Universiteé

de Toulouse T H E S E

En vue de I'obtention du

DOCTORAT DE L'UNIVERSITE DE TOULOUSE

Délivré par /'Université Toulouse III - Paul Sabatier

Discipline ou spécialité : Informatique

Présentée et soutenue par Meghyn BIENVENU
Le 7 mai 2009

Titre : La génération de conséquences en logique modale

JURY
BLACKBURN Patrick, DR INRIA Nancy (membre)
GASQUET Olivier PR Université Paul Sabatier (membre)
HERZIG Andreas, DR Université Paul Sabatier (directeur de these)
LANG Jéréme, DR Université Paris Dauphine (directeur de thése)
MARQUIS Pierre, PR Université d'Artois (rapporteur)
MENGIN Jéréme, MCF Université Paul Sabatier (directeur de thése)
ROUSSET Marie-Christine, PR Université de Grenoble (membre)
WOLTER Frank, PR University of Liverpool (rapporteur)

Ecole doctorale : Mathématiques, Informatique, et Télécommunications
Unité de recherche : Institut de Recherche en Informatique de Toulouse
Directeur(s) de Thése : Andreas Herzig, Jéréme Lang, et Jérbme Mengin
Rapporteurs : Pierre Marquis et Frank Wolter

Consequence Finding in Modal Logic

Meghyn Bienvenu

To Morfar

Acknowledgements

First of all, I would like to thank my thesis advisors Andreas Herzig, Jérome Lang,
and Jérome Mengin for all of the advice, support, and encouragement they have
provided me over these past few years. I feel truly lucky to have had such excellent
thesis advisors, and I sincerely hope that we will find find opportunities to work
together again in the future.

I would also like to thank Pierre Marquis and Frank Wolter for kindly accepting
to review this thesis, and Patrick Blackburn, Olivier Gasquet, and Marie-Christine

Rousset for agreeing to participate in my jury.

A special thanks to Sheila Mcllraith, my undergraduate summer project supervisor
and first co-author, for helping me take my first steps as a researcher and for always

looking out for me as if I were one of her students.

To my friends and colleagues from the LILaC and RPDMP teams at IRIT, thank
you for all of the lunches, coffee breaks, and evenings we shared together. I only
regret that I was not able to spend more time in Toulouse during my thesis.

To my family, thank you for your continued support over the years, and for flying
all the way across the ocean to attend my defense. It meant so much to me to have

you all there.

Finally, to Laurent, thank you not only for helping me through the stressful mo-

ments, but most of all, for being there to share the happy ones.

Contents

viii

5 Restricted Consequence Finding 119

119

120

122

123

124

128

128

LEﬁm&Im.p.lica.t&NQLmaLEQLuJ 131
6.1 Motivatiod 131
6.2 Definition of Prime Implicate Normal Form 132
|6 3 Properties of Prime Implicate Normal Fornl 135
6.3.1 _Tractable entailmentlot 135
mmmmﬂmmmmﬁ 153
16.3.3 CAnomicityd 167

6.4 Computing Prime Implicate Normal Formd o o oo oo .. 170
bLSmthmmeuimiBmm&lm.MmamNmmaLﬂmd 173

.6 Related Worll .+« « o o o 177
[6.6.1 Disjunctive forml . . . oo 177

6.6.2 Linkless normal form . . . « o o oo 179
l7__Conclusion 183

|A_Complexity Theoryl 187

0. Contents ixX

Bibliography 189
Inded] 197

List of Figures

wwmmg of QBT validity in Ile 59
|32E] A lid lofiniti ‘1 s, ol] |..66

Xi

List of Algorithms

ba Nofl . 20
bo Dnof ... 21
9.3 Ter-Dnfl . . . o o 22
ba cof .. 26
bs Tter-Cnfl 2%
b Sal ... 29
bt Eataild 32
% 36

.................................. 81
42 TestOPT . o oo 109
43 TestPl . oo oo 114
@ 129
6.1 TLEntail oo 136
6.2 TLLangIntl . . o o o oo oo 153
63 Pinf 171

xiii

Introduction

What is consequence finding?

Knowledge representation is a subfield of artificial intelligence which is concerned
with the study of formalisms for representing different kinds of information and the
development of procedures for performing reasoning on these representations. Many
knowledge representation formalisms exist, but one popular approach, and the one
we adopt in this thesis, is to utilize formal logics (propositional logic, first-order
logic, etc.) as knowledge representation languages. According to this approach,
information is represented using logical formulae, and the meaning of formulae is

determined by the semantics of the logic in question.

The major reasoning task in logic-based knowledge representation is that of
deduction: given two formulae, let’s call them ¢ and 1, our job is to determine
whether 1 is a logical consequence of p, i.e. whether the truth of ¢ guarantees the
truth of ¢. Symbolically,

does ¢ = ¥?
As we shall see later in the section, there are circumstances in which such a simple

“yes” or “no” answer proves insufficient. Instead, what we are interested in is the

more general problem of generating logical consequences of a particular formula:
find ¢ such that ¢ =1

This reasoning task is commonly known as consequence finding [Mar(0Q].

1

But which consequences should we generate?

One of the first questions that presents itself when we talk about consequence find-
ing is which consequences do we generate? We obviously cannot generate all of
the consequences of a formula, because even the simplest propositional formula has
infinitely many consequences. Even if we restrict ourselves to one consequence per
equivalence class, we still produce a lot of clearly irrelevant or redundant conse-
quences. Indeed, if a formula has both ¢ and 1) as consequences, then the formula
w A1) is also a consequence, but it seems entirely superfluous once we have ¢ and
1. Likewise, if a formula has a consequence ¢, then every formula of the form ¢V ¢
is also a consequence, but these consequences don’t seem to hold much interest.
What we need is a way of focusing in on a relevant subset of consequences.

How can we formalize the notion of a relevant or interesting consequence? In
propositional logic, the solution, due to Quine [Qui52} [Qui55], is to consider only
the logically strongest clause which are consequences of the formula. We call
these clauses the formula’s prime implicates. By focusing on clauses, which do
not contain any conjunction symbols, we avoid redundant consequences of the type
@ A 9, and by only considering the logically strongest clausal consequences, we
eliminate weaker, irrelevant consequences of the type ¢ V1. As every propositional
formula can be rewritten as a conjunction of clauses, and every clausal consequence
of a formula is entailed by some prime implicate of the formula, prime implicates

provide a complete yet compact representation of a formula’s consequences.

Consequence finding, in reverse

In some circumstances, we may be interested not in the logical consequences of a
given formula, but rather the formulae which have this formula as a consequence.
Basically, we want to do consequence finding in reverse:

find ¢ such that ¢ = ¢

Just as for standard consequence finding, a key issue is selecting the right set of
formulae to generate: of the many 1 which satisfy ¢ = ¢, which ones should we
choose?

Well, since we are doing the opposite of consequence finding, what we need is
the opposite of a prime implicate! Instead of clauses, we can use the dual notion of
termsgd, and instead of taking the logically strongest formulae, we take the logically

weakest. The resulting notion is known as a prime implicant.

We recall that in propositional logic a literal is a propositional variable or the negation of a
propositional variable, and a clause is a disjunction of literals, e.g. a VvV —=bV —c.
2Terms are conjunctions of propositional literals.

1. Introduction 3

As one might expect, prime implicates and prime implicants are very closely
related. Indeed, each of these notions can be defined in terms of the other: the
prime implicates of ¢ are just the clauses which are equivalent to the negation of
a prime implicant of —p, and the prime implicants of ¢ are precisely those terms
whose negations are equivalent to prime implicates of —p. This means that all of
the results concerning prime implicates can be transferred to prime implicants, and

vice-versa.

Prime implicates and prime implicants: what are they good for?

Prime implicates and prime implicants have been used since the fifties in the field
of digital circuit synthesis: the design of minimal-cost two-level circuits comes
down to finding the shortest way of representing a propositional formula as ei-
ther a disjunction of a subset of its prime implicants or a conjunction of some of
its prime implicates (cf. Chapter 4 of [BV04]). Karnaugh maps, a staple of un-
dergraduate computer science courses, are really nothing more than a visual tool
for isolating covering sets of prime implicants/implicates, and the famous Quine-
McCluskey minimization algorithm [McC5H6] works by first generating the entire
set of prime implicants/implicates, then computing the covering subsets with min-
imal cost. For circuits with large numbers of variables, heuristic methods, like
Espresso [BSVMHR4], allow one to produce good but not necessarily optimal prime
implicate/implicant covers without the computation of the entire set of prime im-
plicates/implicants.

Starting from the late eighties, prime implicates and prime implicants began
to appear in the artificial intelligence literature. Since then, these notions have
been utilized for a number of different Al problems, such as distributed reasoning
[ACG™06], belief revision (cf. [Bit07], [Pag06], [BHQO8]), non-monotonic reasoning
(cf. [Prz89]), and characterizations of relevance (cf. [Lak95], [LLMO3]). Probably
the most important domains of application, however, are knowledge compilation
and abductive reasoning. In the remainder of this section, we present a detailed
look at the role of consequence finding in these two areas.

Knowledge compilation

One major obstacle for logic-based knowledge representation is the high computa-
tional complexity of reasoning. Indeed, even for propositional logic, which is among
the least expressive knowledge representation languages, the basic reasoning task
of deduction is CO—NP—Complet. This means that there is little hope of finding

3Refer to Appendix A for the definitions of this and other complexity classes.

reasoning algorithms which terminate in a reasonable amount of time on all inputs.

Knowledge compilation (cf. [CD97], [DM02]) is a general technique for coping
with the intractability of reasoning. It consists of two phases: a preliminary off-line
phase in which we replace the original knowledge base (for us, this is just a formula
in some logic) by an equivalent knowledge base which admits efficient reasoning,
followed by a second online phase in which we perform reasoning tasks on the
compiled knowledge base. The off-line phase may prove difficult and costly, but
the idea is that this initial cost will be offset by the computational savings on the
reasoning done during the online phase.

There exist a number of different methods for compiling propositional formulae,
but one of the better-known approaches is to use prime implicate normal form, in
which a formula is represented as the conjunction of its prime implicates:

p > m AN,

Propositional formulae in prime implicate normal form have many nice computa-
tional properties. In particular, it is possible to test in polynomial time whether
a formula in prime implicate normal form entails a formula in conjunctive normal
form (CNF). To see why, we first remark that this problem

TN oo AT, lZ)\l/\.../\)\m
can be reduced to testing whether for each of the clauses A; we have
S ANTAN Y™ ’:)\z

Now if the conjuncts m; were arbitrary clauses, then the latter problem would be
very difficult (co-NP-hard, to be precise). But because we are dealing with prime
implicates, we can take advantage of the fact that every clause implied by a formula
must be implied by one of the formula’s prime implicates. This means that we just

need to find a single conjunct 7; which implies A;:
for each \;, check whether there is some 7; such that 7; = \;

Finally, we remark that since the 7; and A; are all clauses, deciding whether 7; = A;
is easy since we just need to test whether each of the literals appearing in ; also
appears in \;:

is each disjunct of 7; also a disjunct of A;?

4Prime implicant normal form also exists, but is a bit less common. It offers many of the same
advantages as prime implicate normal form, the exception being that the uniform interpolation
transformation is not tractable [DMO02].

1. Introduction 5

We have thus outlined a simple and efficient procedure for determining whether
a formula in prime implicate normal form implies a formula in CNF. Notice that
this procedure can also be used to decide entailment or equivalence between two
formulae in prime implicate normal form in polynomial time.

Prime implicate normal form also supports two important transformations: con-
ditioning, in which we assign a truth value to one of a formula’s propositional
variables, and wuniform interpolation (or forgetting), in which we approximate a
formula over a given signaturd’. To see why the latter task is tractable, we re-
mark that the prime implicates of the approximation of a formula over a signature
are precisely those prime implicates of the original formula which do not contain
any propositional variables outside the signature. This means that for formulae in
prime implicate normal form, uniform interpolation is as simple as removing those

conjuncts which contain one of the unwanted propositional variables.

Abductive reasoning

Abduction is a form of reasoning that is used to generate explanations for obser-
vations. It has been applied to a number of different areas in artificial intelligence,
e.g. diagnosis, planning, natural language understanding, and computer vision (re-
fer to [EGI5] for references). In logic-based approaches to abduction, an abduction
problem typically consists of an observation (what we want to explain) and some
background knowledge, both of which are represented by logical formulae. The
objective is to find an explanation, that is, a formula which logically entails the

observation (o) when taken together with the background theory (t):
find e such that t Ae =0

Of course, the number of possible explanations might be very large, so we need a
way of characterizing the interesting explanations. If we rewrite the abduction task

in terms of reverse consequence finding as follows
find e such that e ==t Vo

then the answer becomes obvious: we should use prime implicants! Thus, we can
define the set of interesting explanations to be the prime implicants of =t V o.
Well, actually we need to be a bit more careful. Among the prime implicants of
=tV o are the prime implicants of —¢, which means that some of the explanations we
generate may be in contradiction with the background knowledge. This is clearly

undesirable, so in order to eliminate these unsatisfactory explanations, we generally

5In propositional logic, a signature is a just a set of propositional variables.

place an additional requirement on explanations, namely that they be consistent
with the background theory. This yields the following more sophisticated abduction
problem:

find e such that t A\e =oand t Ae = L

which corresponds, in consequence finding terms, to the following task
find e such that e = =tV o and e [~ —t

So what we are after are those prime implicants of =t V o which do not imply —t.
This variant on the basic notion of prime implicant has been investigated in the
consequence finding literature (cf. [Ino92], [del99] and discussion in [Mar00]).

Another common restriction on explanations is to require that they are built
from a specified signature (cf. [EG95], [SL96]). In consequence-finding terms, this
means that we want to look for prime implicants which only contain propositional
variables belonging to the given signature. This more refined notion of prime impli-
cant has been studied extensively in the literature, and many consequence-finding
algorithms exist for producing prime implicants of this type (cf. [Ino92], [del99],
[SAV01], and discussion in [Mar00]).

Going beyond classical logic

For many applications in artificial intelligence, the expressive power of proposi-
tional logic proves insufficient. First-order logic provides a much greater level of
expressivity, but at the price of undecidability. Modal and description logics are
two families of logics which offer an interesting trade-off between expressivity and
complexity, as they are generally more expressive than propositional logic yet are
better-behaved computationally than first-order logic. This explains the growing
trend towards using such languages for knowledge representation.

One limitation of current research in consequence finding is that it is focused
almost exclusively on classical propositional and first-order logic (with an emphasis
on the former). To our knowledge, there has not been any research concerning
consequence finding for modal and description logics. Perhaps one explanation for
this is that most modal and description logics correspond to fragments of first-order
logic. Thus, one might argue that it is unnecessary to study consequence finding
for these logics, since we can just map our formulae to first-order logic and do
consequence finding there.

The problem with this argument is that prime implicates and prime implicants
do not behave as nicely in first-order logic as in propositional logic. Indeed, we lose
some key properties like finiteness (first-order logic formulae can have infinitely

1. Introduction 7

many distinct prime implicates) and equivalence (a first-order formula is not nec-
essarily equivalent to its set of prime implicates) [Mar91bl Mar91a]. Given that
modal and description logics have better computational properties than first-order
logic, there is reason to believe that we might have better luck doing consequence

finding directly in these logics, without passing by first-order logic.

This is why in this thesis we propose to study consequence finding in modal
logic, and more specifically, in the modal logic KC,,. We decided to study K,, because
it is the prototypical modal logic, and also because of its close relationship with
the well-known description logic ALC. Indeed, while the results in this thesis are
presented in terms of K, formulae, all of our results hold equally well for ALC

concept expressions.

The question of how the notions of prime implicates and prime implicants can
be suitably defined for the logic IC,, is clearly of interest from a theoretical point
of view. We argue, however, that this question is also practically relevant. To
support this claim, we briefly discuss two application areas in which the study of
prime implicates and prime implicants in K, might prove useful.

One potential domain of application is abductive reasoning in K,. As noted
above, one of the key foundational issues in abductive reasoning is the selection
of an interesting subset of explanations. This issue is especially crucial for logics
like KC,, which allow for an infinite number of non-equivalent formulae, since this
means that the number of non-equivalent explanations for an abduction problem
is not just large but in fact infinite, making it simply impossible to enumerate
the entire set of explanations. As prime implicants are a widely-accepted means
of characterizing relevant explanations in propositional logic, a reasonable starting
point for research into abductive reasoning in the logic K, is the study of different

possible definitions of prime implicant in K,, and their properties.

The investigation of prime implicates in /C,, is also relevant to the development of
knowledge compilation procedures for /C,,. Currently, most work on knowledge com-
pilation is restricted to propositional logic, even though this technique could prove
highly relevant for modal and description logics, which generally suffer from an even
higher computational complexity than propositional logic. As prime implicates are
one of the better-known mechanisms for compiling formulae in propositional logic,
it certainly makes sense to investigate whether this approach to knowledge compi-
lation can be fruitfully extended to logics like /C,,.

Organization of this thesis

This thesis constitutes an exploration of consequence finding in the basic modal

logic KC,,. The main questions that we will be addressing are the following:

e How can prime implicates and prime implicants be appropriately defined in

the logic ;7 What are the properties of the resulting notions?
e How can one generate the prime implicates of formulae in C,,?

e How can one test whether a formula is indeed a prime implicate? What is
the complexity of this task?

e How many prime implicates can a C,-formula have? How large can these

prime implicates be?
e How can prime implicates be used for compiling /C,-formulae?

We now present a brief overview of the different chapters of this thesis.

Chapter 2. This chapter provides the necessary background material for later
chapters. Topics covered include: syntax and semantics of K, terminology and no-
tation, properties of logical consequence, transformations on /C,, formulae, principal
reasoning tasks and their complexities, and the relationship of IC,, to first-order logic

and description logics.

Chapter 3. In this chapter, we address the question of how the notions of prime
implicates and prime implicants can be appropriately lifted from propositional logic
to KCp,. As prime implicates and prime implicants are defined in terms of the notions
of clauses and terms, which are not standard notions in C,,, we begin the chapter
by considering a number of potential definitions of clauses and terms for KC,,. The
different definitions are evaluated with respect to a set of syntactic, semantic, and
complexity-theoretic properties characteristic of the propositional definition. None
of the definitions satisfies all of these properties (indeed we show this to be impos-
sible), but two of the definitions come reasonably close. In the second half of the
chapter, we take a second look at the candidate definitions, this time evaluating
them with respect to the properties of the notions of prime implicates and prime
implicants that they induce. We show that only one of the candidate definitions

yields a satisfactory notion of prime implicates and prime implicants.

Chapter 4. This chapter investigates the computational properties of our selected
definition of prime implicate. In the first half of the chapter, we propose a sound

1. Introduction 9

and complete algorithm GenPI for generating prime implicates. Our algorithm
adopts a decomposition-style approach: first, we rewrite the original formula as
a disjunction of simpler formulae, then we compute the prime implicates of these
simpler formulae, and finally, we use the prime implicates of the simpler formulae

to help us compute the prime implicates of the original formula.

An analysis of the structure of the prime implicates constructed by our algo-
rithm allows us to place upper bounds on the size and number of prime implicates.
Specifically, we demonstrate that every prime implicate of a formula is equivalent
to a clause which is no more than single-exponentially larger than the formula,
and that a formula can possess no more than double-exponentially many prime
implicates modulo equivalence. We prove these upper bounds optimal by providing
matching lower bounds, and then we go further and show that the lower bounds

hold even for much less expressive notions of prime implicates.

The focus of the second half of the chapter is on prime implicate recognition,
which is the problem of deciding whether a given clause is a prime implicate of a
formula. While this problem is interesting in and of itself, an additional motivation
for studying this task is to improve our generation algorithm GenPI, which utilizes
a very inefficient method for verifying whether a candidate clause is indeed a prime
implicate. We propose a sound and complete procedure TestPI for recognizing
prime implicates, and we show that it runs in polynomial space. This allows us to
prove that the prime implicate recognition task is PSPACE-complete, and hence of

the same complexity as standard reasoning tasks in /C,,.

Chapter 5. We saw earlier in the chapter that some applications (like abduc-
tion) can require more refined notions of prime implicates/implicants. This is why
in Chapter 5 we study two variants on our notion of prime implicate: new prime
implicates, which allow us to isolate the novel facts which can be derived upon
arrival of new information, and signature-bounded prime implicates, which allow
one to characterize the consequences of a formula which are built from a given
signature. We investigate the properties of these notions, leveraging results from
earlier chapters. We show in particular that signature-bounded prime implicates

are less well-behaved computationally than regular prime implicates.

Chapter 6. This chapter is concerned with the application of our notion of prime
implicate to the area of knowledge compilation. We begin the chapter by showing
why the obvious definition of prime implicate normal form in /C,, is unsatisfactory,
before proposing our own more sophisticated definition. We investigate the prop-

erties of our normal form, showing in particular that entailment between formulae

10

in prime implicate normal form can be carried out in quadratic time using a simple
structural comparison algorithm (which is quite similar to the procedure outlined
earlier in the chapter for propositional logic). We also show that uniform inter-
polation is tractable for formulae in our normal form. Later in the chapter, we
propose an algorithm for putting formulae into prime implicate normal form, and
we investigate the spatial complexity of this transformation, showing there to be
an at most double-exponential blowup in formula size. We conclude the chapter
with a comparison of prime implicate normal form to existing normal forms for K,

formulae.

Chapter 7. In this chapter, we summarize the main contributions of the thesis

and indicate some interesting avenues of future research.

Appendix A. We provide in this appendix a brief review of computational com-
plexity theory, in which we recall the definitions of the different complexity classes
appearing in this thesis.

Relevant publications

Some of the results presented in this thesis have been previously published:

e A complete version of Chapters 3 and 4 can be found in the journal paper
[Bie09]. Many of the results of Chapter 3 and some results from Chapter 4

first appeared in an earlier conference paper [BieO7b|] (but with some errors).
e Some parts of Chapter 5 were presented in the workshop paper [Bie(7al.

e Many of the results in Chapter 6, rephrased in terms of the description logic
ALC, were published in [BieO8b] (and were also presented in [Bie08c]).

Two related publications which were obtained during the author’s doctoral studies
but are not presented in this thesis are:

e [BHQO8], which introduces a prime-implicate based revision procedure

e [BieO8a], which presents complexity results for abductive reasoning in the ££

family of description logics

The Modal Logic ICy,

In this chapter, we introduce the basics of the modal logic IC. We begin by recalling
the syntax and semantics of the logic XC,, and introducing some key notation and ter-
minology. Next, we highlight some properties of logical consequence in XC,, which will
prove useful to us in later chapters. After that, we introduce some basic transforma-
tions and reasoning tasks in /C,, and study their properties. Finally, at the end of the
chapter, we discuss the relationship of the modal logic C,, with first-order logic and
with description logics.

Several of the results presented in this chapter have appeared previously in the
literature, but we have chosen to include proofs of these results in order to make this
thesis as self-contained as possible.

2.1 Syntax

Formulae in K, are built up from a set of propositional variables V, the standard
logical connectives (-, A, and V), and the modal operators O; and <; (for 1 <14 <
n). For convenience, we will also include the special zero-ary connectives T and L
to represent the tautology and contradiction, and we will often treat A and V as
multiple-arity connectives. In the special case where n = 1, we will write K instead
of K1, and we will use O and < in place of 07 and <;.

Where convenient, we will use ¢ — 9 as an abbreviation for —¢ V ¥. We adopt
the shorthand OF¢p (resp. OFy) to refer to the formula consisting of ¢ preceded by
k copies of O; (resp. <;), with the convention that 0%y = 0% = ¢.

'Refer to [BAVO1], [Che80], or [BYW06] for good introductions to modal logic.

11

12 2.1. Syntax

We will use var(p) to refer to the set of propositional variables appearing in
a formula ¢. A signature for IC,, is defined to be a subset of VU {1,2,...,n}. For
example, if V = {a, b, c} and n = 3, then both {1,3,a} and {a,b, ¢} would be valid
signatures. The signature of a formula @, written sig(y), is defined to be the union
of var(y) and the set of numbers j such that O; or &; appears in ¢. For example,
we have sig(0d;<Cq(a Vo)) ={1,2,a,c}.

The (modal) depth of a formula ¢, written 6(¢), is defined as the maximal
number of nested modal operators appearing in ¢, e.g. §(C(a A Oa) V a) = 2.
We define the length (or size) of a formula ¢, written |p|, to be the number of
occurrences of propositional variables, logical connectives, and modal operators in
¢. So for example, we would have |(a A =b)| = 4 and |q1(a VvV b) A Ogal = 7.

The set of subformulae of a formula ¢, denoted Sub(y), is defined recursively
as follows:

Sub(T)={T} ub(L) ={L}

Sub(a) = {a}(for a € V) ub(—n/;) = {9} U Sub()

Sub(ipr Ap2) = {1 A tha} U Sub(th1) U Sub(v2) b(i) = {0} U Sub(y)

Sub(Y1 V) = {1 V 4o} U Sub(y1) U Sub(ypa) Sub(Cip) = {Oih} U Sub(t))
For example, the subformulae of —(a V Oa(b A 1 T)) are: —(a V Oa(b A 1 T)),
aV Oy(bACIT), a, Og(bAOIT), bACIT, b, O1T, and T. It is easily shown by

induction that the cardinality of Sub(y) can never exceed |¢|.

»n »n

An occurrence of a subformula o of a formula ¢ is said to be in the scope of a
modal operator ¢ just in the case that there is a subformula ¢x of ¢ such that y
contains the occurrence of . For instance, the first occurrence of the subformula a
in (0;<{2a) V —a is in the scope of the modal operators Op and <9, but the second
occurrence of a is outside the scope of any modal operators.

We will call a formula of the form O;p (resp. <;¢) a O-formula (resp. <-
formula). We will say that a formula is basic if it is either a propositional literal
or a O- or O-formula. A formula will be called disjunctive if it is a disjunction of
basic formulae. A formula is said to be conjunctive if it is a conjunction of basic
formulae.

We introduce some notation in order to refer to different components of dis-
junctive and conjunctive formulae. If ¢ is a disjunctive (resp. conjunctive) for-
mula, then Prop(p) is defined to be the set of propositional literals which are
disjuncts (resp. conjuncts) of ¢. If ¢ is a disjunctive (resp. conjunctive) formula,
then Box;(p) is defined to be the set of formulae 9 such that 0;¢ is a disjunct
(resp. conjunct) of . Similarly, Diam;(yp) is defined as the set of formulae v
such that <;1 is a disjunct (resp. conjunct) of ¢. For example, for the disjunc-
tive formula ¢ = —a vV =bV Oyc vV 0,0 T V O T, we have Prop(p) = {—a, b},

2. The Modal Logic IC,, 13

W ={w,x,y,z} ta. cé}) 0

Rl = {(x,w), (1‘, 2)7 (y,y)}

®
Ro = {(m,y), (Z’y)’ (y’y)} 1 1 X {CL b C}

v(a) = {w,y}

v(b) = {y} @/2(@ 2

’U(C) = {w’x>y} {C} ’

(a) (b)

Figure 2.1: An example model and its graphical representation.

Box1(p) = {¢, 02T}, Boxa(p) = Diams(p) = 0, and Diam,(p) = {T}. For the
conjunctive formula ¢y = ¢cAO; LAOaA<o(aV O1b) AOoc, we have Prop(y) = {c},
Boxy(¢) = {L}, Boxs(¢) = {a}, Diamy(¢) = 0, and Diama(y)) = {a VvV O;1b, c}.

A K,,-formula is said to be in negation normal form (NNF) just in the case that
it does not contain — and every negation symbol appears directly in front of propo-
sitional variables. Every formula in &, can be transformed in linear time into an
equivalent formula in NNF of the same modal depth via a straightforward applica-
tion of the standard logical equivalences. More details on the NNF transformation

can be found in Section 241

2.2 Semantics

A model (or interpretation) for /C,, is a tuple M = W, {R;}!",,v), where W is a
non-empty set of possible worlds, each R; C W x W is a binary relation over worlds,
and v : ¥V — 2"V defines for each propositional variable the set of worlds in which
the variable holds. Models can be seen as labelled directed graphs, in which the
vertices correspond to the elements of W, the directed edges represent the binary
relations, and the vertices are labelled by the set of propositional variables which
hold in the corresponding possible world. In Figure 21 we give an example of a
model and its corresponding graphical representation.

Satisfaction of a formula ¢ in a model 9t at the world w (written MM, w |= @) is
defined inductively as follows:

e MwET

o M w1

14 2.2. Semantics

M, w = a if and only if w € v(a)

M, w = —p if and only if M, w |~ ¢

M, w = e A if and only if M, w | ¢ and M, w | ¢

M, w = ¢V if and only if M, w = ¢ or Mw =

e M, w k= O; ¢ if and only if M, w' = ¢ for every w’ such that (w,w') € R;

M, w = O; p if and only if M, w’ = ¢ for some w' such that (w,w’) € R;

If we think of models as labelled directed graphs, then determining the satisfaction
of a formula O; ¢ at vertex w consists in evaluating ¢ at all of the vertices which
can be reached from w via an i-labelled edge; O; ¢ is satisfied at w just in the
case that ¢ holds in each of these successor vertices. Similarly, in order to decide
whether a formula <; ¢ holds at a vertex w, we consider each of the i-successors of

w in the graph and check whether at least one of these vertices satisfies ¢.

Example 2.2.1.
Let 9 be the model defined in Figure 211 We have:

e M, w = a, since w € v(a)

e M, w | Oy 1, since there is no world u such that (w,u) € Ry
e M, wl aAOpL, since both M, w = a and M, w = Oy L

e M, 2 = —a, since M, z = a

e M,z = <Cpa, since (r,2) € Ry and M, 2z = —a

e M,z | O;0,1, since w and z are the only l-successors of z, and both
Mw=0;L and M,z =0, L

e M,z |=0Os(aAbAc), since the only 2-successor of z is y and M,y = aAbAc

A formula ¢ is said to be a tautology, written = ¢, if MM, w = ¢ for every model M
and world w. A formula ¢ is satisfiable if there is some model 9 and some world
w such that M, w = . If there is no M and w for which M, w = ¢, then ¢ is
called unsatisfiable, and we write ¢ = L.

2. The Modal Logic IC,, 15

2.3 Logical Consequence

In modal logic, there are two different ways of defining logical consequence (cf.

[van83] for discussion):

e a formula v is a global consequence of ¢ if whenever I, w |= ¢ for every world
w of a model M, then M, w = ¢ for every world w of M

e a formula v is a local consequence of ¢ if M, w = ¢ implies M, w = ¢ for
every model 9 and world w

In this thesis, we will be focusing on local consequence, firstly because this is the
notion of consequence most often used in the modal logic literature, and secondly
because the local consequence relation is better-behaved than the global conse-
quence relation in some important respects. In particular, the deduction theorem,
familiar from classical logic, holds only with respect to the local consequence rela-
tion. In what follows, we will take ¢ = 1 to mean that 1 is a local consequence
of ¢, and we will say that ¢ (logically) entails ¥. Two formulae ¢ and ¥ will be
called equivalent, written ¢ = 1, if both ¢ =1 and ¥ = ¢. A formula ¢ is said to
be logically stronger than v if ¢ =1 and 9 [~ .

In the remainder of this section, we highlight some basic properties of logical
consequence in IC,,, some well-known and some less so, which will play an important

role in the proofs of our results.

Theorem 2.3.1.
Let «y be a propositional formula, let v, x, Vi, Xi, Vi, Xi,j be formulae in KCp, and

let k be an integer between 1 and n. Then

~

YEXSEWVXES YAXxEL

2. Opth = —~0,—p

. v EX® Ok EOrx & Opt = i x

4. O Aha A oo ANby) = Ogthy A Ogtha A oo A Optdyy,
5. Op(P1 Vaba Voo Vahy,) = Opahy V Optha Vo V Oty

6. Y AN (Qiit A AOs i ABixit Ao ADi Xim,) L
S yELorvij Axiit Ao AXim, = L forsomel <i<nandl <j<I;

7. lZ ¥V \/?:1(01 1/11'71 V.. V<O, 1/12‘,12. V DiXi,l V..V DiXi,mi)
SEvyor EviiV... Vi, VX forsomel<i<nandl<j<m,

16 2.3. Logical Consequence

8 Ok x EOrgx1V...VOrxm < X Exi for some 1 <i<m

9. G V.. VOL Y VO x1 V.o VO Xm
=P V.o VORY VO, (x1 VYLV V) Vo V Og (X V01 V.. V1)

Proof. The first statement is a well-known property of local consequence, but we

prove it here for completeness:

Y EXx & Mw kY implies M, w = x for all M, w
& Mw Y or Mw = x for all M, w
& Mw = - or M w | x for all M, w
& EYVix
< M w B~ A -y for all M w
& YA-xEL

The second statement is also standard, and can be simply proved as follows:

M, w = Opyp & there is some v such that (w,v) € Ry and M, v |
< there is some v such that (w,v) € Ry and M, v = —p
& Mow fE O
& Mw = O

For the third statement, if ¢ [~ x, then there is some 90, w such that M, w =
1 A =x. Create a new model MM’ from 9 by adding a new world w’ and placing
a single k-arc from w’ to w. Then M w' E Optp A O -y, which means that
Op v A O —y is satisfiable and hence Cr v = Ok x (using statements 1 and 2).
For the other direction, suppose ¢ 1) = Ok x. Then there exists 9, w such that
Mw = Opp A =Op x = Op v A Ok —x. But this means that there is some w’ for
which ¥ A =y, hence ¢ [~ x. To complete the proof, we use the following chain of
equivalences: 0, E Opx & " x E " p & Oy EOL W & ~x E W &
¥ =X

For statement 4, we have 9, w = Ok (11 A g A ... Atby,) if and only if M, w' =
1 A g A ... Ay, for every w' with wRiw' if and only if 9, w’ = 1, for every w’
with wRiw' and 1 <4 < m if and only if M, w = Oke; for every 1 < i < m if and
only if MM, w = Ogthy A Optha A ... A Ogtdy,.

Statement 5 is shown as follows: MM, w = Ck(11 V Y V ... V 1byy,) if and only
if M, w' = 11 Vo V... Vb, for some w' with wRiw' if and only if I, w' E ¥
for some 1 < i < m and w' with wRiw' if and only if M, w E O 1; for some
1 <i<mifand only if M, w = Opihy V Optha V... V Opthy,.

For 6, suppose Y AN (Ci it Ao AOi i1, ADixia Ao ADG Xim,) = L. Then
there exist MM, w such that M, w = v AN (Ciin Ao AOihig, ADixin Ao A

2. The Modal Logic IC,, 17

O Xi;m;)- As MM, w |= v, we cannot have v |= L, nor can we have ¥; j A i1 A ... A
Xi,m,; = L since for each i and each 1 < j <; there is some w’ accessible from w
via an i-arc such that 9, w' = Vi N Xi1 N oo A Xiym;- Now for the other direction
suppose that v and all of the formulae ; ; A xi1 A ... A Xim, (for 1 < i < n and
1 < j < ;) are satisfiable. Then there is some propositional model w of -, and for
each pair 4, j, we can find 9, j,w; ; such that M j,wsj = Yij AXit A oo A Xiom, -
Now we construct a new Kripke structure which contains the models 9; ; and the
world w and in which there are i-arcs going from w to each of the w; ;. It can be
casily verified that this new model 9, is such that Myer, w = YA N (i i1 A
e N ANOixia A ..o ADj Xim,), Which means this formula is satisfiable.

Statement 7 follows easily from the sixth statement. We simply notice that
YVVIE (Qihia VoV Oihi 1, VO X1 V.. VO Xim,) Is a tautology just in the case
that its negation =y A A/ (T =i 1 A oo AT =i A i mxia A oo A —Xim,) 18
unsatisfiable.

For 8, we use statements 1 and 7 to get the following chain of equivalences:

Ok X EOex1 VoV Og Xm
& FEOrxVOrx1V .. VO Xm
& E-xVy forsome 1 <i<m
< x[Exiforsome 1 <i<m

The first implication of the equivalence in 9 is immediate since Cp)y V ... V
Opthy EOpr V... VO and Op xs E Op (s Vi V... V) for all 1 < i < m.
For the other direction, we remark that by using statements 1, 2, and 6, we get the
following equivalences:

Op (i V1 Vo Vb)) B O xa VO P Vo V Oy
S O0GVYLV . VY) A=(Opxa VOr1 V.. VOrd) E L
& O VULV VYY) ACr i ADpg 1 A ANDp = L
S GV VYY) A AP A A L

As (xi V1 V .. V) A=y A by A .o A =y is clearly unsatisfiable, it follows
that Og (x; VU1 V... V) E O xi VOrtr V.o V Optfy for every ¢ and hence

that Cp o1 V... VO VO, (xa VY1 Voo V) Voo VO (X VU1 V.o V)
S V.. VoYV Orx1 V... VO X]

Statement 1 of Theorem 23] shows us how the three reasoning tasks of de-
duction, unsatisfiability, and tautology-testing can be rephrased in terms of one
another. The second statement shows how the & and O modal operators can be
rephrased in terms of one another. Statement 3 tells us how entailment between two
O- or O-formulae can be reduced to entailment between those formulae with the

18 2.3. Logical Consequence

first modality removed. Statement 4 states the distributivity of conjunction over
universal modalities, whereas statement 5 gives the distributivity of disjunction
over existential modalities. Statements 6 and 7 define the conditions under which a
conjunctive (resp. disjunctive) formula is unsatisfiable (resp. a tautology). State-
ment 8 gives us the conditions under which a O-formula implies a disjunction of
O-formulae. Statement 9 demonstrates the interaction between O- and <-formulae
in a disjunctive formula.

The next two theorems concern entailment between disjunctive formulae. The-
orem tells us what kinds of disjunctive formulae can entail a propositional
clause, a disjunction of O-formulae, or a disjunction of O-formulae, while Theorem
233 outlines the conditions under which two disjunctive formulae can be related
to each other by the entailment relation.

Theorem 2.3.2.

Let X be a disjunctive formula in IC,,. Then each of the following statements holds:

1. If X |E vy for some non-tautological propositional clause 7y, then every disjunct

of \ is either a propositional literal or a formula ;10 where ¥ | L
2. If N ECihy V... V Oy, then every disjunct of X must be of the form ;1)

3. IfAETix1 V... VO X and = O; x1 V... V.O; X, then every disjunct of A
is either a formula of the form O; x or a formula <1 where ¢ = L

Proof. For (1), let v be a non-tautologous propositional clause such that \ = ~,
and suppose for a contradiction that A contains a disjunct O;y or a disjunct <;)
where ¢ £ L. In the first case, we have O;x |= 7, and hence = ¢;—x V. It
follows from Theorem 23] that = 7, contradicting our assumption that v is not
a tautology. In the second case, we have <;1 | 7, and hence = O; - V . By
Theorem 23] either = =1 or |= +. In both cases, we reach a contradiction since
we have assumed that ¢ = L and = 7. It follows then that A cannot have any
O-formulae or any satisfiable &-formulae as disjuncts.

The proofs of (2) and (3) proceed similarly. O
Theorem 2.3.3.
Let \ =
n
vV \/(<>i Yia Vo VO V Oixin VeV OiXim,)
i=1
and N =

n

YV N (it Vo VO, VB VoV DX,

i=1

2. The Modal Logic IC,, 19

be formulae in ICp,. If v and ' are both propositional and = N, then X\ E X if and
only if the following three conditions hold:

1LyEY
2. for every 1 <i <mn: b1 V..V EYi V.V

3. for every 1 <i <mn and every 1 < j < m;: there is some 1 < k < q; such that
Xig E WiV Vi, VX

Proof. Since we have £ X, we know by Theorem 23] that [~ +' and that [~
i1 VeV, VX for all values of i and k. Using this information together with
Theorem 23] we obtain the following equivalences, for 1 <i<mnand 1 < j < m;:

TEN & E-yvyv

Vi (sl Vo VO, VO Ve V i)
E-rvy
TEY
Ci(Yia V. V) BN
=y VO (i Ve Vg)V

VI (Qithy Vo VO 9,V Oixdy Ve V i,)
E (Wi Ve Vb) Vbl VoL VL
VitV Vb E Y VeV
=V Oy V

Vi (it Voo V Oithy VX Ve V Bixig,)
E i Ve Vi, VX VX for some k

Xij E 1/);71 V..V 1/);% vV X;‘J for some k

Cithia V... VO =N

tt e

tte

Oxij = A
=
=

To complete the proof, we use the fact A = N if and only if v = X, Oiehiq V
VO, = N for every 1 < i < n, and O; x;; = X for every 1 < i < n and
1<j7<m,. O

We illustrate Theorem [2.3.3] on a small example.

Example 2.3.4.
Consider the formula A = =b VvV &(a A Oc) V O(d A Oa) V O(e V d). Then according
to Theorem 2.3.3] we have:

e \=-bV-dV<O(avd) Ve, since b = bV —d and (aA<c)V(dADa) = aVd
and cVdEcV(aVd)

e \£EaV e, since —b [~ a

20 2.4. Basic Transformations

e ANEaV-bVO(anc),since (aAN<c)V (dADa) Ea e

e A\~ bV <O(aVOa) VO, since ¢ Vd eV (aV Oa)

2.4 Basic Transformations

Very often it will prove convenient to us to work with formulae having a certain
syntactic form. In this section, we introduce three procedures for transforming
formulae into equivalent formulae with a special syntactic structure: a procedure
Nnf for putting formulae into negation normal form, a procedure Dnf for rewriting
formulae as equivalent disjunctions of conjunctive formulae, and a procedure Cnf

which transforms formulae into equivalent conjunctions of disjunctive formulae.

The Nnf transformation

We present here the standard transformation Nnf for putting formulae into nega-
tion normal form (cf. [DLNT92|).

Algorithm 2.1 Nnf
Input: a formula ¢

Output: a formula in NNF equivalent to ¢

Case 1: ¢ = a or ¢ = —a. Return ¢.

Case 2: ¢ = @1 x g, where x is V or A. Return Nnf(y1)*Nnf(p2).
Case 3: ¢ = Ay where A is O; or <;. Return ANnf ().

Case 4a: ¢ = =—). Return Nnf(¢)).

Case 4b: ¢ = =(¢1 V p2). Return Nnf (=) ANnf(—p2).

Case 4c: ¢ = (1 A p2). Return Nnf (—¢;)VNnf(—ps2).

Case 4d: ¢ = =0; 9. Return <; Nnf ().

Case 4e: ¢ = =< 9. Return O; Nnf (—)).

We illustrate the Nnf transformation on a simple example:

Example 2.4.1.
We apply the transformation Nnf to the formula —=O(a A O(=b V €)):

Nnf(-O(a A <>(=bVe))) = ONnf(=(a A O(=bV)))
= O(Nnf(—a) V Nof (=(O(=b V ¢))))
= O(—a V ONnf(=(-b V ¢)))
= O(—a vV O(Nnf(—-b) A Nnf(—c)))
= O(=a VvV aO(b A —e))

2. The Modal Logic IC,, 21

We recall some basic properties of Nnf:

Theorem 2.4.2.
The output of Nnf(p) is a formula in negation normal form which is equivalent to
. If v is already in NNF, then Nnf(p)= p. The formula Nnf(p) has depth (),

has signature contained in sig(p), and has length no greater than 2|p|.

Proof. The first four properties can all be shown by very simple inductive proofs.
For the fifth property, we note that the number of propositional variables remains
unchanged during the execution of Nnf, as does the total number of binary connec-
tives (A, V) and modal operators. The number of negation symbols may increase,
but there can be at most one negation symbol for each occurrence of a propositional

variable. This means the total number of symbols in Nnf(y) cannot exceed 2|¢|.00

The Dnf transformation

We now consider the task of rewriting a formula as an equivalent disjunction of
conjunctive formulae. We know from propositional logic that this transformation
can require exponential time and space in the worst-case. However, for later results,
it will prove important to have an algorithm which runs using only polynomial
space (although its output may be exponential). For this reason, we choose to
implement our transformation Dnf so that it returns the conjunctive formulae in

the disjunction one-by-one.

Algorithm 2.2 Dnf
Input: a formula ¢

Output: a set of conjunctive formulae, output one-by-one, whose disjunction is

equivalent to ¢

Do Iter-Dnf({Nnf(y)}).

We demonstrate the transformation Dnf on an example:

Example 2.4.3.
We run Dnf on the formula ¢ = a A =(<C1=b A Ope) A (O17bV OO, T). Here are
the main steps in the execution of Dnf:

e First the function Nnf is called on ¢, yielding the equivalent formula a A
(le vV <>1—\C) A (<>1—\b V DQDlL)

e Next we call Iter-Dnf on the singleton set S1 = {a A (O1bV O1—e) A (O1-bV
O.0,1)}

22

2.4. Basic Transformations

Algorithm 2.3 Iter-Dnf

Input: a set S of formulae in NNF

Output: a set of conjunctive formulae, output one-by-one, whose disjunction is

equivalent to S

ItS

Else

Else

={vAgus

do Iter-Dnf (S U {¢} U{(})

ifS={yYpveus

do Iter-Dnf (S’ U {¢}), then do Iter-Dnf(S’ U {(})

output A cg0

e As 51 ={a A ((B10V O1—e) A (©1—b Vv Oe0; 1))}, we run Iter-Dnf on the

set Sy = {a, (le V <>1—|C) VAN (<>1—\b\/ DQDlL)}.

e As Sy = {(O1bV O1=¢) A (O1-b VvV O30, 1)} U {a}, we call Iter-Dnf on the

set S3 = {a,01bV O1—e, O1—b Vv OO0 L}

e There are no A-symbols in S3 outside the scope of the modal operators, but

there are some disjunctions remaining, so the else-if case is applicable. As
Sz = {016V O1-eU{a, &bV Oy0; 1}, we will make two recursive subcalls.
The first subcall will be on the set Sy = {a,0;b,$1—-bV 00, L}:

— The else-if case applies again, since Sy = {<C1-b Vv O30, 1} U {a, 01b}.
We make two recursive subcalls to Iter-Dnf, the first of which is on
input S5 = {a, d;b, O1-b}:

* There are no A- or V-symbols outside the modal operators in S5, so
the else case applies, and we output the conjunction of elements in
S5, which is a A 016 A O1-b
and the second of which is on input Sg = {a, 01b, 020, L }:

x The else case applies, so we return the conjunction of elements in
SG, which is a A le VAN DQDlL

The second subcall during the examination of S3 will be on the set S; =
{a,O1-¢,01-b Vv 00, L}

— As S7; = {O1=b Vv O01 L} U {a,O1-¢}, we are in the else-if case, so
we make two recursive calls to Iter-Dnf. The first call will have input
Sg = {a, <>1—\C, <>1—\b}:

2. The Modal Logic IC,, 23

* We are in the else case since Sg, so we return the conjunction a A
O1me A Opb
The second call to Iter-Dnf will be on input Sg = {a, $1—¢, 0907 L}:

* We return the conjunction of elements in Sy, which is a A &1—e A
O,0; L

We now highlight some properties of Dnf and Iter-Dnf. In the following
proofs, we will use fx(S) to denote the total number of occurrences of A and V

which are outside the scope of the modal operators in the set of formulae S.

Theorem 2.4.4.

Iter-Dnf always terminates. If the input is a set S of formulae in NNF, then
(a) every formula returned by Iter-Dnf(S) is a conjunctive formula, and (b) the
disjunction of the formulae returned by Iter-Dnf(S) is equivalent to S.

Proof. Termination is straightforward. We simply remark that f, . strictly de-
creases with each level of recursion of Iter-Dnf, and that the recursive calls stop
whenever we reach a set S with f(S5) = 0.

The fact that the formulae output by Iter-Dnf are conjunctive formulae is
immediate from the definition of Iter-Dnf. Indeed, only the final case in the if-
statement can produce output, and this case is only applicable when the input set
contains no A and V symbols outside the scope of the modal operators, i.e. when
the input set consists only of propositional literals and O- and <-formulae.

We next show by induction on f\/(S) that the disjunction of the formulae
output by Iter-Dnf on input S is equivalent to S. This is clearly the case when
fav(S) =0, since then there is a single output formula which is just the conjunction
of elements in S. Next suppose this holds true for sets with f, ,-values of at most
n, and let S be some set of formulae with fay(S) = n + 1. If S contains an
element of the form ¢ A (, then we call Iter-Dnf on S\ {) A C} U {} U{(}. As
the latter set has a fa y-values of n, we know that the disjunction of the output
formulae is equivalent to S\ {¢ A} U{¥} U{(} and hence to S. The other case is
when S possesses no conjunctions but does contain an element of the form ¢ V (.
This means that we will call Iter-Dnf on inputs Sy, = S\ {¢ V (} U {¢} and
Se = S\ {¥V (}U{(}, yielding respectively sets of output formulae ¥, and 3.
We can apply the induction hypothesis (applicable since fa v (Sy) = fav(S¢) =n)
to find that the disjunction of elements in ¥, (resp. ¥¢) is equivalent to Sy (resp.
S¢). But that means that the disjunction of the output of Iter-Dnf on S will
be the disjunction of the elements in ¥, U X, which we know to be equivalent to
A Sy V A\ 'S¢, and hence to S. O

24 2.4. Basic Transformations

Corollary 2.4.5.
Dnf always terminates. On input , the procedure Dnf returns a set of conjunctive

formulae whose disjunction is equivalent to .

Theorem 2.4.6.

On input o, the procedure Dnf outputs at most 219! formulae, each of which has at
most || conguncts. If ¢ is in NNF and there are | mutually non-equivalent basic
subformulae which appear outside the scope of p’s modal operators, then there are
at most 2! non-equivalent formulae output by Dnf(p), each of which has at most
I non-equivalent conjuncts. Each of the formulae output by Dnf(p) has length at
most 2|p| (or at most || if ¢ is in NNF), has depth at most 6(p), and has signature
contained in sig(p).

Proof. We remark that each call to Iter-Dnf can yield at most two recursive sub-
calls. Moreover, the maximal recursion depth on input S is fa (S), since we
decrease the value of fa\ by 1 with each call, and we stop the recursion when the
value reaches 0. It follows that there can be no more than 2/4v(5) terminating
sub-calls during the execution of Iter-Dnf on S, each of which may produce at
most one formula. As on input ¢, Dnf simply runs Iter-Dnf on Nnf(y), and
Nnf(p) has exactly the same f, -value as ¢ (this is easily shown by induction),
it follows that there are no more than 2/4v{#}) formulae output by Dnf(p). As
Fav({¢}) is bounded above by |¢| by definition, we can have at most 2/#! formulae
in the output of Dnf(y).

We next remark that if during the execution of Iter-Dnf on a set S there is a
sub-call made on a set S’, then the cardinality of S’ is at most one greater than the
cardinality of S. As the maximal recursion depth of Iter-Dnf on input S'is fa v(5),
it follows that the formulae output by Iter-Dnf will have at most [S| 4+ fa v(5)
conjuncts. When we run Dnf(y), we call Iter-Dnf on the set {Nnf(p)}. As
{Nnf()}| = 1 and frv(Nnf(p)) = fav(e), we find that there are at most
Iav({e}) + 1 conjuncts in each output formula. We now show that fa . ({¢}) is
strictly smaller than |p|. This is clearly the case when frv({¢}) = 0, since |¢]
must be positive. If fay({p}) > 0, then ¢ contains either a symbol A or V, in
which case the conjuncts (resp. disjuncts) must contain some symbol other than A
or V. Thus, fav({e}) < |¢| — 1, which gives us fav({¢}) +1 < |¢|, completing
the proof of this statement.

For the next properties, we begin by proving (by induction on the value of
fav(S)) that the conjuncts of the formulae output by Iter-Dnf(S) are all basic
subformulae of formulae in S which appear outside the scope of modal operators.
The base case is when fx \/(S) = 0, in which case we output just the conjunction of

2. The Modal Logic IC,, 25

elements in S, each of which is a basic subformula of itself. Next suppose the result
holds for fa -values of k or less, and let S be a set of formulae in NNF such that
Iav(S) =k+1. If S = {Y AC}US’, then we call Iter-Dnf on S\{pACtU{}U{(}.
The latter set has an f, -value of k, so the induction hypothesis applies, allowing
us to conclude that all of conjuncts of the formulae output are basic subformulae
of elements in S\ {¢) A (} U{¢} U{C} which appear outside the scope of modal
operators. This is enough since S and S\ {¢) A (} U{y} U{(} have the same set of
basic subformulae appearing outside the scope of modal operators. If instead, we
have S = {¢)V(}US’, we will call Iter-Dnf on S’U{+} and then on S’U{(}. Both
S"U{y} and S" U {C} have fa -values of at most k, and their basic subformulae
are all basic subformulae of S, so we conclude that the conjuncts of the formulae in
the output of Iter-Dnf on S are all basic subformulae of S which appears outside
the modal operators in S.

Since Dnf(y) is just Iter-Dnf({Nnf(y)}), it follows that the conjuncts of the
formulae output by Dnf(y) are all basic subformulae of Nnf(y). As Nnf(y) = ¢
whenever ¢ is in NNF (Theorem [Z4.2]), we can conclude that if ¢ is a formula in
NNF with exactly [mutually non-equivalent basic subformulae, then there can be
at most 2/ mutually non-equivalent formulae output by Dnf(¢), each of which has
no more than [mutually non-equivalent conjuncts.

Let us define the length of a set of formulae to be the length of the conjunction
of its elements. We remark that if during the execution of Iter-Dnf on a set S
there is a sub-call made to Iter-Dnf on a set S’, then the length of S’ is never
greater than that of S. This means that any formula output during the execution
of Iter-Dnf on a set S can have length at most the length of S. As Dnf(p) calls
Iter-Dnf on {Nnf(y)}, which by Theorem has length no greater than 2|y
(resp. |¢| if ¢ is in NNF), it follows that all of the formulae output by Dnf(p)
have length at most 2|p| (resp. |¢| if ¢ is in NNF).

It was shown above that the conjuncts of the formulae which are output by
Iter-Dnf(Nnf(¢)) (and hence by Dnf(y)) are all subformulae of Nnf(y). By
Theorem [Z4.2] Nnf(yp) has precisely the same depth and propositional letters as
. It follows then that the formulae in Dnf(p) have depth at most d(¢) and contain
only those propositional symbols appearing in . U

Theorem 2.4.7.

Dnf runs in polynomial space in the size of its input.

Proof. Straightforward: on input S, Iter-Dnf either terminates directly (possibly
outputting a formula of the same length as S), or it makes recursive sub-calls on
sets whose lengths are no greater than that of S. This is sufficient to show the

26 2.4. Basic Transformations

result since Dnf calls Iter-Dnf on the set {INnf(p)} which has size at most 2|y
(by Theorem 2.4.2)). O

Theorem 2.4.8.

