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1 Introduction

In recent years, there has been growing interest in ontology-based data access, in which
information in the ontology is used to derive additional answers to queries posed over
instance data. The DL-Lite family of description logics [3, 2]) is considered especially
well-suited for such applications due to the fact that query answering can be performed
by first incorporating the relevant information from the ontology into the query, and
then posing the modified query to the bare data. This property, known as first-order
rewritability, means that query answering over DL-Lite ontologies has very low data
complexity, which is considered key to scalability.

An important problem which arises in ontology-based data access is how to handle
inconsistencies. This problem is especially relevant in an information integration setting
where the data comes from multiple sources and one generally lacks the ability to mod-
ify the data so as to remove the inconsistency. In the database community, the related
problem of querying databases which violate integrity constraints has been extensively
studied (cf. [4] for a survey) under the name of consistent query answering. The stan-
dard approach is based on the notion of a repair, which is a database which satisfies
the integrity constraints and is as similar as possible to the original database. Consistent
answers are defined as those answers which hold in all repairs. A similar strategy can
be used for description logics by replacing the integrity constraints with the ontology.

Consistent query answering for the DL-Lite family of description logics was re-
cently studied in [8, 7]. Unfortunately, the obtained complexity results are rather neg-
ative: consistent query answering is co-NP-hard in data complexity, even for instance
queries and the simplest dialect DL-Litecore. In the database community, negative re-
sults were also encountered, but this spurred a line of research [5, 6, 9] aimed at identi-
fying cases where consistent query answering is feasible, and in particular, can be done
using query rewriting. We propose to carry out a similar investigation for DL-Lite on-
tologies, with the aim of better understanding the cases in which query rewriting can be
profitably used. In this paper, we make some first steps towards this goal. Specifically,
we formulate general conditions which can be used to prove that a consistent rewriting
does or does not exist for a given DL-Litecore TBox and instance query.

The paper is organized as follows. After some preliminaries, we introduce in Sec-
tions 3 and 4 the problem of consistent query answering and some useful notions and
terminology. Our main results are presented in Sections 4, 5, and 6, where we present
general conditions which yield co-NP-hardness, first-order inexpressiblity, or first-order
expressiblity of consistent instance checking in DL-Litecore. Finally, in Section 7, we



show that query rewriting is always possible if we adopt a previously studied alternative
semantics. Note that proofs have been omitted for lack of space but can be found in [1].

2 Preliminaries

Syntax. DL-Litecore knowledge bases (KBs) are built up from a set NI of constants,
called individuals, a set NC of unary predicates, called atomic concepts, and a set NR

binary predicates, called atomic roles. Complex concept and role expressions are con-
structed using the following syntax:

B → A | ∃R C → B | ¬B R→ P | P−

where A ∈ NC and P ∈ NR. Here B (resp. R) denotes a basic concept (resp. basic
role), and C denotes a general concept. A TBox is a finite set of inclusions of the form
B v C (with B,C as above). An ABox is a finite set of assertions of the form B(a)
(B ∈ NC) or R(a, b) (R ∈) where a, b ∈ NI. A KB consists of a TBox and an ABox.

Notational conventions We use lhs(Γ ) (resp. rhs(Γ )) to refer to the basic concept ap-
pearing on the left (resp. right) side of an inclusion Γ , e.g. lhs(∃P v ¬D) = ∃P and
rhs(∃P v ¬D) = D. We sometimes use R− to mean P− if R = P ∈ NR and P if
R = P−, and write R(a, b) to mean P (a, b) if R = P and R(b, a) if R = P−.

Semantics An interpretation is I = (∆I , ·I), where ∆I is a non-empty set and ·I
maps each a ∈ NI to aI ∈ ∆I , each A ∈ NC to AI ⊆ ∆I , and each P ∈ NR to
P I ⊆ ∆I ×∆I . The function ·I is straightforwardly extended to general concepts and
roles, e.g. (∃S)I = {c | ∃d (c, d) ∈ SI}. I satisfies G v H if GI ⊆ HI ; it satisfies
A(a) (resp. P (a, b)) if aI ∈ AI (resp. (aI , bI) ∈ P I). We write I |= α if I satisfies
inclusion/assertion α. I is a model of K = 〈T ,A〉 if I satisfies all inclusions in T and
assertions inA. A KB K is satisfiable/consistent if it has a model; otherwise it is unsat-
isfiable/inconsistent (K |= ⊥). We say that K entails α, written K |= α, if every model
of K is a model of α. The closure of T , written cl(T ), consists of all inclusions which
are entailed from T . Given an ABox A, we denote by IA the interpretation which has
as its domain the individuals in A and which makes true precisely the assertions in A.

Queries A query is a formula of first-order logic with equality (FOL), whose atoms are
of the form A(t), P (t, t′), or t = t′ with t, t′ terms, i.e., variables or individuals. Con-
junctive queries are queries which do not contain ∀, ¬, or =. Instance queries (IQs) are
queries consisting of a single atom with no variables (i.e. ABox assertions). A Boolean
query is a query with no free variables. For a Boolean query q, we write I |= q when q
holds in the interpretation I, and K |= q when I |= q for all models I of K.

3 Consistent query answering

The most commonly used approach to query answering over inconsistent KBs is known
as consistent query answering and relies on the notion of a repair:

Definition 1. A repair of a knowledge baseK = 〈T ,A〉 is an inclusion-maximal subset
B of A consistent with T . We use Rep(K) to denote the set of repairs of K.



Consistent query answering consists in performing standard query answering on
each of the repairs and intersecting the answers. For Boolean queries, we have:

Definition 2. A Boolean query q is said to be consistently entailed from K = 〈T ,A〉,
written K |=cons q, if 〈T ,B〉 |= q for every repair B ∈ Rep(K).

Just as with standard query entailment, we can ask whether consistent query entail-
ment can be tested by rewriting the query and evaluating it over the data.

Definition 3. A first-order query q′ is a consistent rewriting of a Boolean query q w.r.t.
a TBox T if for every ABox A, we have T ,A |=cons q if and only if IA |= q′.

We illustrate the notion of consistent rewriting on an example.

Example 1. Consider the query q = R(a, b) and the TBox T = { ∃R v ¬D,∃R v
¬∃S−,∃R− v ¬B,B v ¬D}. We claim q′ = R(a, b)∧¬D(a)∧¬∃xS(x, a)∧¬B(b)
is a consistent rewriting of q w.r.t. T . To see why, note that if a repair implies q, then it
must contain R(a, b). Moreover, if the ABox A contains any assertion that contradicts
R(a, b) then we can build a repair which does not contain R(a, b). Thus, R(a, b) is
consistently entailed just in the case that R(a, b) ∈ A and there are no assertions in A
which conflict with R(a, b), which is precisely what q′ states.

The method used in Example 1 can be generalized to show that a consistent rewrit-
ing exists for all role instance queries1. Unfortunately, the same is not true for concept
IQs. Indeed, in [7], it was shown that consistent instance checking in DL-Litecore is
co-NP-hard in data complexity. We present the reduction in the following example.

Example 2. Consider an instance ϕ = c1 ∧ . . . ∧ cm of UNSAT, where each ci is a
propositional clause. Let v1, . . . , vk be the propositional variables appearing in ϕ. We
define the DL-Litecore knowledge base K = 〈T ,A〉 as follows:

T = { ∃P− v ¬∃N−, ∃P v ¬∃U−, ∃N v ¬∃U−,∃U v A }
A = {U(a, ci) | 1 ≤ i ≤ m } ∪ {P (ci, vj) | vj ∈ ci} ∪ {N(ci, vj) | ¬vj ∈ ci}

It is not hard to verify that ϕ is unsatisfiable if and only ifK |=cons A(a). The basic idea
is that because of the inclusion ∃P− v ¬∃N−, each repair corresponds to a valuation
of the variables, with vj assigned true if it has an incoming P -edge in the repair.

