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Abstract
Inconsistency-tolerant query answering in the pres-
ence of ontologies has received considerable atten-
tion in recent years. However, existing work as-
sumes that the data is expressed using the vocab-
ulary of the ontology and is therefore not directly
applicable to ontology-based data access (OBDA),
where relational data is connected to the ontology
via mappings. This motivates us to revisit exist-
ing results in the wider context of OBDA with
mappings. After formalizing the problem, we per-
form a detailed analysis of the data complexity
of inconsistency-tolerant OBDA for ontologies for-
mulated in DL-Lite and other data-tractable de-
scription logics, considering three different seman-
tics (AR, IAR, and brave), two notions of repairs
(subset and symmetric difference), and two classes
of global-as-view (GAV) mappings. We show that
adding plain GAV mappings does not affect data
complexity, but there is a jump in complexity if
mappings with negated atoms are considered.

1 Introduction
Ontology-based data access aims to improve access to data
(typically stored in a relational database) by using an ontol-
ogy to provide a conceptual view of the data that describes
the semantic relationships holding between different terms
[Poggi et al., 2008]. As the ontology usually introduces a
more convenient high-level vocabulary that abstracts from the
way data is stored, mappings are used to relate the terms
in the ontology with the relations in the database. The user
query is formulated using the ontology vocabulary, and query
answers are computed by combining the information from
the data, the mapping, and ontology. Most of the work on
OBDA considers ontologies expressed using description log-
ics (DLs) [Baader et al., 2017]. The DL-Lite family of DLs
[Calvanese et al., 2007; Artale et al., 2009] has been shown to
be especially well suited for OBDA, as it is possible for query
answering to be reduced, via query rewriting and unfolding,
to query evaluation over relational databases.

The focus of this paper is on handling data inconsistencies
in OBDA. It is widely acknowledged that real-world data suf-
fers from numerous data quality issues, and errors in data are

frequent. In the OBDA setting, such errors can lead to logi-
cal contradictions, in which case standard OBDA semantics
(based upon classical first-order logic) trivializes. Fixing the
errors by making changes to the underlying data is typically
impossible, as we often do not have permission to modify the
data (and even if we do, it may not be clear which modifica-
tions should be made). A solution is to adopt inconsistency-
tolerant semantics, which allow meaningful answers to be ob-
tained from inconsistent data.

The problem of querying inconsistent data using alterna-
tive semantics has been extensively studied by the database
community, under the name of consistent query answering
[Arenas et al., 1999; Bertossi, 2011; Chomicki, 2007]. In the
database setting, inconsistencies arise from violations of in-
tegrity constraints, and a repair is a database that satisfies the
constraints and differs minimally from the original database.
Various notions of repairs have been considered, among them,
subset repairs (⊆-repairs), which are maximal consistent sub-
sets of the database, and symmetric difference repairs (⊕-
repairs), which may both add and delete facts and minimize
the set of such changes. Consistent query answering seman-
tics returns those query answers that hold in every repair.

The topic of inconsistency-tolerant query answering has
been recently taken up by the DL community, and the last few
years have seen a flurry of activity, with proposals of differ-
ent inconsistency-tolerant semantics [Lembo et al., 2010; Bi-
envenu and Rosati, 2013], extensive studies of the complex-
ity of query answering under said semantics [Rosati, 2011;
Bienvenu, 2012], and some first implemented systems [Bien-
venu et al., 2014; Lembo et al., 2015; Tsalapati et al., 2016].
We refer the reader to the survey [Bienvenu and Bourgaux,
2016] for an overview and further references. However, all of
these works focus on a simplified version of OBDA, in which
the data is given as a set of ABox facts using the vocabulary
of the ontology (aka TBox). The question of how to define
repairs in the full OBDA setting with mappings, and how the
presence of mappings and type of repair affects the complex-
ity of query answering have not yet been addressed.

The present paper constitutes a first study of full-fledged
inconsistency-tolerant OBDA. We begin by proposing a no-
tion of OBDA repair, which is defined at the level of the
database, with the mapping and ontology serving to define
consistent instances. As the repairs involve modifications
of the database, we in fact consider two notions: ⊆-repairs
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Figure 1: Data complexity of CQ entailment under AR, IAR, and
brave semantics, for GAV and GAV¬,6= mappings. The results hold
for both ⊆- and ⊕-repairs. Lower bounds for PTIME DLs hold for
all DLs extending EL⊥.

and ⊕-repairs. We then show how to transfer existing repair-
based semantics to our setting. We consider three such se-
mantics: AR semantics (the DL name for consistent query an-
swering semantics), brave semantics (the dual of AR, which
requires a query to hold in some repair), and IAR semantics
(a strengthening of AR semantics, which queries the intersec-
tion of all repairs).

We perform a detailed study of the data complexity of
OBDA under these semantics. We show results both for DL-
Lite and for the general class of ‘data-tractable’ DLs, i.e. DLs
for which consistency checking and query answering are in
PTIME for data complexity. This class includes DLs of the
EL family [Baader et al., 2005] as well as more expressive
Horn DLs like Horn-SHIQ [Eiter et al., 2008]. Mappings in
OBDA typically take the form of global-as-view (GAV) map-
pings. For this initial study, we consider two forms of GAV
mappings, one which only allows positive atoms in mapping
bodies and a more expressive form of GAV mapping whose
bodies can contain negated atoms and inequalities. Mappings
with complex bodies (in particular, negated atoms) are sup-
ported by existing OBDA systems and have been shown to be
useful in applications of OBDA (see discussion in Section 6).

Our data complexity results are summarized in Figure 1.
For GAV mappings without negated atoms, we obtain pre-
cisely the same complexity as in the simple OBDA setting
without mappings, and in particular, the tractability results
for DL-Lite under IAR and brave semantics are preserved.
By contrast, for the richer form of GAV mappings with nega-
tion, there is a sharp increase in complexity, with all problems
moving to the second level of the polynomial hierarchy. Inter-
estingly, although they require different techniques,⊆-repairs
and ⊕-repairs also yield the same complexity.

2 Preliminaries
We recall basic notions about relational databases, descrip-
tion logics, and ontology-based data access (OBDA).
Databases A database signature ΣDB consists of a finite set
of relation symbols, each with an associated arity. A database
instance over signature ΣDB (or ΣDB-instance) is a finite set
of facts of the form P (c1, . . . , cn), where P ∈ ΣDB is an
n-ary relation symbol, and c1, . . . , cn are constants. Every
instance D corresponds to a finite first-order logic interpre-
tation, whose domain contains the constants in D and which
interprets relation P as {~c | P (~c) ∈ D}.