Dnf runs in single-exponential time in the size of its input.

Proof. We remark that on input S the procedure Iter-Dnf spends a linear amount
of time examining S (in order to determine which case applies), and then proceeds
either to make one or two recursive calls or output a formula. Thus, the total
running time of the algorithm is proportional to the number of recursive subcalls
to Iter-Dnf. We saw in the proof of Theorem that there can be no more
than 2/#! recursive subcalls when Iter-Dnf is run on {Nnf(¢)}. It follows that the

total execution time for Dnf on input ¢ is single-exponential in the length of ¢.[]

The Cnf transformation

By making minor modifications to the algorithm Dnf in the previous subsection, we
obtain a procedure Cnf which transforms /C,, formulae into equivalent conjunctions

of disjunctive formulae.

Algorithm 2.4 Cnf
Input: a formula ¢

Output: a set of disjunctive formulae, output one-by-one, whose conjunction is

equivalent to ¢

Do Iter-Cnf({Nnf(y)}).

Algorithm 2.5 Iter-Cnf
Input: a set S of formulae in NNF

Output: a set of disjunctive formulae, output one-by-one, whose conjunction is

equivalent to S
fS={ypvetus
do Iter-Cnf(S" U {y} U{(})
Else if S={y A(}US
do Iter-Cnf(S' U {¢}), then do Iter-Cnf(S’ U {(})
Else

output \/, g0

2. The Modal Logic IC,, 27

The following results highlight some of the properties of the transformation Cnf.
The proofs of these results are omitted as they are very similar to the corresponding

proofs for Dnf.

Theorem 2.4.9.
Cnf always terminates. On input @, the procedure Cnf returns a set of disjunctive
formulae whose conjunction is equivalent to .

Theorem 2.4.10.

Cnuf run in single-exponential time in the size of its input.

Theorem 2.4.11.

On input @, the procedure Cnf outputs at most 2l formulae, each of which has at
most || disjuncts. If ¢ is in NNF and there are | mutually non-equivalent basic
subformulae which appear outside the scope of p’s modal operators, then there are
at most 2 non-equivalent formulae output by Cnf(p), each of which has at most
I non-equivalent disjuncts. Fach of the formulae output by Cnf(p) has length at
most 2|¢| (or at most || if ¢ is in NNF'), has depth at most 6(p), and has signature

contained in sig(p).

2.5 Basic Reasoning Tasks

In this section, we study the standard reasoning problems for IC,,, which are:
Satisfiability: Is ¢ satisfiable?

Unsatisfiability: Is ¢ unsatisfiable?

Entailment: Does ¢ entail ¢?

The complexity of these tasks was investigated in [Lad77], where it was shown
that all three tasks were PSPACE-complete. Ladner’s PSPACE-hardness result was
proven by means of a reduction from the validity problem for quantified boolean

formulae, which is the canonical PSPACE-complete problem.

Theorem 2.5.1 ([Lad77]).
Satisfiability in K is PSPACE-hard.

Proof Sketch. We recall that a quantified boolean formula (QBF) is an expres-
sion of the form Q1p;1...Qmpm# where each @; is either 3 or V, the p; are distinct
propositional variables, and 6 is a propositional formula over variables {p1, ..., pm }.

Validity of a QBF 8 = Q1p1...Qmpmb is defined recursively as follows: if Q1 =V

28 2.5. Basic Reasoning Tasks

i) q0
i) Aito((a = Njzimag) AD(G — Ajzimgg) Ao ANO™ (@ — Ajimg;))
iiia) Ailo((gi = Ogiv1) AD(gi — Ogig1) A AO™ (s — Cgiya))
iiib) Agijgi=vy O'(@i — (O(@it1 A pit1) A O(gis1 A i)

iv) Ary (A O ((ps — Opi) A (=i — B-pi)))

v) 0" (gm — 0)

(
(
(i
(i
(
(

Figure 2.2: The formula f(f3) is the conjunction of the above formulae.

(resp. Q1 = 3), (s valid if and only if both (resp. either) Qopa...Qmpm(0p, —7) and
(resp. or) Qa2p2...QmPm(0p,— 1) are valid (the base case, when [is propositional,
is treated as in propositional logic)d. The problem of deciding whether a QBF is
valid was shown PSPACE-complete in [SMT73].

Figure presents an encoding of a QBF 8 = Q1p1...Qmpmb in a I, -formula
f(B) that is used in [BAV01] to demonstrate the PSPACE-hardness of satisfiability in
K. In addition to the propositional variables pi, ..., pm, the formula f(3) contains
variables qq, ..., ¢m. Informally speaking, these variables are used to keep track of
the number of quantifiers treated so far. We begin in ¢¢ (part (i) of f(3)), and
we pass from ¢; to ¢;+1 with each modal operator (parts (ii) and (iiia)). When the
quantifier associated with the current state is universal, there must be two successor
states, corresponding to the two ways of instantiating the variable p; (part (iiib));
the choices of variable values are preserved as we pass through the different levels
of quantification (part (iv)). Finally, for f(53) to be hold, the propositional formula
6 must be satisfied in all terminal states (part (v)). Thus, we find that the formula
f(B) is satisfiable just in the case that [is a QBF-validity (refer to [BAV01] for the
full proof). As the formula f(/3) can be generated in polynomial time from 3, and
the QBF-validity problem is known to be PSPACE-hard, it follows that satisfiability
of formulae in K,, is PSPACE-hard as well.

It follows from Theorem [2.5.Tlthat the dual problem of unsatisfiability is PSPACE-
hard as well. Moreover, as satisfiability tests correspond to a special type of entail-
ment query, the PSPACE-hardness result can also be transferred to the entailment
task.

Corollary 2.5.2.
Entailment in K is PSPACE-hard.

2Here 0, (resp. 0, 1) denotes the formula obtained from 6 by replacing all occurrences of
the propositional variable p by T (resp. L).

2. The Modal Logic IC,, 29

Ladner’s proof of membership of satisfiability in PSPACE was constructive: he
exhibited a tableauz-style polynomial-space algorithm for deciding satisfiability of
Kp-formulae (cf. [HHSS06] for more discussion of different types of satisfiability
algorithms for IC,,). The basic idea behind Ladner’s algorithm (and tableaux-style
algorithms in general) is to try to construct a model of the formula; if we succeed in
constructing a model, we have proven the formula satisfiable, and if we fail to find
a model (and can show that we tried all possibilities), the formula is unsatisfiable.

As satisfiability-testing appears as a component in practically all of the algo-
rithms in this thesis, we present in some detail an algorithm for deciding satisfi-
ability of K,, formulae. The algorithm, which we call Sat, examines each of the
formulae in Dnf(y) one-by-one. As the disjunction of the formulae in Dnf(p) is
equivalent to ¢, we know that ¢ has a model just in the case that at least one
of the formulae in Dnf(p) has a model. Thus, we have reduced the problem of
deciding satisfiability for arbitrary formula in IC,, to the more restricted problem
of deciding satisfiability for conjunctive formulae. We then exploit statement 5 of
Theorem 2.3.T] which tells us that a conjunctive formula T has a model just in the
case that its propositional part has a model (i.e. no complementary propositional
literals) and for each conjunct ;¢ of T, the formula ¥ A /\XE Box,(T) X POSSesses a
model. To check whether the latter holds, we make a recursive call to Sat. Ter-
mination of Sat follows from the fact that at each level of recursion the depth of
the input formula decreases, and the recursion stops when the input formula is a
propositional formula.

Algorithm 2.6 Sat
Input: a formula ¢ in K,

Output: yes if ¢ is satisfiable, and no otherwise

(1) Run Dnf(y), and for each output formula 7', do the following:
Check whether the following conditions are verified by 7"
(a) T has no conjunct L
(b) Prop(T) contains no complementary literals
(c) For each conjunct &;tp of T', Sat(y) A Acepog, (1) C)=Ves
Return yes if all three conditions hold.
(2) Return no.

We illustrate the functioning of the algorithm Sat on two small examples:

Example 2.5.3.
We use Sat to determine whether the formula ¢ = a A =(<C1=b A Oyc) A (OC1-b V
0901 T) is satisfiable. In Step 1, Sat calls Dnf on input ¢. We know from

30 2.5. Basic Reasoning Tasks

Example 2.4.3] that the first formula returned by Dnf will be T3 = a A O1b A $1—b.
We examine T3 in order to determine whether it satisfies the three conditions of
Step 1. The first two conditions are verified since 77 has no conjunct 1 and no
complementary propositional literal conjuncts. To check condition (c), we must
call Sat on input b A =b because of the conjunct &1—b. Sat will return no on this
input, as there is a single formula b A =b returned by Dnf on input b A —b, and
it falsifies condition (b). This means that we will not return yes when examining
Ti. The next formula output by Dnf will be T5 = a A Oyb A 0907 1. This formula
satisfies all three conditions since it contains no conjunct 1, no complementary
literal conjuncts, and no O-formulae as conjuncts. This means that Sat will return
yes in Step 1.

Example 2.5.4.

We use the algorithm Sat to test whether ¢ = O1(a AbAO1T) A (maV —bV
0;<C2(bA L)) is satisfiable. In Step 1, the transformation Dnf is called on ¢. There
is a single formula in the output of Dnf, which is ¢ itself. The first two conditions
are satisfied by ¢ since it does not contain any conjunct of the form 1 nor any
propositional conjuncts. In order to determine whether ¢ satisfies condition (c),
we call Sat on the formula) = (a AbACIT) A (ma VvV =bV O;OCo(b A L)), It can
be verified that the first formula in Dnf(¢) is a A b A &1 T A —a, which falsifies
condition (b). The next formula returned by Dnf is a A b A O T A —b, which
also violates condition (b). The next and final formula in the output of Dnf is
a ANbAOTT AO;Oe(b A L), This formula satisfies (a) and (b) but not (c) since
Sat(b A L)=no and hence Sat(T A Oo(b A L))=no. It follows that Sat(i))=no,
which means Sat(y)=no as well.

Theorem 2.5.5.
The algorithm Sat terminates and outputs yes if and only if the input formula is
satisfiable.

Proof. The proof is by induction on the depth of the input formula. We begin with
the case where the input formula has depth 0. In this case, we know by Theorems
2.4.4 and that the set of formulae output by Dnf(p) is a set of propositional
terms whose disjunction is equivalent to . If ¢ is satisfiable, then there must be
some element 7' in the output of Dnf(yp) which is satisfiable. This means that
when we examine T', we will find no conjunct L nor any pair of complementary
literals in Prop(T), and so will return yes. If instead ¢ is unsatisfiable, then every
formula in the output of Dnf(¢) must be unsatisfiable. This means that every such
formula must either have a conjunct L or contain a pair of complementary literals,

2. The Modal Logic IC,, 31

so we will not return yes during Step 1, which means we will continue on to Step
2, where we return no.

Next suppose the Sat gives the desired result whenever the input formula has
depth at most k, and consider some formula ¢ having depth k + 1. In Step 1 of
Sat, we run Dnf on input ¢. By Theorems 2.4.4] the set of formulae output Dnf
consists of a set of conjunctive formula whose disjunction is equivalent to ¢. If is
satisfiable, then there must be some satisfiable T" which is output at some stage by
Dnf. Since T is a satisfiable conjunctive formula, we know that it cannot contain
a conjunct L, nor a pair of complementary propositional literal conjuncts, nor a
conjunct ;1 such that ¥ A /\CEBoazi(T) ¢ is unsatisfiable (by Theorem 23.7]). But
we know from Theorem that T is of depth at most k + 1, which means that
if G4 is a conjunct of T', then ¥ A /\CEBozi(T)C must be of depth at most k. It
follows that we can apply the induction hypothesis to ¢ A /\CE Bow(T) ¢ to find that
Sat (¥ A Acepog;(r) ¢)=ves. This means that T satisfies all three conditions, and
so Sat will return yes in Step 1. If instead ¢ is an unsatisfiable formula, then all
of the formulae output by Dnf on input ¢ must themselves be unsatisfiable. There
are three possibilities for every such formula T: either T has a conjunct L, or it
has complementary propositional literal conjuncts, or there is some conjunct ;1)
of T' such that ¥ A Acepoy,) € is unsatisfiable (Theorem 2.3.1). In the first two
cases, either condition (a) or (b) is falsified. In the third case, we can apply the
induction hypothesis to ¢A/\<eBomi(T) (¢ to find that Sat(¢/\/\geBoxi(T) ¢)=no, and
so condition (c) is falsified. It follows that there is no output formula 7" satisfying
all three conditions, so yes will not be output in Step 1 of Sat, which means no
will be returned in Step 2. U

Theorem 2.5.6.

The algorithm Sat runs in polynomial space in the size of the input formula.

Proof. We will show the result in the case that ¢ is in NNF. This is without loss
of generality since the transformation to NNF is polynomial (see Theorem [2.4.2).
The proof is by induction on the depth of the input formula ¢. The base case
is when 6(¢) = 0. In Step 1, Sat runs Dnf on ¢. We know from Theorem 2.4.7]
that Dnf requires only polynomial space in |p|. Moreover, by Theorem [2.4.6] we
know that every formula T' output by Dnf has depth 0 and has length at most |¢|
(since @ is assumed to be in NNF). This means that testing conditions (a), (b), and
(c) for some formula 7" in the output of Dnf takes linear space in |p|. As only one
formula is tested at any given time, it follows that Sat runs in polynomial space in

|ol.
Now suppose the result holds for formulae with depth at most k, and let ¢

32 2.5. Basic Reasoning Tasks

be a formula with depth k£ 4+ 1. Now, in Step 1, Sat runs Dnf on ¢. We know
from Theorem [Z4.7] that running Dnf on ¢ requires only polynomial space in |¢|.
Moreover, because ¢ is assumed to be in NNF, we know that every formula T" output
by Dnf has depth k+1 and has length at most || (Theorem 2.4.6]). It follows that
testing conditions (a) and (b) for a given T' can be accomplished in linear space
in |¢|. As for condition (c), we remark that if ;1 is a conjunct of T', then the
formula ¥ A /\CE Bowi(T) ¢ is a formula in NNF with depth at most k, so according to
the induction hypothesis, Sat runs in polynomial space in |¢) A /\CG Bowi(T) € |. But
the length of ¥ A /\CEBomi(T) ¢ is bounded above by the length of T', which we know
to be bounded above by |p|. It follows that condition (c) can also be checked in
polynomial space in |¢|, which means that Sat runs in polynomial space in |p|. [J

Theorem 2.5.7 ([Lad77]).
Satisfiability and unsatisfiability of K, formulae are both in PSPACE.

Proof. Follows directly from Theorems 2.5.5] and 2.5.61 O

We now introduce an algorithm Entails for testing entailment between K,
formulae. Our algorithm leverages statement 1 of Theorem 2.3.1] which tells us

how entailment queries can be reformulated as unsatisfiability checks.

Algorithm 2.7 Entails
Input: K,-formulae ¢ and ¥

Output: yes if ¢ = 1, and no otherwise

If Sat(p A —=¢))=no, then return yes. Otherwise, return no.

Theorem 2.5.8.
The algorithm Entails is a sound and complete decision procedure for entailment

and runs in polynomial space.

Proof. Direct consequence of Theorems 2.3.1] 2.5.5] and 2.5.06] O

Corollary 2.5.9.
Entailment in IC,, is in PSPACE.

Remark 2.5.10.
For the global consequence relation, entailment in kC,, is EXPTIME-complete (cf.
[Don03]), and is therefore likely to be more difficult than entailment with respect

to the local consequence relation.

2. The Modal Logic IC,, 33

2.6 Uniform Interpolation

In this section, we consider the problem of computing the finest approximation
of a formula over a given signature. This task has been studied extensively in
mathematical logic, where it is known as uniform interpolation, and in artificial
intelligence, where it is commonly referred to as (variable) forgetting (cf. [LR94],
[LLMO3]).

Definition 2.6.1.
Let £ be a signature. A formula 1 is said to be a uniform interpolant of ¢ over L,

or simply an L-interpolant of ¢, just in the case that ¢ = 1, sig(¢) C L, and for
every ¢’ such that ¢ = ¢ and sig(¢’) C L we have ¢ = 1.

Interestingly enough, the existence of a uniform interpolant of a formula is not
guaranteed. Logics for which uniform interpolants always exist are said to have the
uniform interpolation property@. Many logics do not enjoy this property, among
them, classical first-order logic (cf. [Hen63]), the modal logic S4 [GZ95], and the
logic IC,, if we use the global consequence relation (cf. [GLWO06], [KWWO0S]).

Fortunately, the logic that we are interested in here, K, with the local con-
sequence relation, does have the uniform interpolation property. This was orig-
inally shown in [Ghi95] (see also [Vis96]). More recently, a variety of different
procedures for constructing uniform interpolants of K, formulae have been pro-
posed (cf. [tCCMVO06], [Bil07], and [HMO8]). The approach in fCCMVO06] runs
in single-exponential space and produces uniform interpolants which are at most
single-exponentially larger than the input formula. These complexity upper bounds
are optimal, given that uniform interpolation may involve an exponential blowup

in formula size in the worst-case:

Theorem 2.6.2.
The shortest L-interpolant of a formula may be single-exponentially larger than the
formula.

Proof. Direct corollary of the corresponding result for propositional formulae (cf.
e.g. [LLMO03]). O

We present here an alternative procedure (which is broadly similar to the one
outlined in [tCCMV06]) for producing single-exponential-sized interpolants. Our

3This is a stronger version of the well-known Craig interpolation property (cf. [Cra57]), which
states that for every pair of formulae ¢ and ¥ such that ¢ = 1, there exists a third formula x

such that ¢ = x E ¢ and sig(x) C sig(e) N sig().

34 2.6. Uniform Interpolation

algorithm LanglInt exploits the distributivity of uniform interpolation over dis-

junction, shown in the following lemma:

Lemma 2.6.3.
Let L be a signature, and let the formulae 1, ...,], be L-interpolants respectively
of the formulae 1, ..., ¥y. Then Yy V...V, is an L-interpolant of 11V ...V {p,.

Proof. Let L, 1, .., ¥m, Y], ..., ¥}, be as in the statement of the lemma, and let ¢
be such that ¢; V ... V4, = ¢ and sig(p) C L. Then for each 1 < j < n, we must
have 1; |= ¢, and hence 1/13- = ¢ since we have assumed that 1/13- is an L-interpolant
of ;. But then we must also have 9] V ... V¢, = ¢, completing the proof. O

Our algorithm also leverages the following lemma, which characterizes the uni-

form interpolants of conjunctive formulae:

Lemma 2.6.4.
Let T be a conjunctive formula, and L a signature. Let the formula T be defined

as follows:

e IfT is unsatisfiable, then
T =1

e Eise, if {(—)v € Prop(T)|v € L} =0 and for all i € L, both Box;(T) = ()
and Diam;(T) = 0, then
=T

o Otherwise:

T'=(A vA(A —v)

vEProp(T)weLl —weProp(T)weLl

AN DU A)

i€L:Box; (T)#0 X€Boz;(T)

A A (A oULA A\ X))
i€L:Diam;(T)#0,Box; (T)#£D €Diam;(T) x€Box;(T)

A A (N\ ©ULw))

i€L:Diam;(T)#0,Box; (T)=0 €Diam;(T)
where Ul (p) is any L-interpolant of .

Then T' is an L-interpolant of T.

2. The Modal Logic IC,, 35

Proof. Let
n
T=vN..AN%A /\(Oz 1/11'71 Ao NSO 1/)2‘,12. A DiXi,l Ao A0 Xi,mi)
i=1

be a conjunctive formula, and let 7" be as defined in the statement of the lemma.
Consider some formula a with signature in £ such that T' = . Because of Theorems

2.4.9] and 2.4.11], we can assume without loss of generality that « is a conjunction

of disjunctive formulae with signatures in £. Let

A=p1 V..V Pp V \/(<>z €,1V...V o €iq; VUi Ci,l V..V Ci,n‘)
1eL
be one of ¥’s conjuncts. We need to show that 7" = A, and therefore 77 = «. If
A is tautologous, then 7" |= A trivially holds. Likewise, if T is unsatisfiable, then
we have 7" = L, and hence T” = A. So let us now consider the case where T is

satisfiable and A non-tautologous. Since T |= A, we know that

YA A A NS Qi A AP A DX A v A DG X)N
T AN AN T JA /\iel:(lji —€1 A AL 6 g A o _‘Ci,l A ANO; _'Ci,ri)

is unsatisfiable. It follows then by Theorem 2.3.1] that one of the following holds:

(@) VIA . AYA=pLA . ATp, =L

(b) there exists some i € £ and some 1 < u < [; such that
¢i,u A (R RANTINAND TR AT VAN P ’: 1

(c) there exists some i € £ and some 1 < u < r; such that
_‘Ci,u AXG 1IN o A Xam; N7€ 1N N € g,): 1

If (a) holds, then because we have assumed 7' satisfiable and A non-tautologous, we
know that there must be some u and v such that v, = p,. As 7, is a conjunct of
T', we have T" = \.

If (b) holds, then we have ¥; , A Xi1 A ... A Xim; FE €1V ... V€ig,. As sig(e 1V
.. Vé€ig) Csig(A) C L, we know that every L-interpolant of ¥, A xi1 A ... A Xim,
must entail €1V ... V€ q,. Thus, Ulz(¥iu A Xi1 Ao A Xiym;) E €1V ... V€, and
hence O; Ul (Yin A Xig A oo A Xim,) E Ci€i1 V.. VOi€ig,. As i € L, we know
that O; UIz(Yiu A Xii Ao A Xim,) (or OiUIp(v;4,), if O;(T) = 0) is a conjunct of
T'. This means T" = \.

Finally, consider the case where (c) holds. Then we have x;1 A ... A Xim, =
GuVelV...Veg. AsUIlg(xia AN ... AXim,) is an L-interpolant of x;1 A ... A Xim,
and sig(Giu V€1V ... V€ig) C sig(A) € L, we must have UIz(xin A ... A Xim,) =

36 2.6. Uniform Interpolation

GuVeE1V...Ve€i g, and thus O; ULz (i1 Ao AXim,) FE DiGuVOi€i1 V... VOi€ig.
As i € £, we know that O; UIz(xi1 A ... A Xim,) 1S a conjunct of 7', which means
T =\

We have thus shown that 7" entails every formula which is implied by T and
has signature in £. As T” has signature in £ by definition, it follows that 7" is an
L-interpolant of T O

We now present our algorithm Langlnt for generating L-interpolants. The
idea behind our algorithm is very simple: we first rewrite the input formula as an
disjunction of conjunctive formula, then we compute the L-interpolants of each of
the conjunctive formulae (using Lemma [2.6.4]), and finally we take the disjunction

of these L-interpolants.

Algorithm 2.8 Langlnt
Input: a K,-formula ¢ and a signature £

Output: an L-interpolant of ¢

(1) Set T = Dnf(p), and initialize S to (.
(2) For each T € T:
If Sat(7T")=no, then
Set 7" =1
Else
Initialize NewConj to {(—)v € Prop(T)|v € L}
For each 1 <i < n such that i € LN sig(p):
If Box;(T) # (), then
Add O; LangInt(A s gy, (1) ¥) to NewConj
For each v € Diam;(T):
Add ©; LangInt(y A A e poy, () V) to NewConj
Else if Diam;(T) # ()
For each v € Diam;(T):
Add ¢; LanglInt(y) to NewConj
If NewConj # 0, set T" = \ Kk, else set TV =T
Add T to S
(3) Return \/ g0

rkENewConj

Example 2.6.5.
We run LanglInt on the formula ¢ = (a A b A Ogc A Og—e A O109a) V (—a A ¢ A
Oa(b A ©gc) A Oga) and signature {a, 2}:

e In Step 1, we set 7 = Dnf(p) = {a AbAOz(c A—c) A109a, —a AcA<Oo(bA
Oge) A Oga}, and we initialize S to ().

2. The Modal Logic IC,, 37

e We examine the first element of 7 which is 71 = a AbA Ogc A Og—c A <O109a.
The condition of the if-statement does not apply since T} is satisfiable, so we
enter the else-statement, where we initialize NewConj to {a}. As Boxay(T1) =

{¢, ¢} # 0, we make a recursive subcall on Th = ¢ A —¢:

— In Step 1, we compute Dnf(7%), which is {¢ A =¢}. In Step 2, the
condition of the if-statement is satisfied, so we set T = L and add it to
S. In Step 3, we output L.

We thus add Oy1 to NewConj. As Diams(Ty) = 0, we set T{ = a A Oz L
and add it to the set S.

e We now examine the second and last element of 7, which is T3 = —a A ¢ A
Oa(b A ©gc) A Oga. The else-statement applies, so we initialize NewConj
to {—a}. We have Boxy(T3) = {a} # 0, so we call LangInt on input a.
It returns a, so Osa is added to NewConj. Next we consider the conjunct
Oa(b A Ogc), and we make a recusive subcall on input Ty = b A Oac A a:

— The only term output by Dnf(7y) is bA CocAa itself. In Step 2, the else
case applies, so we set NewConj = {a}. As there are no Oy-conjuncts
but there are some <$s-conjuncts, we are in the second else case, and we

call LangInt on the formula c:

* On input ¢ and {a,2}, the algorithm returns just T, since no for-
mulae are added to NewConj during the examination of c.

We add o T to NewConj, and output a A OoT.
We add Og(a A OoT) to NewConj. We then set 75 = —a A Oo(a A OoT).

e In Step 4, we return the disjunction of elements in S, which is (a A Oz L) V
(ma A Og(a N OT)).

We now formally prove the correctness of LanglInt:

Theorem 2.6.6.
On input @ and L, the algorithm LangInt returns an L-interpolant of .

Proof. The proof is by induction on the depth of the input formula ¢. We begin with
the case where 0(¢) = 0. In Step 1, we set 7 = Dnf(yp). We know from Corollary
that 7 is a set of conjunctive formulae whose disjunction is equivalent to ¢.
We also know from Theorem 2.4.6]that the elements in 7 have depth 0, i.e. they are
all propositional terms. In Step 2, for each term T in 7, we add to S the formula
T’. There are three possibilities: either 7" is L if T is unsatisfiable, or 7" is the

38 2.6. Uniform Interpolation

conjunction of the propositional literal conjuncts of T" whose variables belong to L,
or if there are no such conjuncts, then 7" = T. Because of Lemma 2.6.4], we know
that 7" is an L-interpolant of 7. This means that the elements in S at the end
of Step 2 are precisely the L-interpolants of the elements in 7. Because uniform
interpolation distributes over disjunction (Lemma [Z.6.3)), it follows that \/ s o is
an L-interpolant of \/ .., T and hence of the formula ¢.

Next let us suppose that LangInt performs as desired when the input formula
has depth at most d, and let ¢ be a formula with depth d + 1. Again, in Step 1,
we will use Dnf to generate a set 7 of conjunctive formulae whose disjunction is
equivalent to ¢ (Corollary Z4.5]). In Step 2, for each T' € 7, we add the formula
T’ to S, which we know from the induction hypothesis and Lemma [2.6.4] to be an
L-interpolant of T'. This means that at the end of Step 2 the set S contains for
each T' € T an element T” which is an L-interpolant of T'. As uniform interpolation
distributes over disjunction (Lemma 2.6.3), the formula \/ .50 must be an L-
interpolant of \/p.7 T and hence of . It follows that LangInt(y,£) is an L-
interpolant of (. O

The next theorem concerns the worst-case running time of Langlnt.

Theorem 2.6.7.
The algorithm Langlnt runs in single-exponential time.

Proof. In this proof, we let ¢ and r be polynomial functions such that Dnf (resp.
Sat) terminates in at most 290 (resp. 2"(®) time steps on input of length I. The
existence of such functions is guaranteed for Dnf by Theorem 2.4.8 and for Sat by
Theorem together with the fact that PSPACE C EXPTIME (cf. Appendix A).

Throughout the proof, we will use tx(l) to denote the maximum execution time
of LangInt when the input formula is in NNF and has depth k£ and length [. We
first consider the case where the input formula is a propositional formula in NNF
with length . In this case, the algorithm spends worst-case single-exponential time
in [in Step 1 to generate the formulae in 7 (Theorem [24.8). We know from
Theorem that there can never be more than 2! terms in 7', each having length
at most [. In Step 2, for each term T in 7, we test the satisfiability of T using Sat.
It can be easily verified that Sat will take only polynomial time in |T'| and hence
in [, because T is a propositional term. If T is unsatisfiable, then we set T = L
(this obviously takes constant time). Otherwise, we enter the else-loop and set T”
equal to the conjunction of those conjuncts of 7" which concern variables in £. This
clearly takes linear time in 7. Thus, in Step 2, we spend a polynomial amount of
time on each T, and hence a single-exponential time overall. In Step 3, we output

2. The Modal Logic IC,, 39

the at most single-exponentially large formula \/ .go. It follows that when the
input formula has size [, the algorithm LangInt terminates in single-exponential
time in [. We can thus find some polynomial function p such that to(l) < op(l) |

Now we will try to place an upper bound on ¢,1(l). Consider some formula ¢
in NNF with depth k& + 1 and length [= |p|. In Step 1, we call the procedure Dnf
on input ¢, which we know terminates in at most 270¢D) = 2900 time steps. Now
in Step 2, we examine each of the elements in 7 in turn. Because ¢ is assumed
to be in NNF, we know from Theorem that there can be at most 2! elements
in 7, each having length at most I. In Step 2, we examine each of the terms T in
7T in turn. We start by calling Sat on T, which we know terminates in at most
2r(IT) < 2r(1) steps. If T is unsatisfiable, we simply set 77 = L. If instead we are in
the else-case, then we begin by initializing NewConj, which takes only linear time
in |T'| <. Determining the set of indices i such that i € LN sig(p) also takes linear
time in |T'| <, as does determining for a given i, the sets Boz;(T") and Diam;(T).
For i such that Boxz;(T) # 0, we add the formula O; LangInt(A ¢ o, (1) ¥) to
NewConj. Computing LangInt(/\weBoxi(T) 1) takes time at most tx(l), since
N Bow; () ¥ is a formula in NNF with depth at most & and length at most [T'| <.
We must also add for each v € Diam;(T)) the formula &; LangInt (YA A ¢ pog, ())
to NewConj. Since vy A /\wEBoxi(T) 1 is a formula in NNF with depth at most &
and length at most |T| < I, we know that computing LangInt(~y A /\weBoxi(T))
takes at most tx(l) time steps. Similarly, if Box;(T) = (), then the computation
of LanglInt(y) takes at most ¢;(l) time steps. We remark that the number of
formulae added to NewConj is bounded by the number of conjuncts in 7" and
hence by [. This means that we will never call LangInt more than ! times, and
each call requires at most ¢x(l) time steps. Thus, the computation for a given T' of
T' takes O(2"W) 41 % t;(1)), which means that the total execution time of Step 2 is
on the order of 2/(2"W) + 1 xt,(1)). In the final step of Langlnt, we simply return
the conjunction of elements in §. Clearly this cannot require any more time than
producing S in Step 2. Thus, we find that:

te1(l) € 0210 + 22270 + 1x 11,(1))))
It follows that for k£ > 1, we have
te(1) € O((2T % 1)F2r D) 4 SRZF (I 5 1) s (2000 4 271 4 27D

As we always have k < |p| and [= ||, it follows that the running time of LangInt

on a formula ¢ is in

O((2191H1 « |)) el 2D ggﬂal(gw\ﬂ x o) x (200D 4 alel+1 4 or(ieDy)

40 2.6. Uniform Interpolation

The latter expression is clearly single-exponential in |p| since both p, ¢, and r are all
polynomial functions. We have thus shown that for formulae in NNF the algorithm
LanglInt runs in single-exponential time. This result can then be transferred to

arbitrary formulae as the NNF transformation runs in polynomial (linear) time

(Theorem [Z4.2)). O

Corollary 2.6.8.
The formula output by Langlnt is at most single-exponentially larger than the
input formula.

Proof. Direct consequence of Theorem 2.6.71 O

The following lemma shows that LangInt maps disjunctive formulae to disjunc-
tive formulae. We will make use of this property in some of the proofs of results in
Chapter Bl

Lemma 2.6.9.
If the formula which is input to Langlnt is a disjunctive formula, then the formula

which is output by LangInt is also a disjunctive formula.

Proof. Consider some disjunctive formula A = 31 V...V 3,,. Since each (3; is a basic
formula, the set 7 computed in Step 1 of LangInt is equal to {1, ..., B }. Now we
remark that in Step 2 of LangInt, the number of conjuncts in 7" is never greater
than the number of conjuncts in T'. As each formula 3; is its own unique conjunct,
we know that all of the formulae added to § in Step 2 are basic formulae, which
means that the formula \/ .5 o output by LanglInt is a disjunctive formula. O

Finally, we close this subsection with the following lemma which shows uniform
interpolation distributes over the modal operators. This property will be needed in
Chapter [6l

Lemma 2.6.10.
If ¢ is an L-interpolant of 1, and i € L, then the L-interpolant of O (resp. <))
is O (resp. O).

Proof. We only give the proof for O-formulae, as the proof for ¢-formulae is very
similar. Consider some formula O;¢) and some signature £ such that ¢ € £. Let
Y’ be an L-interpolant of ¢, and let ¢ be such that 04 E ¢ and sig(¢) C L.
Because of Theorems 2.4.9] and ZZ4.TT] we can assume without loss of generality
that ¢ is of the form Ay A ... A A\, for some disjunctive formulae Aq, ..., A We
now show that 0;1’ |= \; for every conjunct \; of ¢. Consider then some such A;.

2. The Modal Logic IC,, 41

ST(T,x) = ST(L,x) =
ST (vj,x) =](x) ST (e,)—_‘ST(%)

ST(sDMb, z) = ST(p,z) NST (Y, x) ST(sovw, z) = ST(p,z) vV ST (Y, x)
ST(Oip,x) =Vy (Ri(z,y) — ST(p,y)) ST(Cip,x) =Ty (Ri(z,y) A ST(p,y))

Figure 2.3: Embedding of the modal logic IC,, in first-order logic. Note that the
variable y used in the translation of O- and - formulaec must be new (i.e. not

already used in the translation).

As O;9 = Ay, it follows from Theorem [Z3.3] that \; is either tautologous or of the
form O;x1 V...0;x% V Oi(1 V... V<. In the first case, we clearly have 0;¢ = Aj.
In the latter case, we know from Theorem 233 that ¢ = x5V (3 V ... vV (for
every 1 < s < k. As sig(\j) C £ and ¢ is an L-interpolant of 1, we get that
YV EXxsVG V..V forevery 1 < s < k. But it must then be the case that
O EOix1 V...0xk VO V... V<O (Theorem 2:3.3). We have thus shown that
0,9 = Aj for each 1 < j < n, and hence that 0;¢) |= ¢. This means that O;¢ is
an L-interpolant of 0;).

2.7 Relation to First-Order Logic

As we mentioned in Chapter [l modal logics generally correspond to fragments of
classical first-order logic. In this section, we examine more closely the relationship
holding between the modal logic K, and first-order logic.

In Figure[23] we present the standard translation of KC,,-formulae into first-order
logic formulae (cf. [van83], [Bv06], [HHSS06]). We remark that each propositional
variable v; is associated with a unary predicate P;, and each 1 < i < n is associated
with a binary relation R; which is used in the translation of 0;- and <;-formulae.
The translation function f, takes as second parameter a first-order variable z;
this is because K,-formulae are mapped to first-order logic formulae with one free
variable. Thus, when applying the translation function ST to a K,-formula ¢ and
variable x, we obtain a first-order formula ST (¢, z) which has x as its unique free
variable. We demonstrate the translation with an example.

42 2.8. Relation to Description Logics

Example 2.7.1.

(—v1 A Oqus),)

z,y) — ST(=v1 A O2v3,y))

— ST (—wy,y) A ST (Oqus,y))

— 2Pi(y) A ST(Cavs,y))

— =Py (y) A Jz(Ra(y, z) A ST (vs, 2)))

)
)
)
) = = Pi(y) A3z(Ra(y, 2) A P3(2)))

Y
Y
T,y
Y

The following theorem shows that the translation ST is satisfiability-preserving.

Theorem 2.7.2.

Let ¢ be a Kp-formula, let M = (W, {R;}*_,,v) be a K,,-model, and let T = (AT, .T)
be the first-order logic model defined as follows: AT =W, PjI = v(vj), and R} =
Ri. Finally, consider some w € W, and let s be a variable assignment which maps

the variable © to w. Then we have:
M, w = ¢ if and only if Z,s = ST (p, x)

Because of Theorem 2.7.2] results concerning first-order logic can be transferred

to K. This allows us for instance to derive that /C,, has the compactness property:

Theorem 2.7.3.
Let 3 be a set of K, -formulae. If every finite subset of ¥ is satisfiable, then X is
also satisfiable.

Proof. Direct consequence of the analogous result for first-order logic (cf. Theorem
1.3.22 of [CK90]) and the embedding of I, in first-order logic (Theorem 2.7.2)). O

2.8 Relation to Description Logics

Like modal logics, description logics are a family of knowledge representation lan-
guages which offer more expressivity than propositional logic but better compu-
tational properties than first-order logic. In this section, we start by providing
a general overview of description logics, before moving on to discuss two specific
description logics (ALC and ALE) and their relation to the modal logic K.

2. The Modal Logic IC,, 43

2.8.1 A short introduction to description logics

The basic building blocks of all description logics are atomic concepts and atomic
roles, which correspond respectively to unary and binary predicates. We might for
example have atomic concepts Female and Teacher and atomic roles HasChild
and IsFriendOf. More complex concepts and roles can be built from the set of
atomic concepts and roles by using concept and role constructors. So for instance,
given two concepts Female and Teacher, and the constructor conjunction (M),
we can form the complex concept Female Il Teacher, which describes the set of
female teachers. The set of constructors available depends on the description logic
in question.

Description logic knowledge bases are composed of two parts, an ABox and a
TBox. The ABox makes statements about the properties of specific individuals and
relationships between individuals. It is composed of a finite set of assertions of the

following forms:
C(a) R(a,b)

where a and b are named individuals, C' is a concept expression, and R a role
expression. The assertion C'(a) states that a is an instance of the concept C, and
the assertion R(a,b) indicates that a stands in the relationship R to b. Typical
ABox axioms might be Teacher L Doctor(mary) and HasChild(mary, john).
The TBox is composed of a set of terminological axioms which allow us to
describe the relationship between different conceptﬂ. Terminological axioms have

one of the following two forms:
C=D cCCD

where C and D are both concept expressions. The first axiom states that the
concepts C' and D describe the same set of individuals, whereas the second states
that the concept D is more general than C. Some examples of TBox axioms are
Mother = Female M AHasChild. T, Parent = Mother Ll Father, and Cat C
Animal.

The meaning of concept expressions, ABox assertions, and TBox axioms is given
via a model-theoretic semantics which is quite similar to that of first-order logic.
An interpretation Z is defined to be a pair (AZ,-Z), where A’ is a non-empty
set and - is a function mapping each atomic concept A to a set AT C AZ, each
atomic role R € R to a relation RZ C AT x AZ, and each individual name a to an

element a? € A? of the universe. The function - is straightforwardly extended to

4
Some description logics also permit role axioms.

44 2.8. Relation to Description Logics

handle complex concept and role expressions. For example, conjunction of concepts
is interpreted as intersection of the sets corresponding to the concepts. Thus, to
every concept expression C is associated a subset C7 C A’ and to every role
expression S is associated a relation ST C AT x A,

A concept C is said to be satisfiable if there is some interpretation Z for which
CT #£ (). If there is no such model, then C is said to be unsatisfiable, and we write
= C C L. We say that a concept C' is subsumed by D (or that D subsumes C),
written |= C C D, if for every model Z we have CZ C D%. An ABox assertion C/(a)
is said to hold in an interpretation Z if a € C%. An assertion R(a,b) is verified by
T if (a?,b?) € RT. An ABox A is satisfied by an interpretation Z if every assertion
in A holds in Z. An ABox A; entails another ABox A5 if every interpretation which
satisfies A; also satisfies Ay. A TBox axiom C' T D (resp. C = D) is satisfied by a
model Z if CT C D? (resp. C* = D?). A TBox is satisfied in Z if all of its axioms
are satisfied in Z. A TBox 7; entails another TBox 75 just in the case that every
model of 77 is also an model of 7.

Some typical description logic reasoning tasks are:

- Concept satisfiability: Is the concept C satisfiable?

- Subsumption: Is the concept C' subsumed by the concept D?
- Abox entailment: Does the ABox A entail the ABox Ay?

- TBozx entailment: Does the TBox 77 entail the TBox 737

2.8.2 The description logic ALC

The description logic that will be of most interest to us in this thesis is ALC.
Concepts expressions in ALC are built up from atomic concepts and roles using the
following constructors: negation (—), conjunction (M), disjunction (L), universal
role restriction (V), and existential role restriction (3). Formally, the syntax of
concept expressions is defined recursively as follows:

Cu=T|L|A|-C|CNC|CUC|YR.C|3R.C

where A is an atomic concept and R an atomic role. A typical ALC expression
might be

Male M Teacher M 3hasChild. T M YhasChild.(Doctor L Teacher)

which describes the set of male teachers that are fathers having only doctors and
teachers as children.

2. The Modal Logic IC,, 45

f(M)=T g(T)=T
fL)=1 g(L)=1
flaj) = 4; 9(4;) = a;
f(=p) =~f(p) 9(—C) = —g(C)
flond) = fle) T f(¥) g(CND)=g(C)Ag(D)
flo V) = fle)U f(¥) g(CuD)=g(C)Vg(D)
f(Cip) =3R;.f(p) g(3R;.C) = ©ig(C)
f(Qi0) =VR;.f(p) g(VR;.C) =10, g(C)
(a) From K, to ALC. (b) From ALC to K.

Figure 2.4: Mapping between K, formulae and ALC concept expressions.

The semantics of the different ALC constructors is defined as follows:

—|—I _ AI
1T =0
(-O)F = af\¢?*
)I — Tnp*
(cup)y = ctubp?
(VR.C)Y = {ae AT|VYb.(a,b) € RT = be CT}
(3R.C)Y = {ae AT|3b.(a,b) € R and b e CT}

Correspondence between K, and ALC

In Figure2.4], we define two functions, one mapping C,, formulae to ALC concept ex-
pressions, and the second mapping ALC concept expressions to I, formulae. The
mappings are quite straightforward: atomic concepts are associated with propo-
sitional variables, role restrictions are associated with modal operators, and the
boolean concept constructors are mapped to the corresponding Boolean connec-

tives.

Theorem 2.8.1 ([Sch91]).
Let f and g be as defined in Figure[2.4).

1. For K,-formula ¢ and ¢: ¢ = if and only if = f(¢) C f(¥)

46 2.8. Relation to Description Logics

2. For ALC concepts C and D: = C T D if and only if g(C) = g(D)

Because of Theorem 2.8.1] results concerning IC,,-formulae (with respect to the
local consequence relation) can be transferred to ALC concept expressions, and
vice-versa. This means in particular that all of the results that we will establish in

the following chapters for IC,,-formulae apply equally well to concept expressions in

ALC.
Remark 2.8.2.

Entailment between ALC TBoxes can also be rephrased in terms of C,, formulae,
but for this, the global consequence relation is required. ABoxes, on the other hand,
cannot be represented in the logic IC,, since), (like most modal logics) does not

provide any means of referring to particular worlds.

2.8.3 The description logic ALE

In later chapters, we will also make reference to the description logic ALE, which
is obtained from ALC by disallowing disjunction and general negation of concepts.
Formally, the syntax of ALE concept expressions is defined recursively as follows:

Cu=T|L|A|-A|CNC|V¥R.C|3R.C

Using the mappings between K,, and ALC from the previous subsection, we see
that ALE expressions correspond precisely to the set of I, formulae which are in
negation normal form and do not contain any disjunction symbols.

The reduced expressiveness of ALE compared to ALC is rewarded by a dro
in the complexity of reasoning: both the unsatisfiability and subsumption task
for ALE concept expressions can be accomplished in non-deterministic polynomial
time, whereas the corresponding problems for ALC are PSPACE-complete.

Theorem 2.8.3 ([SSS91], [DLNT92]).
Unsatisfiability and subsumption of ALE concept expressions are both in NP.

Proof. We give a proof for unsatisfiability, and refer the reader to [DLN'92| for
subsumption. Consider the following non-deterministic procedure for deciding the
unsatisfiability of an ALE concept C:

(1) Guess a (possibly empty) sequence S, ...,S,, of subconcept&@ of C such that

5For description logics like ALC which allow for full negation, concept satisfiability and sub-
sumption can be reduced to one another, but for less expressive logics, these tasks can have different
complexities.

5The notion of subconcept is defined analogously to that of subformula. Likewise, the size and
depth of a concept are defined in the same manner as for formulae.

2. The Modal Logic IC,, 47

n < §(C) and each S; is of the form IR.E. Set D equal to C.
(2) Fori=1ton
If S; = 3dR.FE is a conjunct of D,
Set D = EN(MNperF), where F = {F|VR.F is a conjunct of D}
Else, return no

(3) Return yes if D has a conjunct L or a pair of conjuncts A, —A, else return no.

This procedure clearly runs in non-deterministic polynomial time since in Step 1
we guess at most n < |C| concepts each with size at most |C|, and there are at most
n < |C| iterations of the for loop in Step 2, each iteration taking only a polynomial
amount of time.

We now show that the above procedure outputs yes just in the case the input
concept is unsatisfiable. For the first direction, suppose the output on C' is yes,
and let Si,...,S, be the sequence of subconcepts guessed in Step 1. It can be
easily shown by induction that the concept D at the beginning of Step 3 must
satisfy = C C (3R)"D. Moreover, we also know that D must have a conjunct L
or a pair of conjuncts A and —A, since the output on C is yes. It follows that
= C C (3R)"L, and hence = C' T L. For the other direction, suppose C is
unsatisfiable. We set D1 = C, and we construct a sequence of concepts 51, ..., Sm
in the following manner. If at stage 7, the concept D; has a conjunct | or a pair
of conjuncts A and —A, we return the empty sequence. Otherwise, the concept
D; must possess conjuncts IR.E, VR.Fy, ..., VR.F,, such that EM F; M ...M F,, is
unsatisfiable. We set S; = dR.FE and set D; 1 = EM Fy M ..M F,. We remark
that there can be at most 0(C) elements in the constructed sequence since the
depth of D;;1 is at least one less than the depth of D;. We also remark that if the
constructed sequence has n elements, then the concept D, 41 has either a conjunct
L or a pair of conjuncts A, ~A. Moreover, it is easily verified that if the sequence of
subconcepts we have constructed is guessed in Step 1, then the concept examined
in Step 3 is precisely the concept D,yi. It follows that there exists a sequence

which leads to an output of yes on input C. U

NP-hardness of the unsatisfiability and subsumption tasks can also be demon-
strated.

Theorem 2.8.4 ([DLNT92]).
For ALE concept expressions, unsatisfiability and subsumption are both NP-hard.

Proof. The original proof in [DLNT92| uses a reduction from the NP-complete
problem One-in-three 3SAT, but here we outline another reduction from the exact
cover problem which was presented in [Don03]. The exact cover problem (cf. [GJ79])

48 2.8. Relation to Description Logics

is the following: given a set U = {uq,...,u,} and a set S = {51, ..., S, } of subsets
of U, determine whether there exists an exact cover, that is, a subset {Sj,,...,.5j, }
of § such that Sj, N Sj, =0 for h # k and J]_, S, = U. We will show that U,S
has an exact cover if and only if the ALE concept Cy s pictured in Figure 2.5 is

unsatisfiable.

Cu73 = D171 MM...1 Dl,m nE
where the D; ; are defined inductively as follows

_J AR.Djy1,if either i <n,u; € S;, or i > n and u;—, € S
w VR.Dji1j,if either i <n,u; ¢ Sj, or i >n and u;—, € S;

fori e {1,....,2n} and Dypq1; =T, and E =YR...VR, L.
2n

Figure 2.5: The concept Cys which codes an instance U = {uy,...,u,}, S =
{S1,...,Sm} of the exact cover problem.

The first direction (U, S has an exact cover = Cy s is unsatisfiable) is rather
straightforward, so we concentrate on the second part of the equivalence. Suppose
then that the concept Cy s is unsatisfiable. It follows that = Dy 1M ..M Dy, C
(3R)?"T. We partition {1,...,m} into two sets: a first set J; containing those
indices j for which D;; = JR.D;;, and a set jlv containing those indices j for
which Dy ; = VR.D ;. We next define inductively a sequence of integers h1, ..., hop
and sequences of sets J3, ..., J5» and Jy, ..., Jy, in the following manner:

- h; is an element of ‘71-3 such that = (l_ljej.VDH-Lj) MDit1h, C (AR)* T
S JP=1{jlje T’ U{hi_1} and D;; = AR.Di1,}
- T ={jlje T’ U{hi_1} and D; ; = VR.D;11 ;}

This definition is well-founded since the initial sets 713 and jﬁ have already been
defined above. Mpreover, the fact that h; is chosen so that = (M, «ZVD”Lj) M
Dit1p; T (3R)*™'T guarantees the existence of an element h;y1 of J7, with the
required properties. We remark that by construction for every 1 < ¢ < 2n — 1 we

have:

(a) 1‘11 U ji\il - ‘723 U jiv

2. The Modal Logic IC,, 49

() |77 (T VIE) =1

We intend to show that ¥ = {Sy, ., ..., Shy, } is an exact cover for U,S. We first
remark that because of the way that h; are defined, for each 1 < i < n, we have
Dyyin,,; = 3R.Dpyiy1n, ;, which means that each element u; € U belongs to
some set in ¥ (namely the set Sp, ;). It remains to be shown that the sets in
> are pairwise disjoint. Suppose for a contradiction that some u; appears in two
ot and Sp, ., in ¥. That means that Dip,., = HR-Di—H,hnH and
Din,py = IR.Dit1p,,,- We also know that h,,f € jnaﬂc and hy,yg € j,?_,_Q, and
hence hy,1; € J7 and hpiy € J7 (by (a)). It follows then from (b) that either
Pt f & T UT o bty € Jiq UJ,. But then using (a), we find that either
Ity & jsﬂf or Npyg & jnHJrg, which is a contradiction. O

distinct sets Sy,

Note that the concept Cyys used in the reduction in the preceding proof has a
very simple syntax (conjunction of strings of role restrictions followed by atomic
literals). We will make use of this fact in later chapters.

Prime Implicates and

Prime Implicants in /Cy,

The purpose of this chapter is to select a suitable definition of prime implicates and
prime implicants for the logic IC,,. The first half of the chapter will be concerned with
the generalization of the notions of clauses and terms to KC,,. As there is no obvious
definition, we will enumerate a list of syntactic, semantic, and complexity-theoretic
properties of propositional clauses and terms, which we will then use to compare the
different candidate definitions. In the second half of the chapter, we will consider the
different definitions of clauses and terms in light of the notions of prime implicate
and prime implicant they induce. Once again, we will list some basic properties from
the propositional case that we would like to satisfy, and we will see how the different
definitions measure up.

3.1 Defining Clauses and Terms in K,

As we have seen in Chapter[Il the notions of prime implicates and prime implicants
are straightforwardly defined using the notions of clauses and terms. Thus, if we
ailm to provide suitable definitions of prime implicates and prime implicants for
K, a logical first step is to come up with an appropriate definition of clauses and
terms in IC,,. Unfortunately, whereas clauses and terms are standard notions in
both propositional and first-order logi, there is no generally accepted definition

!One might wonder why we don’t simply translate our formulae in K, into first-order formulae
and then put them into clausal form. The reason is simple: we are looking to define clauses and
terms within the language of KC,,, and the clauses we obtain on passing by first-order logic are

51

52 3.1. Defining Clauses and Terms in IC,,

of clauses and terms in K,. Indeed, a couple of different notions of clauses and/or
terms for K, have been proposed in the literature for various purposes.

Instead of blindly picking a definition and hoping that it is appropriate, we prefer
to list a number of characteristics of literals, clauses, and terms in propositional
logic, which will provide us with a principled means of comparing different candidate
definitions. Each of the properties below describes something of what it is to
be a literal, clause, or term in propositional logic. Although our list cannot be
considered exhaustive, we do believe that it covers the principal syntactic, semantic,

and complexity-theoretic properties of the propositional definition.

P1 Literals, clauses, and terms are in negation normal form.

P2 Clauses do not contain A, terms do not contain V, and literals contain neither
A nor V.

P3 Clauses (resp. terms) are disjunctions (resp. conjunctions) of literals.

P4 The negation of a literal is equivalent to another literal. Negations of clauses

(resp. terms) are equivalent to terms (resp. clauses).

P5 Every formula is equivalent to a finite conjunction of clauses. Likewise, every

formula is equivalent to a finite disjunction of terms.

P6 The task of deciding whether a given formula is a literal, term, or clause can
be accomplished in polynomial-time.

P7 The task of deciding whether a clause (resp. term) entails another clause (resp.

term) can be accomplished in polynomial-time.

3.1.1 Impossibility result

A natural question is whether there exist definitions of literals, clauses, and terms
for KC,, satisfying all of the aforementioned properties. Unfortunately, the following

impossibility result shows this not to be the case.

Theorem 3.1.1.
Any definition of literals, clause, and terms for K that satisfies properties P1 and
P2 cannot satisfy P5.

generally not expressible in C,,. Moreover, if we were to define clauses in IC,, as those first-order
clauses which are representable in /C,,, we would obtain a set of clauses containing no ¢ modalities,
thereby losing much of the expressivity of KCy,.

3. Prime Implicates and Prime Implicants in K, 53

Proof. Let us define clauses (resp. terms) to be the set of formulae in NNF which
do not contain A (resp. V). This is clearly the most expressive definition of clauses
and terms satisfying both P1 and P2, so to show the result, it suffices to show that
this definition does not satisfy P5.

Suppose for a contradiction that this definition does satisfy P5. Then there must
exist clauses Ay, ..., A, such that ¢(a Ab) = A A ... A A,. Each of the clauses A; is
a disjunction l; 1 V V [; 5,,. By distributing A over V, we obtain the following:

<>(a/\b) = \/ /n\lim.