The focus in this paper will be on distinguishing between hard and easy instances of
the consistent query answering problem. More specifically, we will be interested in the
problem of on deciding for a given TBox and IQ whether a consistent rewriting exists.

4 Causes and conflicts

In formulating our results, it will be convenient to introduce some terminology for refer-
ring to assertions which participate in the entailment of another assertion or its negation.

1 Obviously this is no longer the case if we consider a logic with role inclusions likeDL-LiteR.



Definition 4. Let α, β be assertions and Υ an inclusion. We say β causes (or is a cause
of) α given Υ , written β Υ7−→ α, if {Υ}, {β} |= α. We say β conflicts with (or is a

conflict for) α given Υ , written β
Υ•−−−→ α, if Υ = B1 v ¬B2 and β |= B1(a) and

α |= B2(a) for some a. Sometimes we omit Υ if its identity is not relevant.

Definition 5. Concepts in the set CauseT(B) = {D | T |= D v B} (resp. ConflT(B) =
{D | T |= D v ¬B}) are called the cause-types (resp. conflict-types) of B.

The following straightforward proposition characterizes consistent instance check-
ing in terms of causes and conflicts.

Proposition 1. Let K = 〈T ,A〉 be a DL-Litecore KB and α an instance query. Then
K 6|=cons α if and only if there exists a subset A′ ⊆ A which is consistent with T and
such that for every β ∈ A which causes α, there is γ ∈ A′ which conflicts with β.

In other words, consistent instance checking comes down to deciding existence of a
consistent subset of the ABox which contradicts all causes of the instance query.

We now introduce the notion of a cause-conflict chain. The intuition is as follows.
Suppose that we have an assertion µ0 in the ABox which causes the IQ α. Then to show
K 6|=cons α, Proposition 1 says we must select some assertion ρ0 which conflicts with
µ0. But if ρ0 conflicts with an assertion λ1 which is a conflict of another cause µ1, then
this forces us to choose a different conflict ρ1 for µ1 which is consistent with ρ0. The
presence of ρ1 may in turn attack a conflict of a third cause µ3, leading us to select a
conflict ρ3 for µ3, and so on.

Definition 6. A cause-conflict chain (for TBox T and IQ α) is a sequence µ0ρ0λ1µ1ρ1

λ2µ2ρ2 . . . λnµnρnλn+1µn+1 of distinct assertions, together with a sequence Υ0Γ0Σ1

Ω1Υ1Γ1Σ2 . . . ΩnΥnΓnΣn+1Ωn+1Υn+1 of inclusions from cl(T ), which satisfy:

– for every i: µi
Υi7−−→ α, µi

Γi•−−−→ ρi, ρi
Σi+1•−−−−−→ λi+1, and µi

Ωi•−−−→ λi
– if j < i, then we do not have µi •−→ ρj
– {ρ0, ρ1, . . . , ρn} is consistent with T

Examples of cause-conflict chains can be found in Figure 1a(b) and 2(b). In the follow-
ing sections, we will consider particular types of cause-conflict chains and see how they
are related to the presence of a consistent rewriting.

5 General co-NP-hardness result

In this section, we formulate a general condition which can be used to show co-NP-
hardness of consistent instance checking. We begin by giving a more elaborate reduc-
tion from UNSAT, and then we analyze what is needed to make the proof go through.

Example 3. Consider the following TBox T :

{ ∃R0 v A,∃R1 v A,∃R2 v A,∃R3 v A,∃R0 v ¬∃S,∃S− v ¬B1, B1 v ¬∃R−1 ,
∃R−1 v ¬D1, D1 v ¬B2, B2 v ¬∃R−2 ,∃R−2 v ¬D2, D2 v ¬∃T−,∃T− v ¬∃R−3 }
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Fig. 1: ABox and type-1 cause-conflict chain for Example 3.

We show via a reduction from UNSAT that deciding whether T ,A |= A(a) is co-NP-
hard in data complexity. Given a propositional CNF ϕ = c1 ∧ . . .∧ cm over v1, . . . , vk,
we define the ABox A as follows (see Figure 1(a) for a pictorial representation):

{R0(a, c+i ), R3(a, c−i ) | 1 ≤ i ≤ m } ∪ {R1(a, vj), R2(a, vj) | 1 ≤ j ≤ k +m }∪
{S(c+i , vj) | vj ∈ ci} ∪ {T (c−i , vj) | ¬vj ∈ ci} ∪ {S(c+i , vk+i) | 1 ≤ i ≤ m}∪
{T (c−i , vk+i) | 1 ≤ i ≤ m} ∪ {B1(vj), B2(vj), D1(vj), D2(vj) | 1 ≤ j ≤ k +m}

We show that ϕ |= ⊥ if and only if 〈T ,A〉 |=cons A(a). For the first direction, suppose
we have a satisfying valuation for ϕ, and let V be the set of variables which are affected
to true. We assume without loss of generality that if a variable vj appears only positively
(resp. negatively) in ϕ then vj ∈ V (resp. vj 6∈ V ). Define the subset B ofA as follows:

{S(c+i , vj) ∈ A | vj ∈ V } ∪ {D1(vj), D2(vj) | vj ∈ V }∪
{T (c−i , vj) ∈ A | vj 6∈ V, 1 ≤ j ≤ k} ∪ {B1(vj), B2(vj) | vj 6∈ V, 1 ≤ j ≤ k}∪
{T (c−i , vk+i), B1(vk+i), B2(vk+i) ∈ A | ∃vj ∈ V with vj ∈ ci}∪
{S(c+i , vk+i), D1(vk+i), D2(vk+i) ∈ A | ∀vj ∈ V : vj 6∈ ci}

It is easy to check that B is consistent with T and that 〈T ,B〉 6|= A(a). It can also be
verified that adding any additional assertions from A to B provokes a contradiction.
To understand why, note that either a clause ci has some positive variable vj ∈ V ,
in which case S(c+i , vj), T (c−i , vk+i) ∈ B, or it contains no such vj , in which case
S(c+i , vk+i), T (c−i , vj) ∈ B. In either case, both R0(a, c+i ) and R3(a, c−i ) conflict with
an assertion in B. Thus, B is a repair of A w.r.t. T which does not entail A(a).

For the other direction, let B be a repair with 〈T ,B〉 6|= A(a). It follows that none of
the role assertions in A involving R0, R1, R2, R3 appear in B. The absence of R1- and
R2-assertions and the consistency of B with T together imply that for each vj , we have
either B1 and B2 or both D1 and D2. This means each vj has either incoming S-edges
or incoming T -edges, but not both. We create a valuation in which vj is affected to true
if and only if vj has an incoming S-edge. Clearly if ci has a positive literal vj which is
affected to true, then it will be satisfied by this valuation. If instead all of the positive
literals in ci are affected to false, then the absence of R0(a, c+i ) can only be explained
by the presence in B of the assertion S(c+i , vk+i). But this implies in turn the absence



of T (c−i , vk+i) in B. As R3(a, c−i ) 6∈ B, there must be some assertion in B of the form
T (c−i , v`) (1 ≤ ` ≤ k). This means v` will be affected to false our valuation, and hence
the clause will be satisfied. Thus, the formula ϕ is satisfiable.