We consider three types of atoms: relational atoms of the
form P (t1, . . . , tn), equality atoms of the form t1 = t2,
and inequality atoms t1 6= t2, where the terms ti are either

constants or variables. A first-order query (FO-query) is a
first-order formula built up from such atoms using the usual
Boolean connectives (∧,∨,¬) and quantifiers (∀,∃). We will
consider several types of FO-queries. Conjunctive queries
(CQs) are existentially quantified conjunctions of relational
atoms. Conjunctive queries with inequality (CQ6=s) addition-
ally allow for inequality atoms. Conjunctive queries with safe
negation (CQ¬s) extend CQs with negated relational atoms,
but require that every variable that appears in a negated re-
lational atom also appears in a positive relational atom. We
use CQ¬,6= to refer to CQs with both inequalities and safe
negation. Unions of conjunctive queries (UCQs) are disjunc-
tions of CQs such that every disjunct has the same set of free
variables. We can define in the same manner UCQ 6=s and
UCQ¬,6=s. A query is Boolean if it contains no free variables.
A Boolean query q is satisfied by instance D, written D |= q,
if q evaluates to true in the interpretation corresponding to D.

Integrity constraints express properties that database in-
stances should satisfy. Universal constraints take the form
∀~x (α1 ∧ . . . αn ∧ ε → β1 ∨ . . . ∨ βm) where the αi and βj
are relational atoms all of whose terms belong to ~x, and ε is
a (possibly empty) conjunction of inequality atoms. Denial
constraints are a subclass of universal constraints in which
the right-hand side of the implication is empty, denoted ⊥.
Note that denial constraints capture functional dependencies
(FDs) and key constraints, two common forms of constraints.
An instance D satisfies a set of constraints C, written D |= C,
if every constraint in C evaluates to true in the interpretation
corresponding toD. A database instanceD is consistent w.r.t.
C if D |= C, and inconsistent otherwise.
Description Logics A DL knowledge base (KB) consists of
an ABox and a TBox, which are constructed from a set NC

of concept names (unary relation symbols) and a set of NR of
role names (binary relation symbols). The ABox (dataset) is a
finite set of facts of the formsA(a) andR(a, b), withA ∈ NC

and R ∈ NR. The TBox (ontology) consists of a finite set of
axioms whose form depends on the chosen DL.

We will be particularly interested in DLs from the DL-
Lite family. The core DL-Lite language allows only for con-
cept inclusions B1 v (¬B2) where each Bi is either some
A ∈ NC or ∃P , with P either a role name R or inverse role
R−. However, our results will hold for all common DL-Lite
dialects, including ones whose TBoxes allow for role inclu-
sions, or functionality assertions [Calvanese et al., 2007].

Another DL we will consider is EL⊥ [Baader et al., 2005],
whose TBoxes consists of concept inclusions C v D, where
C,D are complex concepts formed according to the grammar
C := > | ⊥ | A | ∃R.C | C u C, where A ∈ NC and
R ∈ NR. We observe that EL⊥ can express atomic concept
disjointness using inclusions of the form A u B v ⊥ (which
is equivalent to the DL-Lite axiom A v ¬B).

The semantics of DL KBs is given by first-order logic in-
terpretations I = (∆I , ·I), where ∆I is a non-empty domain
and ·I maps every A ∈ NC to a unary relation AI ⊆ ∆I and
every R ∈ NR to a binary relation RI ⊆ ∆I × ∆I . The
function ·I is extended to complex concepts and roles, e.g.
⊥I = ∅ and (C u D)I = CI ∩ DI . A concept inclusion
C v D is satisfied in I if CI ⊆ DI . A model of a KB
〈A, T 〉 is an interpretation that satisfies all axioms in T and



facts in A. We say that 〈A, T 〉 is consistent if it has a model,
and otherwise, it is inconsistent, written 〈A, T 〉 |= ⊥.

Querying DL KBs Conjunctive queries are the main query
language used to query DL KBs. To simplify the presen-
tation, we focus w.l.o.g. on Boolean CQs. We say that
a Boolean CQ q is entailed from a KB 〈A, T 〉, written
〈A, T 〉 |= q, if q is satisfied in every model of 〈A, T 〉.

Query rewriting is a technique that can be used to reduce
KB consistency and CQ entailment to database query evalua-
tion. Formally, we say that an FO-query q⊥ is a rewriting of
inconsistency w.r.t. T if 〈A, T 〉 |= q iff ADB |= q′, for every
ABox A. Note that here ADB signifies that A is treated like
a database instance (i.e. facts not present in A are treated as
false). An FO-query q′ is a rewriting of a Boolean CQ q w.r.t.
TBox T if 〈A, T 〉 |= q iff ADB |= q′, for every ABox A.

It is well known that for every DL-Lite TBox T , we can
construct a UCQ6= that is a rewriting of inconsistency, and
for every Boolean CQ q, we can construct a UCQ6= q′ that is
a rewriting of q w.r.t. T [Calvanese et al., 2007].
Ontology-based Data Access In OBDA, we have a TBox T ,
but data is stored in a relational database D, rather than an
ABox. Typically, D is formulated using a different signature
than T , so a mapping is used to relateD and T . In this paper,
we consider two forms of global-as-view (GAV) mappings.
A (plain) GAV mapping consists of a set of rules ∀~xϕ → γ,
where ϕ is a CQ all of whose variables are free and among
~x, and γ is either a concept atom A(x) or role atom R(x, x′)
with x, x′ ∈ ~x. GAV¬,6= mappings are defined similarly, ex-
cept that ϕ can be a CQ¬, 6=. To simplify the presentation, we
will typically omit the initial ∀~x when writing mappings.

We use the term OBDA specification to refer to a triple
〈ΣDB,M, T 〉, consisting of a database signature ΣDB, map-
ping M, and TBox T ; by restricting to mappings M from
the mapping language LM and TBoxes T from the DL LO,
we obtain the class of (LM ,LO) OBDA specifications. An
OBDA instance is also a triple, 〈D,M, T 〉, but with an in-
stance D in the first position. Given an instance D and map-
pingM, the induced ABoxM(D) is the ABox obtained by
applying the mapping to D and collecting the resulting facts.
More precisely, for every ϕ → γ ∈ M and variable assign-
ment ν such that ν(ϕ) holds in D, the ABox M(D) con-
tains the fact ν(γ) (andM(D) contains only such facts). We
say that a CQ q is entailed by an OBDA instance 〈D,M, T 〉,
written 〈D,M, T 〉 |= q, if 〈M(D), T 〉 |= q.

