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Abstract This paper provides a concise overview of
the literature on inconsistency handling for ontology-
mediated query answering, a topic which has grown
into an active area of research over the last decade.
The focus of this survey is on the case where errors are
localized in the data (i.e., the ontology is deemed re-
liable) and where inconsistency-tolerant semantics are
employed with the aim of obtaining meaningful infor-
mation from inconsistent knowledge bases.
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1 Introduction

It is widely acknowledged that real-world data is plagued
with numerous data quality issues, among them the
presence of erroneous facts. While already a serious is-
sue for ‘plain’ databases, the problem of handling im-
perfect data is even more critical in the setting of on-
tology-mediated query answering (OMQA), where an
ontology is used to enrich the data with domain knowl-
edge. Indeed, even a single erroneous fact can provoke a
logical inconsistency, thereby rendering classical OMQA
semantics (based upon first-order logic) useless, since
everything is entailed from a contradiction. This has
motivated researchers from knowledge representation
and reasoning, and especially those from the description
logic (DL) community, to study a variety of approaches
for handling inconsistent data in OMQA, adapting and
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extending techniques initially proposed for databases.
Now that there has been over a decade of research on
inconsistency handling in OMQA, the time is ripe to
take a step back and evaluate the progress that has
been made and what remains to be done.

In this paper, we will try to summarize what is now
quite a large body of work related to inconsistency han-
dling in OMQA. Our treatment will necessarily be in-
complete. We will focus on the case of inconsistencies in
the data (i.e., we assume the ontology has been prop-
erly debugged) and mainly discuss how inconsistency-
tolerant semantics can be used to obtain meaningful in-
formation from inconsistent knowledge bases. While our
focus will be on ontologies formulated using DLs, the
inconsistency-tolerant semantics presented in this chap-
ter are language-agnostic and can be applied to any on-
tology language. In particular, there have been several
works (see e.g. [5,40,39,38]) which have explored such
semantics for existential rules (aka Datalog +/-) [20,
41], which constitute another prominent class of ontol-
ogy languages. Our treatment is based upon (and com-
plementary to) a much more detailed tutorial chapter
[12] and incorporates some more recent literature and
perspectives for future work.

2 Preliminaries

We briefly recall here some useful DL terminology and
notation, and we direct readers to [4] for a comprehen-
sive introduction to DLs. Throughout the paper, we
shall assume that K = (7,A) is a DL knowledge base
(KB) composed of a TBox T and ABox A. As usual,
the TBox 7 will be a finite set of axioms whose syn-
tax is dictated by the chosen DL, while the ABox A
is a finite set of assertions (ground facts). Our running
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example (borrowed and adapted from [12]) uses the fol-
lowing KB formulated in DL-Lite, a popular lightweight
DL [22]:

Ezxample 1 Consider the TBox Tyny with the axioms:

Prof C Faculty Prof C dTeaches Prof C —lLect
Lect C Faculty Lect C dTeaches Prof C —Fellow
Fellow C Faculty JTeaches™ C Course Lect = —Fellow
Faculty C —Course

where Prof, Lect, Fellow, Faculty, and Course are concept
names (unary predicates) that represent the classes of
professors, lecturers, research fellows, faculty members,
and courses, respectively, and Teaches is a role (binary
relation) linking teachers to what is taught. The TBox
axioms state collectively that professors, lecturers, and
fellows are three pairwise-disjoint classes of faculty, that
professors and lecturers must teach something (i.e. oc-
cur in the first argument of some Teaches fact), that
faculty and courses are disjoint, and that the second
argument of Teaches ranges over courses.

The ABox Aynyv contains assertions about specific
people and courses:

Ayniv ={Prof(sam), Lect(sam), Fellow(sam), Prof (kim),
Lect(kim), Fellow(jane), Fellow(alex),
Teaches(cs34, jane), Teaches(alex, cs48)}

Here for example, the assertion Prof(sam) state that
sam is a professor, while Teaches(alex, cs48) states that
alex teaches cs48.