To understand how the preceding reduction can be generalized, it is helpful to con-
sider the cause-conflict chain pictured in Figure 1(b). This chain contains the essential
structure used in the reduction, with individuals b, c, and d playing the roles of c+i ,
vj , and c−` . We first notice that at the start and end of the chain, there is a switch of
individuals, which corresponds to moving from c+i to vj and then back to c−` . Next
remark that in order to show consistency of the constructed B, we needed consistency
of the sets of “forward” assertions {S(b, c), D1(c), D2(c)} and “backward” assertions
{B1(c), B2(c), T (d, c)}. Also note that in order to use a repair to construct a satisfying
valuation, we had to prove that no vj had both incoming S- and T -edges. This involved
showing that the only way to simultaneously contradict allRi assertions while retaining
consistency was to choose all of the forward (Di) or all of the backward (Bi) assertions.
Key to this reasoning was the fact that for each Ri(a, vj) assertion, we were forced to
choose either Bi(vj) or Di(vj). If we could use some B`(vj) or D`(vj) with ` 6= j, the
line of reasoning fails. Finally we note that none of the conflicts in the chain involves
the query individual a. This is important because if we used some assertion C(a) to
contradict Ri(a, vj), then we would also contradict Ri(a, v`) when ` 6= j, making it
impossible to independently choose truth values for each variable.

The preceding analysis leads us to define the notion of a position (to be able to talk
about switching to a new individual) and the notion of type-1 cause-conflict chains.

Definition 7. Concepts of the forms A or ∃P (resp. ∃P−) are said to have position 1
(resp. 2). An inclusion Υ begins (resp. concludes) on position p, written bpos(Υ ) = p
(resp. cpos(Υ ) = p), if p is the position associated with lhs(Υ ) (resp. rhs(Υ )).

Definition 8. A cause-conflict chain for T and α defined by the sequence of assertions
µ0ρ0λ1µ1 . . . ρnλn+1µn+1 and sequence of inclusions Υ0Γ0Σ1Ω1Υ1 . . . Σn+1Ωn+1Υn+1

is said to be of type-1 if it satisfies the following conditions:

(C1) bpos(Υi) 6= bpos(Γi) and bpos(Υi) 6= cpos(Ωi) for all i
(C2) cpos(Γ0) 6= bpos(Σ1) (C4) {λ1, . . . , λn+1} is consistent with T
(C3) cpos(Σn+1) 6= bpos(Ωn+1) (C5) if j > i, then we do not have µi •−→ λj

Condition C1 of the definition states that the query individual is not used in the
conflicts, whereas C2 and C3 make sure there is a switch to a new individual at the start
and end of the chain. Condition C4 guarantees consistency of the “backward” conflict
assertions, and C5 ensures that when reading the chain from right to left all causes are
relevant (i.e. not already contradicted by one of the previous choices).

Example 4. IfB1 v ¬B2 were added to the TBox from Example 3, then the chain from
Figure 1(b) would not be type-1, since B1(c) and B2(c) would conflict (violating C4).

The next result shows that the presence of a type-1 cause-conflict chain is sufficient
to show co-NP-hardness (and a fortiori, the inexistence of a consistent rewriting). The
proof generalizes the reduction from Example 3.

Theorem 1. If a type-1 cause-conflict chain for T and α exists, then the problem of
deciding whether 〈T ,A〉 |=cons α is co-NP-hard in data complexity.
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Fig. 2: ABox and Type-2 cause-conflict chain used in Example 5.

6 General first-order inexpessibility result

In this section, we show how to use Ehrenfeucht-Fraı̈ssé games rather than complexity
arguments, to prove inexistence of a consistent rewriting. As in the previous section, we
start with an illustrative example, before formulating the general condition.

Example 5. Consider the following DL-Litecore TBox T :

T = { ∃R v A, ∃R− v ¬∃S, ∃R− v ¬B, ∃S− v ¬B, }

We show using Ehrenfeucht-Fraı̈ssé games that there is no consistent first-order rewrit-
ing of the query A(a) w.r.t. T . Consider some k ∈ N, and letm = 2k+1. We construct
two ABoxes A1 and A2 as follows (A1 is pictured in Figure 2(a)):

A1 = {R(a, bi), R(a, ci), B(ci), S(ci, ci+1) | 1 ≤ i ≤ m}∪
{B(bi) | 2 ≤ i ≤ m } ∪ {S(bi, bi+1), | 1 ≤ i ≤ m− 1 }

A2 = A1 \ {B(c1)} ∪ {B(b1)}

We show that 〈T ,A1〉 |=cons A(a) and 〈T ,A2〉 6|=cons A(a). For the first point, sup-
pose for a contradiction that there is a repair B ofA1 w.r.t. T such that 〈T ,B〉 6|= A(a).
Then there can be no assertions in B of the form R(a, bi), and hence each such asser-
tion must provoke a contradiction when added to B. In order for B ∪ {R(a, b1)} to be
inconsistent with T , we must have S(b1, b2) ∈ B, as S(b1, b2) is the only assertion
in A which conflicts with R(a, b1). But this means that B(b2) 6∈ B, and hence that
S(b2, b3) ∈ B, or else we could add R(a, b2) to B without provoking a contradiction.
Continuing in this manner, we find that S(bm−1, bm) ∈ B, and so B(bm) 6∈ B. But in
this case, B ∪ {R(a, bm)} is consistent with T , which contradicts the maximality of B.
For the second point, we remark that the set B = {B(bi), S(ci, ci+1) | 1 ≤ i ≤ m} is
a repair of A2 w.r.t. T such that 〈T ,B〉 6|= A(a).

We now must show that duplicator has a k-round winning strategy in the Ehrenfeucht-
Fraı̈ssé game based on interpretations IA1 and IA2 . The basic idea is as follows (we
defer the full argument to [1]). Whenever spoiler selects a point which is “closer” to
the side of bm/cm+1 in IA1 , duplicator responds with the identical point in IA2 . When
spoiler plays “closer” to the b1/c1 side, then duplicator plays the ci if bi was played,



and bi if ci was played. The important thing is to make sure there is sufficient distance
between the indices j where duplicator copies spoiler and those where he chooses dif-
ferently. This can be done by keeping track of the leftmost point where the choices
differ and the rightmost point where they coincide and ensuring that the distance be-
tween these points is always at least 2k−i, where i is the the current round of play.

Figure 2(b) presents a cause-conflict chain for the preceding example. Most of the
conditions we identified in the previous section continue to hold for this chain. The only
exception is that we do not have a switch of individuals at the end of the chain. Instead,
we can remark that the initial cause-type is repeated further down the chain and can be
contradicted in the same way, and this is what we use to create the long chain structure
required in the proof. This leads us to define a second class of cause-conflict chains, in
which we replace C3 with a new condition which captures this repetition.

Definition 9. A cause-conflict chain for T and α whose sequence of inclusions is Υ0Γ0

Σ1Ω1Υ1 . . . Σn+1Ωn+1Υn+1 called type-2 if it satisfies C1, C2, C4, C5, and C6:

(C6) Υ0 = Υn and Γ0 = Γn

The following theorem states that type-2 cause-conflict chains witness non-existence
of a consistent rewriting. The proof generalizes the argument outlined in Example 5.

Theorem 2. If there exists a type-2 cause-conflict chain for T and α, then there is no
consistent first-order rewriting for α w.r.t. T .