When T is a DL-Lite TBox, we can perform query entail-
ment as follows: (1) compute a rewriting q′ of the input query
q w.r.t. T , (2) unfold q′ w.r.t.M to get q′′, and (3) evaluate q′′
over D. Intuitively, the unfolding of q′ w.r.t.M works by re-
placing each DL atom A(t) or R(t, t′) by a disjunction of the
mapping bodies that can create the atom. We refer the reader
to [Poggi et al., 2008] for more details of the construction of
the induced ABoxM(D) and the unfolding operation.

Remark 1. When computing the induced ABox M(D),
mapping bodies are evaluated using standard (closed-world)
database semantics: each database instance corresponds to a
single finite interpretation that is intended to provide be (lo-
cally) complete. For example, hospital data could be expected
to contain a complete list of all diagnoses made within the

hospital. The use of a closed-world semantics on the underly-
ing relational data is entirely compatible with the open-world
interpretation of the induced ABox. Indeed, ontologies typ-
ically introduce new terms, or give a wider meaning to ex-
isting terms. For example, diagnoses from the hospital data
will be used to populate ontology terms about medical condi-
tions, but will generally only provide a partial view of a pa-
tient’s medical conditions (as some diagnoses may have made
elsewhere, or the patient may have undiagnosed conditions).
Importantly, however, because the database relations are in-
tended to be complete, it can be meaningful to use negation
in the bodies of mappings, e.g. to identify patients that are not
on the opt-in organ donation list.

Complexity We focus on data complexity, which is measured
with respect to the size of the data (either a database instance
or ABox). We consider the following standard complexity
classes: PTIME (solvable in deterministic polynomial time),
NP (solvable in non-deterministic polynomial time), coNP
(complement is in NP), Σp2 (solvable in non-deterministic
polynomial time with access to an NPoracle), and Πp

2 (com-
plement is in Σp2). We will also mention a circuit complexity
class AC0⊆ PTIME. It is known that FO-query evaluation
over database instances is in AC0 w.r.t. data complexity.

3 Inconsistency-Tolerant OBDA
As previously mentioned, there is a large body of litera-
ture on inconsistency-tolerant query answering over rela-
tional databases and DL knowledge bases. In this section,
we review the key notions from this body of work and then
show how to adapt them to the OBDA setting.

3.1 Database and ABox Repairs
Intuitively, a repair of a database D w.r.t. integrity constraints
C is a database that satisfies C and is as close as possible toD.
In this paper, we consider two well-studied forms of repairs:
symmetric difference repairs (⊕-repairs) and subset repairs
(⊆-repairs). Symmetric difference repairs are the most com-
monly used and are appropriate in settings where both fact
insertions and fact deletions can be used to fix constraint vi-
olations (i.e., when facts may be both missing or erroneous).
Formally, a ⊕-repair of an instance D w.r.t. C is an instance
R such that (i) R |= C, and (ii) there is no R′ such that
R′⊕D ( R⊕D andR′ |= C. Here⊕ denotes the symmetric
difference operation: S1⊕S2 = (S1 \S2)∪(S2 \S1). If only
fact deletions are permitted (i.e. constraint violations are due
to the presence of erroneous facts, rather than missing facts),
we can use ⊆-repairs instead: R is a ⊆-repair of D w.r.t. C
iff (i) R ⊆ D, (ii) R |= C, and (iii) there is no R′ such that
R ( R′ and R′ |= C. We use Rep⊕(D, C) and Rep⊆(D, C)
to denote the sets of ⊕- and ⊆-repairs, respectively.

In the DL setting, we have the corresponding notion of
ABox repair, first proposed in [Lembo et al., 2010]. For-
mally, an ABox repair of an ABox A w.r.t. a TBox T is an
ABox R ⊆ A such that (i) 〈R, T 〉 6|= ⊥ and (ii) there is no
R′ such thatR ( R′ and 〈R′, T 〉 6|= ⊥. Note that in contrast
to the database setting, adding facts to an ABox can never
restore consistency, which is why it only makes sense to con-



sider repairs that are subsets of A. We will use ARep(A, T )
to refer to the set of repairs of A w.r.t. T .

In this paper, we consider three natural repair-based se-
mantics that have been proposed for querying DL KBs. A
query is entailed under AR semantics if it is entailed from ev-
ery ABox repair. The AR semantics essentially corresponds
to the standard semantics used for consistent query answer-
ing over databases [Arenas et al., 1999] but translated to the
DL setting [Lembo et al., 2010]. Under the stronger IAR se-
mantics, put forth in [Lembo et al., 2010], a query is entailed
if it is entailed from the intersection of the repairs, i.e. from
the ‘surest’ ABox facts. The weakest reasonable semantics is
the so-called brave semantics [Bienvenu and Rosati, 2013],
which only requires that a query be entailed from some re-
pair. These semantics can be profitably used together, either
to identify query results of different levels of confidence, or to
improve efficiency, as the IAR and brave semantics can some-
times be used as tractable upper and lower approximations of
AR semantics, see [Bienvenu and Bourgaux, 2016] for dis-
cussion. For S ∈ {AR, IAR, brave}, we will use 〈A, T 〉 |=S q
for query entailment over DL KB 〈A, T 〉 under S semantics.

To more easily relate semantics based upon ABox,
database, and OBDA repairs, we will adopt the notation1

〈D, C〉 |=r
S q, with r ∈ {⊕,⊆} indicating the type of repair,

to refer to query entailment using the database analog of se-
mantics S ∈ {AR, IAR, brave}. For S = AR and S = brave,
the definition is the same but uses database repairs in place
of ABox repairs (when S = AR, this is just the standard con-
sistent query answering semantics). Suitably translating the
IAR semantics to the database setting proves more subtle and
will be addressed later in the section (Definition 10).

3.2 OBDA Repairs
In order to transfer the preceding repair-based semantics to
the OBDA setting, we need to formalize what we mean by a
repair of an OBDA instance 〈D,M, T 〉. There are two nat-
ural options: either we consider the ABox repairs ofM(D)
w.r.t. T (‘map then repair’ approach), or we compute repairs
of D using the pair (M, T ) to determine consistent database
instances (‘repair at source’ approach).

The ‘map then repair’ approach has some appealing char-
acteristics, as it leads to repairs preserving more ABox facts
and allows us to more easily reuse techniques for querying
ABox repairs. Moreover, similar strategies have been em-
ployed in the data integration setting [Bravo and Bertossi,
2003; Calı̀ et al., 2003]. However, it has one major disad-
vantage: as the approach does not keep track of the origins
of the mapped facts, it is possible for repairs to contain ABox
facts that originate from conflicting database facts.