(1seredn) E{Lyeeep1 15X {1y pn} i=1

from which we can infer that for each (j1,...,7n) € {1,...,p1} X ... x {1,...,pp} we

have
n

N lisi = Olanb)

i=1
Consider some (j1, ..., jn) such that A7, l; j, is consistent (there must be at least
one such tuple, otherwise we would have &(a Ab) = L). The formulae [; j, are
either propositional literals or formulae of the form Ok or Ok for some clause k. It

follows that A, l; j, must have the following form:
A e A AOYL A LAY ADY A Lo A DYy,

where 71, ..., & are propositional literals and 1, ..., ¥, X1, ---, Xn are clauses with
respect to the definition we have chosen. As we know that A}, l; ;, = ¢(aAb) and
Ny lij, = L, by Theorem 23] there must be some <), such that

Ohg ANOx1 A ... ADxy, = <C(a A D)

We now show that <1 = O(a A b) (and hence that = x1 A ... A xpn). Suppose
for a contradiction that this is not the case. Then we must have ¢, = a and
Yy = b. But by Theorem 2.31] every disjunct of v, (which we recall is a clause
w.r.t. our supposed definition) must either be unsatisfiable or equal to both a and
b. As the latter is impossible, it follows that v, = L, which is a contradiction
since we assumed that A}, [; j, is satisfiable. It follows then that in order to get
Oy ANOX1 A ... AOXy = ©(a Ab), there must be some x, which is not a tautology.

Now let us consider the formula

r= \/ OX1,.
{G15 i)l Nizy lig; 2L}

54 3.1. Defining Clauses and Terms in IC,,

where Oxj, ... j, is a non-tautological O-formula appearing in A l;;, (we have

n

just shown that such a formula must exist). Clearly it must be the case that

\ Nl =7
(1seerin)€{L,ecp1} X0 X {1,...pn } i=1

from which we get
Oland) ET

But according to Theorem 2.3.2], a satisfiable &-formula cannot imply a disjunction
of O-formulae unless that disjunction is a tautology, so we must have = 7. However,
this is impossible since it would imply (Theorem 2.3T]) that there is some x;,, .. j,

which is a tautology, contradicting our earlier assumption to the contrary. We can

thus conclude that there is no set of clauses Ay, ..., A, with respect to our selected
definition such that G(a Ab) = A A ... A Ay, and hence that any definition which
satisfies P1 and P2 cannot satisfy P5. O

The proof of Theorem B.I.Tlonly makes use of the fact that A does not distribute
over & and V does not distribute over O, which means that our impossibility result
holds equally well for most standard modal and description logics.

3.1.2 Analysis of candidate definitions

We will now consider a variety of possible definitions and evaluate them with respect
to the above criteria. Note that in what follows, we let ¢ range over the integers
between 1 and n, a range over the set of propositional variables, and L, C, and T

range over the sets of literals, clauses, and terms respectively.

Definition D1

The first definition that we will consider is that proposed in [CP95] in the context of
abduction. The authors define terms to be the formulae which can be constructed
from the propositional literals using only A and the modal operators. Modal clauses
and literals are not used in the paper but can be defined analogously, yielding the

following definition:

L:=T|Ll|la|=a|0;L|<"; L
D1 C :=T|Llla|-a|0;C|0;C|CVC
T:=T|L|a|=a|D;T|O:T|TAT

It is easy to see by inspection that this definition satisfies properties P1 and P2. It
is also easy to see that property P6 is satisfied since D1 is a context-free grammar,

3. Prime Implicates and Prime Implicants in K, 55

and it is well-known that the membership problem for context-free grammars can

be solved in polynomial time (cf. [You67]). Property P4 can also be shown to hold:

Lemma 3.1.2.
Definition D1 satisfies property P4.

Proof. We can show by induction on the structural complexity of formulae that the
function Nnf maps negations of literals to literals, negations of clauses to terms,
and negations of terms to clauses. As the proof is straightforward and rather
tedious, we will only give the proof for the case of clauses.

The base case is when the input to Nnf is the negation of a propositional literal.
The statement holds in this case since Nnf maps —a to —a and —(—a) to a, and
both a and —a are terms with respect to definition D1.

Next let us suppose that the statement holds for clauses A; and Ao, and let \;
and \g respectively be the formulae output by the function Nnf on inputs A\; and
A2. We now want to show that the result holds for more complex clauses built
from A\ and Ao. If Nnf is called on input —=0; A1, then because of the induction
hypothesis, we know that the output will be the formula <; A\;, which is a term
with respect to D1. If instead the input to Nnf is of the form —<; A1, then Nnf
will output the D1-term O; A\;. Finally, if the input to Nnf is the clause A; V g,
then the output will be the term A\; A Aa. |

The remaining properties are not satisfied by definition D1. Property P3 is
falsified since there are clauses that are not disjunctions of literals — take for instance
the clause O(a V b). Property P5 cannot hold because of our impossibility result
(Theorem B.I.T]). At first glance, it may seem that entailment between clauses or
terms of D1 could be accomplished in polynomial time (property P7), but this
turns out not to be the case. In fact, we can show this problem to be NP-complete.
The proof exploits the following correspondence between terms of D1 and concept
expressions in the description logic ALE.

Lemma 3.1.3.
1. The function f in Figure[2.4d maps D1-terms into ALE concept expressions.
2. The function g in Figure[2.48 maps ALE concept expressions into D1-terms.

Proof Sketch. Straightforward structural induction proof. O

Lemma 3.1.4.

Entailment between terms or clauses is NP-complete for definition D1.

56 3.1. Defining Clauses and Terms in IC,,

Proof. 1t follows from Theorem 2.81] that 7 = 7 if and only if = f(71) C f(m2).
We also know by Lemma B.I.3] that if 71 and 75 are terms with respect to D1,
then f(m1) and f(72) must be concept expressions in ALE. This means that we
can reduce entailment between terms with respect to D1 to subsumption between
ALE concepts. As concept subsumption in ALE is known to belong to the class
NP (Theorem [28.3)), it follows that entailment between D1-terms must also belong
to NP.

For NP-hardness, we use the function g from Figure 2.4D to map the concept
Cuy,s from Figure into a KC,, formula ¢ys. We know from Lemma [3.1.3] that
u,s is a term with respect to D1, and from Theorem 2.8.1 that ¢/ s is satisfiable
just in the case that the concept Cy s is. As it was shown in [Don03|] that U,S
has an exact cover if and only if Cy s is unsatisfiable, it follows that ¢/, S has an
exact cover if and only if ¢y s is unsatisfiable. But a term is unsatisfiable just in
the case that it entails the term L. This means the XC decision problem can be
polynomially-reduced to entailment between D1-terms, making the latter problem
NP-hard and hence NP-complete.

In order to show the NP-completeness of clausal entailment, we remark that
for definition D1, the function Nnf transforms negations of clauses into terms and
negations of terms into clauses (cf. proof of Lemma[3.1.2]). This means that we can
test whether a clause \ entails a clause A\’ by testing whether the term Nnf(—)\")
entails the term Nnf(—\). Likewise, we can test whether a term k entails another
term £’ by testing whether the clause Nnf(—«x') entails the clause Nnf(—x). As
the NNF transformation is polynomial, it follows that entailment between clauses
is exactly as difficult as entailment between terms, so clausal entailment is NP-
complete. O

Remark 3.1.5.

For the proof of Lemma[3.1.4] we made use of the fact that K,, contains the symbols
T and L. If we choose not to include these symbols in the language, then we need
to modify the NP-hardness proof, since the formula ¢y s used in the reduction
contains both T and L. The modification is straightforward: we replace occurrences
of T in ¢y s by a and replace L by —a. The resulting formula gp&’s is a D1-term
which is satisfiable whenever ¢y s is, so we can use 302’/17 s in place of ¢y s in the

proof.

Theorem 3.1.6.
Definition D1 satisfies properties P1, P2, P4, and P6, and falsifies properties
P3, P5, and P7.

Proof. Follows from Lemmas [B.1.2] and B.1.4] and the preceding discussion. O

3. Prime Implicates and Prime Implicants in K, 57

Definition D2

If we take the notion of literals from D1 and use it to construct the set of clauses
and terms, we obtain the following definition:

L:=T|Llla|-a|O;L|C; L
D2 C ==L|CVvC
T:=L|TANT

It can be easily verified that definition D2 satisfies properties P1-P3. For P6,
we again use the fact that D2 defines a context-free grammar. The proof of P4
is quite straightforward and similar that for definition D1, so will omit it here.
As for property P5, we can either use Theorem B.IT] or we can simply remark
that definition D2 is even less expressive than D1, and we have already shown D1
to falsify P5. The reduced expressiveness of D2 does not however improve its
computational complexity: property P7 is still not satisfied as we can show that
entailment between clauses or terms is NP-complete using exactly the same reduc-
tion as was used for definition D1. The fact that even an extremely inexpressive
definition like D2 does not allow for polynomial entailment between clauses and
terms suggests that property P7 cannot be satisfied by any reasonable definition
of clauses and terms for /C,,.

Theorem 3.1.7.
Definition D2 satisfies properties P1- P4 and P6 and falsifies P5 and P7.

Proof. It is easy to see that every D2-clause is also a D1-clause, and likewise
every D2-term is also a D1-term. It follows then that for definition D2 entailment
between clauses or terms is feasible in non-deterministic polynomial time, since we
have already shown this to hold for D1 (Lemma B.1.7]).

To show NP-hardness, we simply remark that the K, formula ¢y, s which was
used in the proof of Lemma [B.1.4] is a term with respect to D2. This means we
can use exactly the same proof of NP-hardness that we used for D1 to show NP-
hardness of entailment between D2-terms. We can also use the same reasoning as
in the proof for D1 to transfer the NP-hardness result from terms to clauses.

For the other properties, refer to preceding discussion.]

Definitions D3a and D3b

Given that even very inexpressive definitions like D2 fail to gain us polynomial
behavior, it seems reasonable to explore some more expressive options which allow

us to capture all of the expressivity of IC,,. We begin with the following definition

58 3.1. Defining Clauses and Terms in IC,,

of clauses that was proposed in [EF89] for the purpose of modal resolution:

D3 C =:=T|Llla|-a|0;C|<C;ConjC|CVC
ConjC == C|ConjC A ConjC

This definition of clauses can be extended to a definition of terms and literals which
satisfies P3 or P4, but there is no extension which satisfies both properties, as the

following theorem demonstrates:

Theorem 3.1.8.
There is no definition of literals, clauses, and terms which satisfies both P83 and
P/ and agrees with D3 on the set of clauses.

Proof. Let us suppose for a contradiction that we have a definition of literals,
clauses, and terms which satisfies P3 and P4 and defines the same set of clauses
as D3. Then it must be the case that the set of literals is defined as follows:

L:=T|Ll]a|-a|0;C|<C; ConjC

Now consider the literal ¢1(a V b). Because of property P4, there must be some
literal 6 which is equivalent to —(<$1(a V b)) = O;(—a A —=b). Clearly, must
be of the form O; 6 for some clause €', since neither propositional literals nor
O-formulae can be equivalent to O; (ma A =b) (by Theorem 2.3.3)). This means
that the clause #’ must be equivalent to —a A =b. By Theorem 2:32] ¢’ can only
contain propositional disjuncts and unsatisfiable O-formulae. However, a single
propositional literal cannot imply both —a and —b, so 8/ must have only unsatisfiable
disjuncts, contradicting the fact that ¢ = —a A —b. This means that there is
no clause @’ which is equivalent to —a A —b, and hence no literal # equivalent to
=(<1(a Vb)), contradicting our earlier assumption that P4 was satisfied. O

Let us now consider one of the possible extensions of D3 which satisfies P4 and
a maximal subset of P1-PT7:

L:=T|Llla|-a|O;L|C;L

D3a C :==T|Ll|a|-a|0;C|<C;ConjC|CVC
ConjC == C|ConjC A ConjC
T :=T|Ll|la|-a|0; DisjT | ;T |TANT
DisjT :=T|DisjT Vv DisjT

It can be seen from inspection of definition D3a that it satisfies P1. Property P4
holds by construction, property P5 is a consequence of Proposition 1.3 in [EF89],

3. Prime Implicates and Prime Implicants in K, 59

and property P6 holds since D3a defines a context-free grammar. As definition
D3a satisfies P1 and P5, it follows from Theorem B.1.1] that property P2 cannot
hold. D3a also falsifies P3 as there are clauses that are not disjunctions of literals
— take for instance the clause O(a V b). Given that definition D3a is strictly more
expressive than definitions D1 and D2, it follows that entailment between clauses
or terms must be NP-hard, which means that D3a does not satisfy P7. In fact, we
can show that entailment between clauses or terms of definition D3a is PSPACE-
complete, and hence of the same complexity as entailment between arbitrary IC,

formulae.
") qo
i) Aito(Ajri((5gi V =g5) AB(=gi V =g;) Ao AO™(2gi V —g5)))
iiia’) /\z 0((ﬁqz VOgir1) AD(=gi V Ogip1) A AO™ (=g V Ogiv))
iib") Agjg,=vy 0 (26 V O(gi1 A pis1)) A B (=g V O(gir1 A —pit1))

i) AT AT (07 (=pi v Opi) AT (pi v Opy))
V7 Dm(ﬁqm\/el) ../\Dm(ﬁqm\/el)

(
(ii")
(ii
(
(i
(v)

Figure 3.1: The formula f/(3) is the conjunction of the above formulae, where the

formulae 0; in (v’) are propositional clauses such that 8 = 6; A ... A 0.

Lemma 3.1.9.
Entailment between clauses (resp. terms) with respect to definition D3a is PSPACE-
hard.

Proof. Membership in PSPACE is immediate since entailment between arbitrary
formulae in K, can be decided in polynomial space (Corollary [2.5.2)).

To prove PspACE-hardness, we adapt the proof of PSPACE-hardness of K out-
lined in Chapter 2l Specifically, we show how the formula f(3) (Figure 2:2]) which
was used to encode the QBF validity problem can be rewritten as a conjunction of
D3a-clauses. Our modified encoding f/(3) is given in Figure Bl We claim that
the following:

(1) f(B) and f'(B3) are logically equivalent
(2) if 6 is in CNF, then f’(5) is a conjunction of clauses with respect to D3a

)

(8
To show (1), it suffices to show that (i)=(1"), (ii)=(ii"), (ilia)=(iiia’), (iiib)=(iiib’),
(iv)=(iv’), and (v)=(v’). The first equivalence is immediate since (i) and (i’) are

(3) if 0 is in CNF, then f’(8) can be generated in polynomial time from f

60 3.1. Defining Clauses and Terms in IC,,

identical. (ii)=(ii’) follows from the fact that OF(g; — Njzi =) = Njsi Ok (—g; Vv
—gj). (ilia)=(ilia’) holds since (iiia’) is just (ilia) with ¢; — <gij41 replaced with
=q;V<qiy1. We have (iiib)=(iiib’) since O%(q; — (O(qir1/APir1)AO(Gir1A—pis1))) =
0'(=gi V O(gir1 A pir1)) A DY (=¢ V O(gir1 A —pi1)). The equivalence (iv)=(iv’)
holds as 07 ((p; — Op;) A (—p; — O=p;)) = 07 (=p; V Op;) A 07 (p; V O-p;). Finally,
we have (v)=(v’) since § = 61 A...A6;. Thus, f(3) and f'(3) are logically equivalent.

To prove (2), we show that each of the component formulae in f/(3) is a con-
junction of clauses with respect to D3a, provided that 6 is in CNF. Clearly this is
the case for (i) as (i’) is a propositional literal. The formula (ii’) is also a conjunc-
tion of clauses with respect to D3a since it is a conjunction formulae of the form
0% (=g; V —¢;). Similarly, (iiia’), (iiib’), and (iv") are all conjunctions of clauses since
the formulae 0% (=q; V Cgiv1), O (=g V O(gir1 Apiv1))s OU(=q V O(gir1 A —piv1)),
Ok (—p; vV Op;), and OF(p; V O-p;) are all clauses with respect to D3a. The formula
(v’) must also be a conjunction of clauses since the 6; are assumed to be proposi-
tional clauses, making each O™ (—¢,, V §;) a clause with respect to D3a, and (v’) a
conjunction of clauses with respect to D3a.

For (3), it is clear that we can transform (i), (ilia), (iiib), and (iv) into (i’),
(ilia’), (iiib’), and (iv’) in polynomial time as the transformations involve only
simple syntactic operations and the resulting formulae are at most twice as large.
The transformation from (ii) to (ii’) is very slightly more involved, but it is not too
hard to see the resulting formula is at most m times as large as the original (and m
can be no greater than the length of f(3)). The only step which could potentially
result in an exponential blow-up is the transformation from (v) to (v’), as we put
into CNF. But under the assumption that @ is already in CNF, the transformation
can be executed in polynomial time and space, as all we have to do is separate 6
into its conjuncts and rewrite the (g, — 0;) as (—=gm, V 6;).

Now let 8 = Q1p1...-Qmpmb be a QBF such that § = 6; A ... A §; for some
propositional clauses 6;. Let f'(3) be the formula as defined in Figure Bl By (2)
above, we know that f'(8) = A1 A ... A\, for some clauses \; with respect to D3a.
Now consider the formula ¢ = O(0OM A ... AOX, AOT). We can show that f/(3) is

satisfiable if and only if { is satisfiable as follows:
¢ is unsatisfiable
& OM Ao ADOXN AOT is unsatisfiable
< A AL AX AT is unsatisfiable
& A1 A ... A, is unsatisfiable
< f'(B) is unsatisfiable

But we also know from (1) above that f/'(3) = f(3), and from the proof of Theorem

3. Prime Implicates and Prime Implicants in K, 61

257 that f(f) is satisfiable just in the case that § is a QBF validity. It is also
easy to see that (is satisfiable if and only if (does not entail the contradiction
1. Putting this altogether, we find that g is valid just in the case that ¢ does
not entail L. As ¢ and L are both clauses and terms with respect to D3a, we
have shown that the QBF-validity problem for QBF with propositional formulae in
CNF can be reduced to the problems of entailment of clauses or terms with respect
to D3a. Moreover, this is a polynomial time reduction since it follows from (3)
that the transformation from 3 to ¢ can be accomplished in polynomial time. This
suffices to show PSPACE-hardness, since it is well-known that QBF-validity remains
PspACE-hard even when we restrict the propositional part 8 to be a formula in CNF
(cf. [Pap94]).

As for the complexity of entailment between D3a-terms, we simply remark
that A = L just in the case that T |= =\ (Theorem [23.1]). As the NNF of the
negation of D3a-clause is a D3a-term (this can be shown by a very simple inductive
argument), it follows that we can reduce clausal entailment to entailment between

terms, making the later problem PSPACE-hard, and thus PSPACE-complete. U

Remark 3.1.10.

If we decide not to include T and L in I, then we must modify the proof of Lemma
B9 by replacing T with some tautologous D3a-clause (e.g. O(aV—a)) and L with
some unsatisfiable D3a-clause (e.g. <(a A —a)).

Theorem 3.1.11.
Definition D3a satisfies properties P1, and P4-P6, and it falsifies properties P2,
P3, and P7.

Proof. Follows from Lemma [3.1.9] and the preceding discussion. O

If instead we extend D3 so as to enforce property P3, we obtain the following

definition:

L:=T|Ll|a|-a|0;C|0;ConjC
D3b C ==L|CVC

ConjC == C|ConjC A ConjC

T :=L|TANT

Definition D3b satisfies all of the properties except P2, P4, and P7. Property P4
fails to hold because the negation of the literal <¢1(a V b) is not equivalent to any
literal. Property P7 fails to hold for the same reasons as for definition D3a. To
prove that P5 holds, we use standard logical equivalences to rewrite formulae as

equivalent conjunctions of clauses and disjunctions of terms.

62 3.1. Defining Clauses and Terms in IC,,

Theorem 3.1.12.
Definition D3b satisfies properties P1, P83, P5, and P6, and falsifies P2, P4,
and P7.

Proof. The satisfaction of properties P1 and P3 can be immediately determined
by inspection of definition D3b, as can the dissatisfaction of property P2. It was
shown in the proof of Theorem B.I.8 that the negation of the literal <;(aV b) is not
equivalent to any literal, which means property P4 is falsified. We will prove later
in this subsection that property P5 holds for definition D5, and we will transfer
the result to D3b by showing that clauses and terms with respect to D5 are also
clauses and terms with respect to D3b. Property P6 follows from the tractability
of recognition for context-free grammars [You67].

For P7, we first remark that D3a and D3b define exactly same set of clauses,
which means that we can use the same proof as was used for D3a to show that
entailment between D3b-clauses is PSPACE-complete. For D3a-terms, we use the
fact that the formula ¢ used in the reduction for D3a-clauses is in fact a term with
respect to D3b (this can be easily verified). Thus, the proof of PSPACE-hardness of
entailment between D3a-clauses also gives us the PSPACE-hardness of entailment
between D3b-terms. O

Definition D4

The next definition which we will consider is a very simple definition that satisfies
properties P3, P4, and P5. The definition, which is inspired by the notion of
modal atom proposed in [GS96], defines literals as the set of formulae in NNF' that
cannot be decomposed propositionally.

L:=T|Llal-a|lT;e|[Cip
D4 C ==L|CVvC
T 2=L|TANT
o n=alnaleANe|lpVe|Op|Op

Definition D4 can be shown to satisfy all of the properties except P2 and P7.
For P7, we note that an arbitrary formula ¢ in NNF is unsatisfiable (a PSPACE-
complete problem) if and only if Cp = L.

Theorem 3.1.13.
Definition D4 satisfies properties P1, P3-P6, and it falsifies properties P2 and
P7.

3. Prime Implicates and Prime Implicants in K, 63

Proof. The satisfaction or dissatisfaction of properties P1, P2, and P3 can be
verified immediately from inspection of definition D4.

The proof of property P4 is straightforward. First, the proof for literals: the
negation of the literal a is equivalent to the literal —a; the negation of the lit-
eral —a is equivalent to the literal a; the negation of the literal O; ¢ is equivalent
to <©; Nnf(—¢) (which is a literal since Nnf(—¢) is a formula in NNF which is
equivalent to —¢); and the negation of the literal <; ¢ is equivalent to the literal
O, Nnf(—¢). Then to show the result for clauses and terms, we simply use the
fact that negations of disjunctions of formulae are equivalent to conjunctions of
the negations of their disjuncts and the negations of conjunctions of formulae are
equivalent to the disjunctions of the negations of their conjuncts.

For P5, we note that the procedure Dnf from Chapter 2 can be used to rewrite
any arbitrary IC,, formula as an equivalent disjunction of terms with respect to
D4. The procedure Cnf can be used to transform /C, formulae into equivalent
conjunctions of D4-clauses. Note that both Dnf and Cnf return formulae with
the same signature and depth as the original formula (we will require this fact in a
later chapter).

For P6, we use the tractability of membership for context-free grammars, and

for P7, we refer to the reduction outlined in the preceding discussion. O

Definition D5

Definition D4 is very liberal, imposing almost no structure on the formulae behind
modal operators. If we define literals to be the formulae in NNF that cannot be
decomposed modally (instead of propositionally), we obtain a much more restricted

definition which satisfies exactly the same properties as D4.

L:=T|Ll|la|-a|0;,C|O;T
D5 C ==L|CVC
T :=L|TAT

To prove that P5 holds, we show how arbitrary K, formulae can be rewritten as
conjunctions of clauses or disjunctions of terms with respect to definition D5 by
using standard logical equivalences.

Lemma 3.1.14.
Definition D5 satisfies P5.

Proof. We demonstrate that any formula in IC,, in NNF is equivalent to a formula
in conjunction of clauses with respect to definition D5. The restriction to formulae

64 3.1. Defining Clauses and Terms in IC,,

in NNF is without loss of generality as every formula is equivalent to a formula
in NNF (cf. Theorem 2:42]). The proof proceeds by induction on the structural
complexity of formulae. The base case is propositional literals, which are already
conjunctions of clauses since every propositional literal is a clause with respect to
D5. We now suppose that the statement holds for formulae v; and 9 and show
that it holds for more complex formulae.

We first consider ¢ = 1)1 A 2. By assumption, we can find clauses p; and (;
such that ¥ = p1 A ... A p, and Y9 = (1 A ... A (. Thus, ¢ is equivalent to the
formula p1 A ... A pp, ACL A ... A G, which is a conjunction of clauses with respect to
definition D5.

Next we consider ¢ = 11 V 9. By the induction hypothesis, we have ¢¥; =
P1A...Apn and P2 = (1AL Ay for some clauses p; and ;. Thus, ¢ = (p1A...App)V
(C1A...ACm), which can be written equivalently as ¢ = A¢ jyeq1,...) x{1,....m} (P V()
Since the union of two clauses produces another clause, all of the p; VV (; are clauses,
completing the proof.

We now consider the case where ¢ = Oy 1p1. By assumption, ¥ = p1 A ... A py,
where each p; is a clause. So ¢ = Oy (p1 A ... A pp). But we also know that O (p1 A
e App) =0k p1 Ao AOg pp. Tt follows that ¢ is equivalent to Oy p1 A ... A Qg pp,
which is a conjunction of clauses since the Oy p; are all clauses.

Finally, we consider ¢ = < 1;. Using the induction hypothesis, we have ¢ =
Ok (p1 A ... A\ pp) for clauses p;. But since the p; are clauses, each p; is a disjunction
of literals l; 1 V ... V l; ,. After distributing A over V and V over <, we find that ¢

is equivalent to the formula

\/ Lo (117]‘1 A l27j2 VANPUSIVAN ln,jn)
(G155dn) {1, p1 X X {1, ,pn }

which is a clause with respect to D5.
The proof that every formula is equivalent to a disjunction of terms with respect
to D5 proceeds analogously. U

Theorem 3.1.15.
Definition D5 satisfies properties P1, P3-P6, and it falsifies P2 and P7.

Proof. Properties P1-P3 can be verified by inspection of definition D5. We omit
the proof for P4 as it is quite similar (but more tedious) than the proof for D4.
Property P5 was proven in LemmaB.1.T4], and for property P6 we again use the fact
that the membership problem for context-free grammars is tractable. For property
P7, we can show that entailment between clauses or terms is PSPACE-complete by
using exactly the same proof as was given for D3a (see Lemma [B.I.9]). This proof

3. Prime Implicates and Prime Implicants in K, 65

is applicable to D5 since the formula f’(3) which was used to encode instances of

QBF is also a conjunction of clauses with respect to D5. O

Finally, we close this subsection by showing that the sets of clauses and terms
with respect to D5 are properly included in the sets of clauses and terms for def-
inition D3b. We require this result in order to transfer our proof of property P5
to definition D3b.

Theorem 3.1.16.
Every clause (resp. term) with respect to D5 is a clause (resp. term) with respect
to definition D3b.

Proof. We will show by induction on the structural complexity of formulae that:
1. every clause C' with respect to D5 is a clause with respect to definition D3b

2. every term T with respect to D5 is a term with respect to definition D3b

and a conjunction of clauses with respect to D3b

We require this stronger formulation of the statement to prove some of the sub-
cases.

The base case for our induction is propositional literals, which are both clauses
and terms with respect to D5. It is easy to see that (1) and (2) are verified since
propositional literals are both clauses and terms with respect to definitions D3b
(and hence they are also conjunctions of clauses with respect to D3b).

For the induction step, we will show that the above statements hold for arbitrary
clauses or terms w.r.t. D5 under the assumption that the statements hold for all
of their proper sub-clauses and sub-terms.

We begin with clauses. Let C be a D5-clause such that all proper sub-clauses
and sub-terms of C' satisfy (1) and (2). Now since C is a clause with respect to
D5, it can either be a propositional literal or a formula of the form Cy VvV Cy for
clauses C7 and Cy, Oy C4 for some clause C4, or O T for some term T7. The case
where C' is a propositional literal has already been treated in the base case. Let
us thus consider the case where C' = C V Cy. By the induction hypothesis both
C4 and Cy are clauses with respect to definition D3b and for definition D3b the
disjunction of two clauses is a clause, so statement (1) is verified. We next consider
the case where C' = O C for some clause C; with respect to D5. Statement (1)
follows easily as we know that C; must also be a clause with respect to D3b, and
for definition D3b putting a O modality before a clause yields another clause. We
now suppose that C = <, 17 for some term 77 with respect to D5. We know from

66 3.1. Defining Clauses and Terms in IC,,

the induction hypothesis that 77 is a conjunction of clauses with respect to D3b
and hence that $p T is a clause with respect to D3b.

We next consider terms. Let T be a D5-term such that all proper sub-clauses
and sub-terms of T satisfy (1) and (2). Then T must be either a propositional
literal or a formula of the form T3 A 15 for terms T and 15, O Cq for some clause
Cy, or O Ty for some term T7. If T'= T7 ATh, then the first part of (2) holds since
we know 17 and 75 to be terms with respect to D3b, and conjunctions of terms are
also terms for definition D3b. The second half is also verified since both T and 15
are assumed to be conjunctions of clauses with respect to D3b, which means that
T is also a conjunction of clauses with respect to this definition. Next suppose that
T = 0, Cq. Since C; is known to be a clause with respect to D3b, the formula
Oy (' is a literal, and hence both a term and clause with respect to definition D3b.
Finally, we treat the case where T' = < T7. We use the assumption that 77 is
a conjunction of clauses with respect to D3b, from which we get that $p T} is a

literal, and hence both a term and a clause with respect to D3b. O

3.1.3 Summary and discussion

A summary of our analysis of the different definitions with respect to properties
P1-P7 is provided in Figure

D1 D2 D3a | D3b | D4 | D5
P1 yes yes yes yes | yes | yes
P2 yes yes no no no | no
P3 no yes no yes | yes | yes
P4 yes yes yes no | yes | yes
P5 no no yes yes | yes | yes
P6 yes yes yes yes | yes | yes
P7 | no (NP-complete) | no (PSPACE-complete)

Figure 3.2: Properties of candidate definitions of literals, clauses, and terms.

Deciding between different candidate definitions is of course more complicated
than counting up the number of properties that the definitions satisfy, the simple
reason being that some properties are more important than others. Take for in-
stance property P5 which requires clauses and terms to be expressive enough to
represent all of the formulae in /C,,. If we just use the standard propositional def-
inition of clauses and terms (thereby disregarding the modal operators), then we
find that it satisfies every property except P5, and hence more properties than any
of the definitions considered in this section, and yet we would be hard-pressed to

3. Prime Implicates and Prime Implicants in K, 67

find someone who considers the propositional definition an appropriate definition
for KCp,. This demonstrates that expressiveness is a particularly important property,
so important in fact that we should be willing to sacrifice properties P2 and P7 to
keep it. Among the definitions that satisfy P5, we prefer definitions D4 and D5
to definitions D3a and D3b, as the latter definitions have less in common with the
propositional definition and present no advantages over D4 and D5.

Of course, when it comes down to it, the choice of a definition must depend on
the particular application in mind. There may very well be circumstances in which
a less expressive or less elegant definition may prove to be the most suitable. In
this thesis, we are using clauses and terms to define prime implicates and prime
implicants, so for us the most important criteria for choosing a definition will be the
quality of the notions of prime implicates and prime implicants that the definition
induces.

3.2 Defining Prime Implicates and

Prime Implicants in /C,

In the previous section, we introduced a number of different possible definitions
of clauses and terms in &C,,. Each of these definitions gives rise to corresponding
notions of prime implicates and prime implicants. The objective of the present
section will be to evaluate to what extent the notions of prime implicates and
prime implicants induced by the various definitions are suitable generalizations of
the propositional notions.

3.2.1 Basic definitions

Once a definition of clauses and terms for K, has been fixed, prime implicates and
prime implicants can be defined in exactly the same manner as in propositional

logic:

Definition 3.2.1.
A clause A is an implicate of a formula ¢ if and only if ¢ = A. A clause A is a

prime tmplicate of ¢ if and only if:
1. X is an implicate of ¢
2. If X is an implicate of ¢ such that X' = A, then A = X

Definition 3.2.2.
A term £ is an implicant of the formula ¢ if and only if k = ¢. A term & is a prime
implicant of ¢ if and only if:

68 3.2. Defining Prime Implicates and Prime Implicants in Ky,

1. k is an implicant of ¢
2. If k' is an implicant of ¢ such that x = &/, then &' = &

Of course, the quality of the notion of prime implicate (resp. implicant) that we

get will be determined by the definition of clause (resp. term) that we have chosen.

3.2.2 Desirable properties

Our evaluation of the different notions of prime implicates and prime implicants in
K, will be based on the following set of well-known properties of the propositional
notions (cf. [Mar00]):

Finiteness The number of prime implicates (resp. prime implicants) of a formula
is finite modulo logical equivalence.

Covering Every implicate of a formula is entailed by some prime implicate of the
formula. Similarly, every implicant of a formula entails some prime implicant

of the formula.

Equivalence A model 9 is a model of ¢ if and only if 9t is a model of all the prime

implicates of ¢ if and only if 991 is a model of at least one prime implicant of

Implicant-Implicate Duality Every prime implicant of a formula is equivalent
to the negation of some prime implicate of the negated formula. Conversely,
every prime implicate of a formula is equivalent to the negation of a prime
implicant of the negated formula.

Distribution If A is a prime implicate of @1 V ... V ¢,, then there exist prime
implicates A1, ..., Ay of ¢1, ..., @, such that A = Ay V... V A\,. Likewise, if &
is a prime implicant of @1 A ... A @, then there exist prime implicants k1, ...,
Kn Of 01, ..., oy such that K = kK1 A ... A Ky

Finiteness ensures that the prime implicates/implicants of a formula can be
finitely represented, which is of course essential if we aim to use prime impli-
cates/implicants in applications. The Covering property requires that the prime
implicates provide a complete representation of the formula’s implicates (and simi-

larly for implicants), a crucial property when one uses these notions for knowledge

2The property Equivalence is more commonly taken to mean that a formula is equivalent
to the conjunction of its prime implicates and the disjunction of its prime implicants. We have
chosen a model-theoretic formulation in order to allow for the possibility that the set of prime
implicates/implicants is infinite.

3. Prime Implicates and Prime Implicants in K, 69

compilation. Equivalence guarantees that no information is lost in replacing a for-
mula by its prime implicates/implicants. Definitions which satisfy Finiteness and
Covering also satisfy Equivalence, but the converse does not necessarily hold.
Implicant-Implicate Duality allows us to transfer results and algorithms for
prime implicates to prime implicants, and vice-versa. Finally, Distribution relates
the prime implicates/implicants of a formula to the prime implicates/implicants of
its sub-formulae. This property will play a key role in the prime implicate genera-

tion algorithm presented in the next chapter.

3.2.3 Analysis of candidate definitions

In this subsection, we evaluate the notions of prime implicates and prime implicants
induced by each of the different candidate definitions of clauses and terms using the
criteria set forth in the previous subsection. Our results will show that definition
D4 yields a notion of prime implicates and prime implicants which satisfy all of
the stated criteria, and moreover, that it is the only candidate definition with this

property.

Analysis of definitions D1 and D2

For definitions D1 and D2, we show that Equivalence does not hold.

Theorem 3.2.3.
The notions of prime implicates and prime implicants induced by definitions D1
and D2 do not satisfy Equivalence.

Proof. The proof is the same for both definitions. Suppose that Equivalence
holds. Then for every formula ¢, the set II of prime implicates of ¢ is equivalent to
. But this means that the set ITU {—¢} is inconsistent, and hence by compactness
of K,, (Theorem 2.7.3]) that there is some finite subset S C IT U {—¢} which is
inconsistent. If ¢ # 1, then we know that the set S must contain —¢ because
the set of prime implicates of ¢ cannot be inconsistent. But then the conjunction
of elements in S\ {—¢} is a conjunction of clauses which is equivalent to ¢. It
follows that every formula ¢ is equivalent to some conjunction of clauses. As we
have shown earlier in the proof of Theorem [B.1.1] that there are formulae which are
not equivalent to a conjunction of clauses with respect to D1 or D2, it follows that

Equivalence cannot hold for these definitions. O

70 3.2. Defining Prime Implicates and Prime Implicants in Ky,

Analysis of definitions D3a, D3b, and D5

For definitions D3a, D3b, and D5, we will show that the clause O(OFa) VvV O(aAbA
OF—a) is a prime implicate of O(aAb) for every k > 1. We thereby demonstrate not
only that these definitions admit formulae with infinitely many prime implicates but
also that they allow seemingly irrelevant clauses to be counted as prime implicates.
This gives us strong grounds for dismissing these definitions as much of the utility of
prime implicates in applications comes from their ability to eliminate such irrelevant

consequences.

Theorem 3.2.4.
The notions of prime implicates and prime implicants induced by definitions D3a,
D3b, and D5 do not satisfy Finiteness.

Proof. Suppose that clauses are defined with respect to definition D3a, D3b, or D5
(the proof is the same for all three definitions). Consider the formula ¢ = O(a A D).
It follows from Theorem 2.3.3that ¢ implies A\, = O(O%a)V O (aAbADF—a) for every
k > 1. As the formulae A\, are clauses (with respect to D3a, D3b, and D5), the
Ar are all implicates of ¢. To complete the proof, we show that every Ay is a prime
implicate of . Since the A are mutually non-equivalent (because O0P—a [~ O%9-a
whenever p # q), it follows that ¢ has infinitely many prime implicates modulo

equivalence.

Consider some A and some implicate p = 1 V... V Oy, V Oy V..oV Oxy, of
that implies it (by Theorem 2:3.2] there cannot be any propositional literals in p).
Using Theorem 233 and the fact that ¢ = u = Mg, we get the following:

(a) aAb = xi Vi V... V by, for some y;
(b) xi = (OFa) v (a A b A OF=a) for every x;
(€) Y1V ..V, EaNbADOF-a

Let x; be such that aAb = x; V; V...V 1,. We remark that x; must be satisfiable
since otherwise we can combine (a) and (c) to get aAb = a AbAOF—a. Now by (b),
we know that x; = (OFa)V(aAbADF=a) and hence that y; A(0%=a)A(=aV-bVv<OFa)
is inconsistent. It follows that both x; A (0F=a) A —a and x; A (OF—a) A —b are
inconsistent. Using Theorem Z:3.1] we find that either x; = O*a or x; = a Ab. As
X is a satisfiable clause with respect to definitions D3a, D3b, and D5, it cannot
imply a A b, so we must have x; = OFa. By putting (a) and (c) together, we find
that
aAbA-Xi EUYLY oV Yy = a AbATF—a

3. Prime Implicates and Prime Implicants in K, 71

It follows that —y; = OF—a, i.e. OFa = x;. We thus have x; = O¥a and 1 V ... V

m = aAbADF-a. As OFa = y; and a Ab A OF—a = 1p1 V ... V 4y, by Theorem
233 we get O(O*a) v O(a Ab A DOF=a) = Oy VO V... V Oy, = 1 and hence
Ar = p. We have thus shown that any implicate of ¢ which implies A must be
equivalent to A\;. This means that each A; is a prime implicate of ¢, completing
the proof. O

Analysis of definition D4

We will now show that the notions of prime implicates and prime implicants induced
by definition D4 satisfy all of the desired properties. We start off by proving that
Implicant-Implicate Duality holds, as we will make use of this result in the

proofs of some of the other properties.

Theorem 3.2.5.
The notions of prime implicates and prime implicants induced by definition DJ

satisfies Implicant-Implicate Duality.

Proof. Suppose for a contradiction that we have a prime implicant « of some formula
© which is not equivalent to the negation of a prime implicate of —¢. Let A be a
clause which is equivalent to =« (there must exist such a clause because of property
P4, cf. Theorem[B.I.13]). The clause A is an implicate of - since k = ¢ and A = k.
Since we have assumed that A is not a prime implicate, there must be some implicate
X of = such that X' = X and A £ X. But then let £’ be a term equivalent to
=\ (here again we use P4). Now £’ must be an implicant of ¢ since ¢ = —x'.
Moreover, k' is strictly weaker than s since X = X and A £ X and k = =\ and
k' = —=). But this means that x cannot be a prime implicant, contradicting our
earlier assumption. Hence, we can conclude that every prime implicant of a formula
 is equivalent to the negation of some prime implicate of =p. The proof that every
prime implicate of a formula ¢ is equivalent to the negation of a prime implicant
of = proceeds analogously. U

For the proofs of Finiteness and Covering, we will require the following lemma
which allows us to restrict our attention to those implicates/implicants of a formula
whose depths are no greater than that of the formula and whose signatures are

contained in the signature of the formula.

Lemma 3.2.6.
Every implicate X (w.r.t. definition D4) of a formula ¢ is entailed by some implicate
N (w.r.t. definition D4) of ¢ with sig(N') C sig(¢) and with depth at most 6(p).

72 3.2. Defining Prime Implicates and Prime Implicants in IC,,

Likewise every implicant k (w.r.t. definition D4) of ¢ entails an implicant &' (w.r.t.
definition D4) of ¢ with sig(x') C sig(p) and depth at most 6(yp).

Proof. We intend to show that the following statement holds: for any formula ¢
and any implicate A of ¢, there exists a clause A\’ such that ¢ = N = A\ and
sig(\') C sig(p) and §(N\) < §(p). So let ¢ be an arbitrary formula, and let A be
some implicate of . If ¢ is a tautology, then we can set ' = T. If A = L, then
we can set A = L, as this clause verifies all of the necessary conditions. Now we
consider the case where neither ¢ nor A is a tautology or a falsehood, and we show
how to construct the clause \’'. The first thing we do is use the transformation Dnf
from Chapter 2 to rewrite ¢ as a disjunction of terms 7; with respect to D4 such
that the T; contain only the variables appearing in ¢ and have depth at most §(p):

p=T1V..VT,

As ¢ E A, it must be the case that Ts = A for every T5 (1 < s < z). Our
aim is to find a clause A\ for each of the terms Ty such that Ts = A = A and
sig(As) C sig(Ts) and 0(As) < §(Ts). So consider some Ts. Since Ty is a term, it
has the form

n
MNA AV A /\(Oi Vit A A ANDg X1 A e A D X))
=1
where 1, ..., 7% are propositional literals. As)\ is a clause, it must be of the form
n
,mV..Vp,V \/(<>z €1V ...V < €iq; V Ui Ci,l V.. Vv Ci,n)
=1

where p1, ..., pp are propositional literals. As T |= A, it must be the case that the

formula

YN A A /\?:1(02‘ ¢i,1 A NSO ¢i,li A\ DiXi,l Ao A Xi,mi)/\
S RARTIR ARV WA /\?:1(52‘ €1 N A d; 7€ g N < —(@1 A NSO _‘Ci,ri)

is unsatisfiable. It follows from Theorem 2.3.1] that one of the following must hold:

(@) VIA . AYA=pLA L ATpy =L

(b) there exists some 1 < i <n and some 1 < u <; such that
1/Ji7u A\ Xi,1 AN Xi,m; A\ €41 VANPIRAN —€4 g lz 1

(c) there exists some 1 < i < n and some 1 < u < r; such that
G AXi 1 N oo N Ximy N6 N o N € g,): 1

3. Prime Implicates and Prime Implicants in K, 73

Now if (a) holds, then there must be w and v such that v, = p,. We can then set

As = Y since Ts = vy E A, 6(7) =0 < 0(Ts), and sig(v,) = {1} C sig(Ty). If it
is (b) that holds, then it must be the case that

wi,u AXia N oo N Ximy): €1V ...Vé€yg

and hence that

Ci (Yiu AXia N e A Xim;) F Qi€in V.. VOi€ig A

We can set As = i (Vi u AXi,1 A -o- AXim,), since T = O (Vi u AXi 1 A AXim,) FE A,

5(<>i (wz,u /\Xi,l A... /\Xi,mi)) < (5(T8), and sz‘g(<>i (1/Jl7u /\Xi,l A... /\Xi,mi)) C Sig(TS).
Finally, if (¢) holds, then it must be the case that

Xi,1 AN o N Xiym,): €1V ..VegVGu

and hence that

O 1 Ao A Ximg) F i€l Vo VOi€iq VO Gu E A

So we can set As = O(xi1 Ao A Xim,)s a8 Ts = O(Xi,1 Ao AXimg) E A, 6(O(xa1 A
e A Ximg)) < 0(Ts), and sig(O(xi1 A .. A Xim,)) € sig(Ts). Thus, we have shown
that for every Ty, there is some A such that Ts = As = A and sig(As) C sig(Ts) and
0(As) < 0(Ts). But then A V...V A, is a clause implied by every Ty, and hence by
¢, and such that sig(A\s) C UZ_;sig(Ts) C sig(yp) and 6(As) < maxs 6(Ts) < 3(¢p).
Now let x be an implicant of ¢, and let A be the formula Nnf(-x). We know
from Theorem that A = =k, and it is straightforward to show that A must be
a clause with respect to D4. But then A is an implicate of —¢, so there must be
some clause X with sig(\') C sig(—p) = sig(¢) and depth at most §(—p) = d(p)
such that =¢ = N = A. Let £’ be Nnf(=)'). It can be easily verified that £’ is a
term. Moreover, by Theorem [Z4.2] we have £’ = -, sig(x) = sig(=\') = sig(\N),
and 6(k’) = §(=)\) = §(N). But then «’ is a term such that sig(k’) C sig(y),
(k') <d(p), and Kk = K E . O

Theorem 3.2.7.
The notions of prime implicates and prime implicants induced by definition D4
satisfy Finiteness.

Proof. Consider an arbitrary formula . From Lemma [3.2.6] we know that for each
prime implicate A of ¢, there must be an implicate A" of ¢ containing only those
propositional atoms and modal operators appearing in ¢ and such that §(\') < §(¢p)
and N = . But since A is a prime implicate, we must also have A = X and hence

74 3.2. Defining Prime Implicates and Prime Implicants in Ky,

A = X. Thus, every prime implicate of ¢ is equivalent to some clause built from the
finite set of propositional symbols and modal operators appearing in ¢ and having
depth at most d(¢). As there are only finitely many non-equivalent formulae on
a finite alphabet and with fixed depth, it follows that there can be only finitely
many distinct prime implicates. By Theorem B.2.5] every prime implicant of ¢ is
equivalent to the negation of some prime implicate of —. It follows then that every

formula can only have finitely many distinct prime implicants. O

Theorem 3.2.8.
The notions of prime implicates and prime implicants induced by definition DJ

satisfy Covering.

Proof. Let ¢ be an arbitrary formula. From Lemma B.2.6] we know that every
implicate of ¢ is entailed by some implicate of ¢ whose signature is contained in

sig(p) and whose depth is at most (). Now consider the following set
Y ={o|¢ E 0,0 is a clause, sig(c) C sig(p),0(c) < d(p)}
and define another set II from ¥ as follows:
H={oceX| Ao’ €. o' Eoand o £}

In other words, II is the set of all of the logically strongest implicates of ¢ having
depth at most §(¢) and built from the propositional letters and modal operators
in ¢. We claim the following:

(1) every 7 € Il is a prime implicate of ¢
(2) for every implicate A of ¢, there is some 7 € IT such that 7w = A

We begin by proving (1). Suppose that (1) does not hold, that is, that there is some
m € II which is not a prime implicate of ¢. Since 7 is by definition an implicate
of ¢, it follows that there must be some implicate A of ¢ such that A = 7 and
7 = A. But by Lemma [B.2.6] there is some implicate A\ of ¢ such that 6(\') < 6(¢),
sig(\') C sig(p), and X' = A. But that means that X is an element of 3 which
implies but is not implied by 7, contradicting the assumption that 7 is in II. We
can thus conclude that every element of II must be a prime implicate of ¢.

For (2): let A be some implicate of ¢. Then by Lemma [B.2.6] there exists some
clause X' € ¥ such that A’ = A, If X' € TI, we are done. Otherwise, there must exist
some o € ¥ such that o = X and XN [£ 0. If ¢ € I, we are done, otherwise, we
find another stronger member of 3. But as X has finitely many elements modulo
equivalence, after a finite number of steps, we will find some element which is

3. Prime Implicates and Prime Implicants in K, 75

in II and which implies A. Since we have just seen that all members of II are
prime implicates of ¢, it follows that every implicate of ¢ is implied by some prime
implicate of .

For the second part of Covering, let x be an implicant of ¢, and let A be a
clause equivalent to —x (there must be one because D4 satisfies property P4). Now
since k = ¢, we must also have —p = A. According to what we have just shown,
there must be some prime implicate m of - such that —¢ = 7 = A. By Theorem
B2.5] 7 must be equivalent to the negation of some prime implicant p of ¢. But
since p = -7 and m = A and A = -k, it follows that k = p, completing the proof.[]

We now prove that Equivalence is satisfied.

Theorem 3.2.9.
The notions of prime implicates and prime implicants induced by D4 satisfy Equiv-
alence.

Proof. Let ¢ be some formula in &, and suppose that 9 is a model of every prime
implicate of . As D4 is known to satisfy property P5 (by Theorem BI13]), we
can find a conjunction of clauses which is equivalent to ¢. By Covering (Theorem
[3.2.8)), each of these clauses is implied by some prime implicate of ¢, so 9 must be
a model of each of these clauses. It follows that 9 is a model of ¢. For the other
direction, we simply note that by the definition of prime implicates if 9 is a model
of ¢, then it must also be a model of every prime implicate of . We have thus
shown that 91 is a model of ¢ if and only if it is a model of every prime implicate
of ¢. Using a similar argument, we can show that 91 is a model of ¢ if and only if

it is a model of some prime implicant of . O

Finally, we show that Distribution holds.

Theorem 3.2.10.
The notions of prime implicates and prime implicants induced by definition DJ

satisfy Distribution.

Proof. Let X be a prime implicate of ¢1 V ... V . Now for each ¢;, we must have
¢; = A. From Covering (Theorem B.2.8), we know that there must exist some
prime implicate A; for each ¢; such that A\; = A. This means that the formula
A1V ...V Ay, (which is a clause because it is a disjunction of clauses) entails A. But
since A is a prime implicate, it must also be the case that A = Ay V... V \,,,, and
hence A = A1 V ... V Ap,. The proof for prime implicants is entirely similar. U

76 3.2. Defining Prime Implicates and Prime Implicants in Ky,

We close this subsubsection with some examples which illustrate the notions of

prime implicates and prime implicants that one obtains from definition D4.

Example 3.2.11.
Consider the following formula ¢

(@Vb) ANOy(=bVe) A (bVO1b) A Oga A Oge
AOg(bA (aVe)) A Oxd

The prime implicates of ¢ w.r.t. definition D4 are:

aVb, O0(=bVe), bVOi(bAc), OGalanbAd), Oa((aVe) ANbAdAe), and
Os((aVe) AbAd)

plus all clauses equivalent to one of the clauses in this list.

The next example demonstrates how we can leverage the Distribution property

to help compute prime implicates:

Example 3.2.12.
Let us now consider the NNF of the negation of the formula ¢ from the previous

example:

(ma A=b) V O1(bA—c) V (b AOy=b) V Og—a V Oy—e
V Oo(mb V (ma A —e)) V Ood

We know from the Distribution property that the prime implicates of this dis-
junction w.r.t. definition D4 are just the logically strongest disjunctions of prime
implicates of the disjuncts. Thus, in order to calculate this formula’s prime im-
plicates, we simply need to compute the prime implicates of each of the disjuncts,
form the different possible disjunctions, and eliminate weaker elements. All but
two of the disjuncts are literals (and hence their own prime implicates), so we only
need to compute the prime implicates of the first disjunct (which are —a and —b)
and the third disjunct (yielding —b and O;—b). Then we construct the four possible

disjunctions of prime implicates, which are:
e ~aV Or(bA—c) vV mbV Ogna V Og—e V Oo(—bV (ma A —e)) V Ood
e bV O(bA—c) V =bV Ogma V Og—e V Oo(mbV (ma A —e)) V Ood
e —aV Oi(bA—e) V Oyp=b VvV Og—a V Og—e V Oo(mbV (ma A —e)) V Oy—d

o —bV <>1(b/\ —\C) V O1=b V OQg=ma V Og—e V <>2(—\b\/ (—\a/\ —\C)) V Ood

3. Prime Implicates and Prime Implicants in K, 77

The first clause is logically weaker than the second, so we eliminate it. The other
clauses are all mutually non-implying, so they are all prime implicates of —p. More-

over, every prime implicate of = is equivalent to one of these three clauses.

Our final example shows how the Implicate-Implicant Duality can be used

to generate prime implicants from prime implicates:

Example 3.2.13.

Let ¢ be as defined in Example B2.T1l] By the Implicate-Implicant Duality,
every prime implicant of ¢ is equivalent to the negation of some prime implicate
of —p. As we have already computed the prime implicates of = in the previous
example, we just need to use the NNF transformation to rewrite the negations of
the prime implicates as terms. We obtain the following three terms:

e b AO(=bVe) ANb A Oga A Oge AN DOg(bA(aVe)) A Ood
e —a A O (=bVe) AN A Cga A OgeN Or(bA(aVe)) A Ood

e b AOy(=bVe) AN O A Coa A Cge AN Og(bA (aVe)) A Oxd

Conclusion

While the comparison in the first part of the chapter suggested that definition D5
was at least as suitable as D4 as a definition of clauses and terms, the results
obtained in the second part of the chapter rule out D5 as a suitable definition for
prime implicates and prime implicants. In the following chapters, we will mainly
concentrate our attention on the notions of prime implicates and prime implicants
induced by definition D4, as these have been shown to be the most satisfactory
generalizations of the propositional case. From this point on, we will take the
words “clause”, “term”, and “prime implicate” to mean clause, term, and prime

implicate with respect to definition D4, except where explicitly stated otherwise.

Generating and Recognizing

Prime Implicates

Now that we have selected an appropriate definition of prime implicates and prime
implicants for IC,, it is time to investigate the computational properties of these notions.
The first half of the chapter will be devoted to the study of prime implicate generation,
which is the main search problem related to prime implicates. In the second part of
the chapter, we will turn our attention to the main decision problem which is that of

determining whether a given clause is a prime implicate of a formula.

4.1 Prime Implicate Generation

In this section, we investigate the problem of generating the set of prime implicates
of a given formula. This task is important if we want to compile a formula into its
set of prime implicates. It is also useful when we want to produce abductive expla-
nations, since by Implicant-Implicate Duality (Theorem B2.5) any algorithm
for generating prime implicates can be straightforwardly adapted into an algorithm

for generating prime implicants.

4.1.1 Prime implicate generation in propositional logic

The development of methods for generating prime implicates in propositional logic

has been an area of active research, and there exist nowadays quite a large number

of different generation algorithm: . For the most part, these algorithms can be

'See [MarQ0] for an excellent survey.

79

80 4.1. Prime Implicate Generation

classified into one of two approaches:

Resolution-based approach The first procedure for generating prime implicates
was introduced by Quine in |Qui55]. Quine’s algorithm transforms the input
formula into a set of clauses, and then iteratively performs resolution on pairs
of clauses until a fixpoint is reached, removing at each step any subsumed
clauses. Many improvements to this basic algorithm can be found in the
literature (cf. [Tis67], [KT90], [Jac92], [dK92], [del99], and [SAVOI]). It
should be noted that resolution-based approaches to consequence finding also

exist for first-order logic (cf. e.g. [Ino92]).