We next establish the relationship between type-1 and type-2 chains.

Theorem 3. If there exists a type-1 cause-conflict chain for T and α, then there also
exists a type-2 cause-conflict chain. The converse does not hold (assuming P6=NP).

Proof (Sketch). For the first point, the idea to take a second copy of the type-1 chain,
reverse it, and append it to the original. For the second point, we show that consistent
instance checking for the TBox and IQ from Example 5 can be done in polynomial time
by iteratively applying the following rule: if R(a, c) ∈ A and there is no S(c, d) ∈ A,
then delete all incoming S-edges to c. We continue until either we find R(a, c) ∈ A
such that neither B(c) nor any S(c, d) belongs toA (in which case A(a) is consistently
entailed), or the rule is no longer applicable (and A(a) is not consistently entailed).

7 Rewriting Procedure

In this section, we develop a procedure which is guaranteed to produce a consistent
rewriting whenever the TBox T and query α = A(a) satisfy the following two criteria:

Ordering There exists a total order < on CauseT(A) such that whenever a cause-
conflict chain begins with inclusion B1 v A, ends with inclusion B2 v A, and
satisfies conditions C1 and C3, we have B2 < B1.

No loops Every cause-conflict chain for T , α of length n+1 which satisfies cpos(Σi) =
bpos(Ωi) for every 1 ≤ i ≤ n+ 1 is such that Υi 6= Υj for all i 6= j < n+ 1.



Algorithm 1 Rewrite

Input: TBox T , IQ A(a) Output: a first-order query ϕ
Initialize ϕ to ⊥ and initialize G to the set of all tuples (C,D) which satisfy:

(a) C = {C ∈ CauseT(A) | ∃D ∈ D with D ∈ ConflT(C)}
(b) for all D ∈ D, there exists C ∈ C such that D ∈ ConflT(C)
(c) there do not exist D1, D2 ∈ D with D2 ∈ ConflT(D1)

For every (C,D) ∈ G // choose which cause-types to treat globally
Let D = {B1, . . . , Bk,∃P1, . . . , ∃P`, ∃P−`+1, . . . , ∃P

−
m} (Bi ∈ NC, Pi ∈ NR)

S = {Bi(a)}ki=1 ∪ {Pi(a,wi)}`i=1 ∪ {Pi(wi, a)}mi=`+1 // realize concepts in D at a
// compute inequalities needed to ensure consistency (treating variables as individuals)
I = {vi 6= vj | vi, vj ∈ {a,w1, . . . , wm} and T , S ∪ {vi = vj} |= ⊥}
U = CauseT(A) \ C // cause-types not yet treated
ϕ = ϕ ∨ ∃w1...wm

V
β∈S β ∧

V
γ∈I γ ∧

V
C∈U (∀x auxRewrite(T , A(a), C, x, S))

Output ¬ϕ

Our algorithm Rewrite creates a big disjunction, where each disjunct corresponds to a
choice of a set of cause-types to be conflicted globally, i.e. one single assertion involv-
ing the query individual is used to conflict all causes of that type. For each disjunct, we
first fix the assertions which realize these global conflicts, and then invoke subroutine
auxRewrite to build one conjunct per untreated cause-type whose purpose is to see
whether for each cause of that type there is an assertion which conflicts with it and
can safely be added to the repair under construction. These conjuncts have a tree-like
structure whose “paths” are cause-conflict chains which satisfy cpos(Σi) = bpos(Ωi)
for all i. Property No Loops can thus be applied to show that the recursion depth of
auxRewrite is no more than |CauseT(A)|+1, ensuring termination. The difficult step
in the correctness proof is to show IA 6|= Rewrite(T , q) implies 〈T ,A〉 6|=cons q. The
basic idea is to use the way the negation of the formula is satisfied to direct our con-
struction of a repair which conflicts with every cause of q. Ordering is used to decide
in which order we should treat the causes. We illustrate this idea on a concrete example:

Example 6. Let q = A(a) and T be the following TBox:

{ ∃R0 v A,∃R1 v A,∃R2 v A,∃R−0 v ¬∃S,∃S− v ¬B1, B1 v ¬∃R−1 ,
∃R−1 v ¬D1, D1 v ¬∃T−, B1 v ¬∃T−,∃T v ¬∃R−2 }

It can be verified that the negation of Rewrite(T , q) consists of a single disjunct:

∀xR0(a, x)→ ∃y(S(x, y) ∧ (R1(a, y)→ D1(y)))
∧ ∀xR1(a, x)→ (B1(x) ∨D1(x))
∧ ∀xR2(a, x)→ ∃y(T (x, y) ∧ ¬R1(a, y))

We show that if this formula is satisfied in IA, then we can construct a repair B of
A w.r.t. T which does not entail A(a). First we fix an order on CauseT(A) satisfying
the conditions in Ordering: ∃R0 < ∃R2 < ∃R1. This means we start by considering
causes via ∃R0. If R0(a, b) ∈ A, then the first conjunct allows us to find c such that
S(b, c) ∈ A and R1(a, c) ∈ A implies D1(c) ∈ A. We add S(b, c) to B, and also add
D1(c) if R1(a, c) ∈ A. Next we move on to the next cause-type in the order, ∃R2. If



Algorithm 2 auxRewrite

Input: TBox T , IQ A(a), C ∈ CauseT(A), variable x, S set of atoms, Θ ⊆ CauseT(A)
Output: a first-order query χ
If C ∈ NC, output ¬C(a)
Set α = R(a, x), χ = ¬α, and B = ∃R− where C = ∃R // R basic role
For each D ∈ ConflT(B) // Consider different ways to contradict α on x

Set β = D(x) if D ∈ NC and β = T (x, y) [y fresh variable] if D = ∃T
If β is necessarily inconsistent with S given T , exit the for-loop
Else, let ε be the inequalities needed to ensure {β} ∪ S is consistent with T
// Compute untreated causes which are affected by choice of β
Initialize ∆ to ∅
For all ∃V ∈ CauseT(A) such that 〈T , S ∪ {β} ∪ {V (a, x)}〉 6|= ⊥ and
ConflT(∃V −) ∩ ConflT(D) 6= ∅

Add (∃V, x) to ∆ // need to find conflict for cause V (a, x)
If D = ∃T , then for all ∃V ∈ CauseT(A) with 〈T , S ∪ {β} ∪ {V (a, y)}〉 6|= ⊥
and ConflT(∃V −) ∩ ConflT(∃T−) 6= ∅

Add (∃V, y) to ∆ // need to find conflict for cause V (a, y)
χ = χ ∨ (∃y)(β ∧ ε ∧

V
(H,v)∈∆ auxRewrite(T , A(a), H, v, S ∪ {β}))

Output χ

we have R2(a, b) ∈ A, then we use the third conjunct to find c such that T (b, c) ∈ A
andR1(a, c) 6∈ A, and we add T (b, c) to B. Finally we turn to the final cause-type ∃R1,
and let R1(a, b) ∈ A. Possibly we have already added D1(b) when dealing with the
first conjunct, in which case we do nothing. Otherwise, because of the second conjunct,
we have either B1(b) ∈ A or D1(b) ∈ A, which we can add to B. The set B is still
consistent with T after this step, since if T (e, b) ∈ B then we would haveR1(a, b) 6∈ A,
and if S(e, b) ∈ B, then we would have already added a conflict for R1(a, b). We have
thus found a set B which is consistent with T and contradicts every assertion which
could cause entailment of A(a). By Proposition 1, we have 〈T ,A〉 6|=cons A(a).