Example 2. Consider the instance D∗ =
{T (a, b, c), U(a, c)}, TBox T ∗ = {∃P v ¬A}, and mapping
M∗ = {U(x, y) → A(x), U(x, y) → B(y), T (x, y, z) →
P (x, z), T (x, y, z)→ R(y, z)}. The ABoxM∗(D) contains
four facts: P (a, c), R(b, c), A(a), B(b). There are two

1To facilitate comparisons, we are committing an abuse of nota-
tion and terminology, as AR and IAR stand for ‘ABox Repair’ and
‘Intersection of ABox Repairs’ (conveniently, they also abbreviate
the mnemonic ‘All Repairs’ and ‘Intersection of All Repairs’).

ABox repairs of M(D): R1 drops P (a, c), and R2 drops
A(a). Note that B(b) ∧ R(b, c) holds in both repairs, even
though B(b) and R(b, c) originate from conflicting facts.
If we adopt the ‘repair at source’ approach, we will have
two repairs: S1 = {T (a, b, c)} and S2 = {U(a, c)}, with
M(S1) = {P (a, c), R(b, c)} andM(S2) = {A(a), B(b)}.

In a recent work on inconsistency-tolerant data exchange
[ten Cate et al., 2016], the authors similarly faced a decision
as to whether to define repairs on the source dataset, or to per-
form the repair on the mapped data. They opt for the former
in order to avoid the semantic anomalies that can arise when
combining facts derived from conflicting facts.

The preceding considerations lead us to investigate the ‘re-
pair at source’ approach, which can be formalized as follows:

Definition 3. A database instance R is an ⊕-repair of an
OBDA instance 〈D,M, T 〉 if (a) 〈R,M, T 〉 6|= ⊥, and (b)
there is no R′ with R′ ⊕ D ( R ⊕ D with 〈R′,M, T 〉 6|=
⊥. An instance R is a ⊆-repair of 〈D,M, T 〉 if (a) R ⊆
D, (b) 〈R,M, T 〉 6|= ⊥, and (c) there is no R′ with R (
R′ such that 〈R′,M, T 〉 6|= ⊥. For r ∈ {⊕,⊆}, we use
Repr(D,M,R) to refer to the set of r-repairs of 〈D,M, T 〉.
Remark 4. Another advantage of defining repairs at the level
of the database instances is that it is straightforward to inte-
grate database constraints. Indeed, we can easily adapt Def-
inition 3 to the case where the instance comes with a set of
integrity constraints C by simply requiring that possible re-
pairsR satisfyR |= C in addition to 〈R,M, T 〉 6|= ⊥.

The following easy lemma, an immediate consequence of
Def. 3, shows that every ⊆-repair is also a ⊕-repair:

Lemma 5. For every OBDA instance 〈D,M, T 〉:
Rep⊆(D,M, T ) ⊆ Rep⊕(D,M, T ).

In general, however, some ⊕-repairs are not ⊆-repairs, as
illustrated by the following example:

Example 2 (continued). Reconsider D∗ and T ∗, but now
with the mapping M′ = {T (x, y, z) ∧ ¬N(y) →
P (x, y), U(x, y) → A(x)}. There are two ⊆-repairs of
〈D∗,M′, T ∗〉: S1 and S2. If we consider ⊕-repairs instead,
then we have a third repair S3 = D∗ ∪ {N(b)}. Indeed, by
adding N(b), we block the derivation of P (a, b).

3.3 Repair-based Semantics for OBDA
With a notion of repair in hand, we can now define variants
of the AR, brave, and IAR semantics for OBDA instances.

Definition 6. Consider an OBDA instance 〈D,M, T 〉, CQ q,
and r ∈ {⊕,⊆}. Then:

• 〈D,M, T 〉 |=r
AR q iff 〈M(R), T 〉 |= q for every

R ∈ Repr(D,M, T )

• 〈D,M, T 〉 |=r
brave q iff 〈M(R), T 〉 |= q for some

R ∈ Repr(D,M, T )

Example 7. Consider the OBDA instance with D† =
{P (a), R(a), S(a)}, M† = {P (x) → A(x), R(x) →
B(x), S(x) → D(x), S(x) ∧ ¬P (x) → E(x)}, and T † =
{A v ¬B,A v C,B v C}. The two (⊕- and ⊆-) re-
pairs are: R†1 = {P (a), S(a)} and R†2 = {R(a), S(a)}.



Their induced ABoxes are: M † (R†1) = {A(a), D(a)} and
M † (R†2) = {B(a), D(a), E(a)}. Under brave semantics,
A(a), B(a), C(a), D(a), and E(a) can all be derived, while
under AR semantics, only C(a) and D(a) are entailed.

The most obvious way of defining the IAR semantics in the
OBDA setting would be to consider a query q to be entailed if
〈M(R∩), T 〉 |= q where R∩ =

⋂
R∈Repr(D,M,T )R. Note

however that R∩ satisfies a negated fact if the fact is absent
from even a single repair, whereas a positive fact must appear
in all repairs. To correct this asymmetry and stay closer to the
spirit of the original IAR definition, we propose to compute
the induced ABox using the negated facts common to all re-
pairs. This can be formalized as follows, whereFs andFp are
intended to contain respectively the set of sure and possible
positive facts (i.e. those holding in all / some repair(s)).

Definition 8. Fix two sets of facts Fs ⊆ Fp. A CQ¬,6= q
is satisfied in (Fs,Fp) under variable assignment ν (written
(Fs,Fp) |=µ q) if µ satisfies all inequality atoms in q and

• for every positive atom α ∈ q: ν(α) ∈ Fs
• for every negated atom ¬β ∈ q: ν(β) 6∈ Fp.

Given a GAV¬,6= mappingM, we defineM(Fs,Fp) as the
ABox consisting of those facts ν(γ) for which there exists
ϕ→ γ ∈M such that (Fs,Fp) |=µ ϕ.

Definition 9. Consider an OBDA instance 〈D,M, T 〉 with
M a GAV¬,6= mapping, CQ q, and r ∈ {⊕,⊆}. Then
〈D,M, T 〉 |=r

IAR q iff 〈M(R∩,R∪), T 〉 |= q where:

R∩ =
⋂

R∈Repr(D,M,T )

R R∪ =
⋃

R∈Repr(D,M,T )

R

We return to our example to illustrate the IAR semantics.

Example 7 (continued). By intersecting and unioning the re-
pairs of 〈D†,M†, T †〉, we get R†∩ = {S(a)} and R†∪ =

{P (a), R(a), S(a)}. The ABoxM†(R†∩,R
†
∪) consists of a

single fact, D(a). Note that the mapping S(x) ∧ ¬P (x) →
E(x) cannot be applied since P (a) ∈ R†∪, whereas E(a)
would be entailed with the naı̈ve definition of IAR semantics.