Distribution-based approach Algorithms in this approach exploit in one man-
ner or another the property Distribution which characterizes the prime im-
plicates of a disjunction of formulae in terms of the prime implicates of the
disjuncts. Examples of algorithms of this type can be found in [SCL69|,
[Soc91], [Nga93], [Cas96], [RBMIT7], and [SP99]. Most of these algorithms
involve a transformation of input formula into disjunctive normal form, but
some methods (like the one in [RBM97]) can handle arbitrary formulae in
negation normal form. In contrast to the resolution-based approach, the
distribution-based approach cannot be lifted to first-order logic, which does
not satisfy Distribution.

The prime implicate generation algorithm we will propose in the next subsection
follows the distribution-based approach.

4.1.2 The algorithm GenPI

In Figure [41] we present the algorithm GenPI which computes the set of prime
implicates of a given /C,, formula. The algorithm makes use of the procedure Dnf ()
which was introduced in Chapter

The algorithm GenPI works as follows: in Step 1, we check whether ¢ is
unsatisfiable, outputting a contradictory clause if this is the case. For satisfiable ¢,
we set 7 equal to a set of terms whose disjunction is equivalent to . Because
of Distribution, we know that every prime implicate of ¢ is equivalent to some
disjunction of prime implicates of the terms in 7. In Step 2, for each satisfiable
term T, we set A(T') equal to the propositional literal conjuncts of 7' (Prop(T))
plus the strongest O-formulae implied by T' (B(T')) plus the strongest ¢-formulae
implied by T (D(T)). It is not too hard to see that every prime implicate of T
must be equivalent to one of the elements in A(T"). This means that in Step 3
we are guaranteed that every prime implicate of the input formula is equivalent to

4. Generating and Recognizing Prime Implicates 81

Algorithm 4.1 GenPI
Input: a formula ¢

Output: a set of clauses

(1) If Sat(¢)=no, return L. Otherwise, set 7 = Dnf(y).
(2) For each T' € 7 such that Sat(7T")=yes:

Initialize B(T) and D(T) to)

For each 1 <17 < n:
If Box;(T) # 0, then

B(T) = BT)U{ 0 Ayepon i}

D) = DT {041 Mo) € Diami(T)}
Else if Diam;(T) #
D(T) = D(T >u{<>mfyeDmmi<T>}

Set A(T') = Prop(T) U B(T) U D(T).

(3) Set CANDIDATES = {\/ o7 07 |07 € A(T)}.

(4) For each A\; € CANDIDATES: remove the clause A; from CANDIDATES if
Entails(\;, A\j)=yes for some k < j, or if both Entails(\, \j)=yes
and Entails(\;, A\;)=no for some £k > j.

(5) Return CANDIDATES.

some candidate prime implicate in CANDIDATES. During the comparison phase in
Step 4, non-prime candidates are eliminated, and exactly one prime implicate of
each equivalence class will be retained.

Example 4.1.1.
We run the algorithm GenPT on the formula ¢ = a A ((O1 (bA) A1)V (O1bA
O (c\/d)/\lille/\le))/\DQJ_.

Step 1: As o is satisfiable, we call the function Dnf on ¢, and it returns the two
terms 71 = aAO1 (DA)AO1bADOy Land T =aAO1bAO1 (eVd) AOje A
Oy fADs L.

Step 2: We have Prop(T1) = {a}, B(T1) = {02 L}, and D(T1) = {1 (bAc), O1 b,
SO we get

A(Th) ={a,02 L, O (bAc), 01 b}

For Ty, we have Prop(Ts) = {a}, B(T>) = {01 (e A f),09 L}, and D(Tp) =
{CGr1(bNeNf),O1((cvd)NeA f)}, giving us

A(Ty) ={a,01(e N f),Oa L, O1(bAeN [),O1((cVd)ANeA f)}

82 4.1. Prime Implicate Generation

Step 3: The set CANDIDATES will contain all of the different possible disjunctions
of elements in A(77) with elements in A(75), of which there are 20: a V a,
aVOp(eNf),avOaLl,avVOi(bAeNf),av<oi((evd)NeAN f), Oy L Va,
Oy LVvOy(enf),Ody LvOg L, Oy LV (bAeAf), O LV ((eVd)ANeAf),
O1(bAc)Va, O1(bAc)VO (enNf), C1(bAc)VvOr L, O (bAC) VO (bAeNf),
Cr1(bAe)VOr((evd)NeN f), Cr1bVa, OG1bVvOp(eN f), Cr1bv Oy L,
C1bVv O (bAeA f),and O1bV O ((eVd) AeA f).

Step 4: We will remove from CANDIDATES the clauses a V O (e A f), a V Oz L,
aVoibAneNnf),aVoOi((evd)ANeA f), Oy L Va, ¢1(bAc)Va, and
&1 bV a since they are all strictly weaker than a V a. We will also eliminate
the clauses Oy LV Oq (e A f), Oy LVOr (bAeAf), Oy LV O ((eVd)AeA f),
O1(bAce) Vv Oy L, and <¢1bV Oy L, since they are weaker than Oy LV Oy L.
Finally we will remove the clauses 10V Oq (e A f), G106V O (bAeA f), and
O1bV <O ((eVvd) AeA f) since these clauses are respectively weaker than the
clauses ¢1 (bAc) VO (eAf), C1(bAc) VO (bAeA f)and Cp (bAC) V<O ((eV
d)NeA f).

Step 5: GenPl will return the five remaining clauses in CANDIDATES, which are
aVa, Oy L VvOyl, O1(bAc)VO(eNf), Or1(bAc)VOL(bAeA f), and
C1(bAc) VO ((evd)NeNf).

4.1.3 Correctness of GenPI

Our algorithm can be shown to be a sound and complete procedure for generating

prime implicates.

Lemma 4.1.2.
The algorithm GenPI always terminates.

Proof. We know from Corollary[2Z4.35]that the algorithm Dnf always terminates and
returns a finite set of formulae. This means that there are only finitely many terms
T to consider. For each T', the set A(T") contains only finitely many elements (this
is immediate given the definition of A(T')), which means that the set CANDIDATES
also has finite cardinality. In the final step, we compare at most once each pair of
elements in CANDIDATES. As the comparison always terminates, and there are only
finitely many pairs to check, it follows that the algorithm GenPI terminates. [J

Lemma 4.1.3.
The algorithm GenPI outputs exactly the set of prime implicates of the input for-
mula.

4. Generating and Recognizing Prime Implicates 83

Proof. We first prove that every prime implicate of a term T is equivalent to some
element in A(T). Let

n
T=ymN..AVA /\(<>z 1,[)1'71 AN NSO ¢i,li ANGixsa N AL Xi,mi)
i=1

be some term (where 71, ..., 7% are propositional literals), and let

A=p1V..V Pp vV \/(<>z €1V ...V < €iq; VU Ci,l V..V Ci,n)
1eL

be one of its prime implicates. As T |= A, it must be the case that the formula

S VAN AN 7 A4 /\?:1(02‘ ¢i,1 A NSO ¢i,li A\ DiXi,l Ao A0 Xi,mi)/\
S RARTR ARV WA /\?:1(52‘ =651 N e A 7€ g A s —(@1 Ao NSO _‘Ci,ri)

is unsatisfiable. It follows from Theorem [2.3.1] that one of the following must hold:

(@) MAAYATPI AL ADpy =L

(b) there exists some 1 <i <n and some 1 < u <; such that
Vi AN X1 N oo N Xiymg N €1 N oo N €4 g, lz 1L

(c) there exists some 1 < i < n and some 1 < u < r; such that
G AXi 1 N oo N Ximy N6 N o N € g,): 1

If (a) holds, then there must be some u and v such that -, = p,. That means ~, &=
A, s0 A must be equivalent to 7, or else we would have found a stronger implicate,
contradicting our assumption that A is a prime implicate of T". But then the result
holds since 7, is in A(T"). If (b) holds, then the formula <; (54 A Xi1 Ao A Xim,)
is an implicate of 7" which implies X, so A = ; (Yiu A Xi1 A oo A Xim,). We are
done since ; (Yiu A Xi,1 A ... A Xim,;) is @ member of A(T'). Finally we consider
the case where (c) holds. In this case, T; (x4,1 A ... A Xim,) is an implicate of T
which implies A, and so is equivalent to A (as A is a prime implicate). But then we
have the desired result since O; (x4,1 A ... A Xim,;) is one of the elements in A(T).
Thus we can conclude that every prime implicate of a term T is equivalent to some
element in A(T"). By Theorem [Z4.4] the elements in Dnf(y) are terms, and their
disjunction is equivalent to ¢. As D4 satisfies Distribution (Theorem B.2.10), it
follows that every prime implicate of the input ¢ is equivalent to some element in
CANDIDATES. This means that if an element \; in CANDIDATES is not a prime
implicate of ¢, then there is some prime implicate 7 of ¢ that implies but is not
implied by A;, and hence some A, € CANDIDATES such that A\, = A; and Aj F& Ag.
Thus, during the comparison phase, this clause will be removed from CANDIDATES.

84 4.1. Prime Implicate Generation

Now suppose that the clause A is a prime implicate of . Then we know that there
must be some \; € CANDIDATES such that A; =)\, and moreover, we can choose
Aj so that there is no Ay with k& < j such that A\, = A;. When in the final step we
compare \; with all the clauses A\, with k # j, we will never find that A\, = A; for
k < j, nor can we have A\, |= A\; ¥~ i, for some k > j, otherwise A would not be a
prime implicate. It follows then that A\; remains in the set CANDIDATES which is
returned by the algorithm. We have thus shown that the output of GenPI with
input ¢ is precisely the set of prime implicates of .]

Theorem 4.1.4.
The algorithm GenPI always terminates and outputs exactly the set of prime im-
plicates of the input formula.

Proof. Follows directly from Lemmas 1.2 and 1.3l O

Finally, we have the following theorem which relates the depths, signatures,
and literal subformulae of the prime implicates produced by GenPI to the depth,
signature, and literal subformulae of the input formula. We will require this result

later on in Chapter [6l

Theorem 4.1.5.

Let ¢ be a formula in NNF. The signatures of the clauses output by GenPI on input
 are contained in the signature of . The depths of the clauses output by GenPI
on input ¢ are no greater than 6(p). Every literal subformula which appears behind

the modal operators in some clause output by GenPl is also a literal subformula

of .

Proof. Suppose that GenPI is run on an input formula ¢ in NNF. We know from
Theorem that sig(T) C sig(y) and 6(T) < 0(yp) for every T € Dnf(p).
Moreover, we know from the definition of A(T') that sig(0) C sig(T) C sig(p) and
0(0) < 6(T) < d(p) for every 8 € A(T). It is also easy to see from the definition
that if 1 is such that $tp or Ot is a conjunct of some element in A(T'), then v is
a conjunction of subformulae of ¢, so each of the literal subformulae appearing in
1) must also appear in . As the formulae in CANDIDATES are disjunctions of the
elements in the A(T), it follows that the formulae in CANDIDATES have signatures
contained in sig(p) and depths at most d(¢) and that the literal subformulae behind
their modal operators also appear in ¢. This is enough to prove the result since
every clause output by GenPI belongs to CANDIDATES. O

4. Generating and Recognizing Prime Implicates 85

4.1.4 Bounds on prime implicate size

By examining the prime implicates produced by GenPI, we can put an upper
bound on the length of a formula’s prime implicates.

Theorem 4.1.6.
The smallest clausal representation of a prime implicate of a formula is at most
single-exponential in the length of the formula.

Proof. Let ¢ be a formula in IC,,. Prime implicates of ¢ generated by GenPI can
have at most 2% disjuncts as there are at most 2% terms in Dnf(p) by Theorem
Moreover, each disjunct has length at most 2|¢p|, since the elements in A(T")
are never larger than |T'| and the length of T' cannot exceed 2|¢| (by Theorem
246). This gives us a total of 2|p| * 21¥l symbols, to which we must add the at
most 2/l — 1 disjunction symbols connecting the disjuncts. We thus find that the
length of the smallest clausal representation of a prime implicate of a formula ¢
cannot exceed 2|p| * 2!#1 + (24l — 1), which is clearly single-exponential in |g|.
For a tighter bound, suppose that Nnf(¢) has at most [mutually non-equivalent
literal subformulae appearing outside the scope of modal operators. Then there are
at most 2! mutually non-equivalent elements in 7 = Dnf(¢) by Theorem
It follows that we can choose a subset 7’ of 7 with cardinality at most 2! such
that every element of 7 is equivalent to some element of 7’. Now let m be some
formula in the output of GenPI. We know that 7 is of the form \/;., 67 where
Or € A(T) for all T € T. Now let 7' = \/pcq Or. Clearly 7’ |= m. We also have
7' = 7, since every T' € T we can find 7" € 7" such that T'= T”, which means that
T | 07 = 7. Thus, we have shown that every prime implicate of ¢ is equivalent
to a clause with length at most 2|p| * 2! + (2! — 1). O

This upper bound is optimal as we can find formulae with exponentially large

prime implicates.

Theorem 4.1.7.
The length of the smallest clausal representation of a prime implicate of a formula

can be exponential in the length of the formula.

Proof. Consider the formula

n

p = /\(Dail V Daig)
i=1
and the clause
A= \/ D(alil N agi, N ... N amn)
(i1,---sin)E{1,2}™

86 4.1. Prime Implicate Generation

where a;; # aj; whenever i # k or j # [. It is not difficult to see that ¢ and X are
equivalent, which means that A must be a prime implicate of . All that remains
to be shown is that any clause equivalent to A\ must have length at least |A|. This
yields the result since A clearly has size exponential in n, whereas the length of ¢
is only linear in n.

Let X be a shortest clause which is equivalent to A\. As)\ is equivalent to A,
it follows from Theorem that) is a disjunction of O-literals and of incon-
sistent <-literals. But since X' is assumed to be a shortest representation of A,
it cannot contain any inconsistent <-literals or any redundant O-literals, since we
could remove them to find an equivalent shorter clause. So X’ must be of the form
Ox1 V... VOxm, where x; & xj whenever [# j. Now since N |= A, every disjunct
Ox, must also imply A. As A is a disjunction of O-literals, it follows from Theorem
233 that every disjunct Ox, of X’ implies some disjunct Od, of X. But that means
that every Oy, must have length at least 2n + 1, since each x, is a satisfiable
formula which implies a conjunction of n distinct propositional variables. We also
know that every disjunct 08, of A implies some disjunct Ox, of X' since A = X.
We now wish to show that no two disjuncts of X\ imply the same disjunct of \.
Suppose that this is not the case, that is, that there are distinct disjuncts 0d; and
062 of A and some disjunct Oy, of A’ such that 0d; = Oy, and Od = Oy,. Now
since 0d; and Odg are distinct disjuncts, there must be some 4 such that 001 = aj;
and 062 = a;2 or 001 = a2 and 0dy = a;1. We know that Oy, = 06, for some 4,
and that every d, implies either a;; or a;o, so either Oy, = Oa;; or Oy, = Dago.
But we know that the 0J, each imply either Oa;; or Oa;2 but not both, so one of
061 and Ody must not imply Oy,. This contradicts our earlier assumption that
061 = Oxp and 0dy = Oy, so each disjunct of A must imply a distinct disjunct of
. We have thus demonstrated that) contains just as many disjuncts as A. As
we have already shown that the disjuncts of A’ are no shorter than the disjuncts of
A, it follows that || > |A|, and hence |X| = |\|. We conclude that every clause
equivalent to A has length at least |\|, completing the proof. O

It is interesting to note that the formula used in the proof of Theorem [A.I1.7
has a single modal operator and a depth of 1, which means that we cannot avoid
this worst-case spatial complexity by restricting our attention to formulae with
few modalities or of shallow depth. Nor can we escape this exponential worst-case
spatial complexity by dropping down to one of the less expressive notions of prime

implicates examined in the previous chapter, as the following theorem demonstrates.

Theorem 4.1.8.
If prime implicates are defined using either D1 or D2, then the length of the small-

4. Generating and Recognizing Prime Implicates 87

est clausal representation of a prime implicate of a formula can be exponential in
the length of the formula.

For Theorem 18] we will prove that the following clause

A= \/ Oqq...qn €
(q1,--,gn) {0, 0}

is a prime implicate (for both D1 and D2) of the K-formula

p = (O0(bgAby) vV OO(boAb))A N (O'Ob; v O'Ob;)
=2

n—1
A /\ O ((bimy Aby) — Ob;) A O ((bp_1 Aby) — ¢)
=1

and moreover that there is no shorter way to represent A\. To prove this, we will
requiring the following technical lemmas.

Lemma 4.1.9.

Let Iy V...V 1y, be a D1-clause which implies qj...qna, where g¢; € {30,$} and a is a
propositional variable. Then either Iy V ...Vl = q1...qpa or 1V ...V iy = q1...q5 L
for somel<j<mnorliV..Vihpb=_1.

Proof. The proof is by induction on the value of n. When n = 0, we have just
l1 V...V, E a. According to Theorem 232 every disjunct of Iy V ... V [, must
be either a or some unsatisfiable formula. It follows that Iy V ... VI, = a or
l1V.. Vi, = 1.

Now suppose the result holds whenever n < k, and suppose that we have [; V
Vi, E q1...qpr1a. For every l;, we must have l; = ¢1...qx1+10, and hence =
=l; V q1...qx11a. Using Theorem 2.3.1] we arrive at the following four possibilities:

() q1-gisa
(b) ;=1L

(c) 1 =< and [; = Ol) and I = ¢o...qk110
(d) ¢ =0 and l; =00} and I} E ¢2...qk110

We can eliminate case (a) since = q1...qx11a for every string of modalities ¢j...qg11.
We remark that if (c¢) holds, then according to the induction hypothesis, [; =
Oqi...qppra or l; = Oqy...qj L for j < k41 orl; = L. Similarly, if (d) holds, then
either [; = O¢y...qg41a or [; = Oqq...qj L for j <k+1lorl; = L.

88 4.1. Prime Implicate Generation

Now if there is some [; which is equivalent to q;...qx+1a, then we get [V...V, =
q1-.-qx+10. If there is no such [;, then let p be such that there is some l; = ¢1...qp L
but there is no l; = q1...qp—1L. In this case, we get l; V... VI, = q1...qpL. Finally,
if all disjuncts are unsatisfiable, we have I1 V ...V [,,, = L. U

Lemma 4.1.10.
Fiz (q1,...,qn) € {0, and let T =

Oqi (bo Abr) A /\ O i) A /\ O ((b—1 Abg) — Dby,) A O™ ((bpo1 Aby) = ©)

Then T |= Ory...rpc if and only if r, = g for all 1 <k <n.

Proof. We begin by showing that for all 1 < i <mn — 1 that the formula

n n—1
bica Abi AL N\ B gwbe) A\ OF 7 (brey Abi) — Dbk))A O ((bno1 A by) — c)
k=i+1 k=1

entails the formula r;41...r,c just in the case that ¢j+1...qn, = i41...7n
The proof is by induction on i. The base case is i = n — 1. We have

br—2 A bp—1 A Gnbn A (bp—2 Abp—1) — Oby—1) AO((bp—1 Aby) — ¢) E e (4.1)
if and only if
bp—2 Abp—1 A @uby A Oby—1 AO((bp—1 Aby) — ¢) |E e
if and only if (Theorem 2.3.1)) either
n=<and r, =0 and by—1 A ((by—1 Aby) — ¢) Ec

or
Gn =1n and by_1 A by A ((by—1 Abyp) — ¢) Ec

As by—1 A ((bp—1 AN by) — ¢) £~ ¢, we cannot have the first alternative. It follows
then that if Equation (ZI]) holds, then the second alternative must hold, in which
case we get ¢, = r,, as desired. For the other direction, we simply note that
bp—1 ANbp A ((bn—1Aby) — ¢) = cis a valid entailment, which means ¢, = r, implies
Equation (4.1)).

Next let us suppose that the above statement holds for all 1 < j <i<n —1,
and let us prove the statement holds when ¢ = 57 — 1. Then

n—1

bia Abia A (N D aqebe) A (N BT (b A by — Dby))
k=j k=j—1

A O (by_q A by) — c) Erj..rpe (4.2)

4. Generating and Recognizing Prime Implicates 89

if and only if one of the following holds:

(a) ¢ =< and r; = O and

n n—1
bisa AC AN B akbe) A (\ OF I (beor Abk) — Ob)) A 0" (bt A by) =€)
k=j+1 k=j
Erjt1..mac
(b) ¢j = r; and
n n—1
bj—1 Abj A (/\ O gbr) A (/\ 059 ((bg—1 A b) — Oby)) A D" ((b—1 A by) — ¢)
k=j+1 k=j

= rjg1..rac

We will first show that the entailment in (a) doesn’t hold. Consider the model
M = W, R,v) defined as follows:

W = {wj, ..., wy}

o R = {(wj,wj+1), ey (W1, wn) }

v(c,w) = false for all w e W

for w # w;: v(bg, w) = true if and only if w = wy,
o v(by,w;) =trueif and only if k =5 — 1

Notice that since each world (excepting w,,) has exactly one successor, the O- and
<O- quantifiers have the same behavior (except at w,,). It can easily be verified that
9N, w; satisfies the left-hand side of the above entailment for any tuple gji1...qn:
we have M, w; = bj_1 by definition, we have I, w; |= /\Z:].Jrl 0k=3=1g, b, because
M, wy, = by, for k # j, we have M, w; = /\/Z;J1 0K ((bp_1 A by,) — DOby)) since
M, w; = by and M, wy, = by—; for k # j, and finally we have I, w; = O™ ((by—1 A
bn) — c) since wy, [~ b,—1. However, the right-hand side rj41...ryc is not satisfied
at w;: the only world accessible from w; in n — j — 1 steps is w, which does not
satisfy c.

We have just shown that case (a) cannot hold, which means that Equation
(£2)) holds if and only if (b) does. But if we apply the induction hypothesis to the
entailment in (b), we find that it holds just in the case that gjq1...¢n = rj41...7n.
It follows then that Equation (4.2) if and only if ¢;...q, = ; =y, as desired. This
completes our proof of the above statement.

90 4.1. Prime Implicate Generation

We are now proceed to the proof of the lemma. By Theorem 2.3.1]

n—1

Dql(bo A\ bl) A\ (/\ Dqubk) A\ (/\ gk+1 ((bk—l A\ bk) — Dbk) A Ol ((bn—l A bn) — C)
k=2 k=1

E Orq...rpc

holds just in the case that

n n—1

q1(bo A1) A (\ OF arbi) AN OF (b1 Abk) — Ob) A O™ (b1 Aby) —)
k=2 k=1

Eri.re
which in turn holds if and only if one of the following statements holds:
(i) ¢1 =< and r; = O and

n—1

(A 25 2akbi) A (N BF (b1 Abk) = Obg)) A O ((baot Abn) =€) | raerne
k=2 k=1

(ii) ¢ = r1 and

n n—1
bo Aby A\ OF2qebe) A (J\ OF 7 ((bre1 Abr) — Obg)) A O™ (b1 Aby) — c)
k=2 k=1

E ro..rpc

We remark that if we set j = 1 in (a) above, then the left-hand-side of the entailment
in (i) is logically weaker than that in (a), and the right-hand side matches that in (a).
As we have already shown that the entailment in (a) does not hold, it follows that
the entailment in (i) cannot hold either. Thus, we find that the desired entailment
relation in the statement of the lemma holds if and only if (ii) does. This completes
the proof since we have already shown in the induction above that the entailment
in (ii) holds if and only if ga...q, = 7o...ry, i.e. (ii) is true just in the case that

ql--Qp =T1 = Tp- O

Lemma 4.1.11.
There is no clause w.r.t. D1 which is equivalent to X\ and of strictly smaller size
than .

Proof. Let XN be a D1-clause which is equivalent to A. Suppose furthermore that
M is the smallest such clause. As \ is non-tautologous and contains only O-literals
as disjuncts, it follows that every disjunct of A’ must be either unsatisfiable or a O-
literal (cf. Theorem 2:3.2]). But since A is satisfiable, so too is A’. That means that
if) contained an unsatisfiable disjunct, it could be removed to yield an equivalent

4. Generating and Recognizing Prime Implicates 91

but shorter clause, contradicting our assumption that)\’ is of minimal length. Thus,
N contains only O-literals.

Since X' E A, every disjunct O of \' must imply some disjunct Ogj...¢,c of A.
Also, every disjunct O/ of A’ must be implied by some disjunct Og;...q,c of A, since
otherwise we could remove O/ from)\ while preserving the equivalence between A
and \.

It follows then that each disjunct of X\ is implied by some disjunct of A and
implies some disjunct of A\. But since the disjuncts of A do not imply each other
(because of Lemma 1.9, it follows that each disjunct of X is equivalent to some
disjunct of A\, and moreover that every disjunct of A is equivalent to some disjunct
of \.

This completes the proof since it is clear that the disjuncts Ogj...q,c of A cannot
be more compactly represented. Our proof works equally well for D2, since every

D2-clause is also a D1-clause. O

Proof of Theorem[{.1.8. We begin with definition D1. Let A and ¢ be as defined
on page 87 We begin by distributing V over A in order to transform ¢ into an

equivalent disjunction of terms w.r.t. definition D4:

SD = \/ Tq1,---,Qn
(q1,--,qn)€{0,0}"

where Tg, . 4, is equal to
n A n—1 -

Ogi(bo Ab1) A (N T'gibi) A\ B (g Abs) — b)) A O™ ((byy Abp) —)
i=2 i=1

By Lemma ETI0 Ty, . 4. = Og¢i...gnc, and hence Ty, 4. = A. We thus have
v = A

We now show that there is no stronger D1-clause w.r.t. which is implied by .
Let X' be a D1-clause such that ¢ = X = A, and assume without loss of generality
that A has no unsatisfiable disjuncts. As X is a non-tautologous disjunction of
O-literals, we know from Lemma 2.3.2] that every disjunct of \ must be of the form
Ol where [is a D1-clause such that [= ry...r,c for some quantifier string ry...r,.
But according to Lemma [£.1.9] [must be equivalent either to r1...r,c or to r1...r; L
for some 1 < k < n or L. It follows that X' is equivalent to a clause having only
disjuncts of the forms Ory...r,c or Orq...rp L (1 <k <mn)or OL.

As ¢ = X, it must be the case that each of the terms Tj, ,
equivalently Ty, . 4. A—X = L. As we have shown above that the disjuncts of X’ are

implies)/, or

n

all O-literals, it follows from Theorem Z.3.1] that each term implies some disjunct

92 4.1. Prime Implicate Generation

of \. Moreover, we know from the preceding paragraph that the disjuncts of \’ to
be of the forms Ory...rpc or Ory...rp L (where r; € {O0,0} and 1 <k <n)or OL,
so every Ty, . 4, must imply a formula with one of these forms.

We first show that a term 7}, . 4, cannot imply a formula of the form Ory...r, L
or O.L. The proof is quite straightforward: we consider the model M with a single
world w such that w is connected to itself and all propositional variables are true at
w. It is not hard to see that M, w =Ty, . 4, (for any tuple (q1,...,qn) € {0, C}").
However, the formula Orj...r; L (or OL1) cannot hold at w since there is no world
in M which has no successors.

Since a term Ty, . 4, cannot imply a formula Ory...r, L or OL, it must be the

case that Ty, . 4, implies some disjunct Ory...r,c of N. By Lemma [£1.10, the only
formula of this type which is implied by T, . 4, is the formula Ogj...g,c. This
means that for every tuple of quantifiers (¢1, ..., ¢,), there is a disjunct of A’ which
is equivalent to Og...g,c. It follows that every disjunct of A is equivalent to some
disjunct in X, giving us A =). We can thus conclude that A is a prime implicate
of ¢.

This completes the proof, since we have already shown in Lemma ALT.1T] that
there is no shorter D1-clause which is equivalent to A than A itself.

The above proof also works for definition D2 since every clause w.r.t. D2 is
also a clause w.r.t. D1. In particular this means that any D2-clause which is
a prime implicate w.r.t. D1 is also a prime implicate w.r.t. D2, and that any
D2-clause which is shortest among all equivalent D1-clauses is also shortest among

D2-clauses. O

4.1.5 Bounds on the number of prime implicates

An examination of the set of candidate prime implicates constructed by our algo-
rithm allows us to place a bound on the maximal number of non-equivalent prime

implicates a formula can possess.

Theorem 4.1.12.
The number of non-equivalent prime implicates of a formula is at most double
exponential in the length of the formula.

Proof. Consider some formula ¢. We assume without loss of generality that ¢ is in
NNF. We know from Theorem [.1.4] that every prime implicate of ¢ is equivalent
to some clause returned by GenPI. Every such clause is of the form \/Tean(Lp) Or
where 7 € A(T). As there can be at most 2% terms in Dnf(¢) by Theorem 246
these clauses can have no more than 2l%l disjuncts. Moreover, there are at most

4. Generating and Recognizing Prime Implicates 93

|o| choices for each disjunct 07 since the cardinality of A(T") is bounded above by
the number of conjuncts of T', which we know from Theorem 2.4.6] to be no more

|2M clauses returned by GenPI,

than |p|. It follows then that there are at most |p
hence at most |go|2w non-equivalent prime implicates of .

For a tighter bound, suppose that Nnf(¢) has at most mutually non-equivalent
literal subformulae appearing outside the scope of modal operators. We have al-
ready seen in the proof of Theorem [.T.6]that this means that every prime implicate
is equivalent to a clause \/ ;o 07 for some subset 7' C 7 with cardinality at most
2!, We also know that the elements in 7, and hence in the subset 77, all have at
most [non-equivalent conjuncts (by Theorem 2.4.6]), which means that there are
at most [choices for each 07. It follows that there can be no more than 12" distinct

equivalence classes of prime implicates of the formula ¢. O

We can show this bound to be optimal.

Theorem 4.1.13.
The number of non-equivalent prime implicates of a formula may be double expo-

nential in the length of the formula.

Proof. Let n be some natural number, and let aq1, a12, ..., Gn1, an2, b11, b12, b12,

..sy bn1, bpo be distinct propositional variables. Consider the formula ¢ defined as

n

/\((Oail VAN Dbil) V (<>al-2 AN Dbig))
=1

It is not hard to see that there will be 2" terms in Dnf(y), corresponding to the 2"

ways of deciding for each ¢ € {1,...,n} whether to take the first or second disjunct.
Each term T' € Dnf(y) will be of the form

n

/\(Oaif(i,T) A Ob; ¢(i.1))

i=1
where f(i,T) € {1,2} for all i. For each T', denote by D(T') the set of formulae
{Oasimry Nbrpa,y A Abypir))) |1 < i < n}. Now consider the set of clauses
C defined as

{ V drldreD(T)}

TeDnf (p)
Notice that there are n?" clauses in C since each clause corresponds to a choice of
one of the n elements in D(T') for each of the 2" terms 7" in Dnf(y). This number

is double exponential in |p| since the length of ¢ is linear in n. In order to complete

94 4.1. Prime Implicate Generation

the proof, we show that (i) all of the clauses in C are prime implicates of ¢ and (ii)
that the clauses in C are mutually non-equivalent.

We begin by showing that A; & Ay for every pair of distinct elements \; and
Ao in C. This immediately gives us (ii) and will prove useful in the proof of (i). Let
A1 and Ay be distinct clauses in C. As A\ and A9 are distinct, there must be some
term 7' € Dnf(p) for which A\; and A2 choose different elements from D(T"). Let
dy be the element from D(T') appearing as a disjunct in A1, let dy be the element
in D(T) which is a disjunct in o, and let a;; be the a-literal which appears in ds
(and hence not in dy). Consider the formula p = O(—a;j i A —bi g A ..o A =by k),
where the tuple (kq, ..., k,) is just like the tuple associated with T" except that the
1’s and 2’s are inversed. Clearly di A p is consistent, since the variables in p do not
appear in d;. But p is inconsistent with every disjunct in A2, since by construction
every disjunct in As contains a literal whose negation appears in p. It follows that
Ao = —p but A\; £ —p, and hence A; £ Ao.

We now prove (i). Let A be a clause in C, and let 7 be a prime implicate of ¢
which implies A. By Theorem .14l we know that m must be equivalent to one of
the clauses output by GenPI, and more specifically to a clause output by GenPI
which is a disjunction of <O-literals (because of Theorem 2.3.2). We remark that
the set C is composed of exactly those candidate clauses which are disjunctions of
O-literals, so m must be equivalent to some clause in C. But we have just shown
that the only element in C which implies A is A itself. It follows that = = A, which

means that A is a prime implicate of . O

This worst-case result is robust in that it can be improved neither by restricting
the depth of the input formulae, nor by using less expressive notions of prime
implicate, as is demonstrated by the following theorem.

Theorem 4.1.14.
If prime implicates are defined using either D1 or D2, then the number of non-
equivalent prime implicates of a formula may be doubly exponential in the length of

the formula.

Proof. Let A and ¢ be as defined on page R7l Set ¢’ equal to the formula obtained
from ¢ by replacing ¢ in the last conjunct of ¢ by ¢ A d. Set 3 equal to the set of
clauses that can be obtained from A by replacing zero or more occurrences of ¢ by d.
For example, if n = 1, then ¥ = {O0<CeV O0¢, OOdV O0c, OOGeV O0Od, OOd YV O0Od}.
There are 22" elements in ¥ since we choose for each of the 2" disjuncts of A whether
to change c into d. We intend to show that the clauses in X are all pairwise non-
equivalent prime implicates of ¢/. The proof that every element in Y is indeed a

4. Generating and Recognizing Prime Implicates 95

prime implicate of ¢’ (w.r.t. both D1 and D2) proceeds quite similarly to the proof
that A is a prime implicate (w.r.t. D1 and D2) of ¢ (see proof of Theorem A.1.§]),
so we will not repeat it here. Instead we will show that all of the elements in 3 are
pairwise non-equivalent. To do so, we consider any two distinct elements o and (3
of 3. Since a and 3 are distinct, there must be some string of quantifiers ¢...q,
such that « has a disjunct Ogqj...g,7y (v € {¢,d}) which is not a disjunct of 3. Now
if @ = B, then we would have Ogj...q,y = (3, and hence Oqy...q,y = Ory...r, ¢ for
some disjunct ri...r,¢ of 8. But by using Lemma [L.T1.9] we see that this can only
happen if ri..r, = ¢1...q, and v = (, i.e. if Ogy...q,7y is a disjunct of 5. This
is a contradiction, so we must have a = (. It follows that the elements of ¥ are
pairwise non-equivalent, and hence that ¢’ possesses a double exponential number
of prime implicates. U

Theorems T8 and T4 suggest that definitions D1 and D2 do not yield
especially interesting approximate notions of prime implicate, as they induce a
significant loss of expressivity without any improvement in the size or number of

prime implicates in the worst-case.

Remark 4.1.15.

The double-exponential lower bounds in this section are pretty frightening, but it
should be noted that this kind of result is not altogether uncommon for logics of
this expressivity. For example, in [DTRO06], it is shown that if one approximates
an ALC concept by an ALE concept, the approximated concept may be double-

exponentially larger than the original.

4.1.6 Improving the efficiency of GenPI

Our generation algorithm GenPI corresponds to the simplest possible implemen-
tation of the Distribution property, and it is quite clear that it does not represent
a practicable way for producing prime implicates. One major source of inefficiency
is the high number of clauses that are generated, so if we want to design a more
efficient algorithm, we need to find ways to generate fewer candidate clauses. There
are a couple of different techniques that could be used. One very simple method
which could yield a smaller number of clauses is to eliminate from A(T) those el-
ements which are not prime implicates of 7', thereby decreasing the cardinalities
of the A(T') and hence of CANDIDATES. To do this, we simply test whether any
of O-formulae in A(T) is a tautology (and remove any discovered tautologies from
A(T)) and then compare the O-literals in A(T'), discarding any weaker elements. If
we apply this technique to Example 1.1}, we would remove <b from A(77), thereby
reducing the cardinality of CANDIDATES from 20 to 15.

96 4.1. Prime Implicate Generation

More substantial savings could be achieved by using a technique developed in
the framework of propositional logic (cf. discussion in [Mar00]) which consists in
calculating the prime implicates of 77, then the prime implicates of T} V 15, then
those of T1VT5VT3, and so on until we get the prime implicates of the full disjunction
of terms. By interleaving comparison and construction, we can eliminate early on
a partial clause that cannot give rise to prime implicates instead of producing all
of the extensions of the partial clause and then deleting them one by one during
the comparison phase. In Example [£.1.1] there were only two terms, but imagine
that there was a third term 73. Then by applying this technique, we would first
produce the 5 prime implicates of T} V Ty and then we would compare the 5|A(T3)|
candidate clauses of T7 V 15 V T3. Compare this with the current algorithm which
generates and then compares 20|A(73)| candidate clauses.

Another very simple technique which can be fruitfully combined with the previ-
ous one is the following: before forming the different disjunctions of prime implicates
of Ty V...V Tj_1 and elements from A(T}), we first check to see whether any prime
implicates of 77 V ... V T are already implied by Tj; any prime implicate fulfill-
ing this condition is added directly to the set of prime implicates of T1 V ... V T}
and is not used in the construction of candidate prime implicates. The use of this
technique helps reduce the number of candidate prime implicates of 17 V ... V Ty
which need to be considered, and it also yields prime implicates which have fewer
unnecessary disjuncts. We illustrate the previous two techniques on the following

example:

Example 4.1.16.

We would like to generate the prime implicates of the formula ¢ defined as:

(a VvV O201d)

(ma VvV Oo(a A D))
O1((aV<2T) A (OgL Ve))
O1(aN—eNOyl)

We begin by using Dnf to rewrite ¢ as an equivalent disjunction of satisfiable
terms. We obtain the following three satisfiable terms (a fourth unsatisfiable term
is eliminated):

71 =aA$aAb) AT ((aVOT)A(OaL Ve) AOr(aA—eADgl)
T5 = —a A Os01d A Dl((a V <>2T) VAN (DQJ_ V C)) AN <>1(CL VANRRTEAN DQJ_)
T3 = <>2(a VAN b) A Oo01d A Dl((a \Y <>2T) AN (DQJ_ V C)) AN <>1(CL VANRRTEWAN DQJ_)

4. Generating and Recognizing Prime Implicates 97

We now generate the prime implicates of the first term 77. To do so, we compute

the set A(77) which is:
{a,O2(anb),01((aVOT)A (O L Ve)),O1(aN—ecAOs L A(aVOT)A (O L Ve))}

As the four elements in A(77) are all mutually non-implying, they are all prime
implicates of 7.

We next want to compute the prime implicates of the disjunction 77 V T.
For this, we must compute the disjunctions of the prime implicates of T7 (just
computed) with elements in the set A(Ty) =

{—a,090:d, 01 ((a V< o T)A (O L V), O1(aA—cAOg LA (aV O T)A (oL Ve))}

We notice, however, that the prime implicates O;((a V $2T) A (0oL V ¢)) and
Cr(a N =eANOgs L A(aV OoT) A (OgL Ve)) of Ty are both implied by T5, so they
are also prime implicates of T} V T5. We can thus remove from consideration any
disjunctions built using these prime implicates. By combining the remaining two
prime implicates of T} with the elements in A(T5), we obtain 8 candidate prime
implicates. The candidate a V —a is a tautology and hence is removed in the
comparison phase. The three candidates which have either O;((aV<CoT)A (O LVe))
or C1(aA—e Ay L A(aV<OeT)A (Ol Ve)) as a disjunct will also be removed as
they are logically weaker than the two prime implicates already identified. After
elimination of weaker elements, there are three remaining candidates a V Os04d,
Oa(a A D)V —a, and Og(a A b) V Og01d, which are all prime implicates of T7 V Tb.

Finally, we are ready to compute the prime implicates of the entire disjunction
Ty vT, Vv T5. Normally this would involve disjoining the prime implicates of 17 V T5
with the elements in the set A(T3). However, we remark that each of the prime
implicates of T7 V T5 is implied by T3, so the prime implicates of ¢ = T1 VT, VT3 are
exactly the same as those of T} VT; (as one would expect since Th VT, = T3 VIoVT3).

We thus find that ¢ has 5 prime implicates (modulo equivalence), which are:
aV O901d, $Oo(aAb)V —a, and Oo(a Ab) V Os0:d, O1((a V<O T) A (Ol Ve)) and
CrlaN—cANOL A(aV<OT) A (OgL Ve)).

Given that the number of elements in CANDIDATES can be double exponential
in the length of the input formula, another strategy for improving the efficiency
our algorithm is to try to reduce the size of the input. For instance, a natural
idea would be to break conjunctions of formulae into their conjuncts, and then
calculate the prime implicates of each of the conjuncts. Unfortunately, however, we
cannot apply this method to every formula as the prime implicates of the conjuncts
are not necessarily prime implicates of the full conjunction. One solution which

98 4.1. Prime Implicate Generation

was proposed in the context of approximation of description logic concepts (cf.
[BT02], [TBO7]) is to identify simple syntactic conditions that guarantee that we
will get the same result if we break the formula into its conjuncts. For instance, one
possible condition is that the conjuncts do not share any propositional variables.
The formula ¢ from Example [L.1.T] satisfies this condition since the signatures of
the conjuncts a, (C1 (bAc) A1)V (C10A O (eVd)AOreAD; f) and Oy L are
all disjoint. By generating the prime implicates of the conjuncts separately, we can
directly identify the prime implicates a and Oy |, and we only have 6 candidate
clauses of (C1 (bAC) A1)V (O10AO1 (eVd)ATOyeAD; f) to compare. If we also
remove weaker elements from the A(7;) as suggested above, we get only 3 candidate
clauses for (C1(bA) A1)V (C1bAO1(eVd)AOre A f), all of which are
prime implicates of ¢.

Another important source of inefficiency in our algorithm is the comparison
phase in which we compare all candidate clauses one-by-one in order to identify
the strongest ones. The problem with this is of course that in the worst-case
there can be a double exponential number of candidate clauses, simply because
there may be double-exponentially many distinct prime implicates, and each prime
implicate must be equivalent to some candidate clause. Keeping all of these double-
exponentially many clauses in memory will generally not be feasible. Fortunately,
however, it is not necessary to keep the all of the candidate clauses in memory
at once since we can generate them on demand from the sets A(T'). Indeed, as
we demonstrate in the following theorem, by implementing our algorithm in a
more clever fashion, we obtain an algorithm which outputs the prime implicates
iteratively while requiring only single exponential space (the output of the algorithm

could of course be double-exponentially large because of Theorem ET.T3)).

Theorem 4.1.17.
There exists an algorithm which runs in single exponential space in the size of the
mput and incrementally outputs, without duplicates, the set of prime implicates of

the input formula.

Proof. Let the sets 7 and CANDIDATES and the function A be defined as in Fig-
ure LIl We assume that 7 is ordered: 7 = {T1,...,T,,}. For each T; € 7, we
let maz; denote the number of elements in A(T;), and we assume an ordering
on the elements of A(T;): A(T;) = {Ti1,--s Ti,maz;}. Notice that the tuples in
{1,..,maz1} x ... x {1,..., maz,} can be ordered using the standard lexicographic
ordering <jez: (ai,...,an) <pex (b1,...,by) if and only if there is some 1 < j < n such
that a; < bj and aj, < b for all 1 < k < j—1. Now set mazindex = II}__; max;, and

let f:{1,..,maz1}x..x{1,...,maz,,} — {1,..., mazindex } be the bijection defined

4. Generating and Recognizing Prime Implicates 99

as follows: f(aq,...,a,) = m if and only if (a1, ..., a,) is the m-th tuple in the lexi-
cographic ordering of {1,..,mazi} x ... x {1,..., maz,}. We will denote by A\, the
unique clause of form 79 4, V...V 7y, o,, such that f(ai,...,a,) = m. We remark that
given an index m € {1, ..., mazindex } and the sets A(Ty), ..., A(T,), it is possible
to generate in polynomial space (in the size of the sets A(T1), ..., A(T},)) the clause
Am- We make use of this fact in our modified version of algorithm GenPI, which

is obtained from GenPI by replacing Steps 3 and 4 with the following:

(3”) For i = 1 to mazindez: if Entails(\;, \;)=no for all j < i and either
Entails(\;, \;)=no or Entails(\;, \j)=yes for every i < j < mazindez,
then output A;.

The proofs of termination, correctness, and completeness of this modified ver-
sion of GenPI are very similar to corresponding results for the original version
(Theorem [1.4), so we will omit the details. We will instead focus on the modi-
fied algorithm’s spatial complexity. The first step clearly runs in single-exponential
space in |pl, since deciding the satisfiability of ¢ takes only polynomial space in
|o], and generating the elements in Dnf () takes at most single exponential space
in |¢| (refer to Theorems and 2.4.7). Step 2 also uses no more than single
exponential space in ||, since each of the sets A(T') associated with a term T; € T
has polynomial size in 7;. Finally, for Step 3’, we use the above observation that
the generation of a given)\; from its index i can be done in polynomial space in
the size of the sets A(T}), ..., A(T,), and hence in single exponential space in |¢|.
This is sufficient since for the comparisons in Step 3’, we only need to keep two
candidate clauses in memory at any one time, and deciding whether one candidate
clause entails another can be accomplished in single-exponential space since both
clauses have single exponential size in |p|, and entailment in K,, can be done in

polynomial space in the size of the input formulae (Corollary 2.5.9]). O

Although the modified algorithm outlined in the proof of Theorem [A.1.17 has a
much better spatial complexity than the original, it still does not yield a practicable
means for generating prime implicates. The reason is that we still need to compare
each of the candidate clauses against all the other candidate clauses in order to
decide whether a candidate clause is a prime implicate or not. Given that there
may be double-exponentially many candidate clauses, this means that our algorithm
may need to perform double-exponentially many entailment tests before producing
even a single prime implicate. A much more promising approach would be to test
directly whether or not a candidate clause is a prime implicate without considering
all of the other candidate clauses. In order to implement such an approach, we

100 4.2. Prime Implicate Recognition

must come up with a procedure for determining whether or not a given clause is a

prime implicate. This will be our objective in the following section.

4.2 Prime Implicate Recognition

The focus of this section is the problem of recognizing prime implicates, that is, the
problem of deciding whether a given clause is a prime implicate of a given formula.
This problem is of central importance, as any algorithm for generating prime im-
plicates must contain (implicitly or explicitly) some mechanism for ensuring that

the generated clauses are indeed prime implicates.

4.2.1 Lower bound

In propositional logic, prime implicate recognition is BHa-complete [Mar00], being
as hard as both satisfiability and deduction. In K, satisfiability, unsatisfiability,
and deduction are all PSPACE-complete, so we cannot hope to find a prime implicate
recognition algorithm with a complexity of less than PSPACE.

Theorem 4.2.1.

Prime implicate recognition is PSPACE-hard.

Proof. The reduction is simple: a formula ¢ is unsatisfiable if and only if 1L is a
prime implicate of . This suffices as the problem of checking the unsatisfiability
of formulae in K, is known to be PSPACE-complete. U

4.2.2 Naive approach

In order to obtain a first upper bound, we can exploit Theorem which tells
us that there exists a polynomial function f such that the length of the smallest
clausal representation of a prime implicate of a formula ¢ is bounded by 2/ 20
This leads to a simple exponential-space procedure for determining if a clause A is
a prime implicate of a formula : we simply check for every clause X of length at
most 2/(#D) whether X is an implicate of ¢ which implies A but is not implied by
A.

Theorem 4.2.2.

Prime implicate recognition is in EXPSPACE.

Proof. Consider the following algorithm for determining whether a clause A is a
prime implicate of o: check for each clause X’ of length at most 2|p|*21#! 4 (2l#l —1)
which is an implicate of ¢ whether both Entails(\, \)=yes and Entails(\, \')=no.

4. Generating and Recognizing Prime Implicates 101

If there is some)\ satisfying these conditions, return no, otherwise return yes.
Notice that if this algorithm returns yes, then there is no implicate of length at
most 2| * 219l + (21¢ — 1) that is strictly stronger than A, and hence by Theorem
no strictly stronger implicate of any length, making A a prime implicate. If
the algorithm returns no, then we have found a clause implied by ¢ which is strictly
stronger than A, so A is not a prime implicate. The algorithm is thus both correct
and complete. As the algorithm consists solely in testing the satisfiability and
unsatisfiability of formulae having length at most single exponential in |¢| + |},
and both tasks can be accomplished in polynomial space in the size of the input
(by Theorem 2.5.7)), the algorithm can be executed in exponential space. O

4.2.3 Decomposition theorem

Of course, the problem with the naive approach just presented is that it doesn’t take
into account the structure of A, so we end up comparing a huge amount of irrelevant
clauses, which is exactly what we were hoping to avoid. The algorithm that we
propose later in this chapter avoids this problem by exploiting the information
in the input formula and clause in order to cut down on the number of clauses
to test. The key to our algorithm is the following theorem which shows us how
the general problem of prime implicate recognition can be decomposed into the
more specialized tasks of prime implicate recognition for propositional formulae,
O-formulae, and <-formulae.

To simplify the presentation of the theorem, we let II(¢) refer to the set of prime
implicates of ¢, and we use the notation A\ {l1, ..., 1, } to refer to the clause obtained
by removing each of the literals /; from A. For example (a Vb VeV <c)\ {a, Oct
refers to the clause bV e.

Theorem 4.2.3.
Let ¢ be a formula of IC,,, and let A =

n
MV VgV \/(<>z' Yi1 V.o VO i VOixia Vo VO Xim,)
i=1

(v1 V ... V g, propositional) be a non-tautologous clause such that (a) xi; = Xij V
Yi1r V...V, foralll <i<nand1 < j<my, and (b) there is no literal [in A
such that A =X\ {l}. Then X € I(p) if and only if the following conditions hold:

LV Vo € o A=A\ {71, 57%)))

2. 0; (Xig A i A A=) € T A =(AN {Ox,5}))
foreveryl<i<nand1l <j<m;

102 4.2. Prime Implicate Recognition

8. Qi (in Vo Vi) € I A=A\ {Ci i1, ., Qi iy, })
forevery1 <i<mn

For the proof of Theorem [£.2.3] we will require the following two lemmas:

Lemma 4.2.4.
Let ¢ be a formula of ICp,, and let A =

n
NV VAV N (O3 VeV Oithig, V Oixin VoV Oi Xim,)
i=1

be a non-tautologous clause such that v1 V...V is a propositional clause. Suppose
furthermore that there is no literal I in X such that A\ = A\ {{}. If iV ...V &
(e A=A\ {71578)), 07 Oi (i1 VoV abig) € THp A=A\ {Os ity oy Cithin, 1)
for some i, or O; (Xij A—Wia Ao A=y,) & T A=(A\{DOxs,5})) for some i and j,
then X & I1(p).

Proof. We will only consider the case where ¢ = X because if ¢ = A then we
immediately get A & II(y).

Let us first suppose that v V... V., & II(@ A =(A\ {71, ..,k })). Since ¢ = A,
we must also have o A =(A\ {71, .., %}) E M V.o VY%, 80 71 V ... V9, is an
implicate of ¢ A =(A\ {71, .., }). As 71 V ... V7, is known not to be a prime
implicate of o A =(A\ {71, ...,7%}), it follows that there must be some clause N
such that o A =(A\ {71, ., }) EN E 7 V...V = N. Now consider the clause
N =NVViL (i Voo VO, VO Voo VOiXim,). We know that ¢ = N
since @ A (A \ {7, ...,7%}) E N, and that \" = X because N =791 V... Vy,. We
also have A £)" since A’ must be equivalent to a propositional clause (by Theorem
232 and the propositional part of A (namely v1 V ... V %) does not imply . Tt
follows then that ¢ = X" = A = N so A € ().

Next suppose that Og (151 V ... Vsi,) & I A A\ {Cs¥s.1, ..., Cs 51, }))-
Now Oy (¥s,1 V ... V 9)g;,) must be an implicate of ¢ A ~(A\ {Cs s 1,..., Os . })
since we have assumed that ¢ = A. As Oy (5,1 V... Vs,) is not a prime implicate
of @ A=(A\{Cs s 1, ..., Othg 1, }), it follows that there is some A such that ¢ A=(X\

{Osths 1, s O, }) EN | Cs (Whs1 Voo Vb)) = N. Set A equal to

n

MV Vap V'Y \/ (Civia V.o VOihig) Vv \/(DiXi,l Voo V O Xi,m;)
1<i<n i=1
1#£s
Because of Theorem[2.3.2], we know that) is a disjunction of O-literals, so according
to Theorem [Z3.3] we must have A f& N since Og (51 V ... Vs,) = N We also

4. Generating and Recognizing Prime Implicates 103

know that ¢ = X" since @ A 2(A\{Cs ¥g 1, ..., s s, }) = A and that X = A since
N ECg(Ys1 V... Vb,). That means that o = X" =X FE N, so X € I1(p).

Finally consider the case where Oy (xs: A 751 A oo A g,) & I A —(X\
{Oxs,+})). We know that ¢ = A and hence that ¢ A =(A\ {0 xs¢}) = Os Xs -
Moreover, since —|()\ \ {Ds Xs,t}) ’: _‘<>s¢s,j for all 1 < j < s, we have p A
_‘(>\ \ {Ds Xs,t}) ’: Us (Xs,t A _‘¢s,1 Ao A _‘T;Z)s,ls)- Thus, if Os (Xs,t A _‘T;Z)s,l ANRTRA
“ths1,) & (e A =(A\ {Os xs¢})), it must mean that there is some A such that
O A A\{Os xs}) EN E Os (Xt A ths1 Ao A =gy,) B N By assumption, A
is not a tautology, so Oy (Xs¢ A 7s1 A ... A 1) ;,) cannot be a tautology either.
As N = Og(xst A g1 Ao A =hsy,) and Og (st A ~Ps1 A ... A Ttbg) is not
a tautology, it follows from Theorem 2.3.2] that) is equivalent to some formula
Os¢1 V... VOg ¢ Now let X =

n
NV NV N (O3 i Ve VO)WY\ Baxs)V \ (Oixia Ve VOiXim,)

i=1 1<j<ms 1<i<n

Gt its

As pA=(AN\{0s xs4}) | Os 1 V...VOg p, it must be the case that ¢ = \". Also, we
know that there can be no ¢ such that xs; = (5 Vs1 V... Vg, because otherwise
we would have Xt A—ths 1 A...Atbg 1 = (g and hence Og (X5t A" Ws 1A A5) =
Os (1V...VOg (p. Similarly, there can be no g # ¢ such that xs; = Xs,qV0s,1V...Vs
because this would mean that A = X\ {Ox,+}, contradicting our assumption that
there are no superfluous disjuncts in A. It follows then by Theorem 23.3] that
AN Thus, o =N E X N, which means A & II(p). O

Lemma 4.2.5.
Let ¢ be a formula of IC,,, and let A =

n
V..V V \/(<>z ¢i71 V..V, wi,li \VANE Xi1 V...V 0, Xi,mi)

i=1
be a non-tautologous clause such that v V...V g is a propositional clause. Suppose
furthermore that there is no literal I in X such that X = A\ {l}. Then if X & II(p),

either y1 V..V v, € (@ A=A\ {71, 7)), 07 s (Vs V..V s y,) € T A= (11 Vv
VYV (O (X1 Vs Ve Vs 1)V Vg (Xsms v¢s71v...vws,ls))vv1§;§n(0i Y1V
1F£S

VO 1/)2‘,12. v O, Xi,1 V...V XLmi)) fOT’ some s, or 0; (Xi,j A _‘wi,l AN _‘T/Ji,li) ¢
(e A=A\ {Oxi,;})) for some i and j.