Every DL KB can be translated into a first-order
logic formula, and DL semantics corresponds to classi-
cal first-order semantics, in which interpretations give
meaning to the basic symbols. We denote by Z = « that
the interpretation Z satisfies the (ABox or TBox state-
ment) «. An interpretation Z that satisfies all state-
ments of the KB (T, .A) is called a model of (T,A),
and a KB is said to be consistent (or satisfiable) if has
at least one model. An ABox A is T -consistent if the
KB (T, .A) is consistent, i.e. it has at least one model,
and otherwise, it is T-inconsistent.

We recall that a conjunctive query (CQ) takes the
form of a conjunction of relational atoms where some
of the variables occurring in atoms may be existentially
quantified. In the DL setting, the relations occurring
in atoms will be either concept or role names. An in-
stance query (I1Q) is a CQ which has a single atom and
no existentially quantified variables. The arity of a CQ
is its number of free variables. Under classical OMQA
semantics, we are interested in finding certain answers
of a CQ ¢ w.r.t. a KB (T, .A), i.e. those tuples a of con-
stants from A of the same arity as ¢ such that g(a) (i.e.

the first-order sentence obtained by substituting a for
the free variables x of ¢) holds in every model of (T, A).
The notation K |= ¢(a) indicates that a is a certain an-
swer to q over K. We call a subset C C A a T -support
of ¢(a) if C is T-consistent and (T,C) = q(a).

3 Inconsistency-Tolerant Semantics

As mentioned in the introduction, the usual first-order
semantics of DLs does not provide any useful informa-
tion when the KB is inconsistent, as everything can be
inferred from a contradiction. To address this limita-
tion, several inconsistency-tolerant semantics have been
proposed with the aim of returning meaningful answers
to queries posed over inconsistent KBs.

A key notion that underlies many of the proposed
semantics is that of a repair, which intuitively captures
the different ways of restoring consistency while retain-
ing as much of the original information as possible. If
we use set inclusion to select the maximal ABoxes, as
was proposed in [32] and many subsequent works, then
repairs can be formalized as follows.

Definition 1 An (ABoz) repair of an ABox A w.r.t.
a TBox 7T is an inclusion-maximal subset of A that is
T-consistent. We use Rep(A,T) to denote the set of
repairs of A w.r.t. 7, which we abbreviate to Rep(K)
when K = (T, A).

Ezample 2 The KB (Tuniv, Auniv) is inconsistent and has
12 repairs. For example, it is easily verified that the
following two ABoxes are both repairs:

R1 ={Prof(sam), Prof(kim), Fellow(jane), Fellow(alex),
Teaches(jane, cs48)}

Ry ={Fellow(sam), Lect(kim), Teaches(cs34, alex),
Fellow(alex), Teaches(jane, cs48)}

Each repair is T-consistent, so it is possible to query
a repair using classical semantics. The difficulty, how-
ever, is that there are typically several different repairs
of an inconsistent KB, so we need to decide how to com-
bine the answers obtained from the different repairs.
Arguably the most natural approach is to require that
a tuple be a certain answer no matter which repair is
considered. This idea is captured by the AR semantics,
which was first defined in [32] and can be seen as the
OMQA analog of the consistent query answering ap-
proach long studied in the database literature [1,24,8].

Definition 2 (AR semantics) A tuple a is an answer
to q over K = (T, A) under the AR (ABozx Repair)
semantics, written K F=ar g(a), just in the case that
(T, B) = q(a) for every repair B € Rep(K).
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A more conservative semantics, termed the TAR se-
mantics [32], is obtained by querying the intersection
of the repairs (or equivalently, the set of assertions not
participating in any minimal inconsistent subset).

Definition 3 (IAR semantics) A tuple a is an an-
swer to g over K under the TAR (Intersection of ABox
Repairs) semantics, written K [Ejar ¢(a), just in the
case that (T, D) |= q(a) where D = (\gcpe,(ic) B-

The more adventurous brave semantics, first explored
in the OMQA setting in [17], merely requires that an
answer hold w.r.t. at least some repair.