Theorem 4. If a TBox T and IQ q satisfy conditions Ordering and No Loops, then
Rewrite(T , q) terminates and outputs a consistent rewriting of q w.r.t. T .

8 Approximating Consistent Query Answering
In order to obtain a more generally applicable positive result, we consider a sound ap-
proximation of consistent query answering, which we term cautious query answering.

Definition 10. A query q is cautiously entailed by a knowledge base K = 〈T ,A〉,
written K |=caut q, if 〈T ,∩B∈Rep(K)B〉 |= q.

Note that assertions which belong to all repairs do not participate in any conflict, so we
can be quite confident in the answers we obtain from them. For this reason, cautious
query answering remains of interest even when consistent query answering is feasible.

In [7], cautious conjunctive query answering (there called Intersection ABox Repair
semantics) was shown to be tractable for DL-LiteR KBs. The proposed algorithm first
deletes all assertions involved in some conflict, and then queries the resulting ABox. It
was left open whether query rewriting techniques could be used instead. We answer this
question in the affirmative and thus obtain an improved upper bound of AC0.



Theorem 5. Cautious conjunctive query answering is in AC0 for DL-Litecore.

Proof (Sketch). Given aDL-Litecore TBox T a CQ q, we first compute (in the standard
manner) a UCQ q′ = q1 ∨ ... ∨ qn such that for all ABoxes A, we have 〈T ,A〉 |= q if
and only if IA |= q′. Then to each disjunct we add the negation of each atomic query
which could contradict one of the atoms in the disjunct.
Example 7. If q = ∃y B(x) ∧ R(x, y) and T = {A v B,A v ∃R,B v ¬D,∃R− v
¬∃S−}, standard rewriting yields A(x)∨ ∃y B(x)∧R(x, y). We then add ¬∃zS(z, y)
to the second disjunct and ¬D(x) to both to obtain the cautious rewriting.

Theorem 5 is easily extended to other DL-Lite logics enjoying FO-rewritability.

9 Conclusion and Future Work

In this paper, we took a closer look at the problem of consistent instance checking
in DL-Lite and identified some general conditions which can be used to prove the
absence or existence of a consistent rewriting. While our results were formulated for
DL-Litecore, we expect they can be easily lifted to more expressive DL-Lite dialects
like DL-LiteF or DL-LiteR.

The main objective for future work is to strengthen our results so as to be able to
decide for every TBox and instance query whether a consistent rewriting exists. We
conjecture that the absence of a type-2 cause-conflict chain is both a necessary and
sufficient condition for existence of a consistent rewriting. Extending our investigation
to conjunctive queries would be interesting but quite challenging, as it would likely
involve confronting longstanding open problems from the database community, where
a full characterization of rewritable cases remains elusive [9].
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A Proof of Theorem 1

We will use the notation α[p] to denote the p-th argument of an assertion α. The fol-
lowing straightforward lemma will be prove helpful.

Lemma 1. Let α, β be assertions, Υ be a positive inclusion, and bpos(Υ ) = p1 and

cpos(Υ ) = p2. Then α Υ7−→ β if and only if α[p1] = β[p2], α and lhs(Υ ) use the same
atomic concept / role, and β and rhs(Υ ) use the same atomic concept / role. Same holds

if Υ is a negative inclusion and we replace α Υ7−→ β by α
Υ•−−−→ β.

Proof of Theorem 1. Assume a type-1 cause-conflict chain for T and α = A(a) ex-
ists. We first remark that we can assume without loss of generality that cpos(Γi) =
bpos(Σi+1) for all 1 ≤ i ≤ n, since otherwise, we can simply start the chain at µi,
to obtain another (shorter) type-1 cause-conflict chain. Similar reasoning leads us to
assume w.l.o.g. that cpos(Σi) = bpos(Ωi) for 1 ≤ i ≤ n.

We can also assume without loss of generality that if j > i, then do not have
µi •−→ ρj , because otherwise we could connect µi directly to ρj , and obtain a shorter
type-1 chain. Likewise, we can assume that if j < i, we do not have µi •−→ λj , or else
we could connect λi to µi to get a shorter type-1 chain.

We know from Lemma 1 that ρi[bpos(Σi+1)] = λi+1[cpos(Σi+1)], λi[bpos(Ωi)] =
µi[cpos(Ωi)], and µi[bpos(Γi)] = ρi[cpos(Γi)]. Moreover, cpos(Σi) = bpos(Ωi) from
above implies λi[cpos(Σi)] = λi[bpos(Σi)], while cpos(Γi) = bpos(Σi+1) implies
ρi[cpos(Γi)] = ρi[bpos(Σi+1)] i > 0. Additionally, because of condition C1, we
know that bpos(Υi) 6= bpos(Γi) and bpos(Υi) 6= cpos(Ωi), hence µi[cpos(Ωi)] =
µi[bpos(Γi)]. Taken altogether, we find that:

ρ0[bpos(Σ1)] = λ1[cpos(Σ1)] = λ1[bpos(Σ1)] = µ1[cpos(Ω1)] (∗)
= µ1[bpos(Γ1)] = ρ1[cpos(Γ1)] = . . . = ρn[bpos(Σn+1)] = λn+1[cpos(Σn+1)]

We use this fact to show that (given our assumptions) Υi 6= Υj whenever 1 ≤ i, j ≤ n.
To see why, suppose Υi = Υj for 1 ≤ i < j ≤ n, and let p = bpos(Υi) = bpos(Υj)
and q = cpos(Υi) = cpos(Υj). Then by Lemma 1, µi[p] = α[q] = µj [p] and µi and
µj involve the same role. Morever, from above, we have µi[cpos(Ωi)] = µj [cpos(Ωj)].
As we know bpos(µi) 6= cpos(Ωi) and bpos(µi) 6= cpos(Ωi) (by C1), it follows
that µi = µj , which contradicts the fact that cause-conflict chains must not have two
occurrences of an assertion.

We next remark that condition C1 implies that every µi is a role assertion, and thus
for every i we can find a basic role Ri such that Υi = ∃Ri v A. Conditions C1 and
C2 together imply that there is a basic role S such that Γ0 = ∃R− v ¬∃S. Then be-
cause of C2, we can find a basic concept B1 such that Σ1 = ∃S− v ¬B1. At the end
of the chain, because of C1 and C3, there must be a basic role T and basic concept
Dn such that Ωn+1 = ∃T v ¬∃R−n+1 and Σn+1 = Dn v ¬∃T−. We further note
that because of Lemma 1, cpos(Σi) = bpos(Ωi), and cpos(Γi) = bpos(Σi+1) for all
1 ≤ i ≤ n, we can find basic concepts Bi (2 ≤ i ≤ n) and Di (1 ≤ i ≤ n − 1)
such that Σi = Di v ¬Bi+1 (2 ≤ i ≤ n), Ωi = Bi v ¬∃R−i (1 ≤ i ≤ n),
and Γi = ∃R−i v ¬Di (1 ≤ i ≤ n). We also have Ω1 = B1 v ¬∃R−1 and
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Fig. 3: ABox for SAT reduction in proof of Theorem 1.

Γn = ∃R−n v ¬Dn.