Proof. We will only consider the case where ¢ = X because if ¢ = A then we
immediately get the result. Suppose then that A € II(¢) and ¢ = A. By Definition
B.2T] there must be some X' =7 V... V9, V Vi (Oi b 1 Voo VOyab vV OixG

104 4.2. Prime Implicate Recognition

.V Oix;,,) such that ¢ =N = A = X, Since A £ X', by Proposition 23.3] we
know that either y1 V... Vv, 9] V o Vg, or s 1 Vo Vbg o 1 Vo VU
for some s, or for some s and t we have xs¢ & X5, V W51 V .o V¥, for all w.

We begin with the case where 71 V ... V4 £] V... V4., As X |E X and
#~ A, by Theorem 3.3] we know that for every 1 < i < n: ¢, V..V |
Yi1 V... V1, and for every 1 < u < g; there is some 1 < v < m; such that
Xiw F Vi1V . Vi, V Xip. It follows then (also by Theorem 2L3.3) that ¢ = N =
YV VALV NV (Qihin Voo VO, VO X1 Voo V 0 Xim,), and hence that
ONATAN{7s) EVLV VAL As YV VY E MV eV FE AV VAL, we
have found an implicate of ¢ A =(A\ {71, ...,V }) which is stronger than v; V... Vg,
50 Y1 Voo Ve € (e A (AN {715, %))

Next suppose that 151V ... V sy, &g, Vo VL, o As X = X and = A, it
follows from Theorem 233 that 7] V... Vv, E 71 V...V and for every 1 <i < n:

i1 Ve Vb E i VeV, and for every 1 < u < g; there is some 1 < v < m;

such that X;,u E i1 V... Vi,V Xiw. We thereby obtain

SO l: A, l: ’Yl V..V Pyk V (<>8 1/};71 V..V <>8 1/};7])5)
V (Ds (Xs,l \ T;Z)s,l V..V Zz)s,ls) V.. VO, (XS,ms Vv ¢371 V..V ¢S’ZS))

% \/ (Cithi1 Voo VO 03, VO X1 Voo V O Ximy)
1<i<n
1#s

From this, we can infer that

p A —|(’}/1 V..V V (Ds (Xs,l V 1/)5,1 V..V 1/)8715) V...V O (Xs,ms Vv 1/)5,1 V..V ¢s,ls))

VoV (©ithia Vo VO, VX1 VoV O Xim,)
1<i<n
i£Ss

EOsi Vo VO, E Oaths1 Voo V Oty e Cstlq Vo VO

As Coths 1 V.. VO g = Og (s V.. Vb), it follows that Oy (1 V... Vb,) &
H(SD/\ _'(71 V.. VgV (Ds (Xs,l \/T;Z)s,l V.. \/¢s,ls) V... VDO (Xs,ms \/¢s,1 V.. \/T;Z)s,ls)) \4
Vi<i<n(Qithia Voo VO, V Oixi1 Ve V 0 Xim,)

Z];Eifigmally suppose that Xs¢ & Xsu V P51 Voo V g, for all u and furthermore
that ;1 V... Vi, iy V..V, forall 1 <i < n (we have already shown
the result holds whenever ;1 V ... V ¢y, [¥, V... V¢, for some i). Now
O (Xs,t A1 Ao A,) is an implicate of @ A —(A\ {Os xs,t})) so to show that
O (Xs,t A s Ao A1),) is not a prime implicate of ¢ A ~(A\ {Os xs})), we
must find some stronger implicate. Set S = {v € {1,...,¢s} : X5, F X5t V51 V...V
s, and Xg,v B Xsw V s Vo Vg for w # t}. We note that there must be at
least one element in S as we have assumed ¢ = X\ {Og x5+ }. We also know that:

4. Generating and Recognizing Prime Implicates 105

e VIV.VY EMV.. .V
o forevery 1 <i<mn: V..V, FEi1V..Vi,

k3

e for every i # s and 1 < v < ¢;: there is some w
such that Xé,v = Xiw V ¥i1 V.. Vi,

e for every 1 < wv < ¢; with v € S: there is some w # t
such that X%, F Xsw V ¥s1 V... V by,

e for every v € S: X's,v = Xé,v

From these statements, we get that

pENE MV VvV \ (i V..V Oy,)V

=1
V @ixii Vo VOixim) V'V BexewV V Dsxho
1<i<n 1<w<ms vES
1#s wH#t

It follows that ¢ A 2(A\ {OsXst}) F Ve Os (Xsw A 7051 A oo A thsy,), which
means that \/ cg Os (X5, A 705,10 Ao A,) is an implicate of @ A= (A\ {8 xst})-
Moreover, \/,cg Os (X;,v AN=ths 1 Ao ANsp) E Os (Xst A 61 A oo A —1hg) since
by construction X;v = Xst Vs1 V... Vb, for every v € S.

It remains to be shown that Oy (xst A s Ao A hsi) FE Vies Os (Xsw A
51 A ... Agy,). Suppose for a contradiction that the contrary holds. Then
Os (Xs,t A s 1A A1) E Ve Os (Xs o A5 1A A,), 0 by Theorem 223,11
there must be some v € S for which x s A—9s 1A AT, = X/S,U/_'¢371/\"'/_'¢S7ls‘
But then xs1 [X5, V ¥s1 Voo Vs, and thus Xs¢ | X5, Vg, Voo Vg, since
we have assumed 51V ... Vs, = Y51 V... Vb, . This contradicts our earlier
assumption that xs & X5, V ¥e1 V... Vg, for all u. Thus, we have shown that
Os (Xt A st Ao A %s1,) = Vipes Os (Xsw A s1 A oo Atsy,), which means
Oy (Xs,t A _‘T;Z)s,l A A _‘¢s,ls) Q H(QD A _'()‘ \ {Ds Xs,t}))' O

Proof of Theorem [{.2.3. The forward direction was shown in Lemma .24l The
other direction follows from Lemma together with the hypothesis that x; ; =
XijVia V...V, forall1 <i<mnand1<j<m; (which ensures that o A= (v V
VARV (O (X1 Vs Voo Vs 1)V VB (Xsme V5,1 Vo V1))V V1 <i<n (Qi i1 V

1#s

VO VO X Vo Vi Xim,) = @ A AN\ A{CsYs 1, Cs 51, 1)) O

We remark that the restriction of Theorem B2Z3J] to clauses for which y;; =
Xij Vi1 V...V, for all i and j and for which A # A\ {{} for all disjuncts

106 4.2. Prime Implicate Recognition

[is required. If we drop the former restriction, then there are some non-prime

implicates that satisfy all three conditions, as the following example demonstrates.

Example 4.2.6.
Consider the formula ¢ = G(aAbA¢)V Oa and the clause A = O(aAb) vV O(aA—b).
It can be easily shown that A is an implicate of ¢, but A is not a prime implicate

of ¢ since there exist stronger implicates (e.g. ¢ itself). Nonetheless, it can be

verified that both O(a A =bA =(aAb)) € I(p A=(A\{O(aA-b)})) and ClaAb) €
(e A =(A\{C(a AD)})).

If we drop the requirement that A # A\ {l} for all disjuncts [, then there are
prime implicates which fail to satisfy one of the three conditions, as witnessed by
the following example.

Example 4.2.7.
Consider the formula Oa and the clause Oa V O(a A b). We have O(a A b) &
II(Oa A —(0a)) even though Oa V O(a A b) is a prime implicate of Oa.

These two restrictions are without loss of generality however since every clause
can be transformed into an equivalent clause satisfying them. For the first restric-
tion, we replace each O; x;; by O; (Xin V ¥i1 V... V4 y,), thereby transforming a
clause v V ... Ve V Vil (Cs i1 Voo VOitbig, V Oi X1 Voo V O Xi,m,) into the
equivalent v V... V4 V Ve (Ci i1 Voo VO 1, VO, (X1 Vit Vo Vi) VeV
O (Xiym; Vi1 V... Vbi,)). Then to make the clause satisfy the second restriction,
we simply remove from A those disjuncts [satisfying A = X\ {l{} until no such
disjuncts remains.

Theorem B.2.3] shows us how prime implicate recognition can be split into three
more specialized sub-tasks, but it does not tell us how to carry out these tasks.
Thus, in order to turn this theorem into an algorithm for prime implicate recogni-
tion, we need to figure out how to test whether a propositional clause, a O-literal,

or a <-literal is a prime implicate of a formula.

4.2.4 Prime implicate recognition for
propositional clauses

Determining whether a propositional clause is a prime implicate of a formula in /C,
is conceptually no more difficult than determining whether a propositional clause
is a prime implicate of a propositional formula. We first ensure that the clause is
an implicate of the formula and then make sure that all literals appearing in the

clause are necessary.

4. Generating and Recognizing Prime Implicates 107

Theorem 4.2.8.
Let ¢ be a formula of K, and let v be a non-tautologous propositional clause such
that ¢ = v and such that there is no literal | in v such that v = v\ {{}. Then

v € () if and only if ¢ = v\ {l} for alll in ~.

Proof. Consider a formula ¢ and a non-tautologous propositional clause A such that
¢ = A and such that there is no literal [in A such that A = A\ {{}. Suppose that
¢ = A\ {l} for some [in X\. As we know that A #Z X\ {l}, it follows that A\ {l}
is an implicate of ¢ which is strictly stronger than A, so A is not a prime implicate
of ¢. For the other direction, suppose that A & II(y). Then it must be the case
that there is some clause p such that ¢ = p = A J£ p. Since p = A, it follows from
Theorem that each literal in p is a propositional literal of A or is inconsistent.
If all of the literals in p are inconsistent, then both p and ¢ must be inconsistent,
so clearly ¢ = v\ {l} for every [in . Otherwise, p is equivalent to a propositional
clause, and more specifically to a propositional clause containing only those literals
appearing in A (since p = A). As p is strictly stronger than A, there must be some
literal [in A which does not appear in p. But that means p = A\ {l} and so
¢ = A\ {l}, completing the proof. O

4.2.5 Prime implicate recognition for O-formulae

We now move on to the problem of deciding whether a clause of the form 0O; x is
a prime implicate of a formula ¢. We remark that if O; x is implied by ¢, then
it must also be implied by each of the terms 7" in 7=Dnf(y). But if 7' = O, x
and T is satisfiable, then it must be the case that the conjunction of the O;-literals
in T implies O; y. This means that the formula VTeT;TbéL 0, /\CeBowi(T)C is an
implicate of ¢ which implies O; x, and moreover it is the strongest such implicate.
It follows then that O; x is a prime implicate of ¢ just in the case that O; x entails
this formula. But we know from results in Chapter 2] that the latter holds if and
only if X = Acepou, (1) ¢ for some satisfiable T". Thus, by comparing the formula x
with the formulae /\CE Bomi(T)C associated with the satisfiable terms of ¢, we can
decide whether or not O; x is a prime implicate of ¢.

Theorem 4.2.9.
Let ¢ be a formula of Ky, and let A = O; x be a non-tautologous clause such that
¢ = A. Then X € II(p) if and only if there exists some satisfiable term T €Dnf(p)

such that x = /\CeBoxi(T) ¢

Proof. Let ¢ be some formula, and let A = O; x be a non-tautologous clause such
that ¢ = A. Set 7 =Dnf(yp). For the first direction, suppose that there is no

108 4.2. Prime Implicate Recognition

satisfiable term 7" € 7 such that x = /\CE Bozy (1) G- We first remark that since
¢ E A, every T must entail A\. Moreover, since \ is a non-tautologous O;-formula,
every term 7' € 7 must be either unsatisfiable or such that Box;(T) # 0 and
/\CEBOJ:,'(T) ¢ | x. If 7 contains only unsatisfiable terms, then A\ = L but O; x & L,

so A is not a prime implicate. If there is at least one satisfiable term in 7, then

N = \/ 0, /\ ¢

TeT THEL ¢eBox;(T)

consider the clause

For every T, we must have T =)\ since either T is unsatisfiable or it entails
Oi A¢eBow, (1) ¢ This means that ¢ [= X'. We also have X' |= A, because A\¢c g, (1) ¢ F
X for every satisfiable T'. Finally, we must have A £ X, because of statement 8 of
Theorem 23] and our earlier assumption that y [~ /\CG Bozi(T) & for every satis-
fiable T € 7. So we have ¢ = X | A £ X, which means that)\ is not a prime
implicate of ¢.

For the other direction, suppose that O, x is not a prime implicate of . If
T is composed entirely of unsatisfiable terms, then there clearly cannot exist any
satisfiable term T € 7 such that y | /\CEBoxi(T) (. Suppose then that 7 contains

at least one satisfiable term. We intend to show that the clause

N = \/ 0, /\ ¢

TeT THEL ¢eBox;(T)

is a prime implicate of T'. To do so, we let k¥ be some implicate of ¢ which implies
N. Now since X is a non-tautologous disjunction of O-formulae, it follows from
Theorem that kK = ;1 V ... V O; %y, for some formulae ;. As ¢ = K, we
must have T |= O; v, V...V O; 4y, for all T €Dnf(yp). But that can only be the case
if 05 A¢eBors(ry ¢ E Bim V... V. O; vy, for all satisfiable T (Theorem 2.3.)), which
means \' = O;v1 V... VO; . As X implies every implicate of ¢ that implies it,
it must be a prime implicate of ¢. But this means that O; x & X, since we have
assumed that O;x is not a prime implicate of . It follows from statement 8 of
Theorem 2.3.TI that X & O; A¢cpoq,) ¢ for all satisfiable 7' €Dnf(y). O

4.2.6 Prime implicate recognition for ¢-formulae

Finally let us turn to the problem of deciding whether a clause <t is a prime
implicate of a formula ¢. Now we know by Covering that if i is an implicate of
©, then there must be some prime implicate 7 of ¢ which implies ¢, It follows
from Theorem that 7 must be a disjunction of O-literals, and from Theorem
AT dlthat 7 is equivalent to a disjunction \/Tean- 4(p) <&dr where Odp is an element
of A(T) for every T (refer back to Figure A1l for the definition of A(T")). According

4. Generating and Recognizing Prime Implicates 109

to Definition B2l <©t is a prime implicate of ¢ just in the case that Gy =
\/Tean_4(¢) &dp, or equivalently v = \/Tean_él((p) dp. Thus, 1) is not a prime
implicate of ¢ just in the case that there is a choice of Odp € A(T) for each

T € Dnf-4(p) such that \/Tean_4(¢) dp =1 and ¢ £ \/Tean_él((p) dr.
Testing directly whether 1) entails some formula \/pcppe. 4(p) dr could take ex-

ponential space in the worst case since there may be exponentially many terms in
Dnf-4(yp). Luckily, however, we can get around this problem by exploiting the
structure of the formula \/;cppe. 4(p) dr- We remark that because of the way A(T)
is defined the formula dr must be a conjunction of formulae ¢ such that O or
O¢ appears in Nnf(p) outside the scope of modal operators — we will use X to
denote the set of formulae (satisfying this condition. We show in what follows
that ¥ ¥ \/pepng-a(p) dr implies the existence of a subset S C X such that (a)
Y =\ eg0 and (b) every dr has at least one conjunct from the set S. Conversely,
the existence of such a subset of X' implies ¥ = \/rcpne- 4(p) dr. This observation
is the basis for the algorithm TestOPI given in Figure The basic idea behind
the algorithm TestOPI is to try out each of the different subsets of X in order
to see whether some subset satisfies the aforementioned conditions. If we find a
suitable subset, this proves that <t is not a prime implicate, and if no such subset
exists, then we can be sure there is no stronger implicate than <. The algorithm
can be shown to run in polynomial space since there can be at most |¢| elements
in X, and we can consider the terms in Dnf(y) one at a time.

Algorithm 4.2 TestOPI
Input: a clause ©; 9 and a formula ¢ such that ¢ = <; 9

Output: yes if ¢; 9 is a prime implicate of ¢, otherwise no
(1) If Sat(¢)=no, return yes if Sat(i))=no, else return no.
(2) Set X equal to the set of formulae ¢ such that O; ¢ or ©; ¢ appears in Nnf(p)
outside the scope of modal operators.
(3) For each S C X, test whether the following two conditions hold:
(a) Entails(¢, \/,q0)=no
(b) for each T; € Dnf(yp) such that Sat(T};)=yes, there exists conjuncts
Onj, Oy -y Opg g, of T such that:
(1) £y 11 oo i, y O S # 0
(ii) Entails(; (nj A pga A - A pjk,), Cib)=yes

Return no if some S satisfies these conditions, and yes otherwise.

We will split the proof of correctness of TestOPI into two parts.

110 4.2. Prime Implicate Recognition

Lemma 4.2.10.
If O 1) is not a prime implicate of v, the algorithm TestOPI returns no on input

(Cith, @)

Proof. Suppose that ;) is not a prime implicate of . If ¢ is unsatisfiable, then
<&; 1 must be satisfiable, so we will have Sat(p)=no and Sat(¢))=yes, and the
algorithm will return no in Step 1. Otherwise, as we have assumed that the input
;1) is an implicate of ¢, there must be some clause A such that ¢ = A | O
but &0 A As A = O 4, it follows from Theorem that A is equivalent to
a disjunction of <;-formulae, and hence to some clause <;).

We know from Theorem 244 that ¢ is equivalent to the disjunction of terms
in Dnf(p). It must thus be the case that T; = ;¢ for all T; € Dnf(p). This
means that for every satisfiable T}, there exists a set {<in;, O; 11, .., O 1, } of
conjuncts of T such that &; (n; A pji Ao A pjr;) = ©i1f, otherwise T; would fail
to imply <;1'. Moreover, all of the elements of {<; Njy 04 fj 15 e Dz‘,u];kj} must
appear in the NNF of ¢ outside modal operators, so the formulae 7, 11, ., fj k;
must all be elements of the set X. It is immediate that both

i N Apa A Apgng) b= Qi | O (4.3)
]TJ%J

and
Qi O\ A A A py)
JTEL
The latter implies that the formula ;¥ A =(<; \/j:ijéL(nj A Ao A i k) must
be consistent, which means that

A= (\/ (77j A1 A A Mj,kj) =y A /\ (—\77j Vapi V..V _‘Mj,kj)
JTiEL 3L

must be consistent as well. But then it must be the case that we can select for each
j with Tj = L some 0 € {0, 4,1, -, fj,k; } Such that 1/1/\/\J-:ij&L —0; is consistent.
Let S be the set of 0. The set S satisfies the condition of the algorithm since:

e SCX

o Y [=\/ g0 (because we know 1 A /\J-:ij,&L —0; to be consistent), and hence
Entails(¢y, \/, g 0)=no

e for each satisfiable T; € Dnf(p), we have found a set {<&ny, Opgia, o, Ok, }
of conjuncts of T such that:

= ANy 115 s iy, } NS # D (since S contains o € {ny, pj1, -5 Mk, })

4. Generating and Recognizing Prime Implicates 111

= O A i A A k) B it (follows from (4.3]) above), and hence
Entails(<; (77]' A1 A A ,uj7kj), &ih)=yes

Since there exists a set S C X satisfying these conditions, the algorithm TestOPI

returns no. O

Lemma 4.2.11.
If the algorithm TestOPI returns mo on input (O;v, @), then ;1) is not a prime
implicate of p.

Proof. There are two cases in which the algorithm returns no: either Sat(p)=no
and Sat(i))=yes, or there is some S C X which satisfies both conditions (a) and
(b). In the first case, <; v is clearly not a prime implicate since ¢ = L and ¢z & L
(by Theorem [2Z5.8]). We now examine the second case in more detail.

Suppose that S C X is such that:
() ¥ 1 V,eq 0
(b) for each satisfiable T; € Dnf(yp), there exists a set of conjuncts
{Ony, Opj1, -, Oy, } of Ty such that:
() {mj, i1, i } NS #0
(ii) ©i (mj A pig Ao A i) F ©it
Let a be the clause vj:ijéi Sy A pjag Ao A pijk;). We remark that for each
satisfiable Tj, we have T; = <;(nj A pj1 A - A pjk;), and hence \/,;T; | a.
Because of Corollary Z4.5] we also have ¢ = \/j Tj, which gives us ¢ = a. From
2 (b) (ii), we have that <;(m; A pja Ao A pjk;) | i for every 4, and hence
\/j:ijéJ_ Ci (M Apja N A ij;) | <©ptp which yields o = ©; 4. From 2 (b) (i), we
have that {n;, 1, ..., ik, } NS # () and hence that for every j satisfying T); = L,
there is some o € S such that 1; A pj1 A ... Apjk; = 0. From this we can infer that
\/].:ij&L Ci (i A Ao A ajie;) FE Vpeg ©io, and hence a = ©; \/ cg0. But we
know from 2 (a) and Theorem 231l that O;4p = O \/ cgo. It follows then that
&1 £~ o Putting all this together, we find that there exists a clause a such that
¢ EalE ;¢ but O £ a, and hence that ;1) is not a prime implicate of ¢. [

Theorem 4.2.12.
Let o be a formula, and let ;v be an implicate of . Then the algorithm TestOPI
returns yes on input (C;v,) if and only if $;v is a prime implicate of .

Proof. 1t is clear that TestOPI terminates since satisfiability testing always termi-
nates, and there are only finitely many elements in S and terms in Dnf(p). Lemmas
A2.10 and 21Tl show us that the algorithm always gives the correct response. [J

112 4.2. Prime Implicate Recognition

Theorem 4.2.13.
The algorithm TestOPI runs in polynomial space.

Proof. The algorithm Sat runs in polynomial space in its input (Theorem [Z5.6]),
so Step 1 requires only polynomial space in the length of |¢| and |¢)|. We next
remark that the length of the conjunction of elements in X is bounded above by
the length of the formula NNF(p), and hence by Theorem the conjunction of
the elements of any particular S C X' cannot exceed 2|¢|. It follows that running
Entails on the pair (¢, \/ cg0) takes only polynomial space in the length of ¢
and .

Now let us turn to Step 3 (b). We know from Theorem 2.4.7 that Dnf runs
using only polynomial space, and the length of any T; in Dnf(y) can be at most
2|¢| (Theorem R.4.6]). Tt follows that checking whether {n;, 11, ..., ;3 N S # 0,
or whether Entails(<; (1; A pj1 Ao A ik,), ©i)=yes can both be accomplished
in polynomial space in the length of ¢ and ¥. We conclude that the algorithm
TestOPI runs in polynomial space.

We now present two examples which illustrate the functioning of TestOPI.

Example 4.2.14.
We use TestOPI to test whether the clause A = &(a A b) is a prime implicate of
e=aA(@bBAc)VOEVf)AO(aNb).

Step 1: As ¢ is satisfiable, the algorithm Sat returns yes on ¢, so we pass directly
to Step 2.

Step 2: We set X equal to the set of formulae ¢ such that O¢ or <(appears in
Nnf(yp) outside the scope of modal operators. In our case, we set X =
{bAc,eV f,aAb} since ¢ =Nnf(p) and bAc, eV f, and a A b are the only

formulae satisfying the requirements.

Step 3: We examine each of the different subsets of X to determine whether they
satisfy conditions (a) and (b). In particular, we consider the subset S =
{bAc,eV f}. We remark that this subset satisfies condition (a) since a A b =
(bAc)V (eV f) (hence Entails(a Ab,(bAc)V (eV f))=no). In order to
check condition (b), we call the procedure Dnf on input Nnf(p).The first
term output is 77 = a AO(b A ¢) A O(a Ab). We notice that the conjuncts
O(a Ab) and O(b A ¢) of T satisfy conditions (i) and (ii) since b A ¢ € S and
OlanbA(bAce)) = A (hence Entails(C(aAbDA (DAC)), A)=yes). The next and
final term output by Dnf is T, = aAO(eV f) A<(a Ab). We notice that the
conjuncts ¢(a Ab) and O(e V f) of T, also satisfy conditions (i) and (ii) since

4. Generating and Recognizing Prime Implicates 113

eVfeSand G(aAbA(eV f)) = A (so Entails(C(aAbA(eV f)), A)=yes).
That means that we have found a subset S of X which satisfies conditions
(a) and (b), so the algorithm returns no. This is the correct output since
OlaANbA((bAc)V (eV f))) is an implicate of ¢ which is strictly stronger than

the clause \.

Example 4.2.15.
We use TestOPI to test whether the clause A = G(a A b A ¢) is a prime implicate
of p=aN(@ObBAc)vVOEVf)AS(@Nb)A-OeV fV(aAbAc)).

Step 1: We proceed directly to Step 2 since ¢ is satisfiable and hence Sat(p)=yes.

Step 2: Weset X = {bAc,eV f,aNb,~e\N—fA(=aV—bV-c))} since Nnf(p)=aA
@bAcyvOeV f))AS(aNb) ANO(me A=f A(—aV =bV —c)).

Step 3: We check whether there is some subset of X' satisfying conditions (a) and
(b). We claim that there is no such subset. To see why, notice that aAO(bAc)A
O(aANb) ANO(me A= f A(—aV —=bV —c)) is the only term in Dnf(yp). Moreover,
there is only one set of conjuncts of this term which implies $(a A b A ¢),
namely {C(aAD),0(bAc)}. But that means that S must contain either a A b
or bAcin order to satisfy condition (b)(i). As a AbA cimplies both a Ab and
b A ¢, we are guaranteed that a A b A ¢ will imply the disjunction of elements
in S, thereby falsifying condition (a). It follows that there is no subset of
X satisfying the necessary conditions, so TestOPI returns yes, which is the
desired result.

4.2.7 The algorithm TestPI

We now present our algorithm TestPI for testing whether a clause A is a prime
implicate of a formula . The first two steps of the algorithm treat the limit cases
where \ is not an implicate or where one or both of ¢ and A is a tautology or
contradiction. In Step 3, we apply equivalence-preserving transformations to A
to make it satisfy the requirements of Theorem [£2.3l Then in Steps 4, 5, and 6
we use the procedures from Theorems £2.8] 129, and to test whether the
three conditions in Theorem [£.2.3] are verified. If the three tests succeed, then by
Theorem [£2.3] the clause is a prime implicate, so we return yes. If some test fails,
we return no as the clause has been shown not to be a prime implicate.

We will use the next two lemmas to prove the correctness of our recognition
algorithm.

114 4.2. Prime Implicate Recognition

Algorithm 4.3 TestPI
Input: a clause A and a formula ¢

Output: yes if A is a prime implicate of ¢, and otherwise no

(1) If Entails(¢, A)=no, return no.

(2) If Sat(¢)=no, then return yes if Sat(A\)=no and return no otherwise. If
Entails(T, \)=yes, then return yes if Entails(T, p)=yes and no otherwise.

(3) For each disjunct 7 of A, if Entails(\ \ {7}, A\)=yes, then remove v from .
For each 1 <i <mn, if Diam;(\) is non-empty, replace each disjunct O;x of A
by O;(x V \/weDiami(A)). Call the resulting clause \’.

(4) For each p € Prop()\'): return no if Entails(p, X'\ {p})=yes.

(5) For each disjunct 0;3 of X: check whether there is T' € Dnf(p A =(X'\ {3;5}))
such that Sat(T")=yes and Entails(8 A A ycpiam,) 75 AceBor: (1) C)=Yes,
and return no if not.

(6) Return yes if Test OPL(Oi(V e pigm, (v)) ¢ A 7N\ {Ci) | ¢ € Diam;(N)}))

returns yes for every i such that Diam;(\') # (), and return no otherwise.

Lemma 4.2.16.
If X\ is a clause that is not a prime implicate of ¢, then TestPI outputs no on this
mput.

Proof. Let us begin by considering a formula A which is a clause but that is not a
prime implicate of ¢. There are two possible reasons for this: either A is not an
implicate of ¢, or it is an implicate but there exists some stronger implicate. In the
first case, we have Entails(p, \)=no, so TestPI returns no in Step 1, as desired.
We will now focus on the case where A is an implicate but not a prime implicate.
We begin by treating the limit cases where one or both of ¢ and A is a tautology
or contradiction. Given that we know A to be a non-prime implicate of ¢, there
are only two possible scenarios: either ¢ = L and A\ & L, or I~ ¢ and = A. In
the first case, we have Sat(p)=no and Sat()\)=yes, and in the second, we have
Entails(T, p)=no and Entails(T,\)=yes. In both cases, the algorithm returns
no in Step 2.

If X is an implicate of ¢, and neither ¢ nor A is a tautology or contradiction,
then the algorithm will continue on to Step 3. In this step, any redundant literals
will be deleted from A, and if A contains <;-literals, we add an extra disjunct to
the O;-literals so that A satisfies the syntactic requirements of Theorem 2.3 Let
N =1V V% VV (Cihi 1 V. VO 1, VO X611 V... VO, Xim,) be the clause at the
end of Step 3 once all modifications have been made to A. As the transformations

in Step 3 are equivalence-preserving (Theorem 2:3.T]), the clause) is equivalent to

4. Generating and Recognizing Prime Implicates 115

the original clause A, so X' is a non-tautologous non-prime implicate of ¢. This
means ¢ and A\ now satisfy all of the conditions of Theorem 2.3 Tt follows then
that one of the following holds:

(@) MV Vo €I A =N\ {71, %))

(b) T (Xig A =i Ao Ag,) & T A =(AN\ {Oxi51))
forsome 1 <i<mnand1l<j<m;

(¢) Ci(Win V.o Vi) T AN\ {150, Cithig, }))

for some 1 <3 <n

Suppose that (a) holds. Now 77 V ... V 7% is a non-tautologous propositional clause
implied by ¢ A =(N \ {71, ...,V }) which contains no redundant literals. This means
that @ A=(N\ {71, ..., }) and 71 V ... V4 satisfy the conditions of Theorem 2.8
According to this theorem, as y1 V ... Vv, & (o A =(N \ {7, ..., 7% }), then there
must be some ; such that ¢ A =(AN\ {71, ..., %} E 71 V... Vyj—1 Vi1 V Yk, hence
o = XN\ {v;}. It follows that for some 7; we have Entails(¢, X' \ {v,})=yes, so
the algorithm returns no in Step 4.

Suppose next that (b) holds, and let i and j be such that O; (x;; A %1 A ... A
—1pig,) & (e A =(N'\ {Oxi,;})). By Theorem F2.9] this means that there is no
satisfiable T" €Dnf(p) such that x;; A i1 A ... A =y, = /\CEBomi(T) ¢, so for
every T either Sat(7)=no or Entails(xi; A —%i1 A ... A i1, A¢epog,(r) ¢)=n0.
It follows that the algorithm returns no in Step 5 while examining the disjunct
D Xi,j-

Finally consider the case where neither (a) nor (b) holds but (c) does, and let
i be such that &; (i1 V... Vi) & (e A =N\ {Civi1, ..., Qi iy, })). Then in
Step 6, we will call TestOPI(<; (i1 V ... Vi), 0 A (N \ {Cihi1, ..., Civhir, })).
As ©; (i1 V... V1biy,) is not a prime implicate of ¢ A =(XN\ {1, ..., Ci i })
and we have shown TestOPI to be correct (Theorem [£.2.12]), Test OPI will return
no, which means TestPI will return no as well. As we have covered each of the
possible cases, we can conclude that if A is a clause that is not a prime implicate
of ¢, then TestPI outputs no.]

Lemma 4.2.17.
If TestPI outputs no with input (A, ¢) and X is a clause, then X is not a prime
implicate of .

Proof. There are 5 different ways to return no (these occur in Steps 1, 2, 4, 5, and
6). Let us consider each of these in turn. The first way that the algorithm can
return no is in Step 1 if we find that Entails(¢, \)=no, and hence that ¢ [~ A.

116 4.2. Prime Implicate Recognition

This is correct since A cannot be a prime implicate if it is not a consequence of .
In Step 2, we return no if Sat(¢)=no but Sat(\)=yes, or if Entails(T,\)=yes
but Entails(T,¢)=no. In the first case, we have ¢ = L and A\ £ L, and in
the second, = X\ and [~ ¢. In both cases, A cannot be a prime implicate since
there exist stronger implicates (any contradictory clause if ¢ = L, and any non-
tautologous implicate of ¢ if = \). In Step 3, we may modify A, but the resulting
clause N = v V...V V VI (Cihin Voo VO i, V Oixia Voo V 0i Xim,) 18
equivalent to the original (by Theorem 231]), and so X is a prime implicate just
in the case that A was. Now in Step 4, we return no if we find some propositional
disjunct ~; in A for which Entails(p, \' \ {v;})=yes, and hence p = X\ {;}.
Now since in Step 3, we have removed all redundant disjuncts from A, we can be
sure that X'\ {v;} is strictly stronger than A'. So we have ¢ = X'\ {y;} F X
and X' & X'\ {7;}, which means that X, hence A, is not a prime implicate of
w. We now consider Step 5 of TestPI. In this step, we return no if for some
disjunct O;x; j of X’ there is no term 7" in Dnf (¢ A ~(X \ {TD;x;,;})) for which both
Sat(7T)=yes and Entails(x; j A i1 A ... A=, /\CEBoxi(T) ¢)=yes. According to
Theorem E.2.9] this means that O;(x;j A =1 A... A—p; ;) is not a prime implicate
of @ A=(A\ {0; xi;}), which means that A, and hence), is not a prime implicate
of ¢ by Theorem 23]

Finally let us consider Step 6. In this step, we return no if TestOPI returns
no on input (C;(Yin Ao Aig), 0 AN\ {OCiin, ..., Oy, })) for some i. By
Theorem E.2.T2] we know that this happens just in the case that $;(1;1 A ... A1yy,)
is not a prime implicate of ¢ A =(N'\ {1, ..., Githiy, }). Tt follows from Theorem
23] that), and hence A, is not a prime implicate of . O

Theorem 4.2.18.
The algorithm TestPI always terminates, and it returns yes on input (A, @) if
and only if A is a prime implicate of p.

Proof. The algorithm TestPI clearly terminates because Steps 1 to 5 involve a finite
number of syntactic operations on A and a finite number of entailment checks. More-
over, the call to TestOPI in Step 6 is known to terminate (Theorem E.2.12]). Cor-
rectness and completeness have already been shown in Lemmas and 421710

We demonstrate the functioning of TestPI on an example.

Example 4.2.19.

We use TestPI to test if the clauses Ay = b, Ay = ObV O(e V f), A3 = a V Ca,
Ay = O(anb), and A5 = G(aAbAc)VO(aAbAcA f)vO(eV f) are prime implicates
of p=aAN(OBAc)VOEVf)AO(anDd).

4. Generating and Recognizing Prime Implicates 117

)\11

)\2:

)\3:

)\4:

)\51

We output no in Step 1 since ¢ = A1, so Entails(p, A\;)=no.

We skip Steps 1 and 2 since A = A2 and neither ¢ = L nor = Ag. In
Step 3, we make no changes to Ay since it contains no redundant literals nor
any <-literals. We skip Step 4 since Ay has no propositional disjuncts. In
Step 5, we return no since the only satisfiable term output by Dnf on input
(A=A \{Ob}) is aAO(bAC)ANO(aNb) AO(me A~ f), and we have b [~ bAc.

We proceed directly to Step 3 since A | Az, ¢ [~ L, and [~ A3. No modifica-
tions are made to A3 in Step 3 as it does not contain any redundant literals
or O-literals. In Step 4, we use Entails to test whether or not ¢ = A3\ {a}.
As Entails(p, \3 \ {a})=yes, we output no.

Steps 1-5 are all inapplicable, so we skip directly to Step 6. In this step, we
call TestOPI with as input the clause ¢(a A b) and the formula ¢ A =(A\g \
{O(anb)}) = . We have already seen in Example[£2Z.T4above that TestOPI

returns no on this input, which means that TestPI also returns no.

We proceed directly to Step 3, where we delete the redundant literal &(a ADA
¢ A f) and then modify the literal O(e V f). At the end of this step, we have
As =O(anbAe)vVO((eV f)V(aAbAc)). Step 4 is not applicable since there
are no propositional disjuncts in As. In Step 5, we continue since the only
satisfiable term output by Dnf on input o A—=(As \{O((eV fV(aAbAc))}) is
anO(eV f)NO(anb)AD(—aV—-bV=c), and (eV fV(aAbAC))A(—aV—bV—c) =
(eV f)A(—maV —=bV —c). In Step 6, we return yes since we call TestOPI on
input (G(aAbAc),p A=(A5\ {OC(aAbAC)})), and we have previously shown
in Example that Test OPI returns yes on this input.

We now show that TestPI runs in polynomial space.

Lemma 4.2.20.
The algorithm TestPI provided in Figure[4.3 runs in polynomial space in the length

of the input.

Proof. 1t is clear that Steps 1 through 5 can be carried out in polynomial space

in the length of the input, since they simply involve testing the satisfiability of

formulae whose lengths are polynomial in |A| + |¢|. Step 6 can also be carried

out in polynomial space since by Theorem 213 deciding whether the formula
Oi(Vyepiam; (v) ¥) is a prime implicate of ¢ A (X" \ {O |1 € Diam;(X)}) takes
only polynomial space in [O;(V e piam,;) ©)| 1o AN\ {Cip [¢ € Diam;(N)})],
and hence in |A| + |p|. We can thus conclude that the algorithm TestPI runs in

polynomial space in the length of the input.

118 4.2. Prime Implicate Recognition

As we have already shown that TestPI decides prime implicate recognition, it
follows that this problem is in PSPACE:

Theorem 4.2.21.
Prime implicate recognition is in PSPACE.

Proof. We have shown in Theorem L 2.18] that TestPI always terminates and re-
turns yes whenever the clause is a prime implicate and no otherwise. This means
that TestP1 is a decision procedure for prime implicate recognition. Since the algo-
rithm has been shown to run in polynomial space (Lemma [£.2.20]), we can conclude

that prime implicate recognition is in PSPACE.

By putting together Theorems 2.1] and FL2.2T], we obtain a tight complexity
bound for the prime implicate recognition task.
Corollary 4.2.22.

Prime implicate recognition is PSPACE-complete.

We thus have the positive and somewhat surprising result that the worst-case

complexity of prime implicate recognition is the same as that of entailment in IC,,.

Restricted Consequence Finding

In this chapter, we consider two more nuanced notions of prime implicates: new prime
implicates, which allow us to isolate the novel facts which can be derived upon arrival of
new information, and signature-bounded prime implicates, which allow us to character-
ize the consequences of a formula over a given signature. We investigate the properties
of both notions and their associated reasoning tasks, leveraging results from previous
chapters.

5.1 New prime implicates

When information is added incrementally to a knowledge base, it is natural to
want to know what new facts can be derived following the addition of a piece of
information. In propositional logic, this motivated the introduction of the notion
of new prime implicates (cf. discussion in [Mar(Q]), which are intended to capture
the new consequences of ¢ upon the addition of some piece of information. We can
easily extend this notion to KCp:

Definition 5.1.1 (New prime implicate).
Let ¢ and ¢ be K,, formulae. A clause A is said to be a new prime implicate of a

formula 1 given ¢, or simply a p-prime implicate of v, if and only if:
1. X is a prime implicate of ¢ A ¢
2. A is not an implicate of ¢

Example 5.1.2.
Consider the formula ¢ =

119

120 5.1. New prime implicates

(@Vb) ANOy(=bVe) A (bV<CO1b) A Oga A Oge
AOz(bA(aVe)) A Oaxd

from Example B2T1l The formulae b and —a are the two p-prime implicates of —a.
There are three ¢-prime implicates of —b: —b, a, and <1(b A ¢). There is only one
-prime implicate of &1 T, which is ¢1(=b V ¢). The unique p-prime implicate of
Oo(—d Ae)is L.

It is also possible to define in an analogous way a notion of new prime implicant.
We saw in Chapter [I] that such a notion proves useful in abductive reasoning by

allowing us to eliminate explanations which conflict with the background knowledge.

Definition 5.1.3 (New prime implicant).
Let ¢ and ¥ be K, formulae. A term k is a new prime implicant of a formula

given ¢, or simply a @-prime implicant of v, if and only if:
1. k is a prime implicant of ¢ V ¥
2. K is not an implicant of ¢

In what follows, however, we will restrict our attention to new prime implicates,

since the corresponding results for new prime implicants follow by duality.

Theorem 5.1.4.
FEvery p-prime implicant of a formula i is equivalent to the negation of a —p-prime

implicate of ~, and vice-versa.

Proof. The proof is entirely similar to the proof of Duality for standard prime
implicates/implicants (Theorem [B.2.5]). O

5.1.1 Properties of new prime implicates

The following two theorems clarify the relationship between standard and new

prime implicates:

Theorem 5.1.5.

FEvery p-prime implicate of ¥ is a standard prime implicate of @ A\ .

Proof. Follows directly from Definition [F.1.11 O

Theorem 5.1.6.
A clause X is a standard prime implicate of a non-tautologous formula ¢ if and only

if X is a T-prime implicate of .

5. Restricted Consequence Finding 121

Proof. Follows directly from Definition .11l O

Theorem [5.1.5] allows us to transfer our upper bounds on the size and number

of standard prime implicates to new prime implicates.

Theorem 5.1.7.
For any pair of formulae @ and v, the length of the smallest clausal representation

of a @-prime implicate of 1 is no more than single exponential in || + |1)].

Proof. Direct consequence of Theorems [4.1.6] and [5.1.5] O

Theorem 5.1.8.
The number of non-equivalent new prime implicates for a given pair of formulae is
no more than double exponential in the sum of the lengths of the two formulae.

Proof. Direct consequence of Theorems [4.1.12] and B.1.5] O

In particular, the latter theorem shows that the number of new prime implicates
is always finite modulo equivalence.

Our lower bounds on the size and number of standard prime implicates can also
be transferred to new prime implicates via Theorem

Theorem 5.1.9.
The length of the smallest clausal representation of a new prime implicate of a pair

of formulae can be exponential in the sum of the lengths of the formulae.

Proof. Follows directly from Theorems 1.7 and 5.1.61 O

Theorem 5.1.10.
The number of non-equivalent new prime implicates of a pair of formulae may be

double exponential in the sum of the lengths of the formulae.

Proof. Follows directly from Theorems . 1.13] and O

Unsurprisingly, the property Covering does not hold for new prime implicates
since they only capture part of a formula’s implicates. We can, however, show them
to satisfy a weaker version of the property:

Theorem 5.1.11.
FEvery implicate of ¢ N Y which is not an implicate of ¢ is entailed by some new

prime implicate of 1 given .

122 5.1. New prime implicates

Proof. Consider formulae ¢ and v, and some clause A such that ¢ A ¢ E X but
¢ I~ ¢. By the Covering property (Theorem [3.2.8]), there is some prime implicate
7 of ¢ A1 which implies A. As ¢ £ XA and 7 = A, it must also be the case that
¢ = . It follows that 7 is a p-prime implicate of). O

We also have the following relativized version of Equivalence:

Theorem 5.1.12.
The new prime implicates of ¥ given o are equivalent to ¢ modulo .

Proof. For the first direction, let A be some prime implicate of p A1). Now if ¢ = A,
we are done. Otherwise, if ¢ & A, then \ is a @-prime implicate of 1, and hence
must be implied by the new prime implicates of 1 given ¢. It follows then that
@ A 1 is implied by the new prime implicates of 1 given ¢ when taken together
with . The other direction is immediate since the ¢-prime implicates of 1 are all
implied by ¢ A . U

New prime implicates also satisfy a version of the Distribution property:

Theorem 5.1.13.
If X is a p-prime implicate of W1 V ... V 1y, then there exist p-prime implicates Ay,
veey A Of W1, ..., Yy Such that A= A1 V...V A,.

Proof. The proof is entirely similar to the proof of Distribution for standard prime
implicates (Theorem B2.10). O

5.1.2 Generating and recognizing new prime implicates

As the p-prime implicates of ¢ are just the standard prime implicates of ¢ A1) which
are not implied by ¢, it follows that one can generate the new prime implicates of
1 given ¢ by first generating the standard prime implicates of ¢ A ¢ then filtering
out those which are entailed by ¢. The disadvantage of this method is that we
generate all of the standard prime implicates of ¢ A ¢ even when very few of
them are new prime implicates. One way to decrease the number of candidates
generated is to use the technique mentioned in Chapter 4] of generating the prime
implicates of a disjunction in an iterative manner. Thus, if we were generating the
new prime implicates of a formula v given the formula ¢, we would first rewrite
@ A ¢ as a disjunction of terms 77 V ... V T,, and then we would generate the
new prime implicates of T} given ¢, then use them to calculate the new prime
implicates of T1 VT5 given ¢, and so on until we have the new prime implicates of the
entire disjunction. The correctness of this approach follows from the Distribution

5. Restricted Consequence Finding 123

property for new prime implicates (Theorem 5. 1.13]) together with the fact that the
new prime implicates of ¢ given ¢ are the same as the new prime implicates of
Y A given .

As for the complexity of recognizing new prime implicates, it is easy to see that
recognizing new prime implicates is no harder than recognizing standard prime

implicates.

Theorem 5.1.14.

The problem of recognizing new prime implicates is PSPACE-complete.

Proof. To decide whether a clause A is a new prime implicate of ¢ given ¢, we simply
check whether ¢ = X\ and then check whether X is a prime implicate of ¢ A . As
both standard prime implicate recognition and entailment can be accomplished in
polynomial space (Theorems 257 and B.2.22]), we have membership in PSPACE.
For hardness, we use Theorem which shows how standard prime implicate

recognition can be reduced to new prime implicate recognition. O

5.2 Signature-bounded prime implicates

Another natural restriction is to consider only those consequences which belong to
a given signature. This notion has been extensively studied in propositional and
first-order logic (cf. [Ino92], [del99], [Mar00]).

Definition 5.2.1 (Signature-bounded prime implicate).
Let £ be a signature. A clause A is a signature-bounded prime implicate of ¢ with
respect to £, or simply an L-prime implicate of v, if and only if:

1. A is an implicate of ¢
2. sig(A) C L

3. If X is an implicate of ¢ such that sig(\') C £ and X' = A, then A E X

Let us illustrate the notion of signature-bounded prime implicates with a quick

example:

Example 5.2.2.

Consider the formula ¢ =

(@Vb) ANOy(=bVe) A (bVO1b) A Oga A Oge
AOg(bA (aVe)) A Oxd

124 5.2. Signature-bounded prime implicates

that was introduced in Example B.22Z.T1l There are no {a}-prime implicates or {1}-
prime implicates of ¢. There is a single {2}-prime implicate of ¢, namely <CoT.
There is a single {1, b}-prime implicate: bV < 1b. The three {2, a, b}-prime implicates
of p are a Vb, Oo(a Ab), and Ogb. The three {2, a,b,d}-prime implicates of ¢ are
aVb, Cola NbAd), and Oz(b A d).

Signature-bounded prime implicants can be defined in the same manner. This
notion is useful in abductive reasoning when we want to restrict our attention to

only those explanations built from a given set of symbols.

Definition 5.2.3 (Signature-bounded prime implicant).
Let £ be a signature. A term k is a signature-bounded prime implicant of ¢ with

respect to L, or simply an L-prime implicant of ¢, if and only if:
1. k is an implicant of ¢
2. sig(k) C L
3. If k' is an implicant of ¢ such that sig(x') C £ and s |= #/, then &' E &

However, as the following result demonstrates, it is sufficient to restrict our

attention to signature-bounded prime implicates.

Theorem 5.2.4.
FEvery L-prime implicant of a formula o is equivalent to the negation of an L-prime

implicate of -, and vice-versa.

Proof. The proof proceeds analogously to the proof of Duality for standard prime
implicates/implicants (Theorem B.2.5]). O
5.2.1 Properties of signature-bounded prime implicates

We remark that we can recover the standard notion of prime implicates by setting

L equal to the signature of the formula in question.
Theorem 5.2.5.
Every standard prime implicate of ¢ is a sig(y)-prime implicate of ¢.
In propositional logic, every L-prime implicate is also a standard prime impli-
cate. The same is not true for C,, formulae:

Example 5.2.6.
Consider the formula ¢ =

5. Restricted Consequence Finding 125

(@Vb) ANOy(=bVe) A (bV<CO1b) A Oga A Oge
AOz(bA(aVe)) A Oxd

from Examples B.2.11] and (.22l Then <oT is a {2}-prime implicate of ¢, and
bV <1bis a {1,b}-prime implicate of ¢, but neither clause is a standard prime
implicate of .

There are however some weaker relationships holding between standard and

L-prime implicates:

Theorem 5.2.7.
FEvery L-prime implicate of a formula ¢ is equivalent to some prime implicate of

an L-interpolant of ¢, and vice-versa.

Proof. For the first direction, consider some L-prime implicate A of ¢ and some
L-interpolant ¢ of ¢. As sig(A\) C L, it must be the case that i) implies X\. But
then by Covering (Theorem B.28]), there must be some standard prime implicate
7 of 1 such that ©# = A. Because of Theorem [LI.5] we can assume that 7 has
signature in L. It follows then that A = 7, hence A = 7.

For the second direction, let 7w be a prime implicate of an L-interpolant v of .
Because of Theorem EI5] we know that 7 is equivalent to some clause 7’ with
signature in £. Now let A be a clause such that ¢ = A = 7’ and sig(A) C L. As
sig(A) C L, it must be the case that ¢» = A. Moreover, we know that 7 (and hence
7’') is a prime implicate of ¢, so ' = \. It follows that 7’ is an £-prime implicate
of ¢, which means 7 is equivalent to some L-prime implicate of ¢. O

Theorem 5.2.8.
FEvery L-prime implicate of a formula ¢ is equivalent to the L-interpolant of some

prime implicate of p.

Proof. Let A be an L-prime implicate of ¢. Because of the Covering property
(Theorem B.2.8]), we can find some prime implicate m of ¢ such that 7 = A. Now
let 7’ be the L-interpolant of 7w which is computed by LangInt. We know from
Theorem 2.6.9] that 7’ is a clause. As m = A and sig(\) C L, it follows that 7’ = A,
and hence A = 7', so A = 7'. O

The converse of Theorem [5.2.8]does not hold as there are prime implicates whose

L-interpolants are not L-prime implicates, as the following example demonstrates.

Example 5.2.9.
The clause $qa is the {a, ¢, 1}-interpolant of the prime implicate &1(a A b) of ¢ =
O1(a A b) A Cp(aAce), but ¢rais not an {a, ¢, 1}-prime implicate of .

126 5.2. Signature-bounded prime implicates

One consequence of Theorem [£.2.8]is that the number of £-prime implicates is

bounded above by the number of prime implicates.

Theorem 5.2.10.
The number of non-equivalent L-prime implicates of a formula is no more than

double exponential in the length of the formula.
Proof. Direct consequence of Theorems ELT.12] and [5.2.8] O

We can also transfer our upper bound on the size of standard prime implicates

to signature-bounded prime implicates.

Theorem 5.2.11.
The length of the smallest clausal representation of an L-prime implicate of a for-

mula is no more than single exponential in the length of the formula.

Proof. Let A be an L-prime implicate of a formula ¢. By Covering (Theorem
B.2.8)), we know that there must be some standard prime implicate 7 of ¢ such that
7w = A. From the proof of Theorem 1.6l we can assume without loss of generality
that 7 is a clause with at most 2!# disjuncts, each having length at most 2|¢|. Now
we can apply the function LangInt to 7 to obtain a formula 7/. By Theorem
and Lemma [2.6.9] we know that 7’ is a clause and the L-interpolant of 7. Since
7 = A and sig(\) C £ and 7’ is the L-interpolant of 7, it follows that 7’ = \. But
A is assumed to be an L-prime implicate of ¢, so we must also have A = «’.

It remains to be shown that the length of 7’ is only single exponential in |¢].
We remark that the function LangInt treats each of the disjuncts of 7w separately.
Moreover, by Theorem 2.6.7, the output of LangInt is single exponential in the
size of the input formula. In other words, we can find some polynomial function f
such that the output of LangInt on input 1 has length at most 2/ (%), But that
means that the formula 7’ has length at most 2I¢l % (27¥D) 4- 1), since there are
no more than 2! disjuncts, each having size at most 22D (the extra 1 is for
the disjunction symbols connecting the disjuncts). This proves the result since this

expression is clearly single exponential in |¢p|. O
Our lower bounds on the number and size of standard prime implicates also
carry over to L-prime implicates thanks to Theorem [.2.9]

Theorem 5.2.12.
The number of non-equivalent L-prime implicates of a formula may be double ex-

ponential in the length of the formula.

Proof. Follows directly from Theorems . T.13] and O

5. Restricted Consequence Finding 127

Theorem 5.2.13.
The length of the smallest clausal representation of an L-prime implicate of a for-

mula can be exponential in the length of the formula.
Proof. Follows directly from Theorems 1.7 and 5.2.5] O

Using Theorem [B.2.7] we can infer the following proposition which can be seen

as a weaker version of the Covering property.

Theorem 5.2.14.
FEvery implicate of ¢ with signature contained in L is entailed by some L-prime

implicate of p.

Proof. Let ¢ be a formula, and let A be some implicate of ¢ with sig(A\) C L.
We know that A must be implied by every L-interpolant of ¢, and therefore by
Covering (Theorem 3.2.8]), we can find some prime implicate 7 of an L-interpolant
of ¢ such that m = A. According to Theorem (.27, there must be some L-prime
implicate 7" of ¢ which is equivalent to 7, which means we have found a L-prime

implicate of ¢ which entails . O

A weaker version of Equivalence holds as well:

Theorem 5.2.15.
The set of L-prime implicates of a formula is equivalent to the L-interpolant of the

formula.

Proof. For the first direction, let ¢ be a formula, and let = be some prime implicate
of the L-interpolant of ¢/. By Theorem [(.2.7, the clause 7 is equivalent to, and
hence implied by, some L-prime implicate of ¢. Using the Equivalence property
for standard prime implicates (Theorem B.2.9), we find that the set of L-prime
implicates of ¢ implies the L-interpolant of ¢. The other direction is immediate
since the L-interpolant of ¢ must by definition imply each of the £-prime implicate
of ¢. O

The Distribution property can also be formulated for £-prime implicates:

Theorem 5.2.16.
If X is an L-prime implicate of o1 V ... V @y, then there exist L-prime implicates

Uy ooy b Of 01, ey 0 SUCh that A= 1 V ..oV .