Definition 4 (Brave semantics) A tuple a is an an-
swer to q over K = (T, A) under the brave semantics,
written K Eprave ¢(a), just in the case that (T,B) |
g(a) for some repair B € Rep(K).

Before proceeding further, let us illustrate the AR,
IAR, and brave semantics on our running example:

Ezample 3 The KB (Tuniv, Auniv) i inconsistent and can
be shown to have 12 repairs. If we evaluate the query
q(x) = Faculty(x) using the three semantics, we obtain:

— 3 answers for AR semantics: sam, kim, alex
— 1 answer for IAR semantics: alex
— 4 answers for brave semantics: sam, kim, alex, jane

The preceding three semantics can be related as follows
(see also Fig. 1):
K Ear q(a)

= IC ':AR q(a) = K ':brave Q(a)

In other words, the brave and TAR semantics provide
respectively upper and lower bounds on the set of an-
swers w.r.t. the AR semantics.

We can also compare semantics based upon the prop-
erties they satisfy. Following [12], we consider the fol-
lowing three desirable properties for an inconsistency-
tolerant semantics:

CONSISTENT RESULTS Semantics S has the CoONSsIS-
TENT SUPPORT property if for every KB (T, .A),
query ¢, and tuple a, if (T, A) =g ¢(a), then there
exists a T-support C' C A of ¢(a).

CONSISTENT SUPPORT Semantics S has the CONSIS-
TENT RESULTS property if for every KB (T, .A),
there exists a model Z of T such that Z | ¢(a)
for every ¢(a) with (T, A) Eg q(a).

UNIQUE BASE Semantics S has the UNIQUE BASE prop-
erty if for every KB K = (T, A), there exists a T-
consistent ABox A’ such that for every query ¢ and

tuple a: (T, A) =g q(a) iff (T, A") = q(a).

brave
= 0-defeater

1-defeater \
4

2-defeater non-objection

: CAR
A~
k-defeater
/ AR ICAR
k-lazy k-support \
* ICR
3-support
1
2-support
~

IAR
= l-support
= 0-lazy

Fig. 1: Relationships between inconsistency-tolerant se-
mantics, where an arrow S — S’ means that S is an
under-approximation of S’, i.e., (T, A) Es q(a) =
(T, A) Es q(a).

Semantics with the property

non-objection, CAR, ICAR, AR,
ICR, k-support, k-lazy, IAR

CONSISTENT RESULTS

CONSISTENT SUPPORT  brave, k-defeater, non-objection,

AR, ICR,k-support, k-lazy, IAR

UNIQUE BASE TAR, ICR, ICAR

Fig. 2: Properties of inconsistency-tolerant semantics.

The interest of CONSISTENT RESULTS is that it al-
lows users to safely combine the results obtained when
querying under semantics S. The CONSISTENT SUP-
PORT property means that every answer can be backed
up by exhibiting a consistent subset of the original
ABox. Finally, the UNIQUE BASE property is a nice
feature from the implementation point of view, since it
means we can compute in an offline phase a consistent
ABox, which can be queried using existing algorithms.

As seen in Fig. 2, the brave semantics satisfies only
CONSISTENT SUPPORT, the AR semantics satisfies both
CONSISTENT SUPPORT and CONSISTENT RESULTS, while
the TAR semantics satisfies all three properties.

Let us now continue on to other semantics that have
been proposed in the OMQA literature, starting with
the ICR semantics, defined in [10]:

Definition 5 (ICR semantics) A tuple a is an an-
swer to q over X = (T, A) under the ICR (Intersec-
tion of Closed Repairs) semantics just in the case that

(T, D) k= q(a) where D = (g pey(ic) closer(B).
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By closing repairs before intersecting them, the ICR
semantics provides a better lower approximation of the
AR semantics than the TAR semantics, and it can shown
to satisfy the three properties. This semantics coin-
cides with the AR semantics on instance queries, which
means that in our example, the ICR semantics would
return sam, kim, alex as answers to ¢(z) = Faculty(z).

