observe that becauseM2

is a linear mapping, every pair (D,A2) corresponds to take a
mapping assertion m ∈ M2, possibly unifying the (at most
two) frontier variables in m, and setting D = gr(body(m))
and A2 = gr(head(m)). As in the proof of Theorems 7
and 8, we can work directly with body(m) and head(m),
rather than introducing new constants, and we do not need
to explicitly construct body(m) but can instead store the id
of m and the decision of whether or not to merge the fron-
tier variables. We next iterate (again in logarithmic space)
over all (unary or binary) tuples ~a ⊆ terms(head(m)) of
the same arity as q. For every such tuple ~a, we make a call to
an NL oracle to check whether the IQ q(~a) is entailed from
〈T2, body(m)〉. If the response is yes, then we make a sec-
ond NL oracle call to check whether 〈Γ1, body(m)〉 |= q(~a)
(refer to the proof of Theorem 7 for a more detailed descrip-
tion of how to perform this entailment check in NL). The
procedure returns no if there is some m obtained from a
mapping assertion in M2 by possibly unifying the frontier
variables and some tuple ~a ⊆ terms(head(m)) for which
〈T2, body(m)〉 |= q(~a) and 〈Γ1, body(m)〉 6|= q(~a); other-
wise, it returns yes. The correctness of the procedure is eas-
ily verified, and since LNL = NL, we obtain an NL decision
procedure.

For the NL lower bound, we reduce concept subsump-
tion to single IQ entailment with linear mappings as fol-
lows: T |= A v B iff 〈T , {A′(x) → A(x)}〉 |=B(x)

〈T , {A′(x)→ B(x)}〉.

The following lemma, which will be used in the proof of
Theorem 12, shows that if we consider OBDA specifications
based upon DL-LiteRDFS TBoxes and GAV mappings, then
CQ-entailment and IQ-entailment coincide.

Lemma 2. Consider OBDA specifications Γ1 = 〈T1,M1〉
and Γ2 = 〈T2,M2〉 where T1, T2 are DL-LiteRDFS TBoxes
and M1,M2 are GAV mappings. Then Γ1 |=CQ Γ2 iff
Γ1 |=IQ Γ2.

Proof. By Proposition 2, Γ1 |=CQ Γ2 implies Γ1 |=IQ

Γ2. For the other direction, suppose that Γ1 |=IQ Γ2

and 〈T2,M2, D〉 |= q(~a). Since T2 is formulated in
DL-LiteRDFS, we know that it does not contain any existen-
tials on the right-hand-side of inclusions. It must thus be the
case that there is a function h : terms(q)→ const(AM2,D)
that maps every constant to itself and the tuple of answer
variables of q to the tuple of constants ~a and which satis-
fies {h(α) | α ∈ q} ⊆ AM2,D. From Γ1 |=IQ Γ2, we
can infer that {h(α) | α ∈ q} ⊆ AM1,D, and hence that
〈T1,M1, D〉 |= q(~a). This establishes that Γ1 |=CQ Γ2.

We now complete the proof of Theorem 12 by proving the
complexity results for DL-LiteRDFS.

Proof of Theorem 12 (continued).
For linear mappings, NL-hardness is easily obtained by

a reduction of concept subsumption in DL-LiteRDFS simi-
lar to the previous ones. More precisely, it is immediate to
verify that T |= A v B iff 〈T , {T (x) → A(x)}〉 |=CQ

〈T , {T (x) → A(x), T (x) → B(x)}〉. (Note that this same

reduction works for DL-Litecore .) Membership in NL is an
immediate consequence of Lemma 2 and Theorem 13.

For GAV mappings, NP-hardness is easily obtained
through a reduction of the containment problem for conjunc-
tive queries. To show membership in NP for DL-LiteRDFS
and GLAV mappings, we let sat(M, T) denote the satura-
tion ofM by T , which is obtained by replacing each map-
ping assertion m ∈ M by the mapping assertion m′ which
has the same body as m, but its head contains all atoms in
head(m), plus all atoms that can be inferred from head(m)
using T . For example, if T = {A v B, ∃S− v D,R v
S}, we would replace the mapping assertion P (x, y, z) →
∃w.A(x) ∧R(x,w) by
P (x, y, z)→ ∃w.A(x)∧R(x,w)∧S(x,w)∧B(x)∧D(w)

It is not hard to see that for every database D, the
ABoxes AM,D and A∅,sat(M,T) are identical (modulo
renaming of the constants issuing from the grounding
of existential variables). It follows that 〈T ,M〉 ≡CQ

〈∅, sat(M, T)〉. Thus, we have 〈T1,M1〉 |=CQ 〈T2,M2〉
iff 〈∅, sat(M1, T1)〉 |=CQ 〈∅, sat(M2, T2)〉. We next argue
that the latter holds just in the case that sat(M1, T1) |=log

sat(M2, T2). The direction from sat(M1, T1) |=log

sat(M2, T2) to 〈∅, sat(M1, T1)〉 |=CQ 〈∅, sat(M2, T2)〉 is
a simple consequence of Proposition 2. For the other direc-
tion, suppose that 〈∅, sat(M1, T1)〉 |=CQ 〈∅, sat(M2, T2)〉,
and let m ∈ sat(M2, T2). Let Dm = gr(body(m)) be
the database corresponding to the body of m, let q =

head(m), and let ~b be the constants in Dm corresponding
to the grounding of the frontier variables of m. By con-
struction, we have 〈∅, sat(M2, T2), Dm〉 |= q(~b), and so ap-
plying our assumption, we obtain 〈∅, sat(M1, T1), Dm〉 |=
q(~b). It follows that sat(M1, T1) |= m, which yields
sat(M1, T1) |=log sat(M2, T2). We thus obtain the
following NP decision procedure for CQ-entailment for
DL-LiteRDFS TBoxes and GLAV mappings: (i) construct
in polynomial time the saturated mappings sat(M1, T1)
and sat(M2, T2), (ii) test whether sat(M1, T1) |=log

sat(M2, T2) using the NP procedure described in the proof
of Theorem 7, and (iii) return yes iff the procedure in (ii)
returned yes.

Proof of Theorem 13. The proof of all the upper bounds fol-
lows from Theorem 10 and from the fact that 〈T1,M1〉 |=IQ

〈T2,M2〉 iff 〈T1,M1〉 |=α 〈T2,M2〉 for every instance
query α over sig(〈T2,AM2,D〉). Since the number of such
queries α is linearly bounded (and the queries can be enu-
merated in logarithmic space), it follows that all the upper
bounds of Theorem 10 extend to the IQ-entailment problem.

All the NL lower bounds for all the DLs and linear map-
pings follow from an easy reduction of the problem of con-
cept subsumption in a TBox constituted of inclusions be-
tween atomic concepts (such a TBox belongs to all the DLs
considered), which is an NL-hard problem.

Finally, it is easy to prove the NP lower bound for the
case of empty TBoxes and GAV mappings through a re-
duction of containment between conjunctive queries: given
two Boolean CQs q1, q2, q1 is contained in q2 if and only if
〈∅, {q2 → A(a)}〉 |=IQ 〈∅, {q1 → A(a)}〉.