Proof. Very similar to the proof for standard prime implicates (Theorem B.2.10)).00

128 5.2. Signature-bounded prime implicates

5.2.2 Generating signature-bounded prime implicates

There are a couple of different ways of exploiting GenPI in the computation of
signature-bounded prime implicates. A first possibility would be to take advantage
of Theorem (. 2.8 which tells us that the £-prime implicates of a formula are the log-
ically strongest clauses among the L-interpolants of the formula’s prime implicates.
This means that we can generate the £-prime implicates of a formula by first using
GenPlI to obtain the formula’s prime implicates, then taking the L-interpolants
of the prime implicates, and finally comparing the resulting clauses to isolate the
logically strongest ones. Another possibility would be to replace the input formula
by its L-interpolant and then call GenPI to generate the prime implicates of the
L-interpolant. Because of Theorem (2.7, we know that the clauses outputted by
GenPl will be exactly the £-prime implicates of the original formula.

Both of the above methods yield £-prime implicates which are at most single-
exponentially larger than the input formula. This was shown for the first method
in the proof of Theorem [B.2ZTTl For the second method, we use the fact that
LangInt(y, £) is already a disjunction of terms, so applying Dnf to LangInt(p, £)
does not increase its length. This means that there will be only single-exponentially
many disjuncts in each clauses in CANDIDATES, and that the disjuncts of these
clauses will be at most single-exponentially large.

Is there any reason to prefer one method over the other? In fact, there is. We re-
mark that in the second method, we can eliminate weaker elements in CANDIDATES
by using standard prime implicate recognition, whereas with the first method, we
need to perform L-prime implicate recognition (or resort to a pairwise comparison
of the elements in CANDIDATES). As we shall see in the following section, £-prime
implicate recognition is of higher complexity than standard prime implicate recog-
nition, leading us to privilege the second generation strategy.

5.2.3 Recognizing signature-bounded prime implicates

We know from Example that L£-prime implicates may not be standard prime
implicates, which means that the PSPACE-completeness result for standard prime
implicate recognition is not much help to us. Indeed, it turns out that L-prime
implicate recognition is considerably more difficult computationally than standard

prime implicate recognition.We can show this task to be CONEXPTIME-hard:

Theorem 5.2.17.
L-prime implicate recognition is CONEXPTIME-hard.

5. Restricted Consequence Finding 129

Proof. The proof is via a reduction of the conservative extension decision problem
for K = K; formulae to the L-prime implicate recognition problem. We recall
that a formula ¢ A @y is a conservative extension of ¢; if and only if for every
formula 1 with var(y)) C var(pi) we have p; A w2 = 9 only if ¢; = 1. We will
show that @1 A 9 is a conservative extension of ¢q if and only if &1Nnf(p;) is
a var(yp1) U {1}-prime implicate of <¢1(p1 A p2). As the conservative extension
decision problem for K formulae was proven CONEXPTIME-complete in [GLWZ06],
it follows that L-prime implicate recognition must be CONEXPTIME-hard.

For the first direction, let us suppose that ¢ A @9 is a conservative extension of
©1. It follows that ¢y is a var(p;)U{1}-interpolant of ¢ Ays. Using Lemma [2.6.10]
we then find that ¢1¢; is a var(pr) U {1}-interpolant of <1 (@1 A ¢2). That means
that if X is a clause such that sig(A) C var(e1)U{1} and C1(p1 Aga) E A E Ore1,
we must also have G191 = A. This means that the clause G1Nnf(p1) = Cr¢
must be a var(p;) U {1}-prime implicate of the formula <1 (1 A 2).

For the other direction, suppose that &1 Nnf(¢1) is a var(¢1)U{1}-prime impli-
cate of ¢p(¢1Ap2). That means that for every clause A with sig(A\) C var(p;)U{1}
and C1(p1 A g2) = A = O1Nnf(p1), we have O1Nnf(¢1) = M. In particular, if
&1 is a clause with signature in var(p;) U {1} such that $q(p1 A p2) = O19) =
O1Nnf(gp;), then &1Nnf(p1) = 19 It follows then from Theorem 231 and
the fact that Nnf is equivalence- and signature-preserving (Theorem [24.2]) that
for every formula ¢ which is implied by ¢1 A w2 and with sig(1)) C var(er) U {1},
we have 1 | 1, i.e. @1 is a var(yp1) U {1}-interpolant of v1 A ¢y. It follows that
©1 A g is a conservative extension of ;.]

We now provide an EXPSPACE upper bound. Our proof makes reference to the
algorithm TestLangPI defined below:

Algorithm 5.1 TestLangPI
Input: a formula ¢, a clause A\, and a signature £

Output: yes is A is not an £-prime implicate of ¢, and no otherwise

(1) If Entails(p, \)=no or sig(\) € L, return yes.

(2) Guess some clause 7 of length at most 2% % (2/CGI¥)| 4 1) with signature in £.
(3) If Entails(p, 7)=no or Entails(m, \)=no, then return no.

(4) If Entails(\, 7)=no, return yes. Otherwise, return no.

Note: in Step 2, we let f be some function such that |LangInt(v, £)| < 27(¥D) on
every input (1, £). The existence of such a function is guaranteed by Corollary

2.6.8l

130 5.2. Signature-bounded prime implicates

Theorem 5.2.18.
L-prime implicate recognition is in EXPSPACE.

Proof. We will show that the non-deterministic algorithm TestLangPI decides
the complement of the £-prime implicate recognition problem, and moreover that
it runs using only single exponential space. This is sufficient to prove the result
since CONEXPSPACE=EXPSPACE.

We start by showing the correctness of our procedure. First suppose that A is
not an L-prime implicate of . Then either A is not an implicate of ¢, or it does not
have signature in £, or there is some £-prime implicate ¢ of ¢ such that (= A}~ C.
In the first two cases, the algorithm will return yes in Step 1. In the third case,
we proceed to Step 2 where we guess a clause of length at most 214l « (2f(2“p)| +1)
and with signature in £. We know from the proof of Theorem [B.2.11] that every
L-prime implicate of ¢ must be equivalent to some clause with signature in £ and
with length at most 2/#l % (2/(2¥)l 4-1). Tt follows then that in Step 2 we can choose
the clause 7 so that # = (, which means we will satisfy the tests in Step 3 and
proceed on to Step 4. In this step, we test whether A f& w. As we know that A\ £ ¢
and ¢ = 7, we must also have A [~ 7, so the algorithm will return yes in Step 5.

Next suppose that A is an L-prime implicate of ¢. Then the tests in Step 1
will not succeed, and we will go directly to Step 2, where we guess some clause m
of length at most 2/#l % (2f(2“f’)| + 1) and with signature in £. If 7 does not satisfy
the required conditions, then we will output no in Step 3. Otherwise, in Step 4,
we will test whether A F~ 7. Now since A is an L-prime implicate of ¢ and 7 is a
clause with signature in £ such that ¢ =7 | A, it follows that A = 7, so we will
return no.

Now we consider the spatial complexity of TestLangPI. The first step runs
in polynomial space in |¢| + |A| by Theorem 257 The second step takes single-
exponential space since we guess a clause of length at most 2%/ « (2f el 4 1) (and
f is assumed to be a polynomial function). Steps 3 and 4 also require at most
single-exponential space since we are performing entailment tests on formulae with

length at most single-exponentially larger than |p| + |A|. O

The exact complexity L-prime implicate recognition is currently unknown, but
we conjecture that the problem is CONEXPTIME-complete.

Prime Implicate Normal Form

In this chapter, we introduce a normal form for IC,, formulae which is based upon
the notion of prime implicate studied in the previous chapters. We investigate the
properties of our normal form, showing in particular that entailment between formulae
in prime implicate normal form can be carried out in quadratic time using a simple
structural comparison algorithm. We also show that uniform interpolation is tractable
for formulae in our normal form. Afterwards, we propose an algorithm for putting
concepts into prime implicate normal form, and we investigate the spatial complexity
of this transformation, showing there to be an at most double exponential blowup in
formula size. At the end of the chapter, we compare our normal form to other normal
forms previously proposed in the literature.

6.1 Motivation

As we mentioned in Chapter [II knowledge compilation is a technique for dealing
with the high complexity of reasoning which consists in a preliminary off-line phase
in which a knowledge base is transformed into an equivalent base which allows
for tractable reasoning, followed by a second online phase in which reasoning is
performed on the compiled knowledge base. One well-known target language for
knowledge compilation in propositional logic is prime implicate normal form, in
which a formula is represented as the conjunction of its prime implicates. A nat-
ural idea would be to use our selected definition of prime implicate to define in
an analogous manner a notion of prime implicate normal form for IC,, formulae.
Unfortunately, the normal form we obtain satisfies few of the nice properties of the
propositional case. For instance, we find that entailment between two K,, formulae

131

132 6.2. Definition of Prime Implicate Normal Form

in prime implicate normal form is no easier than between arbitrary K, formulae.
To see why, consider any pair of formulae ¢; and @9 in negation normal form. The
formulae Gy and Opg are their own prime implicates and hence would be in prime
implicate normal form if we used the naive definition. As (1 entails o just in the
case that Og; entails Opo, we can reduce entailment between arbitrary formulae
in NNF to entailment between formulae in prime implicate normal form. As the
former problem is known to be PSPACE-complete (by Corollary 25.2]), it follows
that the latter is PSPACE-complete as well.

This appears to be quite a disappointing result as one would hope that the
computational difficulty of representing a formula by its prime implicates would be
offset by some good computational properties of the resulting formula. As it turns
out, however, the problem lies not in our definition of prime implicates but rather
in the naive way of defining prime implicate normal form. Indeed, in this chapter,
we propose a more sophisticated definition of prime implicate normal form, which
takes as its basis our selected notion of prime implicate but places some additional

restrictions on the way the prime implicates are represented.

6.2 Definition of Prime Implicate Normal Form

The disappointing behavior of the naive definition of prime implicate normal form
appears to stem at least partly from the fact that the formulae behind the modalities
are left undecomposed. It seems then that we should require not only that the orig-
inal formula be represented by its prime implicates but also that the sub-formulae
appearing in the prime implicates be themselves represented by their prime impli-
cates. This intuition is at the heart of our definition of prime implicate normal

form for /C,, formulae:

Definition 6.2.1 (Prime Implicate Normal Form).
A formula ¢ is in prime implicate normal form if and only if it satisfies one of the

following conditions:
1. p=_1
2. o=T
3. ¢ =L and = p and p = A} A ... A\, where

(@) A E A fori#j
(b) each prime implicate of ¢ is equivalent to some conjunct \;

(c) every \; is such that

6. Prime Implicate Normal Form 133

i. if 0 is a disjunct of A;, then A\; Z \; \ {0}
ii. |Diamg(\;)| <1 forevery 1 <k <n
ili. if ¢ € Diamy(A;) U Boxk(A;) for some 1 < k < n, then 4 is in prime
implicate normal form

iv. if ¢ € Diamy()\;) and ¢ € Boxy();) for some 1 < k < n, then ¢ = ¢

Let us briefly go over the different points of the definition. The first two items
state that all unsatisfiable formulae must be represented as | and all tautologous
formulae must be represented as T. All other formulae are to be represented by a
conjunction of their prime implicates, but we place some strong restrictions on how
the prime implicates themselves are represented. First, we require that they contain
no unnecessary disjuncts (part (i) of 3c). We also stipulate that they contain at
most one Og-disjunct for each k£ (part (ii)) and that the formulae appearing behind
the modalities be themselves in prime implicate normal form (part (iii)). Finally, we
demand that if a prime implicate contains disjuncts <y ¢ and Oy ¢ then v and (are
such that ¢ |= ¢ (part (iv)). This requirement may seem a little less intuitive than
the others, but it ensures that if a Og-formula entails a clause, then it entails some
Op-formula appearing in the claus. This property is crucial since it will allow our
algorithm for entailment-testing to treat the universal modalities separately from
the existential ones.

We remark that in the case of propositional formulae, our definition of prime

implicate normal form coincides with the standard propositional definition.

Example 6.2.2.

Some examples of clauses which are not in prime implicate normal form:

e A\ =010V <, since ¢ fE b

A2 =CO1(bAOyL)VOi(eVd) Va, since |Diamy(A2)| = 2
e \3 =<{(a A —a) since Az |= L but A\g # L

e Ny =0(aVOy(bV b)) since = Ay but Ay # T

As =aVOi(aAb) VO (aAbA—c), since As = A5 \ {T1(a AbA—c)}
e \¢ =01((aAb)Vc)since (a Ab)V cis not in prime implicate normal form

Example 6.2.3.

Some examples of general formulae which are not in prime implicate normal form:

'This does not hold in general: Oa = ©a Vv Ob but Oa [~ Ob.

134 6.2. Definition of Prime Implicate Normal Form

e v = (aV Coc) A(—aVc), since the prime implicate ¢ V Ogc is not equivalent

to any conjunct of ¢
e vy =aA (aV Ozb), since a = (a VvV O3b)

e ©3=(aV-d)AO1((a Ab)V c), since the subformula (a A b) V ¢ of ¢3 is not

in prime implicate normal form

Example 6.2.4.

Some examples of clauses which are in prime implicate normal form:
e a V Oy 04 d, since:

— no unnecessary disjuncts, nor any <-disjuncts

— d is in prime implicate normal form, and hence so is Oy d
e —aV Oy(a Ab), since:

— no unnecessary disjuncts or O-disjuncts
— a single $o-disjunct
— a A bis in prime implicate normal form
e 01 ((aVv<COeT)A (DL Ve)A (aVc)),since:
— consists of a single O-literal, so satisfies trivially conditions 3(c)(i), 3(c)(ii),
and 3(c)(iv)

— the subformula a V <9 T is in prime implicate normal form since it
contains no unnecessary disjuncts or O-disjuncts, a single $o-disjunct,

and T is in prime implicate normal form

— the subformula Oy 1 V ¢ is in prime implicate normal form since it
contains no unnecessary disjuncts nor <-disjuncts, and | is in prime
implicate normal form

—(aVv<OaT)A(O2LVe)A (aVe)isin prime implicate normal form
since it contains no unnecessary conjuncts, and its conjuncts are its only
prime implicates and are themselves in prime implicate normal form (see

previous two bullets)
e Uy ((01dVa)A(OrdVb))V O(a Ab), since:

— no unnecessary disjuncts

— only a single ¢o-disjunct

6. Prime Implicate Normal Form 135

— a A bis in prime implicate normal form
— (O01dVa)A(DOpdVb)is in prime implicate normal form, since its con-
juncts are its only prime implicates, there are no redundant conjuncts,

and both conjuncts are themselves in prime implicate normal form
—wehave a Ab=(01dVa) A (O1dVb)

Example 6.2.5.
Consider the formula ¢ defined as follows

(a Vv Oy0:4d)

(ma VvV Oo(a AND))
(O2((01dVa)A(OpdVvb))V<Eoa(and))
O01((aVOT)A(OsL Ve)A (aVe))
Or(aN—c A DOgl)

> > > >

We would like to show that ¢ is in prime implicate normal form. We first note that
© is neither a contradiction nor a tautology, so part 3 of Definition applies.
We then note that every prime implicate of ¢ is equivalent to a conjunct of .
This is because ¢ is equivalent to the formula in Example 1.6 and each of the
prime implicates from Example [L1.16] is equivalent to one of the conjuncts of ¢.
Moreover, none of the conjuncts of ¢ entails one of the other conjuncts, as can easily
be verified. Finally, we know from Example that the first four conjuncts of ¢
satisfies conditions 3(c)(i)-3(c)(iv), and the same can be shown for its final conjunct
O1(aAN—=c ANOy L) (since Oy L, and hence a A =¢ A Oy L, is in prime implicate

normal form).

We will show later in the chapter (Theorem [6.4.3)) that Definition [6.2.1] that
every formula can be rewritten as an equivalent formula in prime implicate normal
form. We first motivate the interest of doing so by exhibiting some of the desirable

properties of formulae in prime implicate normal form.

6.3 Properties of Prime Implicate Normal Form

In this section, we show that prime implicate normal form has some nice properties

which make it an interesting target language for knowledge compilation.

6.3.1 Tractable entailment

The most important criterion when selecting a normal form for knowledge compila-
tion is the set of polynomial time queries that the normal form supports. In [DM02],

136 6.3. Properties of Prime Implicate Normal Form

the authors enumerate a set of queries which they then use to compare different
normal forms for propositional logic. Of the eight queries they consider, only four
are Well—deﬁnedﬁ for IC,,: satisfiability-testing, tautology-testing, entailment, and
equivalence-testing. We show that for formulae in prime implicate normal form, all
four queries are computable in polynomial time.

For satisfiability and tautology-testing, there is really nothing to prove since by
definition a formula ¢ in prime implicate normal form is unsatisfiable just in the
case that @ = | and is tautologous just in the case that ¢ = T. It follows that

these tasks can be carried out in constant-time.

Algorithm 6.1 II-Entail
Input: formulae ¢; and 9, both in prime implicate normal form

Output: yes if ¢ = @9, and no otherwise
(1) If o1 = L or pg = T, return yes.
(2) If o1 =T and pg # T or o = L and @1 # L, return no.
(3) For each conjunct A of @9
Set MatchFound = no
For each conjunct 6 of
If MatchFound = no, then set MatchFound = yes if the following
three conditions are satisfied:
(a) Prop(6) C Prop(\)
(b) if ¢» € Diamy(6), then there is ¢’ € Diamy () such that
[I-Entail(y, ¢')=yes
(c) if ¢ € Boxy(0), then there is some 1) € Boxy()) such that
[I-Entail(¢y, ¢')=yes
If MatchFound = no, return no.
Return yes.

For entailment and equivalence, we introduce a structural comparison algorithm
II-Entail which decides entailment between formulae in prime implicate normal
form. Let us explain briefly the functioning of II-Entail. The first two steps treat
limit cases where one or both of the formulae is unsatisfiable or tautologous. For
all other pairs of formulae, we proceed to Step 3, in which we perform a structural
comparison of the two formulae. We know that a formula ¢; entails a formula
9 in prime implicate normal form just in the case that ¢ entails each of the
conjuncts of ¢o. Moreover, it follows from the Covering property (Theorem B.2.8])

2For example, clausal entailment is under-specified since there are many possible definitions
of clauses in K, and model counting makes little sense since every formula has infinitely many
distinct models.

6. Prime Implicate Normal Form 137

that ¢ entails a clausal conjunct A of ys if and only if some prime implicate of
1 entails A\. As formulae in prime implicate normal form are conjunctions of their
prime implicates, testing whether ¢ entails ps comes down to testing whether
each conjunct of ys is entailed by some conjunct of ¢;. If we hadn’t placed any
requirements on the form of the conjuncts, then this problem would be as hard as
entailment in general. But since ¢; and (o are in prime implicate normal form,
their conjuncts have a particular structure which makes subsumption easy to test.
We first check that the propositional literals in the first conjunct all appear in
the second conjunct. We then call II-Entail on sub-formulae appearing in the
two conjuncts in order to ensure that each O- or O-formula appearing in the first
conjunct entails some - or O-formula in the second. The algorithm performs these
checks on each possible pair of conjuncts and returns no if it finds some conjunct
of o which does not subsume any conjunct of ¢;. If no such conjunct is found,
the algorithm returns yes since every conjunct of @9 has been shown to be implied
by some conjunct of ¢, which means that ¢ entails o.

We illustrate the functioning of the algorithm on an example:

Example 6.3.1.
Let ¢ be defined as in Example [6.2.5t

(a Vv Oy0:4d)

(ma VvV Oo(a ND))
(O2((O1dVa)A(OpdVvbd))Voy(and))
O;((aV OCaT)A(OaL Ve)A(aVe))
Or(an—c A Ogl)

> > > >

and let v be the formula
(a VbV Oya V |:|2|:|1(d \/<>2a)) A (—\C vV <>1(a A b))

We showed in Example that ¢ is in prime implicate normal form, and it can
be verified that this is also the case for ¥». We can thus use II-Entail to decide
whether ¢ = 1. The algorithm will proceed directly to Step 3 as neither ¢ nor v
is equal to T or L.

In Step 3, we consider each of the conjuncts of ¥ in turn. We start with
the first conjunct of ¢ which is a V bV Oga V O 0; (d V $ga). The variable
MatchFound is initialized to no, and we then select the first conjunct of ¢ which
is @ V Op 0Oy d. This pair of conjuncts satisfies condition (a) since {a} C {a,b}.
Condition (b) is trivially satisfied since there are no <-disjuncts in a V Oy O d. To
determine whether condition (c) holds for the pair of conjuncts, we need to check

138 6.3. Properties of Prime Implicate Normal Form

whether either II-Entail(0;d, a)=yes or II-Entail(0; d, O; (d V $ga))=yes. We
have II-Entail(d, a)=no since the two input formulae consist of a single clause,
and {d} ¢ {a}. To determine the value of II-Entail(0;d, O; (d V $ga)), we
must recursively call I[I-Entail on the pair of formulae behind the O; operators.
We have II-Entail(d, d V g a)=yes since {d} C {d}, and hence II-Entail(0; d,
O; (d vV $ga))=yes. We have thus shown that this pair of conjuncts satisfies all
three conditions, so we set MatchFound = yes.

As we have found a match for the first conjunct of ¢, we will move on to the
second conjunct which is —=¢ V &1 (a A b). We reset MatchFound to no, and we
then consider the first conjunct of ¢, which fails condition (a) since {a} Z {-c}.
The second conjunct of ¢ also fails condition (a) since {—a} ¢ {—c}. The third
conjunct fails condition (b) since ¢ V <1 (a A b) has no $o-disjuncts. The fourth
conjunct fails condition (c) since =¢ V <1 (a A b) has no O-formulae as disjuncts..
Finally, to decide whether the fifth conjunct of ¢ constitutes a match, we call II-
Entail(a A =¢ A Oy L, a A b). We find a match for the first conjunct a of a A b.
We do not however find a match for the second conjunct b since the conjuncts a
and —c¢ both falsify condition (a) and the conjunct Oy L has no propositional part.
Thus, I[I-Entail(a A —¢ A Oz L, a A b)=no, which means that the fifth conjunct of
¢ does not satisfy condition (c) and MatchFound will still be no at the end of the
for-loop. It follows that II-Entail will return no for the pair of formulae (¢, ¥),

which is the correct answer since ¢ = 1.

We now prove that II-Entail behaves as desired when the input formulae are

in prime implicate normal form.

Lemma 6.3.2.

If o1 and @2 are both in prime implicate normal form, then the algorithm 11-Entail
outputs yes on input (1, 2) if Y1 E ¢2.

Proof. The proof is by induction on min(d(¢1),0(¢2)). We begin with the base case
where 1 = w2 and min(§(p1),d(p2)) = 0, i.e. where one or both of ¢; and ¢
is propositional. There are three possibilities: either p; = L, or = @9, or neither
¢1 E L nor | ¢o. In the first case, 1 must be L (otherwise ¢ would not be in
prime implicate normal form), so the algorithm will return yes in Step 1. Similarly,
in the second case, we must have o = T, so the algorithm returns yes in the first
step.

Let us then concentrate on the third case in which ¢; = L and & ¢2. Since
©1 E 2, it follows that we must also have ¢ & L and T [~ ;. This means
that the conditions for Steps 1 and 2 of II-Entail are not satisfied, so we will

6. Prime Implicate Normal Form 139

proceed to Step 3. Now since 1 = @2, it must be the case that ¢ entails every
conjunct of 9. As the conjuncts of 9 are all clausal formulae (since @9 is in prime
implicate normal form), it follows from Theorem B.2.8 that every conjunct in s is
entailed by some prime implicate of ;. But since ¢, is in prime implicate normal
form, every prime implicate of ¢ is equivalent to some conjunct of ;. This means
that for every conjunct A of o there must be some conjunct 6 of 1 such that
0 = A. If ¢y is propositional, then so are all its conjuncts, so 6 = A just in the case
that Prop(f) C Prop(\) (by Theorem 2:33]). It follows that when the algorithm
considers the conjuncts A and 6, it will set MatchFound = yes. If instead it is
9 which is propositional, then A is also propositional, so every disjunct of § must
be either a propositional literal which belongs to A or a formula of the form <
where 1) is unsatisfiable (otherwise we would not have § = A). But since 6 is in
prime implicate normal form it cannot have any unsatisfiable disjuncts, so # must
be composed only of propositional literals which all appear in A. This means that
the algorithm will mark MatchFound = yes when considering the pair of formulae
A and 6. Thus, in either case, we have that for each conjunct A of o, there is
some conjunct 6 of ¢y for which we will mark MatchFound = yes, so lI-Entail
will return yes.

We have just shown that II-Entail returns yes whenever the input formulae ¢
and g are such that ¢; = w2 and min(d(¢1),d(¢2)) = 0. Now let us suppose that
the result holds whenever we have min(d(¢1),0(¢2)) < k and then show that the
result still holds when the minimum depth is k£ + 1.

Let 1 and ¢y be formulae in prime implicate normal form such that ¢1 = @2
and min(0(¢1),0(v2)) = k+ 1. As 1 and 9 both have positive depth, it follows
that they can be neither unsatisfiable nor tautologous (since in that case they would
be equal to either L or T, both of which have depth zero). That means that the
algorithm will proceed directly to Step 3. Let A be some conjunct of 3. Now since
©1 E p2, we must have ¢1 = \. As ¢y is in prime implicate normal form, A\ must
be a clause, so Theorem B.2.8] tells us that there is some prime implicate 7 of ¢
such that 7 = A. The formula ¢; is also in prime implicate normal form, so there
must be some conjunct 6 of ¢ such that 7 = 6 and hence such that 8 = A. As A

and @ are both clauses, and \ is non-tautologous, by Theorem 2.3.3] we must have:
(a) Prop(0) C Prop(X)

(b) If Diam;(0) # 0, \/wEDiami(G) Vv E \/CEDiami()\)C (or just \/wEDiami(G) YvEL
if Diam;(\) = 0)

(c) If4) € Box;(0), then there is some € € Boz;(A) such that ¥ = €V(V e piam, 1))
(or ¢ = € if Diam;(\) = 0)

140 6.3. Properties of Prime Implicate Normal Form

Statement (a) means that the first condition of the algorithm is satisfied for the
pair A and 6. As for the second condition, let us suppose that 6 has at least
one <Oj-disjunct. As ¢ is in prime implicate normal form, there must be exactly
one element in Diam;(#), and this element must be satisfiable (otherwise 6 would
contain an unnecessary disjunct). Let ¢ be this formula. Now because of (b)
and the fact v is satisfiable, Diam;(\) must be non-empty and) must entail
the disjunction of the elements in Diam;(A). But @9 is also in prime implicate
normal form, so there must be a single element in Diam;()\), call it ¢'. We thus
have 1) = 1)/, Because 1 and ¢y are formulae in prime implicate normal form with
min(d(p1),0(p2)) = k+1, it follows that ¢ and ¢ are also in prime implicate normal
form and min(8(¢),0(¢’)) < k. This means the induction hypothesis applies, so
[I-Entail(¢, ¢')=yes, and hence the second condition of the algorithm is satisfied
for the pair A and 6. Finally, we remark that because of statement (c) above and
condition 3(c)iv of Definition (which applies to A and 6 since we have assumed
1 and @9 are in prime implicate normal form) it follows that for each disjunct
O, of # there is some disjunct 0;¢" of A such that ¢ = ¢'. Now 1 and ¢’ are
formulae in prime implicate normal form (by part 3(c)iii of Definition [6.2.1]) such
that min(6(¢),d(¢")) < k and ¥ = ', so according to the induction hypothesis,
it must be the case that II-Entail(¢,1’)=yes. This means that A and 0 satisfy
the third and final condition of the algorithm. We have thus shown that for every
conjunct A of 9 there is some conjunct € of ¢; such that the three conditions
of Step 3 are satisfied. This means that the algorithm will return yes on input

(8017802)- O

Lemma 6.3.3.
If o1 and @o are both in prime implicate normal form, then the algorithm 1I-Entail

outputs mo on input (p1, ©2) if 1 [~ 2.

Proof. The proof is by induction on min(d(y1),d(p2)). We begin with the base
case where 1 [~ w2 and min(d(¢1),0(p2)) = 0, i.e. where one or both of ¢ and
9 is propositional. If = ¢ and [~ ¢, then ¢ = T and @9 # T (since p1 and @9
are assumed to be in prime implicate normal form), so the algorithm will return no
in the second step. Likewise, if @9 = L and ¢ = L, then we must have p; # L
and o = |, so the algorithm returns no in Step 2. If neither of these cases holds,
then 1 and @9 must both be satisfiable and non-tautologous, and the algorithm
proceeds to Step 3. As @1 [~ @2, it must be the case that there is some conjunct A
of 9 such that 6 & A for every conjunct 6 of ¢q. If it is ¢ that is propositional,
then it follows from Theorem [Z3.3] that Prop(6) € Prop()\) for every conjunct
0 of py. If it is ¢o that is propositional, then for each conjunct 6 of ¢ either

6. Prime Implicate Normal Form 141

Prop(0) € Prop()\) or 6 contains modal disjuncts. In either case, we find that each
conjunct 6 of p; violates at least one of the conditions in Step 3. This means that
the algorithm does not set MatchFound = yes at any point when examining the
conjunct A and hence returns no.

We have thus shown that II-Entail returns no whenever ¢; and @9 are formulae
in prime implicate normal form such that p; = @2 and min(d(¢1),0(e2)) = 0. We
will now suppose that the same statement holds whenever min(d(y1),d(p2)) < k
and will show that the result remains true when the minimal depth is k + 1.

Let 1 and ¢y be formulae in prime implicate normal form such that ¢1 [~ @2
and min(d(y1),0(p2)) = k+1. Since p; and @9 are in prime implicate normal form
and have positive depth, ¢; and o cannot be equal to T or 1, so the algorithm
proceeds directly to Step 3. As ¢1 [~ 2, there must be some conjunct A of 9 such
that 6 = A for every conjunct € of ;. According to Theorem [23.3] this means

that for every conjunct 6 of ¢; we have one of the following:

(a) Prop(0) £ Prop(X)

(b) For some 1 < i <mn: Diam;(0) # () and either Diam;(\) = () and
\/wGDiami(G) (G l# L or Dzaml()‘) 7& 0 and \/wEDiami(G) G bé \/CeDiami()\) ¢

(c¢) For some 1 <i <mn and ¢ € Box;(0), there is no € € Box;(\) such that

1/} l: Y (\/CEDiami()\) C) (OI‘ 1/} l: e if DZaml()‘) = @)

If (a) holds, then the first condition of Step 3 is violated. If (b) holds, then either
Diam;(\) = 0 or ¢ £ ¢/, where ¢ € Diam;(6) and ¢ € Diam;(\) (remember
that since ¢1 and @9 are in prime implicate normal form, the clauses A and 6
can have at most one <;-disjunct each). In the first case, the second condition
of Step 3 is violated since Diam;()) is empty. In the second case, the condition
is also violated since 1) and v’ are formulae in prime implicate normal form such
that ¢ = ¢ and min(8(v),0(¢")) < k, so according to the induction hypothesis
[I-Entail(¢, ¢')=no. Finally, if (¢) holds, then for some disjunct O;% of 6 and
every disjunct 0;¢)" of A we have 1 = ¢’ vV { where ¢ € Diam;(\) (or simply
¥ ' if Diam;(\) is empty). But since A is in prime implicate normal form, if
¢ € Diam;(\) then ¢' =4’V (. So we get that ¢ = ¢', and hence by the induction
hypothesis (which applies since 1) and v are in prime implicate normal form and
min(d(v),0(¢")) = k) that II-Entail(¢,1)") returns no. We have thus shown that
for every conjunct 8 of ¢, at least one of the three conditions of Step 3 will not be
satisfied for the pair A and 6. This means that when the algorithm has finished its
examination of the conjunct A, the variable MatchFound will still be set to no, so
II-Entail will return no. U

142 6.3. Properties of Prime Implicate Normal Form

Lemma 6.3.4.
The algorithm II-Entail terminates in linear time in |p1||p2| (hence at most

quadratic time in |p1| + |p2|) when given formulae p1 and @o as input.

Proof. The algorithm II-Entail compares at most once each pair of symbols from
1 and o, and the comparison takes constant time, yielding an overall complexity

which is linear in |¢1] |p2]. O

Theorem 6.3.5.
Entailment of formulae in prime implicate normal form can be decided in quadratic
time in the size of the input.

Proof. Direct consequence of Lemmas [6.3.2] [6.3.3], and [6.3.4] O

Corollary 6.3.6.
Equivalence of formulae in prime implicate normal form can be decided in quadratic
time in the size of the input.

If we examine the proofs of Lemmas and [6.3.3], we remark that only some
of the properties of prime implicate normal form are used for the first formula
and others for the second formula. It is thus interesting to investigate exactly
what properties are needed to ensure the correctness of our structural comparison
algorithm. In particular, it would be nice to loosen the conditions on the second
formula, as this would allow us to more easily pose entailment queries to formulae
compiled into prime implicate normal form. In the following theorem, we make
explicit the conditions that must be placed on the two input formulae in order to
ensure the successful functioning of II-Entail. For the statement of the theorem,
we require the following definition:

Definition 6.3.7.
A formula ¢ is said to be in extended conjunctive normal form if and only if ¢ is
a conjunction of clauses \;, and for every 1 such that < rep or Ogep is a disjunct of

some J\;, ¥ is in extended conjunctive normal form.

Example 6.3.8.
The formula (a V b) A Co(a A (b V Ojp¢)) is in extended conjunctive normal form,
but a A Co((a Ab) V ¢) is not since (a Ab) V ¢ is not a conjunction of clauses.

Theorem 6.3.9.

Let o1 be a formula from IC,, in extended conjunctive normal form such that:

e cvery prime implicate of p1 is equivalent to some conjunct of p1

6. Prime Implicate Normal Form 143

e cvery formula v such that Opyp or Ot is a subformula of w1 is such that

every prime implicate of 1 is equivalent to some conjunct of
e if 1 is an unsatisfiable subformula of 1, then ¥ = L

e no satisfiable subclause of p1 contains an unsatisfiable dz’sjunc@
Let o be a formula from IC,, in extended conjunctive normal form such that:

e cvery clausal subformula \ of o is such that

— |Diami(\)| <1 for all1 <k <n
— if v € Diamg(\) and ¢ € Box(\) for some 1 <k <mn, then v = (

e if 1 is a tautologous subformula of o, then v =T

e 10 non-tautologous conjunction appearing in ps contains a tautologous con-

junc

Then the algorithm 1I-Entail outputs yes on input (p1, ¢2) if and only if p1 = va.

Proof. Lemmas [6.3.2] and [6.3.3] are straightforwardly modified to handle input for-
mulae of the types described in the statement of the theorem in place of formulae

in prime implicate normal form. U

Note 6.3.10.

In what follows, we will need to make reference several times to the conditions on ¢y
and o outlined in Theorem [6.3.91 For this reason, and to simplify the presentation,
we will call the conditions placed on ¢; the conditions on left-hand-side formulae,

and the conditions on o the conditions on right-hand-side formulae.

Theorem [6.3.9] is important since it allows us to use our structural comparison
algorithm on a wider class of queries. The following three results illustrate some

specific types of queries that are made possible by this theorem.

Theorem 6.3.11.
Let o1 be a formula in prime implicate normal form, and let po be a term with

respect to definition D1. Then it can be decided in quadratic time in |o1| + |p2]
whether v1 = ¢a.

3 Any formula ¢; which satisfies the third bullet can be easily transformed into an equivalent
formula satisfying the fourth bullet: we simply remove any disjuncts L from the clauses appearing
in ¢1. Alternatively, we can modify the algorithm II-Entail to allow for the case where disjuncts
in the first formula may be L.

4If the previous bullet is satisfied by 2, then we can simply remove any conjuncts T from the
conjunctions in 3. Or we could slightly modify II-Entail so as to allow the second formula to

have conjuncts of the form T.

144 6.3. Properties of Prime Implicate Normal Form

Proof. Let 1 and @9 be as stated, and consider the following procedure:

Step 1 If Ogy is a subformula of po such that v is built up uniquely from T, A,
and universal modalities O; (1 < ¢ < k), then replace all occurrences of Oy

by T in ¢o. Repeat Step 1 until no such subformulae remain.

Step 2 If ¢ is a subterm of ¢ with only conjuncts T, replace ¢ with T. Otherwise,
if ¢ is a subterm of 9 having some (but not all) conjuncts equal to T, then

remove all conjuncts T from . Repeat Step 2 until no such subterms remain.

We note that any formula constructed uniquely out of T, conjunction, and the
universal modal operators must be a tautology. This means that the modifications
in the above procedure are equivalence-preserving, so the formula we obtain, call it
©h, is equivalent to ¢. It follows then that ¢1 = 9 if and only if ¢ = ¢h.

We claim that ¢, satisfies the requirements of right-hand-side formulae. It is
easy to see that ¢} is in extended conjunctive normal form. It also easy to see
that it satisfies the next two bullets of Theorem [6.3.9] since it does not contain any
disjunctions, making it impossible to have more than one <p-disjunct, or pair of
disjuncts <pt and Oy, in a clausal subformula. Finally, because of the modifi-
cations we have made, there can be no tautologous subformula in ¢4 which is not
equal to T nor any subformula which is a non-tautologous conjunction having a
conjunct T

All of the conditions outlined in Theorem for right-hand-side formulae are
satisfied by ¢}, and 1 clearly satisfies the requirements on left-hand side formulae,
being a formula in prime implicate normal form. It follows that we can use II-Entail
to decide whether ¢ = ¢).

Then to complete the proof, we just need to show that the above procedure for
transforming 9 into ¢} runs in quadratic time in |pg|. This is quite easy to see:
the first step can only be repeated at most |¢3| times since we remove a O-formula
at each iteration (and never add any O-formulae), and there cannot be more than
|2| O-formulae in 2. Moreover, each iteration takes only linear time in |p2| since
we simply scan the symbols in one of the subformulae of @9, and the modifications
made to @9 in Step 1 never increase its length. Step 2 can also be carried out in
linear time, since it involves a single pass through ¢, and the modified |ps| has
equal or smaller length to the original formula. Thus, the modification of ¢s into
¢ takes only quadratic time in |pa]. As |ph| < |¢2], and it is possible to decide
1 E ¢ in time quadratic in |¢1] 4 |¢4| using II-Entail (Lemma [6.3.7]), we obtain
a method for deciding @1 | @9 in time quadratic in |p1] + |@2]- O

6. Prime Implicate Normal Form 145

Example 6.3.12.
Let ¢ be the formula in prime implicate normal form from Example [6.2.5]

(a v Oy0:4d)

(ma VvV Oo(a ND))
(O2((01dVa)A(OpdVvb))V<Coa(and))
O01((aVOT)A(OsL Ve)A (aVe))
Or1(aN—c A DOgl)

> > > >

and let 7 be the following D1-term
<>1(a A Dg(b A C)) VAN |:|3(—|— AN |:|1—|—)

We want to test whether ¢ = 7. To do this, we first simplify 7 using the procedure
given in the proof of Theorem This involves replacing the tautologous
subformula Oz (T A Op T) with T, and then removing T from the conjunction.
We obtain the equivalent D1-term 7'

<>1(CL/\ Dg(b/\c))

We can now use II-Entail to decide whether ¢ = 7/, and hence whether ¢ = 7.
As neither ¢ nor 7’ is equal to T or L, we proceed directly to Step 3, in which we
compare the sole conjunct of 7 to each of the conjuncts of ¢ to 7 in order to find
some conjunct which satisfies the three requirements. The first two conjuncts of ¢
do not satisfy requirement (a) since they possess propositional disjuncts which do
not appear in 7/. The third conjunct falsifies requirements (b) and (c) as its Oo-
and Oo-disjuncts do not match up to the unique disjunct in 7/. The fourth conjunct
of ¢ does not satisfy the requirements either, as it possesses a O-disjunct, and 7/
does not. Finally, the fifth conjunct of ¢ trivially satisfies requirements (a) and
(c) since it does not have any propositional or O-disjuncts. In order to show that
this conjunct also satisfies requirement (b), we need to call II-Entail on the pair of
formulae a A—c A Oy L and a A Og (b A ¢). The algorithm will return yes on this
input, since the conjunct a in the second formula matches up with the conjunct a in
the first formula, and the conjunct O (b A ¢) of the second formula matches with
the conjunct O L (since II-Entail always returns yes when the first formula is L).
Thus, while examining the fifth conjunct of ¢, we will set MatchFound = yes, and
hence II-Entail will return yes at the end of Step 3.

Theorem 6.3.13.
Let o1 be a formula in prime implicate normal form, and let po be a formula in
extended conjunctive normal form such that for every clausal subformula A of s

146 6.3. Properties of Prime Implicate Normal Form

and every 1 < k <n either |Diamy(\)| = 0 or |Diamg(\)| =1 and |Boxy ()| = 0.
Then it can be decided in quadratic time in |p1| + |p2| whether v1 = pa.

Proof. Let @1 and 9 be as described. In order to be able to apply Theorem [6.3.9]
we need to show how to transform s into an equivalent formula satisfying all of the
requirements for right-hand-side formulae. Let us consider the following recursive
procedure RemoveTaut which takes as input a formula v» = A\{ A...A\; in extended

conjunctive normal form:

Step 1 For each \;: Replace each disjunct Oy (resp. <xy) by O RemoveTaut(y)
(resp. OrRemoveTaut(y)). Afterwards, check whether \; contains comple-
mentary propositional disjuncts or some disjunct of the form O, T, and replace
A; by T if this is the case.

Step 2 If all conjuncts of ¢ are T, replace ¥ by T, else remove all conjuncts T
from 1.

Step 3 Return the modified formula .

It is easy to see that this procedure outputs a formula which is equivalent to the
input formula, as each of the modifications is equivalence-preserving. We claim
furthermore that if the input is a formula in extended conjunctive normal form such
that for every clausal subformula A and every 1 < k < n either |Diamy(\)| = 0 or
|Diamy(N)| = 1 and |Box(\)| = 0, then the output formula satisfies all conditions
of the right-hand side formula. The proof is by induction on the depth of the input
formula. The base case is when §(¢)) = 0. In this case, in Step 1, we replace all
tautologous clauses by T, and in Step 2, we remove extra T conjuncts from . The
output formula is thus either T or a conjunction of non-tautologous propositional
clauses, so all conditions of right-hand-side formulae are satisfied.

Let us next assume that our statement holds whenever the input formula has
depth at most m. Let 9 be a formula in extended conjunctive normal form of
depth m + 1 such that for every clausal subformula A and every 1 < k < n either
|Diamy(N)| = 0 or |Diamg(A)| = 1 and |Boxk(A)| = 0, and let ¢’ be the output
of the above procedure on input ¥. As we never add O- or O-formulae during the
procedure, we can be sure that ¢’ is also such that for every clausal subformula A
and every 1 < k < n either |Diamy(\)| =0 or |Diamg(\)| =1 and |Box(\)| = 0.
It remains to be shown that every tautologous subformula of 7’ is equal to T.
Suppose that this is not the case. Then there must be some subformula (such
that = ¢ but (# T. Suppose first that ¢ appears in the scope of one or more
modal operators. Then that means that there is some disjunct $py or Ogy of

6. Prime Implicate Normal Form 147

one of the clausal conjuncts of 1/, such that ¢ is a subformula of v. We know
from the definition of RemoveTaut that there must be some subformula o of 1)
such that v = RemoveTaut(oc). As o appears in ¢ behind a modal operator,
it must be a formula in extended conjunctive normal form of depth at most m
such that every clausal subformulae A of ¢ is such that either |Diamy(A)| = 0 or
|Diamg(\)| = 1 and |Boxk(\)| = 0 for 1 < k < n. This means that the formula
v = RemoveTaut(o) satisfies all conditions of Theorem In particular, ~
cannot contain ¢ as a subformula. It follows then that ¢ must be a subformula of
+)" which appears outside the modal operators. If (is a literal, then it must be
of the form O, since a propositional literal or ¢-formula cannot be a tautology.
Since Ogp is a tautology, we must have p = T. But we have just shown that
all tautologous subformulae appearing behind the modal operators in 1)’ are equal
to T, so u = T. But this is a contradiction, since we would have replaced the
clause containing O, T with T in Step 1 (and then removed the clause in Step 2).
Suppose next that ¢ is a clausal conjunct of ¢/. Then by Theorem 2.3.1] it must
contain either a pair of complementary propositional literals or a tautologous O-
disjunct. In the latter case, we know from preceding discussion that the tautologous
O-disjunct would have been turned into a formula of form O, T in Step 1. In either
case, we would have replaced the conjunct ¢ by T in Step 1 and deleted it in Step 2,
contradicting the fact that ¢ is a conjunct of 9)’. The only remaining possibility is
that ¢ is a conjunction of clausal conjuncts of 9’ but this too we can rule out since
we have just shown that any tautologous clausal conjunct of 1’ is equal to T, and
we either delete all such conjuncts in Step 2, or replace them by a single conjunct
T. We have thus shown that all of the tautologous subformulae of 1)’ are equal to
T. This means in particular that there can be no conjunctions in 1)’ which have
tautologous conjuncts but are not themselves tautologies, since they would have a

conjunct T, and we have removed in Step 2 all T conjuncts from).

We have just shown how to transform the formula ¢s into an equivalent formula
¢ which satisfies all of the requirements of right-hand-side formulae of Theorem
6391 This means that we can test whether ¢ = 2 by using II-Entail to decide
whether ¢ = ¢h. According to Lemma [6.3.4], the algorithm II-Entail will take
at most quadratic time in |¢1| + |p2| since |ph| < |p2] (all of the modifications
in the above procedure decrease the size of the input formula). Moreover, the
transformation of ¢y into an equivalent formula ¢}, clearly takes at most quadratic
time in |p2|, which means that it can be decided in time quadratic in |p1| + |p2|
whether ¢1 = ¢o. O

148 6.3. Properties of Prime Implicate Normal Form

Example 6.3.14.
Let ¢ be defined as in Example [6.2.5t

(aV Oy01d)

(ma VvV <Oo(aNb))
(O2((01dVa)A(OpdVvb))V<Eoy(and))
O01((aV O T)A(OsL Ve)A(aVe))
Or(an—c AN Oyl)

> > > >

and let v be the formula
(b VeV $p0y <>1—|a) VAN (a vV DQ(—\a V Dl(d V —\d)))

We know from Example that ¢ is in prime implicate normal form, and it
can be verified that v is a formula in extended conjunctive normal form satisfying
the conditions of Theorem Applying the transformation from the proof of
Theorem to 1 yields the equivalent formula

bVecv <Or09 O1a

since RemoveTaut(d V —d)=T, and hence RemoveTaut(—a V Oy (d V =d))=T.
Now that we have put 1 in the proper form, we can use II-Entail to test whether
¢ E 1. As transformed 1 is comprised of a single clause, we just need to check
whether one of the clausal conjuncts of ¢ satisfies the three conditions with regards
to 9. The first two conjuncts fail condition (a) since their propositional disjuncts
do not belong to {b,c}. The third and fourth conjuncts of ¢ fail condition (c) since
1) does not have any O-formulae as disjuncts. The fifth conjunct satisfies conditions
(a) and (c) by default since it does not have any propositional or O-disjuncts. To
determine whether this conjunct also satisfies condition (b), we need to call II-
Entail on the pair of formulae (a A ¢ A Oy 1,09 <1 a). This call will succeed
since II-Entail(_L,0q a)=yes. It follows that MatchFound will be set to yes upon
examination of the fifth conjunct, and so II-Entail will return yes, as desired.

Theorem 6.3.15.

Let 1 be a formula in prime implicate normal form, and let po be a formula in
extended conjunctive normal form of depth 1 such that for every subformula <)
or Og1p, the formula v is a clause. Then it can be decided in polynomial time in
[p1] + |2| whether o1 |= @o.

Proof. Let o1 and @9 be as described. Consider the following procedure:

6. Prime Implicate Normal Form 149

Step 1 Apply the following modifications to s:

(a) For each conjunct A and index k: if Diamyg(\) = {¢1,...,¢n} where
m > 1, replace A by A\ {Cgth1, ..., Cpthm } U{Or T} if 91 V ... V ihy, is a
tautologous propositional clause and by AN\ {Crv, ..., Oty FU{Ck (11 V
... V¢, } otherwise.

(b) For each conjunct A and index k: if Diamy(\) = {¢} and Boxg(\) =
{71, W}, replace A by A\{Ox71, -, Bryp U{BR(V), -0, Br(3p V) -

(c) If Prop(X\) contains two complementary atomic literal formulae, or if
there is some disjunct O, where (is a tautologous propositional clause,

remove A from ps.

Step 2 If all conjuncts of o have been removed, return T. Otherwise, return the

modified ps.

We claim that the formula returned by this procedure, call it ¢}, is equivalent
to the original formula ¢y, which means that we can test ¢ | @9 by testing
1 E ¢,. We claim furthermore that ¢ satisfies all of the conditions of right-hand-
side formulae outlined in Theorem [(.3.9] which means that according to Theorem
and Lemma [6.3.7], it is possible to test whether 1 = ¢} in quadratic time in
lo1|+]¢h|. This is sufficient to show the result since clearly the above transformation
operates in polynomial time (hence space) in the length of the input formula ¢s.

Showing that ¢} is equivalent to ¢o is straightforward. All of the transfor-
mations in Step 1 are equivalence-preserving: part (a) is equivalence-preserving
because of item 5 of Theorem 23T} part (b) is equivalence-preserving because of
item 9 of Theorem 23T} part (c) is equivalence-preserving since any clause with
complementary propositional literals or with a tautologous O-disjunct must be tau-
tologous. Finally, Step 2 is equivalence-preserving since if all conjuncts of s were
removed in Step 1, then all of ¢s’s conjuncts are tautologies, so po = T.

We now show that the formula ¢/, satisfies the requirements of right-hand-side
formulae. We first note that ¢/, is in extended conjunctive normal form, being a
conjunction of clauses such that the formulae behind the modalities are all proposi-
tional clauses. We then note that because of Step 1(a) of the above transformation,
there can be at most one ¢g-disjunct in each clause appearing in ¢}. Also, because
of Step 1(b), we know that if X is a clausal subformula of ¢}, and v € Diamy())
and ¢ € Boxg(\) for some 1 < k < n, then v = (. Because of Step 1(a) and
1(c), we know that the only possible tautologous subformulae of ¢, are ¢, itself
or some formula appearing behind a <} modality. In either case, the tautologous

subformula must be equal to T. O

150 6.3. Properties of Prime Implicate Normal Form

Example 6.3.16.
Let ¢ be defined as in Example [6.2.5t

(a Vv Oy0:4d)

(ma VvV Oo(a Ab))
(O2((O13dVa)A(OpdVvb))V<Oa(and))
O;((aVCOaT)A(OaLVe)A(aVe))
Or1(aN—c AN DOyl)

> > > >

and let v be the formula
(meVOb vV Oy=b) A (ma VvV —=bV Oga VvV <Oob)

We know from Example that ¢ is in prime implicate normal form, and it can
be verified that ¢ is a formula in extended conjunctive normal form satisfying the
conditions of Theorem Let us begin then by applying the transformation in
the proof of Theorem [6.3.T5to ¢. In Step 1(a) of the transformation, we replace the
disjuncts ¢9 a and g b in the second conjunct by a single disjunct ¢o (aV b). Then
in Step 1 (b) we replace the disjunct O —b in the first conjunct by Os (—=b V b).
This means that in Step 1(c), we will remove the first conjunct from . Thus,
at the end of the transformation, we have ¢y = =a V =b vV $o(a V b). We can
then call II-Entail to decide whether ¢ = 1. The algorithm will output yes since
the second conjunct of ¢ satisfies all three conditions with respect to the unique

conjunct of .

Remark 6.3.17.

We cannot extend the previous result to the entire class of K, formulae in NNF
which are conjunctions of D1-clauses. This is because, as we saw earlier in the proof
of Lemma [B.1.4] deciding whether a D1-term is unsatisfiable is an NP-complete
task, which means that the dual problem of deciding whether a D1-clause is a
tautology must also be NP-complete. Similarly, we can show that deciding whether
a D2-clause is a tautology is also NP-complete. This means that there cannot exist
any compilation method for K, formulae that allows one to tractably answer all
D2-clause entailment queries.

In the previous theorems, we exhibited some specific tractable classes of queries
for formulae in prime implicate normal form. We now consider the problem of
posing arbitrary entailment queries to formulae in prime implicate normal form.
We recall that in the case of propositional logic, one can test whether an arbitrary
formula is entailed by a formula in prime implicate normal form by first putting

6. Prime Implicate Normal Form 151

the formula in conjunctive normal form and then using structural comparison to
decide entailment. The transformation to conjunctive normal form involves a single-
exponential blowup in formula size in the worst-case. We show an analogous result
for IC,,, namely that every formula in I, can be transformed into an equivalent
formula which satisfies the conditions for right-hand-side formulae and which is
no more than single-exponentially larger. This means that we can test whether
an arbitrary formula ¢ is a logical consequence of a formula ¢ in prime implicate
normal form by first making 1 satisfy the right-hand-side conditions and then
running the algorithm II-Entail.

Theorem 6.3.18.
There exists a polynomial function f such that for every formula ¢ there exists an

equivalent formula ¢’ which satisfies all the conditions for right-hand-side formulae
and is such that || < 2/(¢D),

Proof. We assume without loss of generality that formulae are in NNF. Define
rhs(p) as the length of the shortest formula which is equivalent to ¢ and satisfies
all of the conditions on right-hand-side formulae. We will let maz-rhs;(k) denote
the maximum value of rhs for formulae having depth at most k and at most [
distinct literal subformulae.