The idea of adding inferred assertions to retain more
information is also at the heart of the CAR and ICAR
semantics proposed in [32]. The key difference is that
a modified closure operator is applied to the original
inconsistent ABox, and the enriched ABox is then used
to define closed ABox repairs:

Definition 6 (Closed ABox repair) Let closes(A)
contain all ABox assertions (3 such that there is a T-
consistent subset S C A such that (T, S) = 5. A subset
R C close’(A) is a closed ABox repair of A w.r.t. T if
(i) it is T-consistent, and (ii) there is no 7T-consistent
R’ C close’(A) such that RNAC R NAor RNA=
R'NAand R C R.Ift K = (T, A), the set of closed
ABox repairs of A w.r.t. T is denoted ClosedRep(K).

Closed ABox repairs can be seen as maximally ‘com-
pleting’ the (plain) ABox repairs with assertions from
close’-(A) \ A. While a closed ABox repair of (T, .A)
is always a repair of the KB (7,close’(A)), repairs
of (T,close(A)) need not be closed ABox repairs of
(T, A) (see [12] for an example).

Definition 7 (CAR & ICAR semantics) A tuple
a is an answer to ¢ over K = (7, .A) under the CAR
(Closed ABox Repair) semantics just in the case that
(T,R) & q(a) for every R € ClosedRep(K). It is an
answer under the ICAR (Intersection of Closed ABox
Repairs) semantics iff (T,D) = q(a) where D is the
intersection of the closed ABox repairs of A w.r.t. 7.

Remark 1 While the variants of the CAR and ICAR
seman- tics induced by the simpler definition of closed
ABox repair may produce different query results, they
possess similar computational properties [33,45].

On the KB from Example 1, the CAR (resp. ICAR)
semantics gives the same answers as the AR (resp. ICR
semantics). We present another example (again bor-
rowed from [12]) to show how these semantics differ.
Ezxample 4 Let T ., be obtained from 7;ny by adding
JTeaches C Faculty. The close’ (Auniv) contains Ayniy
as well as the following additional assertions:

{Faculty(sam), Faculty(kim), Faculty(alex),
Faculty(jane), Course(jane), Faculty(cs34), Course(cs48)}

Since Faculty(cs34) is not involved in any contradic-
tions, it appears in every closed ABox repair, so cs34 is
an answer to ¢(x) = Faculty(z) under ICAR and CAR
semantics. Note however that cs34 is not an answer un-
der AR semantics since some (standard) repairs do not
contain Teaches(cs34, jane), which is required to be able
to infer Faculty(cs34).

As displayed in Fig. 2, the CAR semantics satis-
fies CONSISTENT RESULTS, and ICAR semantics fur-
ther satisfies UNIQUE BASE, but neither semantics sat-
isfies CONSISTENT SUPPORT (here again we refer to [12]
for a counterexample).

We next consider a parameterized family of seman-
tics, called the k-support semantics, that were intro-
duced in [17] in order to provide increasingly more fine-
grained lower approximations of the AR semantics (while
enjoying certain desirable computational properties, see
Section 4).

Definition 8 (k-support semantics) Tuple a is an
answer to q over K = (T, A) under the k-support se-
mantics, written (7, A) Ex-supp ¢(a), if there exist (not
necessarily distinct) subsets S1, ..., S of A that satisfy
the following:

— each S; is a T-support for g(a) in A
— for every R € Rep(K), there is some S; with S; C R

The intuition for the k-support semantics is to re-
strict the number of distinct supports of the query that
can be used to ‘cover’ all of the repairs. When k£ = 1,
the same support must be present in every repair, so
the 1-support semantics coincides with the IAR seman-
tics. By increasing k and allowing larger and larger sup-
ports, the set of answers will increase until it coincides
with the AR-answers. Like the AR semantics, the k-
support semantics satisfy both CONSISTENT RESULTS
and CONSISTENT SUPPORT.

Ezample 5 Continuing our running example, we eval-
uate Faculty(z) using the k-support semantics. When
k = 1, the semantics coincides with the TAR seman-
tics, so we only get alex. For £k = 2, we gain an addi-
tional answer, kim, by considering the pair of supports
{Prof(kim)} and {Lect(kim)}. Finally, for & > 3, we
have one further answer, sam, by considering the sup-
ports {Prof(sam)}, {Lect(sam)}, {Fellow(sam)}.