Similar considerations apply when translating the IAR se-
mantics to the database setting, leading us to propose the fol-
lowing definition:

Definition 10. Consider an instance D, set of integrity con-
straints C, r ∈ {⊕,⊆}, and UCQ¬, 6= Q = q1∨ . . .∨ qn. Then
〈D, C〉 |=r

IAR Q iff (R∩,R∪) |=µ qi for some 1 ≤ i ≤ n
and variable assignment µ, whereR∩ (resp.R∪) denotes the
intersection (resp. union) of all r-repairs of 〈D, C〉.

The next theorem shows that, as one would hope, the se-
mantics we have defined based upon OBDA repairs obey the
same relationships as those for ABox repairs. Note that this
result crucially depends on the way the IAR semantics is de-
fined; indeed, it does not hold if one adopts the ‘naı̈ve’ defi-
nition (to see why, consider 〈D†,M†, T †〉 from Example 7).

Theorem 11. For every OBDA instance Γ, CQ q, and r ∈
{⊕,⊆}: Γ |=r

IAR q ⇒ Γ |=r
AR q ⇒ Γ |=r

brave q.
The converse implications do not hold in general.

Proof. The second implication is immediate from Def. 6,
and Example 7 prove that the converse implications fail. To
show the first implication, suppose 〈D,M, T 〉 |=r

IAR q, i.e.
〈M(R∩,R∪), T 〉 |= q, with R∩ and R∪ defined as in
Def. 9. To prove 〈D,M, T 〉 |=r

AR q, it suffices to show
thatM(R∩,R∪) ⊆ M(R) for every R ∈ Repr(D,M, T ).
Take some R ∈ Repr(D,M, T ) and θ ∈ M(R∩,R∪). By
Def. 9, there exists ϕ → γ ∈ M and a variable assign-
ment ν that satisfies the inequality atoms in ϕ and is such
that θ = ν(γ) and ν(α) ∈ R∩ (resp. ν(β) 6∈ R∪) for every
positive atom α ∈ ϕ (resp. negated atom ¬β) in ϕ. It fol-
lows from the definition of R∩ and R∪ that ν(αi) ∈ R for
all 1 ≤ i ≤ n and ν(βi) 6∈ R for all 1 ≤ i ≤ m. We can
therefore apply the same rule toR to get θ ∈M(R).

The next result shows that the semantics based upon ⊕-
repairs are more conservative (i.e. entail fewer queries) than
those based upon ⊆-repairs.

Theorem 12. For every OBDA instance 〈D,M, T 〉, CQ
q, and S ∈ {AR, IAR}: 〈D,M, T 〉 |=⊕S q implies
〈D,M, T 〉 |=⊆S q. The converse implication do not hold.

Proof. The implication follows from Def. 6 and Lemma 5.
To see why the converse implication does not hold, take
D = {P (a, a), T (a)}, M = {P (x, y) ∧ ¬S(x, y) →
A(x), P (x, y) ∧ ¬S(x, y) → B(y), T (x) ∧ ¬P (x, x) →
E(x)}, T = {A v ¬B}, and q = E(a). There is a single
⊆-repair R1 = {T (a)} with induced ABox {E(a)}, but an
additional ⊕-repair R2 = {P (a, a), T (a), S(a, a)} with an
empty induced ABox. Thus, for every S ∈ {AR, IAR, brave},
〈D,M, T 〉 |=⊆S E(a), but 〈D,M, T 〉 |=⊕S E(a).

It follows from Example 2 that the ‘map then repair’ ap-
proach would lead to some queries being entailed that are not
entailed w.r.t. our ‘repair at source’ approach. In the next
example, show the opposite, namely that there are queries en-
tailed according to our approach that would not be entailed in
the ‘map-then-repair’ approach, thereby showing that the two
approaches are incomparable w.r.t. the set of entailed queries.

Example 13. Consider the OBDA instance with
D‡ = {P (a, a), S(a), T (a)}, M‡ = {P (x, y) →
A(x), P (x, y)→ B(y), S(x) ∧ T (x) ∧ ¬P (x, y)→ D(x)},
and T ‡ = {A v ¬B}. As M‡(D‡) = {A(a), B(a)}, we
have 〈M‡(D‡), T ‡〉 6|=S D(a) for S ∈ {AR, IAR, brave}.
However, the single OBDA repair R‡ = {S(a), T (a)} gives
rise to the induced ABox {D(a)}, so 〈D‡,M‡, T ‡〉 |=r

S
D(a) for r ∈ {⊆,⊕} and S ∈ {AR, IAR, brave}. We
argue that it is reasonable to infer D(a) from this in-
consistent OBDA instance. Indeed, as the fact P (a, a)
contradicts the specification, it must be false. Thus, the
negated fact ¬P (a, a) holds in the correct version of the
database, and it can be combined with the (presumed
correct) facts S(a) and T (a) to fire the mapping rule
S(x) ∧ T (x) ∧ ¬P (x, y)→ D(x).

In the next two sections, we will provide algorithms and
data complexity results for inconsistency-tolerant OBDA,
considering the impact of varying the semantics (AR, IAR,
or brave), the type of repair (⊕ or ⊆) and the form of the



mapping (GAV or GAV¬,6=). In addition to deciding query
entailment under the three semantics, we will consider the
repair checking problem, which as its name suggests, is to
check whether a given instance is a repair.

4 Results for GAV Mappings
In this section, we describe how we obtain the results for GAV
mappings. We begin by observing that when GAV mappings
are used, it is sufficient to study ⊆-repairs, as every ⊕-repair
is a ⊆-repair. This is essentially a rephrasing of an analogous
result for databases with denial constraints and exploits the
fact that consistency can never be recovered by adding facts.

Lemma 14. For every OBDA instance 〈D,M, T 〉 withM a
GAV mapping, Rep⊆(D,M, T ) = Rep⊕(D,M, T ).

Another easy observation is that when GAV mappings are
considered, our way of defining the IAR semantics (Def. 9)
coincides with the ‘naı̈ve’ definition.

Lemma 15. For every OBDA instance 〈D,M, T 〉 with M
a GAV mapping, 〈D,M, T 〉 |=⊆IAR q iff 〈M(R∩), T 〉 |= q
whereR∩ =

⋂
R∈Rep⊆(D,M,T )R.

We next establish the upper bounds in Table 1 for ‘PTIME
DLs’, i.e. DLs for which both consistency and CQ answering
are in PTIME for data complexity.