We would like to place some upper bounds on the value of maz-rhs;(k). We
remark that if ¢ is tautologous or a contradiction, then rhs(p) = 1, since T and
1 satisfy all right-hand-side conditions. Thus, we can restrict our attention to
formulae which are satisfiable and non-tautologous. We begin by considering the
case of propositional formulae. We remark that there are only single-exponentially
many non-equivalent propositional clauses on m variables, which means that we can
find some polynomial function ¢ such that every propositional formula built using at
most m propositional variables is equivalent to some formula in conjunctive normal
form with length at most 29(™ . We can assume without loss of generality that the
CNF formula has no tautologous conjuncts, and hence satisfies all right-hand-side
conditions. As the number of propositional variables appearing in a formula can
never exceed the number of distinct literal subformulae appearing in the formula, it
follows that there exists some polynomial function p such that max-rhs;(0) < op(l)

Now that we have obtained an upper bound on maz-rhs;(0), we try to obtain an
upper bound on max-rhs;(k + 1) in terms of maz-rhs;(k). Consider some formula
o with depth k£ + 1 and having at most [distinct literal subformulae. We first use
the function Cnf to rewrite ¢ as an equivalent conjunction of clauses A\; A ... A Ap,.
We can assume without loss of generality that the conjuncts Ay, ..., A, are all
non-tautologous and mutually non-equivalent and that they contain no redundant

152 6.3. Properties of Prime Implicate Normal Form

disjuncts (otherwise we can simply remove all unnecessary conjuncts and disjuncts,
resulting in an even shorter formula). We will now transform each \; to make it
satisfy the conditions of right-hand-side formulae. First, if there are multiple < ;-
disjuncts, we group them into a single <; disjunct. Specifically, for each 1 < j < n
such that ©;(\;) > 2, if O;(N) = {41, ..., %, }, the we replace the disjuncts <; 1,
..y Oj1by by the single disjunct &; (¢1 V ... V 9,). Secondly, for each disjunct of
the form O; x such that ©;(\;) = {¢} (because of the previous step, we know
there to be at most one element in <;();)), we replace O; x by O; (x V ¢). We
remark that these two modifications are equivalence-preserving, so each modified
A; is equivalent to the original clause A;. Notice also that if ¢ is such that O; ¢ or
< ¢ is a disjunct of the modified \;, then ¢ must have depth at most §(¢) — 1 and
must have at most [distinct literal subformulae. The latter holds since the literal
subformulae appearing in the output of Cnf on ¢ are all literal subformulae of ¢,
and the set of literal subformulae appearing in a disjunction of formulae is equal
to the union of the literal subformulae of the disjuncts. We can thus apply the
induction hypothesis to all formulae ¢ such that O; ¢ or <; ¢ is a disjunct of the
modified)\;. Specifically, we find that for each such (, there is a formulae ¢’ which
is equivalent to ¢, has length at most maz-rhs;(k), and satisfies all right-hand side
formulae. Let us then substitute for each formulae ¢ the formula ¢’. We remark
that the clause resulting from applying the preceding modifications to A, call it AL,
is a clause which is equivalent to A; and satisfies all right-hand-side conditions. It
follows then that the conjunction ¢’ = N A ... A X/, is a formula equivalent to ¢
which satisfies all right-hand-side conditions.

We now consider the length of ¢/. We first remark that there can be at most 2!
conjuncts in ¢’ since Cnf outputs at most 2! mutually non-equivalent clauses when
the input formula in NNF has at most [mutually non-equivalent literal subformulae
(by Theorem 2.4.17]). Moreover, we also know from Theorem 2.4.1T]that the clauses
output by Cnf all have at most [mutually non-equivalent disjuncts, so each \; has
no more than [disjuncts. As the modifications to the \; never increase their number
of disjuncts, it follows that each modified clause X\, has at most [disjuncts. Finally,
we know that each disjunct has length at most maz-rhs;(k) + 1, since it is either
a propositional disjunct, or of the form O, ¢’ or <; ¢, in which case we already
showed above that [('| < maz-rhs;(k). Thus, each conjunct A, can have length at
most [(maz-rhs;(k)+141) (the extra one is for the disjunction symbols between
the disjuncts). This means that ¢’ has length at most 2 (I * (max-rhs;(k) +2) +1)
(the extra one is for conjunction symbols between the conjuncts). We thus have

maz-rhs;(k + 1) < 2% (I « (maz-rhs;(k) +2) + 1)

6. Prime Implicate Normal Form 153

From this we can derive that
maz-rhs;(k) € O((2! % 1)k x 2P0y

As both the depth of ¢ and the number of mutually non-equivalent literal subfor-
mulae in ¢ are bounded above by |¢|, we find that

rhs(p) € O((217 x Jp])* » 20(#D)

We have thus shown that every formula is equivalent to a formula at most single-
exponentially larger which satisfies all right-hand-side conditions. U

6.3.2 Tractable uniform interpolation

As we saw in Chapter 2] the L-interpolant of a formula corresponds to the finest
approximation of the formula over a given signature. We show in this subsection
that it is easy to generate L-interpolants of formulae in prime implicate normal
form.

We introduce an algorithm II-LangInt for computing an L-interpolant of a
given formula in prime implicate normal form. The basic idea is to remove all sub-

clauses which have either a propositional disjunct (=)a with a € £ or a disjunct of

the form O;¢ or <) where @ L.

Algorithm 6.2 II-LangInt
Input: a formula ¢ in prime implicate normal form

Output: an L-interpolant of ¢
(1) Set IT = 0.
(2) For each conjunct A of ¢
If a € L for every disjunct (—)a of A and i € L for every disjunct 0;7 or &9
of A, then
(a) Let X' be the formula obtained from A by replacing each disjunct O;1)
by O;II-LangInt (), £) and each disjunct <41 by <;11-LangInt (v, £)
(b) If there is no disjunct of X’ of the form O, T, then add X to II
(3) Return the conjunction of the formulae in IT if I # (), otherwise return T.

To illustrate the functioning of II-LanglInt, we detail its execution on the for-
mula ¢ from Example [6.2.5]

154 6.3. Properties of Prime Implicate Normal Form

Example 6.3.19.
Let ¢ be defined as in Example [6.2.5t

(aV Oy01d)

(ma VvV <Oo(aNb))
(O2((01dVa)A(OpdVvb))Vv<Eoa(and))
O01((aVOT)A(OsL Ve)A (aVe))
Or(aN—c AN Oyl)

> > > >

and let £ = {1,2,b,¢,d}. In Step 1 of II-LanglInt, we initialize II to the empty
set. Then in Step 2, we examine each of the conjuncts of ¢ one by one:

e We first examine ¢ V Os 0 d. As this clause has a propositional disjunct a

and a € L, we do not enter the if-loop.

e The next conjunct is —a V <9 (a A b). Again, the conditions of the if-loop
are not satisfied, as there is a disjunct —a and a ¢ L.

e We next consider the conjunct Oy ((O1dVa)A(O1dVb))V<Oa(and)). As
there are no propositional disjuncts and 2 € £, the conditions of the if-loop
are satisfied. We thus make recursive calls to [I-LangInt on the formulae

behind the modal operators:

— On input (O;d V a) A (O;d V b), II-LangInt returns O;d V b,
since the first conjunct does not satisfy the conditions of the if-loop
because of its disjunct a, and the second conjunct is not modified as
[I-LangInt(d,£)=d.

— On input a A b, II-LangInt returns b, since a does not satisfy the con-
ditions of the if-loop, and b is left unaltered.

We thereby replace (O1dV a) A (O;dVb)byO;dVband a Abbyb. The
clause resulting from these modifications is then added to II.

e The next conjunct of pis Oy ((a V<o T) A (O L Ve)A(aVe)). As this
clause has no propositional disjuncts and 1 € £, we enter the if-loop and call

II-LanglInt on the formula behind the modal operator.

— On input (a V $2T) A (OaL Ve) A (aV c), [I-LangInt returns
Os L V ¢ since the first and third clauses do not satisfy the conditions

of the if-loop because of their disjunct a, and the second clause is not
modified as II-LangInt(L,£)=_1.

6. Prime Implicate Normal Form 155

We thus add O; (Os L V ¢) to IL.

e The final conjunct is &1 (a A —¢ A Oy L). As 1 € L, we enter the if-loop,
and we call [I-LangInt on a A —¢ Oy L:

— On input a A =¢ A Oy L, II-LangInt returns —¢ A Oy L, since the first
conjunct does not satisfy the conditions of the if-loop, and the other two
conjuncts are left unaltered.

We thus add <1 (—¢ A Oy L) to II.

In Step 3, we return the conjunction of the elements of II, which is:
(DQ(Dld Vb))V Oob) A Dl(DQL V C) N <>1(—\C N DQL)

We now prove the correctness of II-LanglInt.

Lemma 6.3.20.
If v is a formula in prime implicate normal form, then the output of TI-LangInt (¢,
L) is an L-interpolant of ¢.

Proof. The proof is by induction on the depth of the input formula . The base
case is when d(p) = 0, i.e. when ¢ is a propositional formula. In this case, the
algorithm simply returns the conjunction of the conjuncts of ¢ whose signatures are
contained in £, or T if there are no such conjuncts. Let { be some formula such that
sig9(¢) C L and ¢ = ¢. Because of Theorem B.I.T3] we can suppose without loss of
generality that ¢ is a conjunction of clauses. We know from Covering (Theorem
B.2.8) that if a clause A is entailed by ¢, then there is some prime implicate of
¢, hence some conjunct of ¢ (since ¢ is in prime implicate normal form), which
entails \. It follows that every conjunct of is entailed by some conjunct of . We
remark that ¢ is a conjunction of propositional clauses and that a propositional
clause containing propositional literals outside £ cannot entail a non-tautologous
formula with signature contained in £. This means that if there are no conjuncts
of ¢ with signature contained in £, then { must be a tautological formula, and if
such conjuncts exist, then each of the conjuncts in (must be entailed by at least
one such conjunct. In the first case, we find that (is entailed by T, and in the
second case, (is entailed by the conjunction of the conjuncts of ¢ whose signatures
are contained in £. In both cases, we find that the output of II-LangInt(yp, £) is a
formula with signature in £ which is entailed by ¢ and which entails every formula
¢ in £ which is entailed by ¢, so it must be an L-interpolant of ¢.

Let us next assume that the result holds for every formula in prime implicate
normal form with depth at most k and show that the result still holds for formulae

156 6.3. Properties of Prime Implicate Normal Form

with depth k + 1. Our first step will be to show that the following statements hold

for every clause A in prime implicate normal form with depth at most k£ + 1:

1. If X\ contains a disjunct (—)a with a ¢ £ or a disjunct O;1p or <410 where
i ¢ L, then T is an L-interpolant of A

2. If X is such that a € L for every disjunct (—)a of A and i € L for every
disjunct O;¢p or <;1, then the formula obtained from A\ by replacing dis-
juncts of the form <;¢ and O;¢ respectively by <;II-LangInt(y, £) and
0; II-LangInt (¢, £) is an L-interpolant of A

We begin with statement (1). Let A be a clause in prime implicate normal form
which contains a disjunct (—)a with a € £ or a disjunct O;¢) or ;1 where i & L. In
the first case, we know that the only formulae with signature in £ which subsume
(—)a are tautologous formulae, so A cannot entail any non-tautologous formulae
with signature contained in £, i.e. T is an L-interpolant of A. If instead we are in
the second case, then there is some satisfiable disjunct ;v or O, of A with ¢ & L.
But a satisfiable formula ;1 or O;¢ cannot imply any non-tautological clause
which does not contain a modality <; or O; by Theorem 2.3.3] It follows that every
formula which is entailed by A and has signature contained in £ is tautologous, so
T is an L-interpolant of A.

We now show (2). Let A be a clause in prime implicate normal form of depth at
most k+ 1 such that a € £ for every disjunct (—)a of A and i € L for every disjunct
0,1 or <1 of X Let A be the formula obtained from A by replacing disjuncts of the
form ;1 and O;1) respectively by <;II-LanglInt(¢, £) and O;II-LangInt (¢, £).
We remark that A has the same propositional disjuncts as A, and its top-level
modalities are the same as those in \. We also note that the formulae appearing
behind the top-level modal operators have the form II-LangInt(vy, £) where 9 is
a formula in prime implicate normal form with depth at most k. Applying the
induction hypothesis, we find that for each such formula 1), II-LangInt (¢, £) is an
L-interpolant of ¢. In particular, that means that II-LangInt(¢), £) has signature
contained in L. It follows that ¢’ also has signature contained in £. It also means
that each v entails TI-LangInt(t), £), from which we can deduce that A’ is entailed
by A. We now need to show that)\ entails every formula which is entailed by
A and has signature in £. Let v be such a formula. Clearly every propositional
disjunct of X must entail v since A and A’ have the same propositional disjuncts and
A E 7. Every existential disjunct of) is equal to O;II-LangInt(¢, £) for some
disjunct <410 of A, As O;II-LanglInt(vy, £) is an L-interpolant of <;1 (Lemma
2.6.10)), it follows that <;II-LangInt(¢), £) must entail «y since + is entailed by <;v
and sig(y) € L. That means that every O-disjunct of X entails . Likewise, we

6. Prime Implicate Normal Form 157

remark that O;II-LangInt (), £) is an L-interpolant of 0;1, so every O-disjunct
of ' entails v. As every disjunct of A\ entails ~, it follows that ' | ~, so X is
an L-interpolant of A\. This together with statement (1) tells us that the output
of II-LangInt(p, k + 1) is equivalent to the conjunction of L-interpolants of the
conjuncts of .

Now let ¢ be a formula such that sig(¢) C £ and ¢ = (. We can assume without
loss of generality that ¢ is a conjunction of clauses since any formula is equivalent
to some formula of this form and with the same or smaller signature (Theorem
[2Z4TT]). Then since ¢ entails ¢, it follows that ¢ entails each of the clauses which
are conjuncts of (. By the Covering property (Theorem B:28]), we know that every
implicate of ¢ is entailed by some prime implicate of . As we have assumed ¢ to
be in prime implicate normal form, this means that every conjunct of ¢ is entailed
by some conjunct of ¢. This together with the fact that the conjuncts of ¢ have
signature contained in £ means that each of the conjuncts of (is entailed by an
L-interpolant of some conjunct of . It follows then that the formula (is entailed
by the conjunction of the L-interpolants of the conjuncts of p. But then { must be
entailed by the output of II-LangInt(yp, £) since we have shown above that the
output of II-LanglInt(p, £) is equivalent to the conjunction of L-interpolants of
the conjuncts of ¢. We have thus demonstrated that the output of II-LangInt(yp,
L) is a formula with signature in £ which is entailed by ¢ and entails every formula
with signature in £ which is entailed by ¢, i.e. the output of II-LangInt(p, £) is
an L-interpolant of . O

Lemma 6.3.21.
The algorithm 1I-LangInt runs in linear time in the size of the input formula.

Proof. 1I-LanglInt terminates in linear time with respect to the size of the input
formula because all the algorithm does is scan the input formula a single time in
order to remove those clausal sub-formulae which violate the syntactic requirements
set forth in Step 2. O

Theorem 6.3.22.
If v is in prime implicate normal form, then an L-interpolant of ¢ can be generated

in linear time in the size of .

Proof. Follows directly from Lemmas [6.3.20] and 6.3.2T1 O

The L-interpolant obtained using Il-LangInt may not, however, be itself in

prime implicate normal form, as the following example demonstrates:

158 6.3. Properties of Prime Implicate Normal Form

Example 6.3.23.
Let ¢ = <1(a A Ogb) A <C1(a Ab) and £ = {1,a,b}. Then ¢ is in prime implicate
normal form, but II-LangInt(p, £) = ¢ra A ©1(a A b) is not in prime implicate

normal form since ¢1a is not a prime implicate of II-LangInt(p, £).

This is not a problem, however, since we show in Theorem that we can
use the algorithm II-Entail from earlier in the chapter in order to remove super-
fluous subformulae, thereby returning the L-interpolant to prime implicate normal
form. For the proof of Theorem [6.3.25] we will require the following lemma, which
shows that the output of II-LanglInt satisfies the required conditions to ensure the
correctness of II-Entail. Both the proof of the lemma and the proof of Theorem
are quite long and tedious, and so might be best skipped on a first reading
of the chapter.

Lemma 6.3.24.
If ¢ is a formula in prime implicate normal form, then the output of TI-LangInt (¢,

L) satisfies the requirements for both left- and right-hand-side formulae described
in Theorem [6.3.9.

Proof. The proof is by induction on the depth of the input formula . The base
case is when 6(p) = 0. In this case, II-LangInt simply returns the conjunction of
the conjuncts of ¢ whose signatures are contained in £, or T if there are no such
conjuncts. We consider only the former case, since T clearly satisfies all of the con-
ditions for both right- and left-hand-side formulae. Now let A be some prime impli-
cate of II-LangInt(p, £). We know that A is non-tautologous since II-LangInt(yp,
L) contains at least one non-tautologous propositional clause. Moreover, since the
signature of II-LanglInt(y, £) is contained in £, then by Theorem T.5 we can
assume without loss of generality that A also has signature contained in L. As
¢ EIl-LanglInt(p, £), we must also have ¢ = A, so by the Covering property
(Theorem [3.2.8]), there must be some prime implicate of ¢ which entails A. As
© is in prime implicate normal form, every prime implicate is equivalent to some
conjunct of ¢, so there must be some conjunct 7 of ¢ such that 7 = A. But then
by Theorem 2.33] it follows that m must have signature in £, which means that 7
is a conjunct of II-LangInt(p, £), and also that 7 = . It follows that every prime
implicate of II-LangInt(p, £) is equivalent to some conjunct of II-LangInt(p, £).
As II-LanglInt(p, £) had depth 0, the second condition for left-hand-side formulae
is trivially satisfied. As II-LanglInt(y, L) is a propositional formula, there are
only two possible types of unsatisfiable subformulae: II-LangInt(p, £) itself, or
disjuncts of the form L. In the first case, we have II-LangInt(p, £)= L, since
[I-LangInt(p, £) is unsatisfiable only if ¢ is, ¢ would be equal to L if it were

6. Prime Implicate Normal Form 159

unsatisfiable, and II-LangInt(Ll) = L. In the second case, we would have had
disjuncts | in ¢, which cannot be the case since ¢ is assumed to be in prime im-
plicate normal form. Finally, we note that II-LangInt(p, £) is a conjunction of
clauses, and hence in extended conjunctive normal form. We have thus shown that

II-LangInt(p, £) satisfies all of the requirements for left-hand-side formulae.

Now let’s show that II-LangInt(p, £) satisfies the requirements for right-hand-
side formulae. As II-LangInt(y, £) had depth 0, the first two requirements, which
involve O- and <-formulae, are trivially satisfied. The third condition, that all
tautologous subformulae are equal to T, is also satisfied, since II-LangInt(y, L)
is either equal to T or it is a conjunction of non-tautologous propositional clauses.
The final requirement is satisfied as well, since II-LangInt(p, £) cannot have any
tautologous conjuncts unless it is itself a tautology.

We have thus shown that II-LangInt(y, £) satisfies the requirements for both
left- and right-hand-side formulae whenever ¢ has depth 0. Now let us suppose
that the same holds for formulae with depth at most m, and let ¢ be a formula
in prime implicate normal form of depth m + 1. We begin with the left-hand-side
requirements. Let A be some prime implicate of II-LanglInt(y, £). We can assume
without loss of generality that sig(\) C L since the signature of II-LangInt(p, £)
is contained in £, and we know that every prime implicate of II-LangInt(y, £)
is equivalent to some clause with signature in sig(II-LangInt(p, £)) (by Theorem
M.15). Now since II-LangInt(p, £) E A and ¢ = II-LangInt(yp, £), we also have
¢ = A. By the Covering property (Theorem B.2.8]), there must be some prime
implicate of ¢, and hence some conjunct of ¢ (since ¢ is in prime implicate normal
form), which entails A. We showed in the proof of Theorem [6.3.20] that II-LangInt
transforms every conjunct of ¢ into its L-interpolant, from which we find that A is

equivalent to some conjunct of II-LangInt(p, £).

Next let ¢ be such that $pyp or Og) is a subformula of II-LangInt(yp, £). Then
it must be the case that ¢ =II-LangInt({, £) for some subformula ¢ of ¢ such that
O or Ok (is a subformula of ¢. But that means that ¢ must be a formula in prime
implicate normal form with depth at most m, so applying the induction hypothesis,
we find that II-LangInt(¢, £) satisfies all of the left-hand-side requirements. In
particular, this means that if ¥ is such that gy or Oit is a subformula of II-
LanglInt(p, £), then every prime implicate of v is equivalent to some conjunct of
1. It also means that ¢ is in extended conjunctive normal form, which allows us
to show that II-LanglInt(y, £) is also in extended conjunctive normal form.

Let us now show that the third left-hand-side condition holds for II-LangInt (e,
L). Suppose then for a contradiction that II-LangInt(y, £) has an unsatisfiable
subformula « such that v # 1. Suppose first that v appears in the scope of one or

160 6.3. Properties of Prime Implicate Normal Form

more modal operators. Then that means that there is some disjunct $gtp or Ogap
of one of the clausal conjuncts of II-LangInt(yp, £), such that 7 is a subformula
of ¢. But we know from the definition of II-LanglInt that ¢) =II-LangInt((, £)
for some (¢ such that gy or Ogy is a subformula of . By applying the induction
hypothesis to ¢, we conclude that i) =II-LanglInt({, £) satisfies all of the left-
hand-side conditions. In particular, it contains no unsatisfiable subformulae which
are not equal to L. It follows that v must appear in II-LangInt(yp, £) outside the
scope of the modal operators. There are three possibilities: 7y is a disjunct of some
clausal conjunct of II-LangInt(yp, £), 7 is a clausal conjunct of II-LangInt(yp,
L), or v is a conjunction of clausal conjuncts of II-LangInt(yp, £). We start with
the case where 7 is a disjunct of some clausal conjunct of II-LangInt(y, £). In
this case, v must be of the form Op, since propositional literals and O-formulae
cannot be unsatisfiable. We know from the definition of II-LangInt that ¢ =II-
LangInt(¢, £) for some subformula ¢ of ¢ such that <p(is a disjunct of some
conjunct of . But 1 is both unsatisfiable and an L-interpolant of ¢ (by Lemma
[6.3.20), so ¢ must be unsatisfiable, too. That means that ¢ possesses a clausal
conjunct with an unsatisfiable disjunct, contradicting our assumption that ¢ is
in prime implicate normal form. Next consider the possibility that v is a clausal
conjunct of II-LanglInt(p, £). Since « is assumed unsatisfiable but not equal to
1, it must either contain a disjunct of the form <1 for some unsatisfiable formula
1, or multiple disjuncts of the form L. We have already shown that the first case
cannot occur, and the second case is also impossible, since it would mean that ¢
possesses a clausal conjunct with unnecessary disjuncts. It must then be the case
that II-LangInt(p, £) itself is unsatisfiable but unequal to L. But that would
imply the presence of either an unsatisfiable conjunct not equal to 1, which we
have just shown to be impossible, or several conjuncts 1, which is also impossible
since that would mean that ¢ itself contains unnecessary conjuncts, which cannot

happen since ¢ is in prime implicate normal form.

Finally, for the fourth left-hand-side condition, we simply note that by the dis-
cussion in the previous paragraph, there can be no satisfiable clausal subformula in
[I-LangInt(p, £) having unsatisfiable disjuncts, as this would indicate the pres-
ence of unnecessary disjuncts in some clausal subformula of ¢, which is forbidden
by the definition of prime implicate normal form.

Now let us move on to the right-hand-side requirements. We know from the
induction hypothesis that any clausal subformula appearing within the scope of
modal operators in II-LangInt(p, £) must satisfy the first two right-hand-side
conditions. So we only need to worry about the clausal subformulae which are
conjunct of II-LangInt(y, £). Let X be a clausal conjunct of II-LangInt(y,

6. Prime Implicate Normal Form 161

L). We know from the definition of II-LangInt that there must be some clausal
conjunct A of ¢ such that) is obtained from A\ by replacing each disjunct Oyt
by OiII-LanglInt (v, £) and each disjunct $g1) by Opll-LangInt(vy, £). As ¢ is in
prime implicate normal form, it follows that |Diami(\)] <1 forall 1 <k <n. It
follows then that |Diamg(\)| < 1 for all 1 < k < n, so the first right-hand-side
condition is satisfied by II-LangInt(yp, £). Now suppose that 4/ € Diamy()\') and
¢" € Boxp(N') for some k. Then there must be v € Diamy(\) and (€ Boxp(\)
such that ' =II-LanglInt(y, £) and ¢’ =II-LangInt(¢, £). As ¢ is assumed to
be in prime implicate normal form, we know that v = (. But that means that
[I-LangInt(y, £)E=II-LangInt(¢, £), and hence ' |= ¢/. We thus have the second
right-hand-side condition.

Next we need to show that every tautologous subformula of II-LangInt(y, £)
is equal to T. Suppose for a contradiction that II-LangInt(y, £) contains some
tautologous subformula « which is not equal to T. It follows from the induction
hypothesis that all tautologous formulae appearing behind the modal operators
are equal to T, so v must appear outside the scope of any modal operators in
[I-LangInt(p, £). There are three possibilities: v is a disjunct of some clausal
conjunct of II-LangInt(p, £), v is a clausal conjunct of II-LangInt(p, £), or 7y is a
conjunction of clausal conjuncts of II-LangInt(p, £). First consider the case where
~ is a literal. Then v must be of the form Ox¢" where (' is a tautologous formula,
since propositional literals and <-formulae cannot be tautologies. But we know
from the definition of II-LangInt that Oy’ must be equal to OII-LangInt((,
L) for some ¢ such that ;¢ is a disjunct of some clausal conjunct of ¢. By the
induction hypothesis, II-LangInt(¢, £) must be equal to T since it is a tautology,
which means that - is of the form O T. But this is a contradiction, since in Step
2(b) of II-LangInt we only added to the set II clauses which did not contain
disjuncts of this form. Next suppose that - is one of the clausal conjuncts of II-
LangInt(y, £). Since 7 is a tautologous clause, and we know from the previous
paragraph that |Diamg(\)| < 1, it follows from Theorem 23] that v contains
either a pair of complementary literals a and —a, or a pair disjuncts Ox¢" and Opp/
such that = ¢’ vV /. We know that the former case cannot occur, since in Step 2
of II-LanglInt we do not add to II any clauses with complementary propositional
disjuncts. It must then be the case that v possesses disjuncts O’ and O such
that = ¢’ vV /. From the previous paragraph, we know that p’ =/, which gives
us = (/. But we also know that Oy’ must be equal to Oxll-LangInt(¢, £) for
some (¢ such that Ox(is a disjunct of some clausal conjunct of ¢. But we know
from the induction hypothesis that II-LangInt({, £) cannot have any tautologous
subformulae not equal to T, so we must have II-LangInt({, £)= T and hence

162 6.3. Properties of Prime Implicate Normal Form

04,¢" = 0, T. This is a contradiction however, since no clauses with a disjunct of
the form O, T are added to II in Step 2. Thus, we must be in the final case, in
which v is a conjunction of clausal conjuncts of II-LangInt(yp, £). But then ~
must either have a tautologous clausal conjunct which is not equal to T, or be a
conjunction of multiple T symbols. We just showed that II-LangInt(p, £) cannot
have a tautologous clausal conjunct not equal to T. The second case also cannot
happen, since that would mean that we had added T to II in Step 2. But that
could only happen if T were a conjunct of ¢, which can only happen when ¢ = T,
in which case we would have II-LangInt(p, £)=T. Thus, we have shown that
[I-LangInt(p, £) cannot possess any tautologous subformulae not equal to T.
For the final right-hand-side condition, suppose that II-LangInt(p, £) possesses
a non-tautologous subformula which is a conjunction having at least one conjunct
T. Because of the induction hypothesis, we can assume that this conjunction does
not appear behind the scope of modal operators, which means that the conjunct
in question must be a conjunct of II-LangInt(y, £). But we showed at the end of
the last paragraph that II-LangInt(p, £) cannot have a conjunct T except in the
limit case where it is itself equal to T. Thus, we have shown II-LangInt(p, £) to
satisfy all of the right-hand-side conditions. O

Theorem 6.3.25.
If ¢ is in prime implicate normal form, then an L-interpolant of ¢ in prime impli-

cate normal form can be generated in polynomial time in the size of .

Proof. We know from Lemma that we can compute an L-interpolant of a
formula ¢ in prime implicate normal form using the algorithm II-LangInt, but we
now need to show how to transform the output of II-LangInt into an equivalent
formula in prime implicate normal form. Consider the following recursive proce-
dure BackToPINF which takes as input a formula ¢ = A\ A ... A A\, in extended

conjunctive normal form:
Step 1 If §(¢) = 0, return ¢. Otherwise, set IT = ().

Step 2 For i =1 to m:
If TI-Entail(\;, A\;)=no for all 1 < j < i and either II-Entail()\;, \;)=no
or II-Entail()\;, \j)=yes for all i < j < n, then

(a) Let \; be the formula obtained from \; by replacing each
disjunct Ogt) (resp. Oxtp) with O,BackToPINF (v))

6. Prime Implicate Normal Form 163

(resp. ©rBackToPINF (v))).
(b) For each k=1 to n:

Let {ai, ..., a5} be the elements in Bowzg(X}).
For I =1 to s:

If TI-Entail(oy, op)=yes for some 1 < p < [or
II-Entail(a;, a;)=yes and II-Entail(c,, o;)=no
for some [< p < s, then

Remove Ogoy from ..

(c) Add X, to II.
Step 3 Return A\ ;7.

We claim that if ¢ is such that ¢ =II-LangInt(p, £) for some formula ¢ in prime
implicate normal form and some signature £, then the output of BackToPINF on
input ¢, call it ¢/, is a formula in prime implicate normal form which is equivalent
to (. The proof is by induction on the depth of the input formula (.

The base case is when 6(¢) = 0. Let ¢ be a formula in prime implicate normal
form such that ¢ =II-LangInt(p, £). Now since (is propositional, we know
that ¢ must be propositional as well, since II-LangInt never removes modalities
from clauses. For propositional formulae, it is known that the L-prime implicates
of a formula are precisely those prime implicates of the formula with signature
contained in £ (cf. [Mar00]). It follows that the conjuncts of (are precisely
its prime implicates. Moreover, there can be no repeated conjuncts or disjuncts
in ¢ since this would imply unnecessary conjuncts or disjuncts in ¢, which cannot
happen since ¢ is in prime implicate normal form. It follows that (is itself in prime
implicate normal form. We thus have the desired result since BackToPINF({)=(
for propositional (.

Next let us assume that the result holds whenever the input formula has the
required form and depth at most d, and let ¢ a formula of depth d 4+ 1 such that
¢ = II-LanglInt(yp, £) for some formula ¢ in prime implicate normal form and
some signature £. We begin by showing that every conjunct in ¢ is implied by
some conjunct of (/. Let \; be a conjunct of (. We begin with the case where
A; satisfies the conditions of the if-loop. Then in Step 2(a), we will set A, equal
to the clause obtained from A; by replacing each disjunct Ogt) (resp. Optp) with
O;BackToPINF (¢) (resp. <pBackToPINF(v)). We know that the disjunct
Ogt (resp. Optp) must be equal to Oxll-LangInt(v,£) (resp. <pll-LangInt(+,L))
where Ogy (resp. <) is a subformula of . It follows then by the induction
hypothesis that BackToPINF(¢) is equivalent to 1, which means that X, = \;

164 6.3. Properties of Prime Implicate Normal Form

at the end of Step 2(a). We just need to ensure that the changes in Step 2(b)
are equivalence-preserving. To do so, we show that every disjunct of X, which is
removed during Step 2(b) implies one of the disjuncts of A} which remains at the end
of Step 2(b). We only need to show this for O-disjuncts, since we do not remove any
other disjuncts in Step 2(b). We note that by the induction hypothesis the formulae
in Boxy () must all be in prime implicate normal form. It follows then by Lemmas
and [6.3.3] that for oy, € Boxy(X,), we have II-Entail(ag, o) = yes if and
only if @y = a,. Now let Ogoy be a disjunct of X, which was removed in Step
2(b). That means that «; satisfies the conditions of the if-loop, so there must be
either some p < [such that II-Entail(a;, a;))=yes or some p > [such that both II-
Entail(q;, a,)=yes and II-Entail(a,, oy)=no. It follows then that either a; = «,
for some p < [, or both a; = «, and o, = a; for some p > [. This means there
is some p such that o; = o, and «a;, = oy for ¢ < p and o, = a4 only if o4 = «,
for ¢ > p. But then we have II-Entail(c,, oy)=no for every ¢ < p, and either
II-Entail(a,, ay)=no or II-Entail(«,, op)=yes for ¢ > p. This means that we
will not enter the if-loop on ay, so ay, will not be removed from A, in Step 2(b). We
have thus found a disjunct of X] at the end of Step 2(b) which is entailed by ay. It
follows that the modifications in 2(b) are equivalence-preserving. So the conjunct

A; of ¢’ is equivalent to the conjunct \; of C.

Next let us consider the other case in which we do not enter the if-loop when
examining the conjunct A; of (. Then that means that either there is some j < i@
such that II-Entail()\;, A\;)=yes, or there is some j > i such that II-Entail();,
Ai)=yes and II-Entail(\;, A\j)=no. Now we know that (satisfies the conditions
on both right- and left-hand-side formulae by Lemma It follows that the
conjuncts of ¢ also satisfy these conditions, so by Theorem [6.3.9] II-Entail will give
the right answer on entailment queries concerning conjuncts of (. We thus find that
either \; = \; for some j <4, or \j = A; = A; for some j > 4. We can thus choose
some index j such that (i) A\; = A, (ii) Ay & Aj for all [< j, and (iii) for every
[> j either \; = \j or A; = ;. But then \; will satisfy all of the requirements for
entering the if-loop, so we know from above that there must be some conjunct of
¢’ which is equivalent to \;, and hence some conjunct of ¢’ which entails X;. Thus,
every conjunct of ¢ is implied by some conjunct of ¢’. It follows that ¢’ = (. As we
have also showed that every conjunct of ¢’ is equivalent to some conjunct of ¢, we
must also have ¢ |= ¢/, hence ¢ = (.

We will now prove that ¢’ is in prime implicate normal form. We first remark
that if (’ is unsatisfiable, then so is {. Since (satisfies all left-hand-side conditions,
it can have not unsatisfiable subformulae not equal to L, which means (= 1, and
hence ¢’ = L, as desired. Likewise, since (satisfies all right-hand-side conditions,

6. Prime Implicate Normal Form 165

if ¢ is tautologous, then it must be equal to T. We now consider the case where (

is neither tautologous nor unsatisfiable.

We first need to show that all prime implicates of ¢’ are equivalent to some
conjunct of ¢’. As (satisfies right- and left-hand-side conditions (by Lemmal6.3.24]),
we know that ¢ is a conjunction of clauses. As the modifications to conjuncts of ¢
in Step 2 of BackToPINF leave clauses as clauses, ¢’ must also be a conjunction
of clauses. Let us then consider some prime implicate 7 of ¢/. We know that ¢ = ¢’
from above, so it must be the case that 7 is also a prime implicate of {, and hence
equivalent to some conjunct of ¢ (because (satisfies all left-hand-side conditions).
Let A\; be a conjunct of ¢ such that 7 = A; and 7 # A; for j <i. Now we have seen
earlier that all of the conjuncts of { must satisfy all of the right- and left-hand-side
conditions. It follows then from Theorem that the algorithm II-Entail gives
the correct output when run on pairs of conjuncts of (. This means in particular
that II-Entail(\;, A\;)=no for all 1 < j < i and either II-Entail(\;, A\;)=no or
II-Entail()\;, A\j)=yes for every i < j < n. But then we must enter the main
if-loop when we examine); in Step 2. So we will add a clause X, to II, making A} a
conjunct of ¢'. We have seen above that the clause A, must be equivalent to A;, so
we have 7 = \,. We have thus shown that every prime implicate of ¢’ is equivalent
to one of the conjuncts of (’.

Let us now show that ¢’ does not contain any unnecessary conjuncts. Suppose
for a contradiction that this is the case, i.e. there are conjuncts A; and X} with
Ai = X and i # j. Now we know that each conjunct A} in ¢’ was obtained from a
corresponding conjunct A; in ¢ via the modifications in Step 2. These modifications
are equivalence-preserving (see above), so we must also have \; = \; for every
conjunct A; of ¢. This means in particular that \; = ;. We consider two cases:
Aj = Aior Aj = Ao We begin with the case where \; = A;, and hence \; = ;.
We assume without loss of generality that ¢ < j. Now we know from previous
paragraphs that II-Entail gives the correct response when given conjuncts of (
as input. It follows that we have II-Entail(\;,\j)=yes. But that means that
we will not enter the if-loop when examining A;, so)\; will not be a conjunct of
¢’, contradicting our assumption to the contrary. Let us then consider the other
alternative which is that \; F& X;. In this case, we have II-Entail()\;,\;)=yes
and II-Entail(\;,\j)=yes. This means that we will not enter the if-loop on A,
contradicting the fact that)\;- is a conjunct of ¢/. We have thus shown that there

can be no unnecessary conjuncts in ¢’.

We will next prove that the conjuncts of ¢’ satisfy the required properties.
Let A, be a conjunct of ¢/, which is obtained from the conjunct \; of ¢ via the
modifications in Step 2 of BackToPINF. We note that all modal disjuncts of

166 6.3. Properties of Prime Implicate Normal Form

A; must be of the form 0O;BackToPINF () where Oyt is a disjunct of A; or
OrBackToPINF (1)) where Okt is a disjunct of A;. We have seen earlier in the
proof that if v is such that Oz or Cpep is a disjunct of some conjunct of ¢, then 1)
must be equal to II-LangInt(v,£) for some v such that Og7y or <7y is a subformula
of p. This means that we can apply the induction hypothesis to all of the modal
disjuncts of A,. We find that if Back ToPINF(¢) is such that O0;BackToPINF (v))
or O;BackToPINF(¢) is a disjunct of A}, then BackToPINF(¢) is a formula in
prime implicate normal form which is equivalent to . It follows that X\, satisfies
part 3(c)(iii) of Definition 6211 We next note that since ¢ has been shown to
satisfy all right-hand-side conditions, which means that A; has at most one <g-
disjunct for each 1 < k < n, and is such that if it has disjuncts <py and Ogu,
then v = p. Since the modifications in Step 2 never modify the number of <-
disjuncts, the former property must also be satisfied by A,. The latter property
must also be satisfied by A, since we have seen that the modifications in Step 2 are

equivalence-preserving with respect to each disjunct.

Finally, we must show that the conjuncts of X, satisfies property 3(c)(i), i.e.
it does not contain any unnecessary disjuncts. We known that \;, and hence X},
cannot contain any unnecessary propositional disjuncts, since this would imply
that a conjunct of ¢ had unnecessary disjuncts, which contradicts the fact that ¢
is in prime implicate normal form. Now suppose that there is some disjunct < g
of A, which implies some other disjunct of .. Now we know that ¢y cannot
be unsatisfiable, since that would imply the presence of an unsatisfiable disjunct
in ¢, which cannot happen since (satisfies all left-hand-side conditions. But then
according to Theorem[2:3.3] there must be a second <-disjunct of A, which we have
shown in the previous paragraph to be impossible. Thus, any unnecessary disjunct
in A, must be a O-formula. Let us then suppose that there are disjuncts Oy,
and Ogag of X such that Ogay, = Ogay (the disjuncts must have the same modal
operator, otherwise the entailment wouldn’t hold). We know from the previous
paragraph that o, and a4 are in prime implicate normal form. It follows then that
II-Entail(a,, aq) =yes. If oy - oy, then we will also have II-Entail(ag, o) =no,
which means that O, will be removed from X, in Step 2(b), which contradicts
the fact that it appears in ¢’. If instead we have o, = oy, then we will have II-
Entail(oy, o) =yes, and either Oy, or Ogoyy will be deleted from], which again

is a contradiction.

We have thus proven that if ¢ is such that ¢ = II-LanglInt(y, £) for some
formula ¢ in prime implicate normal form and some signature £, the output of
BackToPINF on input ¢ is a formula in prime implicate normal form which is
equivalent to {. As the algorithm II-LangInt was shown in Lemma to run

6. Prime Implicate Normal Form 167

in linear time (and hence space), all that remains to be shown is that the procedure
BackToPINF terminates in polynomial time in the size of its input. We show
by induction on the depth of the input formula that BackToPINF terminates
in quadratic time. The base case is when the input formula ¢ has depth 0. We
trivially have the result since BackToPINF terminates in linear time when the
input formula is propositional. Now suppose that BackToPINF terminates in
quadratic time in the size of the input formula for formulae of depth at most d,
and suppose ¢ has depth d + 1. We remark that evaluating the if-condition in
Step 2 for the different values of 7 involves at most 3 calls to II-Entail for each
pair of indices i # j. Since II-Entail terminates in O(|);||\;|) steps on input
(Ai, Aj) or (Aj, A;), it follows that evaluating the if-condition in Step 2 takes in total
O(Xiz;|Ail [Aj]) steps. In Step 2a, for each 1 < i < m, and each v such that 01
or 1) is a disjunct of A;, we make a recursive call to BackToPINF on input).
By the induction hypothesis, we know that the call terminates in O(|1|?) steps.
But since for each \;, the sum of the lengths of the different v is at most |);|, it
follows that Step 2a can be executed in O(|\;|?) steps. We also observe that the
output of BackToPINF is always smaller or equal to its input, which means that
A; at the end of Step 2a is no larger than);. This means that when comparing the
disjuncts of A, using II-Entail, we need require only O(|)\;|?) steps. So the overall
time spent on Step 2a and 2b is O(X,|\;|?). It follows that the algorithm runs
in O(Zizi| A IAj]) + O(Z7,|Xif?) steps, which is in O(|¢[*) since 7, |\;| < [C].
We have thus shown how to generate in polynomial time for any formula in prime
implicate normal form an L-interpolant which is itself in prime implicate normal

form. O

6.3.3 Canonicity

Another interesting property of prime implicate normal form in propositional logic
is that it is unique up to reordering of conjuncts and disjuncts. This means that
prime implicate normal form provides a canonical way of representing propositional
formulae.

In this subsection, we will show that the same holds true for formulae in KC,,.
In order to properly formalize what it means for two formulae to be the same up

to reordering of conjuncts and disjuncts, we will require the following definitions.

Definition 6.3.26.

We will say that a formula v is reachable via one step of reordering from a formula ¢,
written ¢ <, 1), just in the case that there is a subformula ¢ of the form p1 &...® pi
(where @ € {A,V}) of ¢ and a permutation p of {1,...,k} such that substituting

168 6.3. Properties of Prime Implicate Normal Form

the formula py(1) & ... @ pp) for one or more occurrences of the subformula o in ¢

yields .

Definition 6.3.27.

We will say that formulae ¢ and ¢ are identical modulo reordering, written ¢ =, 1,
just in the case that there are a sequence of formulae (o = ¢, (1, ..., ¢, = ¥ such
that ¢; —, (41 forall 0 <i < n.

Example 6.3.28.

We have aAbAO(aVe) —, aAbAO(cVa) since aVc is a subformula of aAbATO(aVe)
of the form pq V po, the permutation (2, 1) of {1, 2} gives the formula poV p1 = cVa,
and substituting ¢ V a for the unique occurrence of a V ¢ gives a Ab A O(cV a). We
also have a AbAO(cVa) —, bAO(cVa)Aasince a ANbAO(cVa) is its own
subformula, and by rearranging its conjuncts according to the permutation (3,1, 2)
we obtain b A O(c V a) A a. Tt follows that a AbAO(a V) 2, bAO(cVa)Aa.

Theorem 6.3.29.
If ¢ and ¥ are formulae in prime implicate normal form such that ¢ = 1, then ¢
and ¥ are identical modulo reordering.

Proof. Let ¢ and 9 be two formulae in prime implicate normal form such that
@ = 9. The proof is by induction on the depth of ¢. The base case is when
0(p) = 0. If ¢ is a tautology or a contradiction, the result clearly holds since then
we have either v = o =T or ¢y = ¢ = L, and so ¢ «, . If ¢ and @ are neither
tautologous nor a contradiction, then consider some conjunct A; of . Since ¢ = 9,
we must have ¢ = \;, and so by the Covering property (Theorem B.2.§]), there
must be some prime implicate of ¥ which implies A;. But % is in prime implicate
normal form, so each of its prime implicates is equivalent to one of its conjuncts,
which means there must be some conjunct, call it)\; (i) such that)\; (i) E X\i. As
A; is a prime implicate of ¢ and hence also of 1), we must also have \; =)\; (i)> SO
A\ =)\; (i)
We have just shown that for each conjunct A; of ¢, there is some conjunct

/
p(i
exactly one, such conjunct of ¥ since otherwise ¢ would have a redundant conjunct,

) of ¢ such that \; =)\;(i). We know that there can be at most one, and hence

which is impossible given part 3(a) of the definition of prime implicate normal form
(Definition [6.2.1]). Moreover, we cannot have p(i) = p(j) for ¢ # j, since that would
mean that ¢ would have redundant conjuncts, which cannot happen since it too
is in prime implicate normal form. This means that ¢ and v have exactly the
same number of conjuncts, say n, and the function p we have defined is in fact a
permutation of {1,...,n}.

6. Prime Implicate Normal Form 169

We will now show that \; »,)\;(i). Let 6; be some disjunct of A\;. As 0(¢) =
0, §; must be a propositional literal, and since \; =)\;(i), we must also have
9 =)\; ()" We know)\; (@) is non-tautologous, so by Theorem 2.3.3] 6; must imply
the propositional part of)\; (i)’ and so must imply, and hence be equal to, some
propositional disjunct, say 60,(j)’, of)‘;(i)' But that means that the disjuncts of
A; must be exactly the disjuncts of)\;)(i) since otherwise)\; (i) would contain an
unnecessary disjunct, which is forbidden by part 3(c)(i) of Definition [6.2.Tl For the
same reason, there can be no repeated disjuncts in A,;)y. It follows that A; and
)\; (i) have the same number of disjuncts, say m. We have thus shown that there is
a permutation ¢ of {1,...,m} such that 6; = 0;(].) for all 1 < j < m. It follows that

i =0)\;(i), and hence \; =,)\;(i).

We have thus demonstrated that \; =,)\;) @) for every 1 < ¢ < n. That means
that we can transform ¢ into v by first transforming each subformula)\; into)\;)(i)
and then applying the permutation p to the conjuncts of the resulting formula. It
follows that ¢ =, .

Now let us assume that the result holds whenever the first formula has depth
at most d, and let ¢ be of depth d 4+ 1. Using exactly the same reasoning as in
the base case, we can show that ¢ and 1 have the same number of conjuncts, say
n, and we can find a permutation p of {1,...,n} such that \; is equivalent to)\;(i).
We now wish to show that \; «,)\;)(i). Let 6; be some disjunct of A\;. If 0; is a
propositional literal, then we can apply the same reasoning as in the base to case to

J
the form & (. We know that & ¢ is not a contradiction, since otherwise A; would
;(i), we must also have O)\;(i).
Then by Theorem 2:3.3], <, ¢ must imply the disjunction of the $p-disjuncts of ;.
But); is in prime implicate normal form, so there can be only one such disjunct,
call it 0;(].) = Oky. We thus have ¢ = ~v. As)\;(i) = i, we must also have v = (,
and hence v = ¢. Both ¢ and ~ are in prime implicate normal form and §(¢) < d,

find some disjunct 9;(]‘) of)\;)(i) such that 0; = 9(’1()- Suppose instead that 6; is of

contain an unnecessary disjunct. Since A; = A

so the induction hypothesis applies, giving us ¢ =, . But that means that there is
a sequence of reordering operations that transform (into -, so by applying these
same operations to the subformula ¢ of ¢ (we obtain the formula <, which
means 0; =, 9; () Finally, consider the case where 6; is of the form Oy (. Then
since \; &)\;)(i), we also have Ok ¢ |)\;(i). By Theorem 2.3.3] there must be some
O-disjunct 9(’10) = Ok of A;(i) such that (E vV aq V... V a,, where Opaq, ...,
Ok ap are the Op-disjuncts of)\;(i). As A;(i) is in prime implicate normal form, by
part 3(c)iv of Definition 621l we have v = vV a1 V ... V a;, and hence ¢ | 7.
We can show similarly that v = ¢, and hence v = (. Now ¢ and 7 are in prime
implicate normal form, and the depth of ¢ is no greater than d, so the induction

170 6.4. Computing Prime Implicate Normal Form

hypothesis is applicable, yielding («, . Thus, there is a sequence of reordering
operations transforming ¢ into ~, which means that we can turn O ¢ into Oy v by
applying these same operations to the subformula ¢. So we have 0; =, 9;)

We have shown in the previous paragraph that for every disjunct 6; of A; there
is some disjunct 9:1(3‘) of)\;)(i) such that 6; v, 9;(]‘)' We also need to show that
the function ¢ that we have defined is in fact a permutation. For this, we need
to show that every disjunct of A\; maps to a different disjunct of)\; (i)’ and that
every disjunct of)\; @) is paired with some disjunct of \;. For the former statement,
we simply note that if two disjuncts of A; map to the same disjunct of)\; (i) then
A; contains an unnecessary disjunct, which is forbidden by the definition of prime
implicate normal form. For the second statement, we remark that since)\; i) E A,
every disjunct of)\; (i) entails some disjunct of)\;, and hence is equivalent to some
disjunct of A;. If)\; (i) were to contain more disjuncts than \;, then it would contain
some unnecessary disjunct, which we know not to be the case. Thus, our function
q defines a permutation with the required properties from Definition [6.3.26] so we
have \; »,)\;(i).

To complete the proof, we remark that we can change ¢ into @ by first trans-
forming each subformula A; into)\;)(i) (which is possible since \; =,)\;) (i)) and then
applying the permutation p to the conjuncts of the resulting formula. We have thus

shown ¢ and % to be identical modulo reordering. O

We can use Theorem [6.3.29] to show that formulae in prime implicate normal
form have minimal signatures and depths.

Theorem 6.3.30.
Let ¢ be in prime implicate normal form, and let ¢ be such that o = 1. Then

sig(p) € sig(y) and 6(p) < 6(¢).

Proof. Let ¢ be in prime implicate normal form, and let ¥ be such that ¢ = .
We show below in Theorem that there is a formula v in prime implicate
normal form such that ¢/ = 9, sig(¢)') C sig(v), and 6(p) < §(1p). According
to Theorem [6.3.29] ¢ and ¢’ are identical modulo reordering. In particular, this
means that ¢ and 1)’ have the same signature and depth. It follows then that

siglp) C sig(¥)' C sig(s) and 6(¢) < 6 < 6(). O

6.4 Computing Prime Implicate Normal Form

We have seen in the last section that formulae in prime implicate normal form enjoy
some nice properties, but in order to take advantage of them, we need a method

6. Prime Implicate Normal Form 171

for putting formulae into prime implicate normal form.

We present in this section the algorithm Pinf which transforms a given formula
into an equivalent formula in prime implicate normal form. The first step of our
algorithm is to check whether the input formula is unsatisfiable or tautologous, in
which case we return respectively L or T. For all other formulae, we continue on
to Step 2, where we use GenPI to generate the set of prime implicates of the input
formula, which we then modify in Step 3 so that they satisfy all the conditions of
Definition We first check to see whether there are multiple ©;-disjuncts, in
which case we group them together into a single disjunct. Next we make sure that
the formulae behind the O;-modalities are in the proper form by disjoining them
with the formula behind the single <¢;-disjunct (if there is one). We then check if
each of the disjuncts in the clause is necessary, and we remove all disjuncts which
are found to be redundant. After that, we consider the formulae appearing behind
the modalities, and we put each of them into prime implicate normal form. Finally,

in Step 4, we return the conjunction of these modified prime implicates.

Algorithm 6.3 Pinf
Input: a formula ¢

Output: a formula in prime implicate normal form equivalent to ¢

(1) If Sat(¢)=no, return L. If Entails(T,¢)=yes, return T.
(2) Set ¥ = GenPI(y).
(3) For each min ¥
(i) For each 1 <@ < n: if Diam;(m) = {1, ...,¢i,, } where [; > 1, replace 7
by 7\ {Citi 1, .o, Cithig, U{Ci (i1 Voo Vi))
(ii) For each 1 <1 < n: if Diam;(m) = {€} and Box;(7) = {(i1,.--Gim, }
replace 7 by 7\ {0;Gi1s-ees DiCiom, } U {Ti(Gia V€)oo, O3 (Giom, V €)
(iii) For each disjunct p in 7: if # = 7\ {u}, replace = by 7 \ {u}.
(iv) For each ¢ € |J;_,(Diam;(m) U Box;(r)), replace ¢ by Pinf ().
(4) Return A\ .5 7.

Example 6.4.1.
We use the algorithm Pinf to put the clauses from Example [6.2.2] into prime

implicate normal form:
° Pinf(le V Olc):Dl(b V C) Vv Oqe

e Pinf(Ci(aAOyLl)VO1(aADeT)V—e)=Cra Ve, since Pinf((a A Oz L) V
(a AOyT))=a

e Pinf(C(a A —a))=1 since O(a A —a) = L

172 6.4. Computing Prime Implicate Normal Form

e Pinf(0;(a Vv Oz(bV —b)))=T since = O;(aV Oy(bV b))

e Pinf(a vV Oi(aAb) VO (aANbA=c)=aV Oi(a Ab) since Oj(a AbA —c) is

unnecessary
e Pinf(0;((aAb)Vc))=01((aVe)A(bVe)) since Pinf((aAb)Ve)=(aVe)A(bVc)

Example 6.4.2.
We use the algorithm Pinf to put the formulae from Example [6.2.3] into prime

implicate normal form:

e Pinf((aV Cac) A (—aVe))=(aV Ooc) A(maVe)A(cV <Oqc), since all conjuncts
are in prime implicate normal form, every prime implicates is equivalent to

some conjunct, and no conjunct is implied by another conjunct

e Pinf(a A (a V O3b))=a, since a is the only prime implicate of a A (a V O3b),

and a is in prime implicate normal form

e Pinf((aV-d)AO;((aAb)Ve))=(aV-d)ADOi((aVe)A(bVe)), since all conjuncts
are in prime implicate normal form, every prime implicate is equivalent to

some conjunct, and no conjunct is implied by another conjunct

The correctness of Pinf is shown in the next theorem.

Theorem 6.4.3.

The output of Pinf is a formula in prime implicate normal form which is equivalent
to the input formula, has a signature contained in the signature of the input formula,
and has depth at most that of the input formula.

Proof. The proof is by induction on the depth of the input formula ¢. If ¢ has
depth 0, then either ¢ = L, or = ¢, or ¢ is neither unsatisfiable nor tautologous.
In the first two cases, the result trivially holds. In the third case, we will continue
on to Step 2 where we set ¥ equal to the output of GenPI(y). Because of Theorem
[4.1.4] we know that every element in X is a prime implicate of ¢ and that all prime
implicates of ¢ are equivalent to some element in 3. It follows then from Theorem
[B.2.9] that ¢ is equivalent to conjunction of the elements in Y. Moreover, we know
from Theorem that the signatures of the formulae in ¥ are all contained in
the signature of ¢ and that the depths of the elements in ¥ are bounded above by
0(p). As ¢ is assumed to be propositional, the only modification we may make to
> in Step 3 is to eliminate repeated literals appearing in the prime implicates. It
follows then that the algorithm terminates and returns a formula in prime implicate
normal form which is equivalent to ¢, has a signature contained in sig(y), and has
depth at most d(yp).