A second parameterized class of semantics, the k-
defeater semantics, was introduced in the same work
[17] in order to provide increasingly tighter upper ap-
proximations of the AR semantics.

Definition 9 (k-defeater semantics) A tuple a is
an answer to g over K = (7,A) under the k-defeater
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semantics, written K =i_qef q(a), if there does not exist Semantics CQs 1Qs
a T-consistent subset S of A with |S| < k such that data comb data comb
(T,SUC) = L for every inclusion-minimal 7-support classical in ACO NP in ACO NL
C C A of q(a). AR coNP Iy coNP  coNP
IAR in AC® NP in AC® NL
. - : 0 : 0
It can be shown that 0-defeater semantics coincides brave in AC Nl; in AC®  NL
‘th b G d that th ¢ of ICR coNP AZ[O(logn)] coNP coNP
wi rave semantics an at the set of answers un- CAR coNP 17D in ACO  NL
der k-defeater semantics decreases as the value of k in- ICAR in ACC NP in AC© NL
creases, until the set of AR-answers is reached. k-support in ACO NP in ACO NL
. . ; 0 ; 0
‘We should also mention another parameterized fam- Z'?efeater n 1\/?15 21; n gc NLP
. . .. -lazy co in in
ily of semantics, called k-lazy [40], whose definition in- non-objection in ACO NP in ACO  NL

volves another notion of repair and will be omitted for
lack of space. By taking k large enough, the k-lazy se-
mantics coincides with the AR semantics. However, in
contrast to the k-support semantics, the convergence is
not monotone, i.e. a tuple might be an answer for k = £
but no longer an answer when & = £ + 1. Due to this
behaviour, the k-lazy semantics are not always under-
approximations of AR semantics, though they do satisfy
CONSISTENT RESULTS and CONSISTENT SUPPORT.

Another natural over-approximation of the AR se-
mantics was proposed in [7]:

Definition 10 (Non-objection semantics) A tuple
a is an answer to g over K = (7,.A) under the non-
objection semantics if (i) there is some B € Rep(K)
with (7,B) E q(a), and (ii) for every B € Rep(K),
there is a model of (7, B) where g(a) is satisfied.

The non-objection semantics lies between the brave and
AR semantics, and it satisfies both CONSISTENT RE-
suLTs and CONSISTENT SUPPORT.

We summarize the relationships holding between
the different semantics discussed thus far in Figure 1.

As noted at the beginning of the section, repairs are
usually defined using set inclusion. However, in some
cases, it can be more appropriate to select only the
most preferred repairs according to some criteria. Sev-
eral different notions of preferred repair, based cardi-
nality, priority levels, partial preorders, or weighted as-
sertions, have been explored [48,13,26,5,38,6] and used
as the basis for inconsistency-tolerant semantics.

We further note that the preceding works focused on
repairing data given in the form of an ABox (or set of
facts over the ontology vocabulary), and the definitions
need to be adapted to handle the setting of ontology-
based data access (OBDA), where existing data sources
are linked to a TBox via mappings. This issue is ex-
plored recently in [11], where two different approaches
(repair-at-source, map-then-repair) are contrasted, and
it is closely related to consistent query answering in
data integration [19,21] and data exchange [23] settings.

Finally, we should emphasize that there is no single
‘best’ semantics, and the choice of which to use needs

Fig. 3: Data complexity (data) and combined complex-
ity (comb) of CQ and IQ answering over DL-Lite KBs
under inconsistency-tolerant semantics. All results are
completeness results unless otherwise indicated.

to be based upon the acceptable level of risk as well as
performance requirements. Moreover, it can be fruit-
ful to utilize multiple semantics in combination, either
for computational benefit or to identify answers with
different levels of plausibility.

4 Complexity of Querying DL KBs under
Inconsistency-Tolerant Semantics

The complexity of query answering under inconsistency-
tolerant semantics has been the subject of numerous
works. We briefly present what is known and refer to
[12] for further details and references to where the stated
results were proven.