Now that we have a better grasp on the types of inclusions in T (or rather cl(T )), we
are ready to give our SAT reduction. Consider a propositional CNF ϕ = c1 ∧ . . . ∧ cm
over variables v1, . . . , vk. Our ABox will use the following individuals: a, vj (1 ≤ j ≤
k +m), c+i , c

−
i (1 ≤ i ≤ m), b` (B` 6∈ NC), and d` (D` 6∈ NC). Individuals v1, . . . , vk

represent the variables of ϕ, while vk+1, . . . , vk+m are extra “dummy” variables, whose
purpose will be made clear later. We use individuals c+i , c

−
i for the positive and negative

parts of clause ci. The variables b` (resp. d`) will be used as witnesses for existential
conceptsB` (resp.D`). The ABoxA is defined as follows (see Figure 3 for a simplified
pictorial representation):

A = {R0(a, c+i ), Rn+1(a, c−i ) | 1 ≤ i ≤ m }∪
{Ri(a, vj) | 1 ≤ i ≤ n, 1 ≤ j ≤ k +m }∪
{S(c+i , vj) | vj appears positively in ci}∪
{T (c−i , vj) | vj appears negatively in ci}∪
{S(c+i , vk+i), T (c−i , vk+i) | 1 ≤ i ≤ m}∪
{B`(vj) |B` ∈ NC, 1 ≤ j ≤ k +m}∪
{D`(vj) |D` ∈ NC, 1 ≤ j ≤ k +m}∪
{U`(vj , b`) |B` = ∃U`, 1 ≤ j ≤ k +m}∪
{U`(vj , d`) |D` = ∃U`, 1 ≤ j ≤ k +m}

In what follows, we show that ϕ is satisfiable if and only if A(a) is not consistently en-
tailed from 〈T ,A〉. For the first direction, suppose that ϕ is satisfiable. Pick a satisfying
valuation for ϕ, and let V be the set of variables affected to true by this valuation. We
assume w.l.o.g. that if a variable appears only positively in ϕ then it is affected to true,
and if it appears only negatively then it is assigned false. Consider the subset B of A
defined as follows:

B = {S(c+i , vj) ∈ A | vj ∈ V }∪



{D`(vj) ∈ A | vj ∈ V }∪
{U`(vj , d`) ∈ A | vj ∈ V }∪
{T (c−i , vj) ∈ A | vj 6∈ V, 1 ≤ j ≤ k}∪
{B`(vj) ∈ A | vj 6∈ V, 1 ≤ j ≤ k}∪
{U`(vj , b`) ∈ A | vj 6∈ V, 1 ≤ j ≤ k}∪
{S(c+i , vk+i) ∈ A | no vj ∈ V appear positively in ci}∪
{D`(vk+i) ∈ A | no vj ∈ V appear positively in ci}∪
{U`(vk+i, d`) ∈ A | no vj ∈ V appear positively in ci}∪
{T (c−i , vk+i) ∈ A | some vj ∈ V appear positively in ci}∪
{B`(vk+i) ∈ A | some vj ∈ V appear positively in ci}∪
{U`(vk+i, b`) ∈ A | some vj ∈ V appear positively in ci}

Clearly A(a) cannot be entailed by 〈T ,A〉. We need to show that B is a repair of A
w.r.t. T . We begin by proving that B is consistent with T . By Proposition ??, if B were
inconsistent with T , we could find an individual e and an inclusionG1 v ¬G2 ∈ cl(T )
such that 〈T ,B〉 |= {G1(e), G2(e)}. Thus, it is sufficient to show that there is no such
individual in B. For individuals of the form c+i (resp. c−i ), the only concept satisfied
is ∃S (resp. ∃T ), which is satisfiable w.r.t. T since ρ0 |= ∃S(ρ0[cpos(Γ0)]) (resp.
λn+1 |= ∃T (λn+1[bpos(Ωn+1)])). Similarly, individuals of the form b` or d` only
satisfy a single concept whose consistency w.r.t. T is witnessed by one of the assertions
ρi or λi. The only interesting individuals are those of the form vj , for which there are
two cases. The first possibility is that vj satisfies ∃S−, D1, . . . , Dn. In this case, we use
(∗) which tells us

ρ0[bpos(Σ1)] = ρ1[bpos(Γ1)] = . . . = ρn[bpos(Σn+1)]

and hence that {ρ0, . . . , ρn} |= {∃S−(e), D1(e), . . . , Dn(e)} for e = ρ0[bpos(Σ1)].
Since we know {ρ0, . . . , ρn} is consistent with T , it follows that the assertions con-
cerning vj do not provoke a contradiction. We can proceed in a similar manner for
the second possibility, which is that vj satisfies ∃T−, B1, . . . , Bn. The only difference
is that instead of the definition of cause-conflict chains, we use condition C4, which
guarantees satisfiability of {λ1, . . . , λn+1} with T .

It remains to be shown that B is a maximal subset of A consistent with T . Ac-
tually, it is sufficient to show that none of the assertions concerning a can be added
consistently to B, since the remaining assertions cannot cause A(a). We first note
that by construction, for each vj we have either 〈T ,B〉 |= {B1(vj), . . . , Bn(vj)} or
〈T ,B〉 |= {D1(vj), . . . , Dn(vj)}. It follows that we cannot add any assertion of the
form Ri(a, vj) without introducing a contradiction (via one of the inclusions Γi or Ωi
in cl(T )). Next consider some pair of assertions R0(a, c+i ) and Rn+1(a, c−i ). As V
defines a satisfying valuation for ϕ, we know that either there is some vj ∈ V which
appears positively in ci or some vj 6∈ V which appears negatively. In the former case,
the assertion S(c+i , vj) will be present in B, so adding R0(a, c+i ) will contradict Γ0.
Moreover, by definition, T (c−i , vk+i) ∈ B, so adding Rn+1(a, c−i ) to B would violate
Ωn+1. Suppose then that there is no positive literal of ci which is satisfied, and let vj



be a negative literal with vj 6∈ V . Then we must have both T (c−i , vj) and S(c+i , vk+i),
and so neither R0(a, c+i ) nor Rn+1(a, c−i ) can be consistently added to B.

For the second direction, suppose that A(a) is not consistently entailed by 〈T ,A〉,
and let B be a repair ofA w.r.t. T with 〈T ,B〉 6|= A(a). Then there must be no assertion
of the form R`(a, vj), R0(a, c+i ), or Rn+1(a, c−i ) in B. The absence of R`(a, vj) im-
plies that there is some assertion in B which conflicts withR`(a, vj) given T . Moreover,
we know that this assertion must involve vj but not a. We note that R`(a, vj) cannot
conflict with Bp(vj) or Up(vj , bp) for p 6= ` since this would mean that Bp v ¬∃R−` ,
and hence λp •−→ λ` for p 6= `. This cannot be since condition (C4) of type-1 chains
tells us that λp •−→ λ` does not hold for p > `, and the same was assumed above for
p < `. Likewise, R`(a, vj) cannot conflict with Dp(vj) or Up(vj , dp) for p 6= `, since
this would contradict either item (iii) of the definition of cause-conflict chains or our
earlier assumption. It thus follows that the conflict must result from an assertion in B
having one of the following forms: B`(vj), U`(vj , b`), D`(vj), or U`(vj , d`). In fact,
only one such assertion can belong to B, sinceA only contains two assertions from this
list, and they conflict with each other. Since we must have one conflicting assertion for
each R`(a, vj) with 1 ≤ ` ≤ n, and we know that B is consistent with T , and that
T |= Dp v ¬Bp+1 for all 1 ≤ p ≤ n, it follows that one of the following holds for
every 1 ≤ j ≤ k +m:

– for 1 ≤ p ≤ n: B contains Bp(vj), if Bp ∈ NC, or Up(vj , bj), if Bp = ∃Up
– for 1 ≤ p ≤ n: B contains Dp(vj), if Dp ∈ NC, or Up(vj , bp), if Dp = ∃Up

In other words, for each vj , the set B must contain either all of the “Bp assertions” or
all of the “Dp assertions”. Note that in the former case, B will contain all assertions
from A of the form S(c+i , vj) (consistency is guaranteed by item (ii) of cause-conflict
chains), but it cannot contain any assertions of the form T (c−i , vj) since they would
cause inconsistency. In the latter case, just the opposite is true: B will contain all asser-
tions from A of the form T (c−i , vj) (here we use condition C4) and none of the form
S(c+i , vj). We can thus define a valuation V ⊆ {v1, . . . , vk} as follows: vj ∈ V if and
only if B contains an assertion of the form S(c+i , vj). We aim to show that this valu-
ation satisfies ϕ. Consider some clause ci. The absence of R0(a, c+i ) in B tells us that
there is some assertion in B which conflicts with it. The only possibility is an assertion
of the form S(c+i , vj). Likewise, the absence of Rn+1(a, c−i ) implies the existence of
some T (c−i , vj) in B. Note however that we know that vk+i can have either incoming S-
edges or incoming T -edges, but not both. Thus, B must contain an assertion S(c+i , vj)
or T (c−i , vj) with 1 ≤ j ≤ k. In the former case, vj has an incoming S-edge, and hence
vj ∈ V , so V satisfies ci. In the latter case, vj has an incoming T -edge, and hence no
incoming S-edge, which means that vj 6∈ V , and so V satisfies ci. Thus, the valuation
V satifies all clauses in ϕ, i.e. ϕ is satisfiable. ut

B Proof of Theorem 2

Assume a type-2 cause-conflict chain for T and α = A(a) exists. We can assume
without loss of generality that

cpos(Σi) = bpos(Ωi) for all 1 ≤ i ≤ n+ 1



since otherwise the sub-chain ending at µi would be a type-1 cause-conflict chain, giv-
ing us co-NP-hardness (Theorem 1). Finally, for the same reasons as in the proof of
Theorem 1, we can assume that our type-2 cause-conflict chain has the following prop-
erties:

– if j > i, then we do not have µi •−→ ρj
– if j < i, then we do not have µi •−→ λj

For type-1 chains, we could restrict our attention to chains satisfying cpos(Γi) =
bpos(Σi+1) for all 1 ≤ i ≤ n, but we cannot make this assumption for type-2 chains.
It will thus be necessary for us to distinguish the positions where this property fails.
We will use h0 < . . . < hy to refer to the positions i ∈ {0, 1, . . . , n} such that
cpos(Γi) 6= bpos(Σi+1). We denote by SP (for switch points) the set {h0, . . . , hy}.
Note that because of earlier assumptions, we know that h0 = 0 and hy = n. Also
note that within each “segment”, all conflicts involve the same individual, and no in-
clusion Υi is repeated. To make this more formal, consider some 0 ≤ p < y. Using
Lemma 1, our assumption that cpos(Σi) = bpos(Ωi) for all 1 ≤ i ≤ n+ 1, condition
C1 (which gives µi[cpos(Ωi)] = µi[bpos(Γi)] for all 1 ≤ i ≤ n) and the fact that
cpos(Γi) = bpos(Σi+1) for all hp < i < hp+1, we obtain:

ρhp
[bpos(Σhp+1)] = λhp+1[cpos(Σhp+1)] = λhp+1[bpos(Ωhp+1)]
= µhp+1[cpos(Ωhp+1)] = µhp+1[bpos(Γhp+1)] = ρhp+1[cpos(Γhp+1)] (∗∗)
= . . . = µhp+1 [cpos(Ωhp+1)] = µhp+1 [bpos(Γhp+1)] = ρhp+1 [cpos(Γhp+1)]

Also note that for all hp < i < j ≤ hp+1, we have Υi 6= Υj , since otherwise (∗∗) would
imply that µi = µj , contradicting one of the conditions of cause-conflict chains.

As we noted in the proof of Theorem 1, condition C1 implies that every µi is a role
assertion, and thus for every i we can find a basic role Ri such that Υi = ∃Ri v A. Be-
cause of condition C6, we know that R0 = Rn. Conditions C1 and C2 together imply
that there is a basic role T0 such that Γ0 = Γn = ∃R−0 v ¬∃T0. C2 also tells us that we
can find a basic concept B1 such that Σ1 = Σn+1 = ∃T−0 v ¬B1 and Ω1 = Ωn+1 =
B1 v ¬∃R−1 . For each i ∈ SP \ {0, n}, the fact that cpos(Γi) 6= bpos(Σi) means
that we can find a basic role Ti and basic concept Bi+1 such that Γi = ∃R−i v ¬∃Ti,
Σi+1 = ∃T−i v ¬Bi+1, and Ωi+1 = Bi+1 v ¬∃R−i+1. Finally, for every i 6∈ SP with
1 ≤ i ≤ n− 1, we can find basic concepts Di and Bi+1 such that: Γi = ∃R−i v ¬Di,
Σi+1 = Di v ¬Bi+1, Ωi+1 = Bi+1 v ¬∃R−i+1.

We show using Ehrenfeucht-Fraı̈ssé games that there is no consistent FOL rewriting
of the query A(a) w.r.t. T . Consider some k ∈ N, and let m = 2k + 2. Our objective
is to find ABoxes A1 and A2 which give different answers to q but cannot be distin-
guished by a k-round Ehrenfeucht-Fraı̈ssé game. The ABoxes we construct will use the
following individuals: a, v, bpi (1 ≤ i ≤ m, 0 ≤ p < y), cpi (1 ≤ i ≤ m, 0 ≤ p < y),
wB` (B` 6∈ NC), and wD` (D` 6∈ NC). Individuals b0i , . . . b

y−1
i (resp. c0i , . . . c

y−1
i ) play

the same role as bi (resp. ci) in Example 5. The individuals wB` (resp. wD` ) are used
as witnesses for existential concepts B` (resp. D`), while the individual v is used as a
witness for ∃T0.



* in A1

in A2**
. . b0

i b1
i by−1

i b0
i+1

a

R1, ..., Rh1

T0 Th1 Thy−2 Thy−1

Rhy−1+1, ..., R0Rhy−1+1, ..., R0

. . 
Thj−1 Thj

bj
i

Rhj−1+1, ..., Rhj

Rhy−2+1, ..., Rhy−1

Bhj ... Bhj+1−1

Dhj−1 ... Dhj+1−1

a

. . .

b0
1 b0

m

R0

R0

R0

R0

R0

R0 R0

R0

c0
1 c0

m

. . .

∃T0

*

*

Bn

Bn

Fig. 4: Visual aid for the ABox used in the proof of Theorem 2.