6. Prime Implicate Normal Form 173

Suppose next that the result holds whenever the input formula has depth at
most k, and let ¢ be a formula of depth k + 1. Clearly the result holds if ¢ = L
or = . Suppose then that ¢ is neither unsatisfiable nor tautologous. In Step 2,
we set ¥ equal to the output of GenPI(p). By Theorem 1.4l we know that the
elements of 3 are precisely the prime implicates of ¢, so ¢ must be equivalent to
the conjunction of elements in ¥ by Theorem B.2.91 We also know from Theorem
that the signatures of the formulae in ¥ are all contained in the signature
of ¢ and that the depths of the elements in ¥ cannot exceed §(¢). Thus all we
need to show is that the operations performed on the formulae in ¥ in Step 3 are
equivalence-, signature-, and depth-preserving. For (i) and (ii), this follows directly
from Theorem 2.3.1] and for (iii), this is obvious. For (iv), this follows from the
induction hypothesis since we apply the function Pinf to formulae with depth at
most k. We have thus shown that the formula output by Pinf(y) is equivalent to
¢, has signature contained in sig(y), and depth at most (). We now verify that
Pinf(y) is in prime implicate normal form. Clearly, Pinf(y) is a conjunction of
clauses, since the elements in ¥ are originally clauses, and the modifications in Step
3 do not change this. As we have shown the operations in Step 3 to be equivalence-
preserving, it follows that the conjuncts of Pinf(y) are all prime implicates of C
and that each prime implicate of C is equivalent to some conjunct of Pinf(y).
Moreover, the conjuncts all satisfy the other conditions of Definition We
have |Diam;(y)| < 1 for every 1 < i < n because of part (i) of Step 3. Because
of Step 3 (ii), we know that for if there are disjuncts <;e and O;v), then € = .
We also know that there are no redundant disjuncts since all unnecessary disjuncts
were eliminated in Step 3 (iii). Finally, we can be sure that all of the formulae
appearing behind the modal operators are in prime implicate normal form because
of part (iv) of Step 3. We have thus shown that Pinf(y) is in prime implicate

normal form, completing the proof. O

6.5 Spatial Complexity of Prime Implicate Normal Form

In the current section, we investigate the spatial complexity of prime implicate
normal form in order to determine how much more space is needed in the worst-
case to represent a formula in prime implicate normal form.

It is well-known that in propositional logic the transformation to prime implicate
normal form can result in an exponential blowup in the size of the formula (cf.
[CM78]). The blowup can never be more than singly-exponential since there are at

most 3" distinct clauses on n variables.

174 6.5. Spatial Complexity of Prime Implicate Normal Form

Theorem 6.5.1.
FEvery propositional formula built from n propositional variables is equivalent to a

formula in prime implicate normal form whose length is single exponential in n.

We now prove that for arbitrary formulae in /C,, the transformation to prime
implicate normal form involves an at most double exponential blowup in formula

length.

Theorem 6.5.2.
FEvery formula ¢ in IC,, is equivalent to a formula in prime implicate normal form

whose length is at most double exponential in |p|.

Proof. We assume throughout the proof that the input to Pinf is in NNF. This
is without loss of generality since the transformation to NNF is linear (Theorem
2.42]). We will use f;(k) to denote the maximal length of the output of Pinf when
the input formula has depth k and [mutually non-equivalent literal subformulae.
We know from Theorem that there exists some polynomial ¢ such that every
propositional formula built using at most m propositional variables is equivalent
to some propositional formula in prime implicate normal form with length at most
24(m) ~ As the number of propositional variables appearing in a formula can never
exceed the number of mutually non-equivalent literal subformulae appearing in
the formula, it follows that there exists some polynomial function p such that
£i1(0) < 2000,

Now that we have obtained an upper bound on f;(0), we try to obtain an upper
bound on f;(k + 1) in terms of fj(k). Consider some formula ¢ with depth &k + 1
and having at most [mutually non-equivalent literal subformulae. The output
of Pinf(y) is a conjunction of clauses, one for each prime implicate of ¢. We
know from the proof of Theorem that there can be no more than /2 prime
implicates of ¢ modulo equivalence. As the output of Pinf(¢) is in prime implicate
normal form, and formulae in prime implicate normal form have one conjunct per
equivalence class of prime implicates, there can be at most 12 conjuncts in the
output of Pinf(p).

We also know that every prime implicate of ¢ is equivalent to some clause
having at most 2! disjuncts (cf. proof of Theorem EI.6). We want to show that
the elements in ¥ at the beginning of Step 4 also have at most 2! disjuncts each.
Let us then consider some formula 7 which is a conjunct of Pinf(y), and let ©’ be
a clause with at most 2! disjuncts which is equivalent to 7. We will suppose that
for any pair of disjuncts ;¢ and <;0 of 7’ we have 6 = (. This is without loss
of generality since any clause can be transformed into an equivalent clause with
the same number of disjuncts and satisfying this condition (cf. Theorem Z3T]).

6. Prime Implicate Normal Form 175

As 7 is in prime implicate normal form (by correctness of Pinf, Theorem [6.4.3]),
it cannot have any unnecessary disjuncts, which means in particular that there
can be no unsatisfiable disjuncts, nor any disjunct which implies another disjunct.
Since m = 7/, we know that Prop(m) C Prop(n’). As there can be no repeated
propositional disjuncts in 7, the number of propositional disjuncts in 7’ must be
at least as great as the number of propositional disjuncts in 7. Next suppose that
7 possesses a disjunct <;1. We know that ;1) is satisfiable, so by Theorem [2.3.3]
there must be at least one <;-disjunct in 7/. As we know 7 to have at most one
&4-disjunct per 4, it follows that 7’ has at least as many <-disjuncts as 7. Finally,
we want to show that number of O-disjuncts of 7 is bounded above by the number
of O-disjuncts of 7/. We first remark that if = contains a disjunct O;, then there
must be some disjunct 0;¢ of 7’ such that x = ¢ (because of Theorem [2:3.3] and
our assumptions on the structure of 7). We need to make sure however that each
0,-disjunct of m matches up with a different O;-disjunct of 7’. Let us suppose then
that O;x71 and O;x9 are disjuncts of = which imply a single disjunct 0;(of ©’. We
thus have x1 = ¢ and x2 E (. As ' =7, and 7 is in prime implicate normal form,
we must have (|= x; for some disjunct O;x; of m. It follows that x; = x; and
X2 E x;. If 5 =1, then we have x2 = x1, making the disjunct 0; x> unnecessary,
contradicting our assumption that 7 is in prime implicate normal form. For other
values of j, we obtain a contradiction in a similar manner. Thus we can conclude
that there can be no pair of disjuncts O;x; and O;y2 which imply the same disjunct
of 7’. Tt follows then that the total number of O-disjuncts in 7’ is at least as great
as that of 7. We have thus shown that 7’/ has at least as many disjuncts as 7, and
hence that = has no more than 2! disjuncts.

We now want to place a bound on the size of the disjuncts appearing in the
conjuncts of Pinf(y). Consider some conjunct = of Pinf(y), and let A be the
element of GenPI(y) which was transformed into 7 via the modifications in Step
3 of Pinf. Besides the propositional disjuncts which have length at most 2, there are
two types of disjuncts which may appear in 7: formulae of the form <;(Pinf (¢ V...V
¥y) where Diam;(X) = {41, ..., ¥» }, and formulae of the form O;Pinf (eVi1 V...V,)
where € € Box;(\) and Diam;(A\) = {¢1,...,1}. Now we know from Theorem
that every literal subformula of one of the elements in Diam;(\) U Box;(\)
must also be a literal subformula of ¢. That means that if ¢ € Box;(\) and
Diam;(\) = {41, ..., }, then all the literal subformulae appearing in ¥ V ... V ¢,
or eVi1 V...V, also appear in ¢. As we have assumed there to be at most [mutually
non-equivalent literal subformulae in ¢, it follows that there can be no more than [
mutually non-equivalent literal subformulae in ¥; V...V, or eV V...V),.. We also
know that the disjuncts of A have depth at most k+1 (Theorem [£.1.5]), which means

176 6.5. Spatial Complexity of Prime Implicate Normal Form

that any formula of the form ¢ V...V, or e Vhy V...V 1, where € € Box;(\) and
Diam;(\) = {41, ..., ¥, } must have depth no greater than k. We can thus conclude
that |Pinf (i1 V...Vy,)| < fi(k) and |Pinf(e VY V...V,)| < fi(k) for € € Box;(\)
and Diam;(\) = {1, ..., }, which means that any disjunct in A must have length
at most fj(k) + 1 (the extra 1 is for the modality).

Putting all of this together, we obtain the following relationship between fj(k+1)
and fi(k):

flk+1) <P @Q(fk)+1)+1)

Here the 12’ gives the maximal number of conjuncts, 2! gives the maximal number
of disjuncts per conjunct, f;(k) + 1 gives the maximal size of the disjuncts, and
the two extra 1’s in the formula are for the A and V symbols which connect the
different conjuncts and disjuncts. Using standard techniques for solving first-order

linear recurrence relations, we arrive at the following:

filk) € O((1* 2" £,(0))

It is not hard to see that this expression is no more than double exponential in [.
Now suppose that ¢ is a formula with [mutually non-equivalent literal subformulae
and depth k. We know that the size of Pinf(p) is bounded above by f;(k). As
the number of literal subformulae in a formula ¢ can never exceed |¢|, we must
have [< |¢|. We also know that the depth of ¢ is bounded by the length of ¢, i.e.
k = d(p) < |p|. This means that the above expression is at most double exponential
in |¢|, so |Pinf ()| must also be at most than double-exponential in |¢|. O

We now prove this upper bound to be optimal by showing that in some cases the
transformation to prime implicate normal form may involve a double exponential

blowup in formula size.

Theorem 6.5.3.
There exist formulae @ such that the smallest equivalent formula in prime implicate
normal form has length which is double exponential in the length of .

Proof. In Theorem T.7] of Chapter @, we exhibited a formula ¢ such that the
number of non-equivalent prime implicates of ¢ was double exponential in |p|. Any
formula in prime implicate normal form which is equivalent to ¢ must have double-
exponentially many conjuncts, and hence a length which is double exponential

in |p]. O

6. Prime Implicate Normal Form 177

6.6 Related Work

Normal forms have been proposed for a number of description logics. Indeed, most
of the subsumption algorithms that have been introduced for subpropositional de-
scription logics involve a normalization step in which concepts are put into some
type of normal form. This is the case for instance for the description logics FLg
[LB87], CLASSIC [BPS94], ALN [Mol98], and ALE [BKM99]. There has been rel-
atively little work however on normal forms for modal logics or for more expressive
description logics which support full disjunction. Two notable exceptions are the
disjunctive form introduced for the mu-calculus in [JW95] and adapted to ALC in
[tCCMV06] and the linkless normal form for ALC concepts recently proposed in
[FOQT). Both of these normal forms give rise to corresponding normal forms for /C,,
formulae via the correspondence introduced in Chapter 2l

In this section, we examine some of the properties of disjunctive and linkless
normal form and compare them to our own. One criteria in our evaluation will be
the relative succinctness of the normal forms. We recall the formal definition of
this notion:
Definition 6.6.1.
Let £1 and L5 be sets of IC,,-formulae. We say that £ is at least as succinct as
Lo, just in the case that there exists a polynomial function p such that for every
formula ¢ € L9 there exists a formula ¢ € £; such that ¢ =9 and |[¢| < p(|¢]).

6.6.1 Disjunctive form

Disjunctive form was first introduced in [JW95] as a normal form for mu-calculus
formulae. In more recent work [tCCMV0G], B. ten Cate and colleagues have used
disjunctive form as a normal form for concepts in ALC. We rephrase their definition

in terms of /C,, formulae:

Definition 6.6.2 (Disjunctive Form).
If ¥ is a set of K,, formulae, then V,;¥ stands for the formula:

JANRTNN = QVRT)
Yevw PYeEY
In the limit case where ¥ = (), we have V;¥ = O, L The set of K, formulae in

disjunctive form is generated by the following recursive definition:
eu=T|L|mAViUIA LAV, ULV

where 7 is a consistent conjunction of propositional literals, i1, ..., i; are distinct
elements of {1,2,...,n}, and ®q, ..., §; are finite sets of formulae in disjunctive

form.

178 6.6. Related Work

Disjunctive form can be seen as a description of a formula’s models. Each of the
disjuncts m A V;, Wy A ... A V;, Wy represents a set of possible models in which the
root of model satisfies the partial valuation 7, there is at least one i;-successor
satisfying each of the concepts in ¥;,, and all ij-successors satisfy at least one of
the formulae in .

With regards to queries, satisfiability-testing of formulae in disjunctive form
is easy (it is shown in [JW95] to be decidable in linear time), but tautology-
testing, subsumption, and equivalence-testing cannot be carried out efficiently (un-
less P=NP):

Theorem 6.6.3.
Deciding whether a formula in disjunctive form is a tautology is coNP-hard.

Proof. Any propositional formula ¢ in DNF can be transformed in linear time into
an equivalent formula ¢’ in disjunctive form by simply removing any unsatisfiable
disjuncts from ¢. This means that if we were able to test in polynomial time
whether a formula in disjunctive form is a tautology, then we could do the same for
propositional DNF formulae. As the DNF tautology problem is known to be co-
NP-complete (cf. [GJ79]), it follows that testing whether a formula in disjunctive
form is a tautology is a co-NP-hard problem. O

As both entailment and equivalence-testing can be used to identify tautologies,
these tasks must also be co-NP-hard:

Corollary 6.6.4.
The entailment and equivalence problems for formulae in disjunctive form are both
co-NP-hard.

The worst-case spatial complexity of disjunctive form is better than that of
prime implicate normal form: every formula is equivalent to a formula in disjunc-
tive form which is at most single-exponentially larger [tCCMVO06]. It follows that
there are K,-formulae which can be represented exponentially more compactly in

disjunctive form than in prime implicate normal form.

Theorem 6.6.5.
Prime implicate normal form is not at least as succinct as disjunctive form.

Are there formulae which can be more compactly represented in prime implicate
normal form than disjunctive form? The next theorem answers this question in the

affirmative.

6. Prime Implicate Normal Form 179

Lemma 6.6.6.

If v is a Ky-formula in disjunctive form which is equivalent to some satisfiable and
non-tautologous propositional formula 1, then there exists a propositional DNF
formula ¢' = ¢ with || < |

Proof. Let ¢ be a satisfiable and non-tautologous propositional formula, and let
@ =T11V...VTE be a K,-formula in disjunctive form which is equivalent to ¢. Suppose
furthermore that there is no shorter KC,,-formula in disjunctive form equivalent to
1. It follows that ¢ cannot have any unsatisfiable disjuncts, else we could remove
some disjuncts to find a shorter but equivalent formula. Now, each disjunct 7; of
@ must either be of the form 7 or m A p, where 7 is a consistent conjunction of
propositional literals and p a conjunction of modal formulae. Define 7/ to be the
propositional part 7 of 7;. Notice that ¢ = 7/ V...V 7 is a propositional formula in
DNF which is the same length or shorter than ¢. To complete the proof, we must
show that ¢’ is equivalent to . The first direction (¢ = ¢') is obvious since 7; |= 7/
for every i. For the second direction (¢’ = ¢), let A be some non-tautologous
propositional clause implied by ©. As ¢ = 1), it follows that each disjunct 7; of ¢
implies A, i.e. 7; A=\ L. It follows from Theorem 2.3:3] and the fact that both
7; £ L and [~ X that one of the propositional literal disjuncts of A is a conjunct of
7;. But that means that the same propositional literal must appear as a conjunct
of 7/, so 7/ = \. We have thus shown that ¢’ = v, and hence ¢’ |= ¢, completing
the proof. O

Theorem 6.6.7.

Disjunctive form is not at least as succinct as prime implicate normal form.

Proof. Consider the propositional formula ¢ = A ;(a;1 V a;2), and let ¢ be a
Kp-formula in disjunctive form which is equivalent to ¢. By Lemma [6.6.6] we
know that there must be a propositional DNF formula ¢’ which is equivalent to
¢ (and hence to 1) and such that |¢'| < |p|. It was shown in [DM02] that every
propositional formula in DNF which is equivalent to 1 must have size exponential
in n, which means that ¢’, hence ¢, must be exponentially larger than ¢. This is

enough to show the result since 1 is clearly in prime implicate normal form.

6.6.2 Linkless normal form

In [FOO7, [FOO8l [FGO09], Furbach and Obermaier investigate how linkless normal
form (cf. [MRO3]) can be lifted from propositional logic to the description logic
ALC. They propose in [FO07] a definition of linkless normal form for ALC con-
cepts, and then in [FOO08, [FGOQ9], they introduce the notion of a linkless graph

180 6.6. Related Work

for representing ALC concepts and TBoxes. In this subsection, we restrict our
discussion to linkless normal form, as the notion of linkless graph defines a cer-
tain graph-based data structure rather than a subset of formulae, making it less
amenable to comparison with the other two normal forms.

We recall here Furbach and Olbermaier’s definition of linkless normal form

(which we have appropriately rephrased in terms of /C,):

Definition 6.6.8 (Path).
The set of paths of a formula in NNF is defined as follows

paths(L) =10

paths(T) = {0}

(
paths(l) = {{l}}, if | is a literal other than T or L
paths(p1 A p2) ={X UY | X € paths(p1),Y € paths(v2)}
(

paths(e1 V p2) = paths(p1) U paths(p2)
Definition 6.6.9 (Link).

A link is either a formula link or a modal link:

e A formula link of ¢ is a pair of complementary propositional literals occurring

in a path of ¢

e A modal link of ¢ is a set S = {<O;x, 091, ..., 090} occurring in a path of
 such that every path in x A1 A ... Ay contains a propositional or modal

link, and no proper subset of S satisfies this condition.

Definition 6.6.10 (Linkless normal form).
A formula ¢ is in linkless normal form if it is in NNF, none of its paths contains
a link, and for each subformula of ¢ of the form O;¢ or $;¢ the formula ¢ is also

in linkless normal form.

Satisfiability-testing for linkless formulae can be accomplished in polynomial
time [FOQT7], and it is conjectured that uniform interpolation may be tractable for
linkless formulae. However, tautology, entailment, and equivalence problems can
be shown to be intractable using the same arguments as for disjunctive form.

Theorem 6.6.11.
The tautology, entailment, and equivalence problems for formulae in linkless normal
form are all co-NP-hard.

5The definition of paths for the symbols L and T is not entirely clear in [FO07], so we adopt
here the definition from [FOO08, [FGOQ9].

6. Prime Implicate Normal Form 181

Proof. We remark that any propositional formula ¢ in DNF can be transformed in
linear time into an equivalent formula ¢’ in linkless normal form by simply removing
any unsatisfiable disjuncts. This means we can use the same proof as for disjunctive

formulae (Theorem [6.6.3]). O

With regards to spatial complexity, it is stated in [FO07] that the transforma-
tion to linkless normal form induces an at most single-exponential blowup in for-
mula length. This means that linkless normal form can yield exponentially smaller

representations than prime implicate normal form in some cases.

Theorem 6.6.12.

Prime implicate normal form is not at least as succinct as linkless normal form.

We do not currently know whether or not linkless normal form is at least as
succinct as prime implicate normal form (to our knowledge, the relative succinctness
of these normal forms has not yet been established in the case of propositional
logic). We can show however that linkless normal form is strictly more concise

than disjunctive form.

Theorem 6.6.13.
Linkless normal form is at least as succinct as disjunctive form, but disjunctive
form is not at least as succinct as linkless normal form.

Proof. For the first statement, we show how to transform in polynomial time for-
mulae from disjunctive form into equivalent formulae in linkless normal form. Let
© be a formula in disjunctive form. First we remove all unsatisfiable disjuncts from
v, replacing ¢ by L if no disjuncts remain. Then for each remaining disjunct of
the form @ A V;, U1 A ... AV, .Uy, we apply the same procedure to the subfor-
mulae Wy, ..., ¥i. This procedure is clearly equivalence-preserving, and it can be
executed in quadratic time since there are at most linearly many subformulae to
treat, and satisfiability of disjunctive formulae is feasible in linear time. We claim
that the resulting formula is in linkless normal form. For propositional formulae,
this is clear since we just have a propositional DNF with satisfiable disjuncts, and
such a formula must be in linkless normal form. Now suppose that the claim holds
for formulae of depth at most d, and consider some formula ¢’ of depth d + 1
which was obtained from a formula ¢ in disjunctive form via the outlined proce-
dure. Then ¢’ is a disjunction whose disjuncts are either T or formulae of the form
T AV Ui AL AV, Y. Tt is easily verified that every non-empty path of ¢ is of

the form

U {499 € T for some 1 < j <k} U{0;(\/ ¢)|1<j<k}
Ypev;

182 6.6. Related Work

where IT = {l|[is a conjunct of 7}. Any such path cannot have a formula link,
since 7 does not contain complementary literals, nor can it contain a modal link,
as the formula x A (\/weq,j ¥) (x € ¥;) must be satisfiable, otherwise ¢’ would
contain an unsatisfiable disjunct. We also know from the induction hypothesis that
each formula 1 € U§:1 W, must be in linkless normal form. It follows that ¢ is in
linkless normal form as well.

For the second statement, we use the fact that the parity function from propo-
sitional logic can be represented in polynomial space in DNNF [Dar99]. As every
propositional DNNF formula is also in linkless normal form [MRO03], it follows that
the parity function has a polynomial-sized representation in linkless normal form.
To conclude the proof, we use the fact that parity function is known not to be poly-
nomially representable in propositional DNF (cf. [DMO02]), together with Lemma
[6.6.6] which tells us that any K,-formula in disjunctive form which is equivalent to
the parity function must be equivalent to some propositional DNF formula of the

same or shorter length. O

Conclusion

Summary of our results

Research on consequence finding has predominantly focused on propositional logic
and first-order logic. However, for many applications in artificial intelligence, nei-
ther of these logics is a good fit: propositional logic lacks the necessary expressivity,
while first-order logic, though greatly expressive, is undecidable. In such circum-
stances, modal and description logics often prove a better choice. This is why in
this thesis, we proposed a study of consequence finding for the modal logic IC;,, a
well-known modal logic with close ties to the description logic ALC.

It is not immediately clear how the key notions of consequence finding, prime
implicates and prime implicants, should be defined in &C,,. This is due to the fact
that prime implicates and prime implicants are normally defined in terms of clauses
and terms, notions which are not typically used in modal logic. Instead of arbitrarily
selecting a definition of clauses and terms for IC,,, we considered several possible
definitions, which we evaluated first with respect to properties of their respective
notions of clauses and terms, and then a second time with respect to the properties
of the notions of prime implicates and prime implicants that they induce.

Two of the definitions (D1 and D2) proved too inexpressive, and three of the
definitions (D3a, D3b, and D5) yielded notions of prime implicates/implicants
with highly undesirable behavior. Thankfully, the remaining definition (D4) proved
much better-behaved. Indeed, we were able to show that the notions of prime
implicates and prime implicants induced by D4 satisfy all of our desired properties.
This was quite a positive result, since it was not entirely clear a priori whether such
a well-behaved definition existed for KC,,. Indeed, for the standard notion of prime

implicates in first-order logic, many of the desirable properties of propositional

183

184

prime implicates do not hold [Mar91bl Mar91a).

Having selected a suitable notion of prime implicate, we next turned our at-
tention to the principal reasoning problem in consequence finding, which is prime
implicate generation. To this end, we proposed an algorithm GenPI for gener-
ating prime implicates of IC,, formulae. Like many propositional prime implicate
generation algorithms, GenPI leverages the Distribution property, which relates
the prime implicates of a disjunction to the prime implicates of its disjuncts. The
algorithm GenPlI is a fairly straightforward implementation of the Distribution
property, which makes GenPI easy to understand and analyze but not especially
efficient. This is why we proposed several different modifications to GenPI which

can be used to render it more practicable.

An examination of the formulae output by our algorithm allowed us to place
upper bounds on the size and number of prime implicates. For prime implicate size,
we showed that the shortest clausal representation of a prime implicate of a formula
is never more than single-exponentially larger than the formula. Concerning the
number of prime implicates, we demonstrated that a formula can have no more than
double-exponentially many mutually non-equivalent prime implicates. We proved
these bounds optimal by exhibiting specific formulae having single-exponential-
sized prime implicates or double-exponentially many prime implicates. A natural
question is whether we might be able to improve these results by using some kind
of approximation of prime implicates, like the weaker notions of prime implicate
induced by definitions D1 and D2. Surprisingly, we showed that this is not the
case: for D1 and even for the extremely inexpressive D2, our lower bounds on the

size and number of prime implicates continue to hold.

We next considered the problem of prime implicate recognition, with a view
towards improving the efficiency of our generation algorithm. The fact that prime
implicates in IC,, can be exponentially large might suggest that prime implicate
recognition requires exponential space. Fortunately, however, we showed that this is
not the case by exhibiting a polynomial-space algorithm TestP1I for deciding prime
implicate recognition. This allowed us to prove the prime implicate recognition

task PSPACE-complete, and thus of the same complexity as entailment in /C,,.

The results mentioned so far concern only the standard notion of prime impli-
cates, but in many applications, more refined variants are needed. We investigated
two such variants: new prime implicates, which allow one to isolate the novel facts
which can be derived upon arrival of new information, and signature-bounded prime
implicates, which allow one to characterize the consequences of a formula which are
built from a given signature. We showed that most results for standard prime impli-
cates can be transferred or adapted to these variants. The main exception was the

7. Conclusion 185

complexity of recognizing signature-bounded prime implicates, which we showed to

be co-NEXPTIME-hard (and thus most likely not feasible in polynomial space).

Once rephrased in terms of prime implicants, the preceding results can be ap-
plied to the problem of abduction in /C,,: our notion of (new and signature-bounded)
prime implicants can be used to define abductive explanations in /C,,, and our prime
implicate generation algorithm provides a means of producing all of the abductive
explanations to a given abduction problem. The notion of term underlying our
definition of abductive explanations is more expressive than that used in [CP95].
This means that we are able to find explanations which are overlooked by Cialdea
Mayer & Pirri’s method. For instance, if we look for an explanation of the ob-
servation ¢ given the background information O(a V b) — ¢, we obtain O(a V b),
whereas their framework yields Oa and Ob. This is an argument in favor of our
approach since generally in abduction one is looking to find the weakest conditions
guaranteeing the truth of the observation given the background information. Also
of interest are our results on the size and number of prime implicants, as these yield
corresponding lower bounds on the size and number of abductive explanations. In
particular, our results imply that the abductive explanations of Cialdea Mayer &
Pirri can have exponential size and be doubly exponentially many in number in the
worst case, and thus behave no better in these respects than the notion of abductive
explanation induced by our preferred definition D4.

The final part of this thesis was concerned with the application of our notion
of prime implicate to knowledge compilation. We began by showing that the most
obvious way of defining prime implicate normal form for IC,, formulae yielded a
normal form with very poor computational properties. This led us to propose a
more sophisticated definition of prime implicate normal form, in which additional
restrictions are placed on the representation of prime implicates. We showed that
entailment between formulae in our normal form can be decided in polynomial
time using a simple structural comparison algorithm. We then strengthened this
result by providing more general conditions on the input formulae which guaran-
tee the correct functioning of our structural comparison algorithm. This allowed
us to identify some syntactic classes of entailment queries that are tractable for
formulae in prime implicate normal form. Beyond facilitating entailment queries,
our normal form also simplifies the uniform interpolation transformation. Indeed,
we showed this transformation to be feasible in polynomial-time for formulae in
prime implicate normal form. Having established the interest of our normal form,
we next considered the problem of putting formulae into prime implicate normal
form. The algorithm Pinf which we proposed for this purpose induces an at most
double-exponential blowup in formula size, which we showed to be optimal.

186

Perspectives

Alternative generation methods: The prime implicate generation algorithm we pro-
posed in this thesis follows the distribution-based approach, so a natural question
for future research would be to investigate the possibility of using a resolution-
based procedure to generate prime implicates in /C,,. Such an investigation could
prove useful in the development of more targeted algorithms for generating new
and signature-bounded prime implicates, as many existing algorithms for restricted

consequence finding in propositional and first-order logic are resolution-based.

Alternative knowledge compilation methods: In this work, we showed how prime
implicate normal form could be generalized to the modal logic K, while preserving
many of the nice properties of the propositional case. As prime implicate normal
form is just one of several methods used to compile formulae in propositional logic
(cf. [DMO02], [FMO08]), it would be interesting to see whether other knowledge com-
pilation methods can be suitably lifted from propositional logic to IC,,. It may also
prove worthwhile to investigate the extension of approximate knowledge compila-
tion methods (cf. e.g. [del95], [CD97]) from propositional logic to I, since such
methods typically exhibit better spatial complexities than exact compilation meth-

ods.

Consequence finding in other modal and description logics: In this thesis, we stud-
ied consequence finding in the modal logic KC,,, so an obvious direction for future
work is the extension of our investigation to other modal and description logics.
Particularly of interest are modal logics of knowledge and belief (e.g. S5,) and
expressive description logics used for the semantic web (e.g. extensions of ALC by
number restrictions, nominals, and/or inverse roles). It would also be interesting
to extend our investigation of consequence finding to description logic knowledge
bases, where we do not only have concept expressions in isolation, but instead ax-
ioms and assertions. Since reasoning with respect to knowledge bases is generally
more complicated than with isolated concept expressions, it might prove best to
start by studying description logics of lower complexity than ALC. Good choices
could be the DL-Lite |[CDL™07] and ££ [BBLO5] families of description logics,
since these logics have nice computational properties yet are expressive enough for
interesting applications (in conceptual data modelling and bio-medical ontologies

respectively).

Complexity Theory

Computational complexity theory (cf. [Pap94]) studies the computational resources
that are required to solve different problems. Most often the problems that are
considered are decision problems, that is, problems for which the answer on any
given input is either yes or no. An example decision problem is that of deciding
whether a natural number is prime since for every number the response is either
yes or no. A decision problem can be defined formally as a pair of sets S,S’, where
S is a set of instances (possible inputs) and S” C S is the set of positive instances,
i.e. those for which the answer is yes. For the prime number decision problem, S
would be the set of natural numbers, and S the set of prime numbers.

We say that an algorithm solves a decision problem if it outputs the correct
answer on all inputs (such algorithms are termed decision procedures). Decision
problems can be assigned to different complexity classes based on the amount of
time and/or space that is required to solve them. The class P comprises all decision
problems which can be solved in polynomial time (in the size of the input) by a
deterministic Turing machine. Decision problems in P are said to be efficiently
solvable or tractable.

Another important complexity class is NP which contains all decision problems
which can be solved in polynomial time by a non-deterministic Turing machine.
The class co-NP is defined to be the set of all decision problems whose complement
belongs to NP, i.e. those decision problems which can be obtained from a decision
problem in NP by swapping yes- and no-instances.

The complexity class BHy (or DP) is a combination of the classes NP and co-
NP. Formally, we say that a decision problem D belongs to the class BHs just in
the case there exists decision problems D; eNP and Dy €co-NP such that the set

187

188

of positive instances of D is precisely the intersection of the positive instances of
D1 and the positive instances of Ds.

The class PSPACE (respectively EXPSPACE) is comprised of those problems
which can be solved in polynomial (respectively single-exponential) space by a
deterministic Turing machine. By allowing non-determinism, we obtain the classes
NPspACE and NEXPSPACE, and by taking the complement, we get the classes co-
PSPACE and co-EXPSPACE. It is well-known that PSPACE=NPSPACE=co-PSPACE
and EXSPACE=NEXPSPACE=co-EXPSPACE.

We can also define in a similar manner to above the classes EXPTIME (those
decision problems solvable in single-exponential time by a deterministic Turing ma-
chine), NEXPTIME (those decision problems solvable in single-exponential time by
a non-deterministic Turing machine), and co-NEXPTIME (those decision problems
whose complement belongs to NEXPTIME).

The aforementioned complexity classes are known to be related in the following

manner:
P C NP C PspACE C EXPTIME C NEXPTIME C EXPSPACE

It is a longstanding open question whether P=NP or whether NP=co-NP, but it
is generally believed that these classes are distinct. Likewise, it is conjectured that
EXPTIMEZNEXPTIME and NEXPTIME#co-NEXPTIME.

A key notion of complexity theory is that of hardness. Informally speaking, a
problem P is hard for C' just in the case that it is at least as difficult as any problem
in C. More formally, a problem P is said to be hard for a complexity class C' if for
every problem @ in C' there exists a polynomial-time translation f which transforms
every instance I of) into an instance f(I) of P in such a way that I is a positive
instance of @ just in the case that f(I) is a positive instance of P. If a problem
P is both a member of a complexity class C' and C-hard, then P is said to be C-
complete. Satisfiability of formulae in propositional logic is NP-complete, whereas
the complementary problem, namely unsatisfiability, is co-NP-complete. For K,
both satisfiability and unsatisfiability are PSPACE-complete (refer to Chapter [2.5]).

Bibliography

[ACG*06]

[BBLO5]

[BAV01]

[BHQOS]

[Bie07a]

[BieO7h]

[Bic08a)

Philippe Adjiman, Philippe Chatalic, Francgois Goasdoué, Marie-
Christine Rousset, and Laurent Simon, Distributed reasoning in a
peer-to-peer setting: Application to the semantic web, Journal of Ar-
tificial Intelligence Research 25 (2006), 269-314.

Franz Baader, Sebastian Brandt, and Carsten Lutz, Pushing the EL
envelope, Proceedings of the Nineteenth International Joint Confer-
ence on Artificial Intelligence (IJCAT’05), 2005, pp. 364-369.

Patrick Blackburn, Martin de Rijke, and Yde Venema, Modal logic,
Cambridge University Press, 2001.

Meghyn Bienvenu, Andreas Herzig, and Guilin Qi, Prime implicate-
based belief revision operators, Proceedings of the Eighteenth Euro-
pean Conference on Artificial Intelligence (ECAI’08), 2008, pp. 741—
742.

Meghyn Bienvenu, Consequence finding in ALC, Proceedings of the
Twentieth International Workshop on Description Logics (DL’07),
CEUR Workshop Proceedings, vol. 250, 2007.

, Prime implicates and prime implicants in modal logic, Pro-

ceedings of the Twenty-Second Conference on Artificial Intelligence
(AAAT07), 2007, pp. 397-384.

, Complezity of abduction in the EL family of lightweight de-

scription logics, Proceedings of the Eleventh International Conference
on Principles of Knowledge Representation and Reasoning (KR’08),
2008, pp. 220-230.

189

190

Bibliography

[Bic08b]

[Bie08c]

[Bie09]

[Bi107]

[Bit07]

[BKMO9]

[BPS94]

[BSVMHS4]

[BT02

[BV04]

[BvO6]

[BvWO06]

, Prime implicate normal form for ALC concepts, Proceedings
of the Twenty-Third Conference on Artificial Intelligence (AAAT’08),
2008, pp. 412-417.

, Prime implicate normal form for ALC concepts, Proceed-

ings of the Twentieth International Workshop on Description Logics
(DL’08), CEUR Workshop Proceedings, vol. 353, 2008.

, Prime implicates and prime implicants: From propositional

to modal logic, Accepted for publication in the Journal of Artifical
Intelligence Research (2009).

Marta Bilkova, Uniform interpolation and propositional quantifiers in
modal logics, Studia Logica 85 (2007), no. 1, 1-31.

Guilherme Bittencourt, Combining syntaxr and semantics through
prime form representation, Journal of Logic and Computation 18
(2007), no. 1, 13-33.

Franz Baader, Ralf Kiisters, and Ralf Molitor, Computing least com-
mon subsumers in description logics with existential restrictions, Pro-
ceedings of the Sixteenth International Joint Conference on Artificial
Intelligence (IJCAT’99), 1999, pp. 96-103.

Alex Borgida and Peter Patel-Schneider, A semantics and complete
algorithm for subsumption in the CLASSIC description logic, Journal
of Artificial Intelligence Research 1 (1994), 277-308.

Robert K. Brayton, Alberto L. Sangiovanni-Vincentelli, Curtis T. Mc-
Mullen, and Gary D. Hachtel, Logic minimization algorithms for VLSI
synthesis, Kluwer, 1984.

Sebastian Brandt and Anni-Yasmin Turhan, An approach for opti-
mized approximation, Proceedings of the KI-2002 Workshop on Ap-
plications of Description Logics (KIDLWS’01), 2002.

Stephen Brown and Zvonko Vranesic, Fundamentals of digital logic
with VHDL design, 2nd ed., McGraw-Hill, 2004.

Patrick Blackburn and Johan van Benthem, Handbook of modal logic,
ch. Modal Logic: A Semantic Perspective, pp. 1-84, Elsevier, 2006.

Patrick Blackburn, Johan van Benthem, and Frank Wolter (eds.),
Handbook of modal logic, Elsevier, 2006.

Bibliography 191

[Cas96] Thierry Castell, Computation of prime implicates and prime impli-
cants by a variant of the Davis and Putnam procedure, Proceedings
of the Eighth International Conference on Tools with Artificial Intel-
ligence (ICTAT’96), 1996, pp. 428-429.

[CDIT] Marco Cadoli and Francesco M. Donini, A survey on knowledge com-
pilation, Al Communications 10 (1997), no. 3-4, 137-150.

[CDL*"07] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maur-
izio Lenzerini, and Riccardo Rosati, Tractable reasoning and efficient
query answering in description logics: The DL-Lite family, Journal of
Automated Reasoning 39 (2007), no. 3, 385-429.

[Che80] Brian Chellas, Modal logic: an introduction, Cambridge University
Press, 1980.

[CK90] C. C. Chang and H. Jerome Keisler, Model theory, North Holland,
1990.

[CMT8] Ashok Chandra and George Markowsky, On the number of prime im-

plicants, Discrete Mathematics 24 (1978), 7-11.

[CP95] Marta Cialdea Mayer and Fiora Pirri, Propositional abduction in
modal logic, Logic Journal of the IGPL 3 (1995), no. 6, 907-919.

[CrabT] William Craig, Three uses of the Herbrand-Gentzen theorem in re-
lating model theory and proof theory, Journal of Symbolic Logic 22
(1957), no. 3, 269-285.

[Dar99] Adnan Darwiche, Compiling knowledge into decomposable negation
normal form, Proceedings of the Sixteenth International Joint Con-
ference on Artificial Intelligence (IJCAI’99), 1999, pp. 1096-1101.

[del95] Alvaro del Val, An analysis of approximate knowledge compilation,
Proceedings of the Fourteenth International Joint Conference on Ar-
tificial Intelligence (IJCAI'95), 1995, pp. 830-836.

[del99] , A new method for consequence finding and compilation in
restricted languages, Proceedings of the Sixteenth National Conference
on Artificial Intelligence (AAAT’99), 1999, pp. 259-264.

[dK92] Johan de Kleer, An improved incremental algorithm for generating

prime implicates, Proceedings of the Tenth National Conference on
Artificial Intelligence (AAAT’92), 1992, pp. 780-785.

192

Bibliography

[DLN*92]

[DM02]

[Don03]

[DTRO6]

[EF89)]

[EG95]

[FGO09]

[FMOS]

[FOO7]

[FOO8]

[Ghi95]

[GJT9]

Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, Bernhard
Hollunder, Werner Nutt, and Alberto Marchetti Spaccamela, The
complexity of existential qualification in concept languages, Artificial
Intelligence 53 (1992), 309-327.

Adnan Darwiche and Pierre Marquis, A knowledge compilation map,
Journal of Artificial Intelligence Research 17 (2002), 229-264.

Francesco M. Donini, The description logic handbook, ch. Complexity
of Reasoning, Cambridge University Press, 2003.

Chan Le Duc, Nhan Le Thanh, and Marie-Christine Rousset, A com-
pact representation for least common subsumers in the description
logic ALE, Al Communications 19 (2006), no. 3, 239-273.

Patrice Enjalbert and Luis Farifias del Cerro, Modal resolution in
clausal form, Theoretical Computer Science 65 (1989), no. 1, 1-33.

Thomas Eiter and Georg Gottlob, The complexity of logic-based ab-
duction, Journal of the ACM 42 (1995), no. 1, 3-42.

Ulrich Furbach, Heiko Gunther, and Claudia Obermaier, A knowledge
compilation technique for ALC TBozes, Proceedings of the 22th In-
ternational Florida Artificial Intelligence Research Society Conference
2009 (FLAIRS’09), 20009.

Hélene Fargier and Pierre Marquis, Fxtending the knowledge compila-
tion map: Krom, horn, affine and beyond, Proceedings of the T'wenty-
Third Conference on Artificial Intelligence (AAAT’08), 2008, pp. 442
447.

Ulrich Furbach and Claudia Obermaier, Knowledge compilation for
description logics, Proceedings of the 3rd Workshop on Knowledge
Engineering and Software Engineering (KESE), 2007.

, Precompiling ALC Tbhoxes and query answering, Proceedings
of the Fourth Workshop on Contexts and Ontologies, 2008.

Silvio Ghilardi, An algebraic theory of normal forms, Annals of Pure
and Applied Logic 71 (1995), no. 3, 189-245.

Michael R. Garey and David S. Johnson, Computers and intractability.
A guide to the theory of NP-completeness, W. H. Freeman, 1979.

Bibliography

193

[GLWO6]

[GLWZ06]

[GS96]

[GZ95]

[Hen63]

[HHSS06]

[HMOS]

[Ino92]

[Jac92]

[JWO5]

Silvio Ghilardi, Carsten Lutz, and Frank Wolter, Did I damage my
ontology? A case for conservative extensions in description logics,
Proceedings of the Tenth International Conference on Principles of
Knowledge Representation and Reasoning (KR’06), 2006, pp. 187—
197.

Silvio Ghilardi, Carsten Lutz, Frank Wolter, and Michael Za-
kharyaschev, Conservative extensions in modal logic, Proceedings
of Sixth International Conference on Advances in Modal Logic
(AIMLO06), 2006, pp. 187—207.

Fausto Giunchiglia and Roberto Sebastiani, A SAT-based decision pro-
cedure for ALC, Proceedings of the Fifth International Conference on
Principles of Knowledge Representation and Reasoning (KR’96), 1996,
pp. 304-314.

Silvio Ghilardi and Marek W. Zawadowski, Undefinability of propo-
sitional quantifiers in the modal system S4, Studia Logica 55 (1995),
no. 2, 259-271.

Leon Henkin, An extension of the Craig-Lyndon interpolation theorem,
Journal of Symbolic Logic 28 (1963), no. 3, 201-216.

Tan Horrocks, Ullrich Hustadt, Ulrike Sattler, and Renate Schmidt,
Handbook of modal logic, ch. Computational Modal Logic, pp. 181—
248, Elsevier, 2006.

Andreas Herzig and Jérome Mengin, Uniform interpolation by resolu-
tion in modal logic, Proceedings of the Eleventh European Conference
on Logics in Artificial Intelligence (JELIA’08), 2008, pp. 219-231.

Katsumo Inoue, Linear resolution in consequence finding, Artificial
Intelligence 56 (1992), no. 2-3, 301-353.

Peter Jackson, Computing prime implicates incrementally, Proceed-
ings of the Eleventh International Conference on Automated Deduc-
tion (CADE’92), 1992, pp. 253-267.

David Janin and Igor Walukiewicz, Automata for the modal mu-
calculus and related results, Proceedings of the Twentieth Interna-
tional Symposium on the Mathematical Foundations of Computer
Science (MFCS’95), Lecture Notes in Computer Science, vol. 969,
Springer, 1995, pp. 552-562.

194

Bibliography

[KT90]

[KWWO0S]

[Lad77]

[Lak95]

[LB87]

[LLMO3]

[LRO4]

[Mar91al

[Mar91b]

[Mar00]

[McC56]

Alex Kean and George K. Tsiknis, An incremental method for gener-

ating prime implicants/impicates, Journal of Symbolic Computation
9 (1990), no. 2, 185-206.

Boris Konev, Dirk Walther, and Frank Wolter, The logical difference
problem for description logic terminologies, Proceedings of the Fourth
International Joint Conference on Automated Reasoning (LJCAR’08),
2008, pp. 259-274.

Richard Ladner, The computational complexity of provability in sys-
tems of modal propositional logic, SIAM Journal of Computing 6
(1977), no. 3, 467-480.

Gerhard Lakemeyer, A logical account of relevance, Proceedings of the
Fourteenth International Joint Conference on Artificial Intelligence
(IJCAT'95), 1995, pp. 853-861.

Hector J. Levesque and Ronald Brachman, FEzxpressiveness and
tractability in knowledge representation and reasoning, Computational
Intelligence 3 (1987), 78-93.

Jérome Lang, Paolo Liberatore, and Pierre Marquis, Propositional
independence: Formula-variable independence and forgetting, Journal
of Artificial Intelligence Research 18 (2003), 391-443.

Fangzhen Lin and Raymond Reiter, Forget it!, AAAI Fall Symposium
on Relevance, 1994, pp. 154-159.

P. Marquis, Contribution d [’étude des méthodes de construction
d’hypotheses en intelligence artificielle, In french, Université de Nancy
I, 1991.

Pierre Marquis, Extending abduction from propositional to first-order
logic, Proceedings of Fundamentals of Artificial Intelligence Research
Workshop, 1991, pp. 141-155.

, Handbook on defeasible reasoning and uncertainty manage-

ment systems, vol. 5, ch. Consequence Finding Algorithms, pp. 41—
145, Kluwer, 2000.

Edward McCluskey, Minimization of boolean functions, Bell System
Technical Journal 35 (1956), no. 6, 1417-1444.

Bibliography

195

[Mol98]

[MRO3]

[MRO3]

[Nga93]

[Pag06]

[Pap94]

[Prz89]

[Qui52]

[Quib5)

[RBM97]

[Sch91]

[SCL69]

Ralf Molitor, Structural subsumption for ALN, LTCS-Report 98-03,
RWTH Aachen, 1998.

Neil V. Murray and Erik Rosenthal, Dissolution: Making paths vanish,
Journal of the ACM 40 (1993), no. 3, 504-535.

, Tableauz, path dissolution, and decomposable negation normal

form for knowledge compilation, Proceedings of the International Con-
ference on Analytic Tableaux and Related Methods (TABLEAUX),
2003, pp. 165-180.

Teow-Hin Ngair, A new algorithm for incremental prime implicate
generation, Proceedings of the Thirteenth International Joint Confer-
ence on Artificial Intelligence (IJCAI'93), 1993, pp. 46-51.

Maurice Pagnucco, Knowledge compilation for belief change, Proceed-
ings of the Nineteenth Australian Conference on Artificial Intelligence
(AT’06), 2006, pp. 90-99.

Christos Papadimitriou, Computational complexity, Addison Welsey,
1994.

Teodor C. Przymusinski, An algorithm to compute circumscription,
Artificial Intelligence 38 (1989), no. 1, 49-73.

Willard V. Quine, The problem of simplifying truth functions, Ameri-
can Mathematical Monthly 59 (1952), no. 8, 521-531.

, A way to simplify truth functions, American Mathematical
Monthly 62 (1955), no. 9, 627-631.

Anavai Ramesh, George Becker, and Neil V. Murray, CNF and DNF
considered harmful for computing prime implicants/implicates, Jour-
nal of Automated Reasoning 18 (1997), no. 3, 337-356.

Klaus Schild, A correspondence theory for terminological logics: Pre-
liminary report, Proceedings of the Twelth International Joint Con-
ference on Artificial Intelligence (IJCAI'91), 1991, pp. 466-471.

James R. Slagle, Chin-Liang Chang, and Richard C. T. Lee, Complete-
ness theorems for semantic resolution in consequence-finding, Pro-
ceedings of the First International Joint Conference on Artificial In-
telligence (IJCAI), 1969, pp. 281-286.

196

Bibliography

[SdV01]

[SL96]

[SM73]

[Soc91]

[SP9Y]

[SSS91]

[TBO7]

[tCCMVO06]

[Tis67]

[van83]

[Vis96]

[You67]

Laurent Simon and Alvaro del Val, Efficient consequence finding, Pro-
ceedings of the Seventeenth International Joint Conference on Artifi-
cial Intelligence (IJCAI’01), 2001, pp. 359-370.

Bart Selman and Hector J. Levesque, Support set selection for abduc-
tive and default reasoning, Artificial Intelligence 82 (1996), 259-272.

Larry J. Stockmeyer and Albert R. Meyer, Word problems requiring
exponential time: Preliminary report, Proceedings of Fifth Annual
ACM Symposium on Theory of Computing (STOC’73), 1973, pp. 1-
9.

Rolf Socher, Optimizing the clausal normal form transformation, Jour-
nal of Automated Reasoning 7 (1991), no. 3, 325-336.

A. K. Shiny and Arun K. Pujari, An efficient algorithm to generate
prime implicants, Journal of Automated Reasoning 22 (1999), no. 2,
149-170.

Manfred Schmidt-Schauf3 and Gert Smolka, Attributive concept de-
scriptions with complements, Artificial Intelligence 48 (1991), no. 1,
1-26.

Anni-Yasmin Turhan and Yusri Bong, Speeding up approzimation with
nicer concepts, Proceedings of the Twentieth International Description
Logic Workshop (DL’07), 2007.

Balder ten Cate, Willem Conradie, Martin Marx, and Yde Venema,
Definitorially complete description logics, Proceedings of the Tenth

International Conference on Principles of Knowledge Representation
and Reasoning (KR’06), AAAT Press, 2006, pp. 79-89.

Pierre Tison, Generalization of consensus theory and application to the
minimization of boolean functions, IEEE Transactions on Computers

C-16 (1967), 446-456.
Johan van Benthem, Modal logic and classical logic, Bibliopolis, 1983.

Albert Visser, Gddel 96, Lecture Notes in Logic, vol. 6, ch. Uniform
interpolation and layered bisimulation, pp. 139-164, Springer-Verlag,
1996.

Daniel H. Younger, Recognition and parsing of context-free languages
in time n3, Information and Control 10 (1967), no. 2, 189-208.

Index

Boz;i(p), 12
Diam;(p),
Prop(y), I2
Of e, [
A(T), Bl
Ok, M
o), L2

=, [Lol

v, [

el

=,

AV i
sig(),
Sub(p),
T, [0

¢ —o ¢, 167
P2 1,
fav, 23]
var(yp), 12

1,11

abductive reasoning, EHf]
ABox, 43
algorithms
Cnf,
Dnf,
Entails,

GenPI, 084

LangInt,
TestLangPI,
Nnf,
II-LangInt,
Pinf, [7TIHI73l

Sat,

II-Entail,
Langlnt,
TestOPI,
TestPI, T13HI1T]

bounds
on number of prime implicates,
on prime implicate size,

circuit minimization, B
complete for a complexity class,
complexity class
BH,, 187
EXPSPACE,
NP, [I87
PspPACE, [I88]
P, 187
co-NEXPTIME, [I88]
co-NP, 187
concept,
conditions
on left-hand-side formulae, 143l

198

INDEX

on right-hand-side formulae, 143l
consequence

global,

local,

consequence finding, [I]

decision
problem, [I87]
procedure, [I87
deduction, [II
definition of clauses and terms
D1, 54
D2, 57
D3a,
D3b,
D4,
D5,
depth of a formula,
disjunctive form, [T7HI79l
Distribution,

Equivalence,
explanation,

extended conjunctive normal form, [142]

Finiteness,
forgetting, see uniform interpolation
formula

O-formula,

O-formula,

basic,

conjunctive,

disjunctive,

hard for a complexity class, [I8§]

identical modulo reordering,
implicant,
Implicant-Implicate Duality,
implicate,

interpretation
for description logics, 43
graphical representation, [[3]
in the modal logic K,,, I3l

knowledge compilation, [BHZ]

knowledge representation, [Tl

L-prime implicant, see signature-bounded
prime implicate
L-interpolant, see uniform interpolant
length of a formula,
link,
linkless normal form,
logical
consequence
definition,
properties of,
entailment,
equivalence,
strength,

model, see interpretation

negation normal form, [I3]

NNF, see negation normal form

P1-P7,

path,

(p-prime implicate, see new prime im-

plicate

prime implicant
definition,
new,
propositional logic,
signature-bounded,

prime implicate
applications of, BHO
definition,
generation,

INDEX

199

new, [T9HI23] formula, [I4]
propositional logic,
recognition,
signature-bounded,
prime implicate normal form
definition,
in propositional logic, [
properties,
spatial complexity,
transformation, [7T0HIT3]

reachable via reordering, 167

role, 43

satisfiable
concept, 44l
formula, 4]
semantics
of the modal logic K, 13l
of ALC concepts,
of description logics, B3]
signature,
size of a formula,
standard translation, [41]
subformula,
subsumption, [44]
succinctness, [I77]
syntax
of the description logic ALC, @4l
of the description logic ALE,
of the modal logic K, T

tautology, 4]
TBox, 43
tractable, 187

uniform interpolant, [33]
uniform interpolation, B3H4T]
unsatisfiable

concept, [44]

	Introduction
	The Modal Logic Kn
	Syntax
	Semantics
	Logical Consequence
	Basic Transformations
	Basic Reasoning Tasks
	Uniform Interpolation
	Relation to First-Order Logic
	Relation to Description Logics
	A short introduction to description logics
	The description logic ALC
	The description logic ALE

	Prime Implicates and Prime Implicants in Kn
	Defining Clauses and Terms in Kn
	Impossibility result
	Analysis of candidate definitions
	Summary and discussion

	Defining Prime Implicates and Prime Implicants in Kn
	Basic definitions
	Desirable properties
	Analysis of candidate definitions

	Generating and Recognizing Prime Implicates
	Prime Implicate Generation
	Prime implicate generation in propositional logic
	The algorithm GenPI
	Correctness of GenPI
	Bounds on prime implicate size
	Bounds on the number of prime implicates
	Improving the efficiency of GenPI

	Prime Implicate Recognition
	Lower bound
	Naïve approach
	Decomposition theorem
	Prime implicate recognition for propositional clauses
	Prime implicate recognition for -formulae
	Prime implicate recognition for -formulae
	The algorithm TestPI

	Restricted Consequence Finding
	New prime implicates
	Properties of new prime implicates
	Generating and recognizing new prime implicates

	Signature-bounded prime implicates
	Properties of signature-bounded prime implicates
	Generating signature-bounded prime implicates
	Recognizing signature-bounded prime implicates

	Prime Implicate Normal Form
	Motivation
	Definition of Prime Implicate Normal Form
	Properties of Prime Implicate Normal Form
	Tractable entailment
	Tractable uniform interpolation
	Canonicity

	Computing Prime Implicate Normal Form
	Spatial Complexity of Prime Implicate Normal Form
	Related Work
	Disjunctive form
	Linkless normal form

	Conclusion
	Complexity Theory
	Bibliography
	Index