We recall that there are two standard ways of mea-
suring the complexity of query answering. Combined
complezity is w.r.t. the size of the whole input (TBox,
ABox, query), while data complezity is measured w.r.t.
the size of ABox (with the query and TBox treated
as fixed). Our results make reference to the well-known
complexity classes P, NP, and coNP, as well as the fol-
lowing classes whose definitions we recall: AC° (prob-
lems that can be solved by a uniform family of cir-
cuits of constant depth and polynomial size, with un-
limited fan-in AND gates and OR gates), NL (prob-
lems solvable in non-deterministic logarithmic space),
Ab[O(log n)](problems solvable in polynomial time with
at most logarithmically many calls to an NP oracle),
and IT% (problems whose complement is solvable in non-
deterministic polynomial time with access to an NP or-
acle). The classes AC® and NL are contained in P.

Let us start by the most well-studied case, namely,
DL-Lite KBs. Fig. 3 displays the complexity landscape
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for querying DL-Lite! KBs under various inconsistency-
tolerant semantics, considering both data and combined
complexity measures and both conjunctive queries and
instance queries. We observe that there are several se-
mantics for which query answering is in AC? in data
complexity. These upper bounds are shown by means
of first-order query rewriting. For the IAR semantics,
the rough idea is to modify a usual rewriting by adding
negated atoms that forbid the use of ABox assertions
that do not belong to the intersection of repairs [33,9].
Subsequent work [17] established general rewritability
results that apply to the families of k-support and k-
defeater semantics and arbitrary FO-rewritable ontol-
ogy languages. We note that the AC’ result for non-
objection semantics? has not been stated in the lit-
erature but can be shown by adapting query rewrit-
ing techniques for the brave and TAR semantics. For
the AR semantics, which is arguably the most natu-
ral, query answering is intractable in data complexity,
even in simpler settings, like IQs [32] or very simple
TBoxes (a single disjointness axiom T° T —F suffices
[10]). Turning now to combined complexity, we observe
that the semantics that are well behaved for data com-
plexity remain so for combined complexity (i.e. their
complexity matches that of classical semantics), while
the semantics with intractable data complexity exhibit
higher combined complexities than classical semantics.
Finally, we note that the complexity of querying with
variants of AR and IAR based upon preferred repairs
(cardinality, weights, priorities) has also been studied
(see e.g. [13]), and the general message is that incorpo-
rating preferences leads to higher complexity.

We now briefly consider the situation for DLs be-
yond DL-Lite. Fig. 4 displays complexity results for
two representative DLs (the lightweight DL ££; and
the expressive DL ALC) and three prominent seman-
tics (AR, TAR, brave). The results for the AR and TAR
semantics were established in [45], while those for brave
semantics can be found in [12]. The main observation
with regards to ££, (and other Horn DLs) is that the
IAR and brave semantics are no longer tractable in data
complexity. Essentially, the reason is that in constrast
to DL-Lite and other FO-rewritable languages, it is not
possible in general to bound the size of minimal 7-
inconsistent subsets nor minimal 7 -supports (i.e., sub-
sets of the ABox that are T-inconsistent but whose ev-
ery proper subset is T-consistent). For the expressive
DL ALC, the adoption of inconsistency-tolerant seman-

I The results apply to common DL-Lite dialects, such as
DL-Litecore, DL-Liter, and DL-Lite 4, see [12] for details.

2 In [7], only polynomial data complexity is proven, which
we improve to ACP. It is also not too hard to show that the
combined complexity matches classical semantics.

DL Semantics Data Combined
EL, classical P NP
AR coNP iy
IAR coNP AB[O(logn))
brave NP NP
ALC classical coNP Exp
AR LS Exp
IAR VLS Exp
brave X% Exp
Fig. 4: Complexity of answering CQs under

inconsistency-tolerant semantics in ££; and ALC. All
results are completeness results.

tics leads to a rise in data complexity, but leaves the
combined complexity unchanged (since the repairs can
be enumerated in exponential time).