Theorem 16. Let L be a PTIME description logic. Then CQ
answering w.r.t. (GAV, L) OBDA specifications is:

• coNP in data complexity, for AR and IAR semantics

• NP in data complexity, for brave semantics.

Proof. The upper bounds for AR and brave semantics are
easy and lift the corresponding results for DL KBs.

We first observe that it is in PTIME to recognize⊆-repairs.
Indeed, to show thatR is not a repair, it suffices to iterate over
all τ ∈ D \ R, and show that someR∪ {τ} is consistent.

For AR semantics, we can show that 〈D,M, T 〉 6|=⊆AR q by
guessingR ⊆ D and verifying that (i)R ∈ Rep⊆(D,M, T ),
and (ii) 〈M(R), T 〉 6|= q. Both checks are in PTIME.

For brave semantics, we can show that 〈D,M, T 〉 |=⊆brave q
by guessing R ⊆ D and verifying in PTIME that (i) R ∈
Rep⊆(D,M, T ),, and (ii) 〈M(R), T 〉 |= q.

For IAR semantics, we adapt an upper bound from
[Rosati, 2011]. By Lemma 15, 〈D,M, T 〉 |=⊆IAR q iff
〈M(R∩), T 〉 |= q where R∩ =

⋂
R∈Repr(D,M,T )R. To

show 〈M(R∩), T 〉 6|= q, we guess a subset N ⊆ D as well
as a subset R¬τ ⊆ D for every τ 6∈ D \ N . We then ver-
ify that (i) every R¬τ is a repair such that τ 6∈ R¬τ , and (ii)
〈M(N ), T 〉 6|= q. It follows from (i) that R∩ ⊆ N , which
impliesM(R∩) ⊆M(N ), sinceM is a GAV mapping. We
then use (ii) to get 〈M(R∩), T 〉 6|= q.

The preceding upper bounds match existing lower bounds
for inconsistency-tolerant query answering over KBs ex-
pressed in EL⊥ [Rosati, 2011; Bienvenu and Bourgaux,
2016], one of the simplest PTIME DLs. The next result al-
lows us to transfer these lower bounds to the OBDA setting.

Lemma 17. For every DLL and S ∈ {AR, IAR, brave}, there
is a data-independent reduction from CQ answering under S
semantics over L knowledge bases to CQ answering under S
semantics w.r.t. (GAV, L) OBDA specifications.

Proof. Consider a TBox T with signature Σ, and let
Mcopy = {P (~z)→ P (~z) | P ∈ Σ}. AsMcopy(A) = A, we
have ARep(A, T ) = Rep⊆(A,Mcopy, T )}. It follows that
〈A, T 〉 |=S q iff 〈A,M, T ′〉 |=S q for every query q and S ∈
{AR, IAR, brave} (for IAR, we again use Lemma 15).

It is known that CQ answering under IAR and brave se-
mantics is tractable for DL-Lite knowledge bases [Lembo et
al., 2015; Bienvenu and Rosati, 2013], and we will show that
these positive results hold also in the OBDA setting with GAV
mappings. We start by giving a reduction to inconsistency-
tolerant query answering in the database setting.
Theorem 18. For every (DL-Lite, GAV) OBDA specification
〈ΣDB,M, T 〉 and every CQ q, there exists a set CM,T of de-
nial constraints and a UCQ6= Qq such that

〈D,M, T 〉 |=⊆S q ⇔ 〈D, CM,T 〉 |=⊆S Qq

for every ΣDB-instance D and S ∈ {AR, IAR, brave}.

Proof. Given a (GAV, DL-Lite) OBDA specification
〈ΣDB,M, T 〉, we proceed as follows:
1. Construct a UCQ6= Qq such that for every ΣDB-instanceD

such that 〈D,M, T 〉 6|= ⊥: D |= Qq iff 〈D,M, T 〉 |= q.

2. Construct a UCQ6= Qunsat such that for every ΣDB-
instance D: D |= Qunsat iff 〈D,M, T 〉 is inconsistent.

3. Let CM,T = {qi → ⊥ | qi ∈ Qunsat}.
Steps 1 and 2 can be performed by applying existing
query rewriting and unfolding procedures (as described in
[Poggi et al., 2008; Kontchakov and Zakharyaschev, 2014]),
followed by standard equivalence-preserving transforma-
tions. To show correctness of the reduction, we use the
facts that Rep⊆(D,M, T ) = Rep⊆(D, CM,T ), and that
〈M(R), T 〉 |= q iffR |= Qq , for every repairR.

Next we show that UCQ 6= answering with denial con-
straints under IAR and brave semantics can be achieved by
query rewriting. We do this by adapting a result from [Bi-
envenu and Rosati, 2013] on CQ answering under brave and
IAR semantics for first-order rewritable ontology languages.
Theorem 19. For every data signature ΣDB, set of denial
constraints C, S ∈ {IAR, brave}, and UCQ6= q, there exists a
first-order query qS such that 〈D, C〉 |=⊆S q iff D |= qS, for
every ΣDB-instance D.

Proof. A result from [Bienvenu and Rosati, 2013] shows that
CQ answering under IAR and brave semantics can be reduced
to FO-query evaluation for all known FO-rewritable ontol-
ogy languages. The construction starts with a UCQ 6= Qunsat

that identifies inconsistent datasets and a UCQ 6= Qq that is
a rewriting of the input query q w.r.t. the ontology. These
two queries are then manipulated to obtain FO-queries imple-
menting the IAR and brave semantics. Every set C of denial
constraints gives rise to a UCQ6= QC that holds on instances



violating C. We can thus apply the same construction to the
input UCQ6=q and the UCQ6= QC to obtain FO-queries qIAR
and qbrave such that 〈D, C〉 |=⊆S q iff D |= qS, for every ΣDB-
instance D and S ∈ {IAR, brave}.

Combining Theorems 18 and 19, we obtain the following.
Corollary 20. CQ answering under IAR and brave semantics
is in AC0 for (GAV, DL-Lite) OBDA specifications.

We point out that all upper bounds in this section hold also
in the presence of denial constraints over the data signature.

5 Results for GAV¬, 6= Mappings
We next turn to GAV¬,6= mappings, starting by establishing
the complexity of repair checking:
Theorem 21. For every PTIME DLL that can express atomic
concept disjointness and every r ∈ {⊆,⊕}, r-repair checking
for (GAV¬, 6=, L) specifications is coNP-complete.

Proof. Membership in coNP can be shown similarly to the
GAV case (proof of Theorem 16), and coNP-hardness for
⊕-repairs can be adapted from a similar result for universal
constraints [Staworko and Chomicki, 2010].