5 Implementing Inconsistency-Tolerant OMQA

We give a brief overview of systems that have been im-
plemented and tested for inconsistency-tolerant query
answering over DL knowledge bases.

QuID system [46,34] This system® performs conjunc-
tive query answering under the TAR semantics in an
extension of DL-Litey with denial and identification
constraints. Three different approaches have been im-
plemented and compared: first-order query rewriting,
ABox annotation (in which assertions are marked as
safe or problematic depending on whether they belong
to the intersection of repairs, and the query is modi-
fied to only use safe assertions), and ABox cleaning (in
which assertions not belonging to the intersection of re-
pairs are removed, and the resulting dataset is queried
as usual). The latter two approaches generally proved to
be more efficient than the rewriting approach, but they
have the downside of involving data modifications.

CQAPri system [13,16] This system* computes answers
to CQs over DL-Liteg KBs under the IAR, brave, and
AR semantics (as well as prioritized versions of AR
and TAR). Answers are first computed for the TAR and
brave semantics, by evaluating a UCQ-rewriting and
filtering the results using a pre-computed set of mini-
mal T -inconsistent subsets. To identify the AR-answers
among the remaining tuples (i.e. those holding under
brave semantics but not under TAR semantics), CQAPri
constructs a (usually quite small) instance of UNSAT
for every such tuple, which is passed to an off-the-shelf

3 QuID: www.dis.uniromal. it/~ruzzi/quid/
4 CQAPri: www.lri. fr/~bourgaux/CQAPri.
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SAT solver. In addition to using the TAR and brave
semantics to reduce the number of calls to the SAT
solver, the three semantics are used to partition query
answers into three levels of reliability: (Almost) Sure
(those answers holding under TAR semantics), Likely
(answers holding under AR but not IAR semantics),
and Possible (answers only holding under brave seman-
tics). Experiments conducted on the modified LUBM
benchmark (which was further augmented with nega-
tive inclusions and conflicting assertions) showed that
despite its intractable data complexity, it is feasible to
compute query answers under the AR semantics, thanks
in part to the fact that many AR-answers can be iden-
tifed using the tractable TAR semantics.

SaQAl system [50] This system® implements the TAR
and ICAR semantics for DL-Litex KBs and CQs. For
the TAR semantics, the authors follow the ABox clean-
ing approach from QulID, using query rewriting to iden-
tify then remove the assertions that do not appear in
the intersection of repairs. For the ICAR semantics, a
combination of saturation and query rewriting is em-
ployed, together with some optimizations. The experi-
ments conducted using the CQAPri benchmark show a
better performance than the QuID and CQAPri systems
for the IAR semantics.

System from [49] This system targets the TAR seman-
tics and currently supports the DL Eﬂ?—ljl_r. It checks
whether the sufficient conditions for producing a rewrit-
ing w.r.t. IAR semanticss are fulfilled (by making calls
to the FO-rewritability checking system Grind [29]) and
constructs such a rewriting when one exists by adding
negated conjuncts to a classical rewriting. Experiments
were conducted on seven existing ontologies (which some-
times needed to be enriched with negative inclusions
to allow for inconsistencies) and for six of them, the
sufficient conditions were satisfied, suggesting that a
rewriting-based approach to TAR may be feasible in
practice for ontologies beyond DL-Lite.

System from [7] This system implements the non-ob-
jection semantics for ground CQs (i.e. CQs without
existentially quantified variables) for DL-Liter KBs.
Experiments on the CQAPri benchmark confirm that
query answers can be efficiently computed (in accor-
dance with the tractable data complexity).

System from[26] This system can be utilized to query
SHIQ KBs under a variant of the AR semantics in
which ABox assertions are assigned weights and is re-
stricted to ground CQs. Like CQAPri, it employs SAT

5 SaQAIl: www.image.ece.ntua.gr/~etsalap/SaQAI/

solvers as well as a form of reachability analysis to iden-
tify a query-relevant fragment of the KB.

6 Related Reasoning Services for Inconsistency
Handling

We mention some related reasoning and analysis tasks.
First, to render inconsistency-tolerant OMQA systems
more usable, it is important to be able to explain the
results to users. This issue has been taken up in [14],
where a formal framework was presented for justifying
why a given tuple appears as an answer under the con-
sidered inconsistency-tolerant semantics (AR, IAR, or
brave) or why it is not part of the results. The approach
has been implemented by exploiting different function-
alities of SAT solvers and integrated into the CQAPri
system. Closely related is a line of work [3,2] on utiliz-
ing argumentation and dialogues with users to explain
query answers under various inconsistency-tolerant se-
mantics (ICR, IAR, brave, and AR).

Another important question is how to aid users in
repairing their data, in order to improve the quality of
the data. An interactive query-driven approach to this
question has been presented in [15]. The idea is to allow
users may provide feedback on which query results are
missing or erroneous, and then interact with the user
in order to identify a set of ABox modifications (addi-
tions and deletions of assertions) that fix the identified
flaws. The ABox update problem [28,37] is also con-
cerned with modifying the ABox to ensure consistency,
but does not involve interaction with a user and targets
a setting in which inconsistencies result from changes
to the actual state of affairs.

We have assumed in this paper that errors originate
from the data, which presupposes that the ontology has
been properly debugged. Several different axiom pin-
pointing and justification finding algorithms [30,44,47]
have been proposed to aid ontology engineers in identi-
fying the sources of unwanted inferences. An approach
to repairing DL KBs to be able to infer missing con-
sequences while avoiding some undesired entailments
has been presented in [42], and a recent work studies a
form of repair in which axioms can be weakened rather
than removed [4]. Alternatively, the AR semantics has
been generalized to handle the case where both ontol-
ogy statements and facts may be erroneous [27]. In the
OBDA setting, recent works have examined reason- ing
tasks such as checking whether the mapping is coherent
w.r.t. the ontology [35], minimally modifying a map-
ping to reflect changes to the database schema or on-
tology [36], and deciding if a database schema protects
an OBDA specification [25], i.e., every legal data in-
stance for the database constraints is consistent w.r.t.
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the ontology and mapping. The question of how to
adapt inconsistency-tolerant semantics to handle tem-
poral data has also been recently explored [18].

7 Concluding Remarks and Future Work

We hope to have showcased the large body of research
that has been developed over the past decade or so
around the issue of inconsistency handling in OMQA.
Significant progress has been made on proposing differ-
ent semantics for querying inconsistent KBs in a prin-
cipled manner and exploring their computational prop-
erties: complexity, algorithms, and implemented pro-
totypes. There nevertheless remain several interesting
theoretical and practical challenges to tackle going for-
ward, let us mention just three.

First, while we start to have a reasonable idea of
how to approach the issue for DL-Lite KBs, there re-
mains a need to develop practical algorithms for DLs
beyond DL-Lite. Indeed, due to the prevalence of data
quality issues, every OMQA system should be equipped
with some sort of inconsistency handling mechanism
(beyond simply reporting that the KB is inconsistent!),
and the challenge is to find ways of incorporating such
features while limiting the impact on performance. First
steps towards this goal can be found in [50,49].

Second, a very nice but extremely challenging theo-
retical question is to classify the complexity of inconsis-
tency-tolerant query answering at the level of ontology-
mediated queries (that is, ontology-query pairs). Some
preliminary results in this direction have been presented
in [9,10]. We note that this problem is closely related to
work on classifying the complexity of consistent query
answering in the presence of functional dependencies,
where significant progress has been made (see e.g. [31]),
but a full classification has proven elusive.

Third, it would also be worthwhile to develop quan-
titative approaches to inconsistency-tolerant OMQA,
both to be able to quantify the confidence in different
results, and to be able to take advantage of numeric /
probabilistic / statistical information when it is avail-
able. For instance, data that results from information
extraction systems is often annotated with a confidence
value, and mined data quality rules (see e.g. [43]) that
act as soft constraints can prove useful in detecting in-
consistencies and determining the most likely fixes.
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