We thus focus on the lower bound for ⊆-repairs, which is
proven by reduction from unsatisfiability of 3CNF formulas.
Consider a 3SAT instance ϕ = λ1 ∧ . . . ∧ λn over variables
v1, . . . , vm, where λi = `i,1 ∨ `i,2 ∨ `i,3. We use var(`) to
refer to the variable of literal ` and set sgn(`) = t (resp.
sgn(`) = f) if ` is a positive (resp. negative) literal. We
consider the TBox Tsat = {T v V, F v V, T v ¬F, V v
¬V ′, C v ¬U} and the mappingM that contains:
• At(x)→ T (x) and Af(x)→ F (x)

• for s ∈ {t, f}: As(x) ∧ ¬Z → V ′(x)

• for every (s1, s2, s3) ∈ {t, f}3:
– Z ∧ Ss1s2s3(x, y1, y2, y3)→ C(x)

– Ss1s2s3(x, y1, y2, y3) ∧ ¬As1(y1)
∧ ¬As2(y2) ∧ ¬As3(y3)→ U(x)

We take the instance Dϕ consisting of the tuples

{Z} ∪ {At(vj), A
f(vj) | 1 ≤ j ≤ m}∪

{Ss1s2s3(ci, u1, u2, u3) | ∃1 ≤ i ≤ n∀l ∈ {1, 2, 3} :

ul = var(`i,l) and sgn(`i,l) = sl}

and let D′ be the restriction of Dϕ to the relations Ss1s2s3 .
We claim that ϕ is satisfiable iffD′ 6∈ Rep⊆(Dϕ,M, Tsat).

Indeed, if ϕ has a satisfying valuation ν, then D′ ∪ {Z} ∪
{At(vj) | ν(vj) = t} ∪ {Af(vj) | ν(vj) = f} is consis-
tent, so D′ is not a repair. Conversely, suppose there is a
repair R with D′ ( R′. Consistency of R implies that for
every j, either At(vj) 6∈ R or Af(vj) 6∈ R. There exists thus
a valuation νR to v1, . . . , vm such that As(vj) ∈ R implies
ν(vj) = s. We claim that νR satisfies ϕ. Indeed,R\D′ 6= ∅,
so R contains either Z or a fact of the form As(vj). If
Z 6∈ R and As(vj) ∈ R, then 〈M(R), Tsat〉 entails V (vj)
and V ′(vj), contradicting V v ¬V ′. Thus, Z ∈ R, which
implies that C(ci) ∈ M(R) for every 1 ≤ i ≤ n. It fol-
lows thatM(R) cannot contain any U(ci), and thus for every

1 ≤ i ≤ m, there must exist 1 ≤ l ≤ 3, such that R contains
As(vk), where vk = var(`i,l) and s = sgn(`i,l). The latter
shows that νR satisfies λi.

We use the preceding result to derive the remaining upper
bounds in Figure 1.

Theorem 22. Let L be a PTIME description logic. Then CQ
answering w.r.t. (GAV¬,6=, L) OBDA specifications is:

• Πp
2 in data complexity, under AR and IAR semantics

• Σp2 in data complexity, under brave semantics,

for both ⊆- and ⊕-repairs.

Proof. By adapting a result about ⊕-repairs w.r.t. universal
constraints [Staworko and Chomicki, 2010], we can show that
⊕-repairs of 〈D,M, T 〉 use only constants from D and are
thus of polynomial size in |D|. This makes it possible for us to
reuse / adapt the algorithms from the proof of Theorem 16. As
repair checking is now coNP-complete (Theorem 21), these
algorithms yield membership in Πp

2 (resp. Σp2) for AR (resp.
brave semantics). For the IAR semantics, we need to modify
the algorithm as follows. We guess two sets N∩ and N∪,
together with a set R¬τ (resp. Rτ ) of facts for each τ ∈ D \
N∩ (resp. τ ∈ N∪). The guessed sets only use constants
fromD, so are of polynomial size w.r.t.D. We then check that
(i) every R¬τ is a repair such that τ 6∈ R¬τ , (ii) every Rτ is
a repair such that τ ∈ Rτ , and (iii) 〈M(N∩,N∪), T 〉 6|= q. It
follows from (i) and (ii) thatR∩ ⊆ N∩ andN∪ ⊆ R∪, which
implies that M(R∩,R∪) ⊆ M(N∩,N∪). Combining this
with (iii), we obtain 〈M(R∩,R∪), T 〉 6|= q.

For DL-Lite ontologies coupled with GAV¬,6= mappings, it
is still possible to proceed by reduction to the database setting
if we accept to move to a more expressive class of constraints:

Theorem 23. For every (DL-Lite, GAV¬,6=) OBDA specifica-
tion 〈ΣDB,M, T 〉 and every CQ q, there exists a set CM,T of
universal constraints and a UCQ¬,6= q′ such that

〈D,M, T 〉 |=r
S q ⇔ 〈D, CM,T 〉 |=r

S q
′

for every ΣDB-instance D, semantics S ∈ {AR, IAR, brave},
and r ∈ {⊆,⊕}.

Proof. We proceed similarly to the proof of Theorem 18. The
key difference is that because the mapping bodies can contain
negated atoms, the queries Qq and Qunsat from Steps 1 and 2
will take the form of UCQ¬,6=s rather than UCQ6=s. Each dis-
junct of Qunsat can be written as

∧
j αj ∧

∧
k ¬βk, with each

αj a positive atom or inequality atom, and each βk a positive
atom. In Step 3, such a disjunct will be translated into the uni-
versal constraint

∧
j αj →

∨
i βk. Another difference is that

for the IAR semantics, we need to work with M(R∩,R∪),
so the proof of correctness is a bit more involved.

Although the preceding theorem does not lead to improved
upper bounds, it is relevant from the practical viewpoint as it
suggests an alternative algorithmic approach.

We now establish matching lower bounds:



Theorem 24. For every PTIME DL L that can express
atomic concept disjointness, CQ answering w.r.t. (GAV¬,6=,
L) OBDA specifications is

• Πp
2-hard in data complexity, for AR and IAR semantics

• Σp2-hard in data complexity, for brave semantics,

for both ⊆- and ⊕-repairs.

Proof. For ⊕-repairs, we can adapt an existing lower bound
for query answering under AR semantics w.r.t. universal con-
straints [Staworko and Chomicki, 2010]. As the reduction
uses a ground atomic query, it directly applies to IAR seman-
tics and can be slightly modified to handle brave semantics.

For ⊆-repairs, we give a reduction from ∀∃-QBF validity.
Consider a ∀∃-QBF instance Φ = ∀v1, . . . , vk∃vk+1 . . . vm ϕ
where ϕ = λ1 ∧ . . . ∧ λn is a 3CNF formula, defined as in
the proof of Theorem 21. We use the TBox Tsat from before,
and consider the mappingM consisting of:

• for p ∈ {∀,∃}: At,q(x)→ T (x) and Af,q(x)→ F (x)

• for s ∈ {t, f}: As,∃(x) ∧ ¬Z → V ′(x)

• for every (s1, s2, s3) ∈ {t, f}3 and (p1, p2, p3) ∈ {∀,∃}3:

– Z ∧ Ss1p1s2p2s3p3(x, y1, y2, y3)→ C(x)

– Ss1p1s2p2s3p3(x, y1, y2, y3) ∧ ¬As1p1(y1)
∧ ¬As2p2(y2) ∧ ¬As3p3(y3)→ U(x)

• Z0(x) ∧ Z → Q(x)

We consider the following instance DΦ:

{Z,Z0(a)} ∪ {As,∀(vi) | 1 ≤ i ≤ k, s ∈ {t, f}}∪
{As,∃(vi) | k + 1 ≤ i ≤ m, s ∈ {t, f}}∪
{Ss1p1s2p2s3p3(ci, u1, u2, u3) | ∃1 ≤ i ≤ n ∀l ∈ {1, 2, 3} :

ul = var(`i,l), sl = sgn(`i,l), and pl = quant(ul)}

where quant(vi) = ∀ when 1 ≤ i ≤ k and quant(vi) = ∃
when k + 1 ≤ i ≤ m.

We claim that Φ is valid iff everyR ∈ Rep⊆(Dϕ,M, Tsat)
contains Z. First suppose for a contradiction that Φ is valid,
but there is a repair R such that Z 6∈ R. As R is a ⊆-
maximal consistent subset, it must contain Z0(a) and all of
the Ss1p1s2p2s3p3 -facts, and cannot contain any At,∃(vj) or
At,∃(vj) facts. Moreover, for every 1 ≤ j ≤ k, exactly
one of At,∀(vj) and At,∀(vj) belongs to R. We can thus de-
fine an assignment ν∀ to v1, . . . , vk by setting ν(vi) = t if
At,∀(vi) ∈ R and ν(vi) = f if Af,∀(vi) ∈ R. As Φ is valid,
there exists an extension ν′ of ν to the variables vk+1, . . . , vm
that satisfies all clauses in Φ. Let R′ be obtained from R
by adding Z and all facts As,∃(vi) such that ν(vi) = s and
k + 1 ≤ i ≤ m. It can be verified that R′ is consistent, con-
tradicting the maximal consistency ofR. For the other direc-
tion, suppose everyR ∈ Rep⊆(Dϕ,M, Tsat) containsZ, and
consider a valuation ν of the universal variables. Then there
exists a repair R such that At,∀(vi) ∈ R if ν(vi) = t, and
Af,∀(vi) ∈ R if ν(vi) = f. As R is consistent, it contains at
most one ofAt,∃(vi) andAt,∃(vi) for every k+1 ≤ vi ≤ m.
We let ν′ be a variable assignment to v1, . . . , vk ‘induced’
by R (observe that ν′ extends ν). Consider some clause λi.
As R contains Z and Ss1p1s2p2s3p3(ci, u1, u2, u3), C(ci) ∈

M(R), hence U(ci) 6∈ M(R). It follows that R contains
at least one of As1p1(u1), As2p2(u2), and As3p3(u3), from
which we can infer that ν′ satisfies λi.

To complete the proof, we note that for S ∈ {AR, IAR},
〈DΦ,M, T 〉 |=⊆S Q(a) iff every R ∈ Rep⊆(Dϕ,M, Tsat)
contains Z. Indeed, Q(a) holds in the induced ABox just
in the case that the repair (or positive intersection of repairs)
contains Z0(a) and Z (and Z0(a) holds in every repair). For
brave semantics, a similar reduction can be used: it suffices
to replace Z0(x) ∧ Z → Q(x) by Z0(x) ∧ ¬Z → Q(x).

We remark that all upper bounds in this section hold also in
the presence of universal constraints over the data signature.

6 Discussion and Future Work
This paper provides a first study of inconsistency-tolerant
querying in the OBDA setting, where data are stored in re-
lational databases and linked to the ontology via mappings.
Interestingly, while our framework builds upon existing work
on querying inconsistent DL KBs, the addition of mappings
introduces significant conceptual and computational chal-
lenges. Indeed, it is not immediately clear how to appropri-
ately transfer the notion of repairs to the OBDA setting, nor
how to define a suitable OBDA analog of the IAR seman-
tics. To justify our proposed definitions, we have exhibited
desirable properties that our definitions satisfy but which al-
ternative definitions do not. Our complexity study showed
that the inconsistency-tolerant semantics are highly sensitive
to the shape of mappings (unlike standard OBDA semantics):
while plain GAV mappings do not increase the complexity
compared to the mapping-free setting, our three repair-based
semantics jump to the second level of the polynomial hierar-
chy for mappings with negated atoms.

The experience gained in deploying the OBDA paradigm in
practical applications has highlighted the need for rich map-
pings (allowing for complex mapping bodies, with negation,
subqueries, and even aggregation), in order to bridge the (of-
ten large) semantic gap between the database and ontology
vocabularies2. For example, in a project on the Italian public
debt, the data contained a relation storing all loans and an-
other with all shared loans, and a mapping with negation was
required to be able to access single-borrower loans [Antonioli
et al., 2014]. It is also relevant to note that the R2RML map-
ping language3 (a W3C standard for mapping relational data
to RDF), allows for arbitrary SQL expressions in mapping
bodies, and R2RML mappings is used by the well-known
OBDA systems Ontop [Calvanese et al., 2017] and Mastro4.

In future work, we plan to extend our investigation to
a wider range of mapping languages (in particular, full
R2RML) and to develop practical algorithms. Initially, we
plan to focus on DL-Lite ontologies and leverage the reduc-
tion to the database setting. We expect that we will be able

2Here we cite the experience of researchers at DIAG, La
Sapienza that have been involved in several industrial OBDA
projects in which complex mappings proved indispensable. Ric-
cardo Rosati, personal communication, April 2018.

3https://www.w3.org/TR/r2rml/
4http://www.obdasystems.com



to exploit some existing algorithms and optimizations from
consistent query answering, but we will also need to develop
new techniques, in particular, for handling the IAR and brave
semantics with constraints, as these semantics are as of yet
little explored in the database setting.
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