The ABoxes A1 and A2 are based upon the following ABox A:

A ={Rj(a, bpi ), Rj(a, cpi ) | 1 ≤ i ≤ m− 1, 1 ≤ p ≤ y − 1, hp−1 < j ≤ hp }∪
{Rj(a, b0i ), Rj(a, c0i ) | 2 ≤ i ≤ m and j = 0 or hy−1 < j < hy }∪
{R0(a, b01), R0(a, c01) }∪
{Thp

(bpi , b
p+1
i ), Thp

(cpi , c
p+1
i ) | 1 ≤ i ≤ m− 1, 0 ≤ p ≤ y − 2 }∪

{Thp(bpi , b
0
i+1), Thp(cpi , c

0
i+1) | 1 ≤ i ≤ m− 1, p = y − 1 }∪

{Dj(b
p
i ), Dj(c

p
i ) |Dj ∈ NC and 1 ≤ i ≤ m− 1, 1 ≤ p ≤ y − 1, hp−1 < j < hp

or 2 ≤ i ≤ m,hy−1 < j < hy }∪
{Sj(bpi , wDj ), Sj(c

p
i , w

D
j ) |Dj = ∃Sj and 1 ≤ i ≤ m− 1, 1 ≤ p ≤ y − 1,

hp−1 < j ≤ hp or 2 ≤ i ≤ m and hy−1 < j ≤ hy }∪
{Bj(bpi ), Bj(cpi ) |Bj ∈ NC and 1 ≤ i ≤ m− 1, 1 ≤ p ≤ y − 1, hp−1 < j ≤ hp

or 2 ≤ i ≤ m and j = 0 or hy−1 < j ≤ hy }∪
{Sj(bpi , wBj ), Sj(c

p
i , w

B
j ) |Bj = ∃Sj , and 1 ≤ i ≤ m− 1, 1 ≤ p ≤ y − 1,

hp−1 < j ≤ hp or 2 ≤ i ≤ m and hy−1 < j ≤ hy }

The extension of A to A1 and A2 depends on whether Bn is a concept name or exis-
tential concept. If Bn ∈ NC, then we have:

A1 = A ∪ {Bn(c01), T0(c0m, v)} A2 = A ∪ {Bn(b01), T0(c0m, v)}

Otherwise, if Bn = ∃Sn, then we use a slightly different formulation:

A1 = A ∪ {Sn(c01, wBn ), T0(c0m, v)} A2 = A ∪ {Sn(b01, wBn ), T0(c0m, v)}

Figure 4 provides a pictorial representation of A1 and A2.

We first show that the Duplicator has a k-round winning strategy in the Ehrenfeucht-
Fraı̈ssé game based on interpretations IA1 and IA2 . More specifically, we show that
Duplicator can play in such a way as to satisfy the following property after each round g.



Let d = (d−2, d−1, d0, d1, d2, . . . , dg) be the vector composed of a, c01, c
0
m fol-

lowed by the sequence of g points played so far in IA1 , and let e = (e−2, e−1,
e0, e1, e2, . . . , eg) be the vector starting by a, b01, c

0
m and finishing with the g

points played so far in IA2 . Then we have the following:
1. if d` ∈ {bpi , cpi }, then e` ∈ {bpi , cpi }
2. letting λ = max({i | d` ∈ {bpi , cpi }, d` 6= e`}) and ρ = min({i | d` ∈
{bpi , cpi }, d` = e`}), we have ρ− λ > 2k−g

3. (d, e) define a partial isomorphism between IA1 and IA2

We will proceed by induction on g. The base case is when g = 0, i.e. the game has
not yet begun. In this case, d = (a, c01, c

0
m) and e = (a, b01, c

0
m). The first and third

conditions clearly hold, and for the second, we remark that λ = 1 and ρ = m, hence
ρ− λ = m− 1 = 2k + 1. For the induction step, assume that Duplicator can play so as
to satisfy the property for the first g rounds, and consider what happens in round g + 1.
For simplicity, we will suppose that in round g + 1 spoiler selects a point dg+1 from
IA1 , but the proof is analogous if spoiler picks a point eg+1 from IA2 . There are four
cases:

– dg+1 = d` for some−2 ≤ ` ≤ g. In this case, Duplicator responds with e`, and the
property trivally holds for round g + 1.

– dg+1 = v or dg+1 = wBj or dg+1 = wDj . In any of these cases, Duplicator plays
eg+1 = dg+1. The first and second properties are trivially satisfied. For the third
property, suppose first that dg+1 = v. Then T0(c0m, v) holds in both IA1 and IA2 ,
this is the only assertion involving v, and c0m appears in both d and e. Thus, adding
v to d and e preserves the partial isomorphism. Suppose next that dg+1 = wDj
(the case where dg+1 = wBj is similar). The only assertions that wDj may partici-
pate in are of the form Sj(c

p
i , w

D
j ). Moreover, we know that in both IA1 and IA2 ,

Sj(b
p
i , w

D
j ) holds if and only if Sj(c

p
i , w

D
j ) does, and furthermore, Sj(b

p
i , w

D
j )

holds in IA1 if and only if it holds in IA2 . Thus, using property 1 of the IH, we
know that Sj(d`, wDj ) holds in IA1 if and only if Sj(e`, wDj ) holds in IA2 .

– dg+1 = bpi and d` = cqi for some −2 ≤ ` ≤ g. Then Duplicator plays bpi if
d` = e` and otherwise plays cpi . Clearly the first part of the property will hold.
For the second part, we note that Duplicator’s choice ensures that λ and ρ have
the same values after rounds g and g + 1, and by the induction hypothesis, we
had ρ − λ > 2k−g following round g. Hence, after round g + 1 we have ρ −
λ > 2k−g > 2k−(g+1). Now consider the third condition. We let f be such that
f(d`) = e` for every −2 ≤ ` ≤ g + 1. We know from the IH that the restriction
of IA1 to d−2, . . . , dg is isomorphic to the restriction of IA2 to e−2, . . . , eg , and
we aim to show this continues to hold when we add dg+1 and eg+1. Proving this
is straightforward but quite tedious as there are many cases to treat, so we give just
one case to illustrate the main ideas. Suppose that Tj(dg+1, d`) holds in IA1 . Then
we need to show that Tj(f(dg+1), f(d`)) holds in IA2 . Given the definition of IA1 ,
it must be the case that Tj(dg+1, d`) is of the form Thp

(bpi , b
p+1
i ) (if p < y − 1)

or Thp
(bpi , b

0
i+1) (if p = y − 1). We consider only the latter case, as the former

is even simpler. If Duplicator plays bpi , then we know that ρ ≥ i after round g.
Since ρ > λ, it follows that Duplicator played b0i+1 in response to d` = b0i+1. Since



Thp
(bpi , b

0
i+1) = Thp

(f(bpi ), f(b0i+1)) holds in IA2 , we are done. If instead plays
cpi in response to dg+1 = bpi , then i ≤ λ. Since ρ − λ > 2k−g > 1 after g rounds,
we must have ρ ≥ i + 2, and hence i + 1 ≤ λ. It follows that Duplicator played
c0i+1 in response to d` = b0i+1. We have Thp(cpi , c

0
i+1) = Thp(f(bpi ), f(b0i+1)) in

IA2 , as desired. The proof that the pre-images of T -assertions in the restriction of
IA2 to e−2, . . . , eg+1 also hold in the restriction of IA1 to d−2, . . . , dg+1 proceeds
analogously. For B-, D-, and S-assertions, the proofs are even simpler and quite
similar to those in the previous bullet.

– dg+1 = cpi and d` = bqi for some −2 ≤ ` ≤ g. Then Duplicator plays cpi if d` = e`
and otherwise plays bpi . Satisfaction of the three properties is shown analogously to
the previous case.

– dg+1 ∈ {bpi , cpi } and d` 6∈ {bqi , cqi } for all−2 ≤ ` ≤ g and 0 ≤ q < n. We only con-
sider the case where dg+1 = bpi (the case where dg+1 = cpi proceeds analogously).
We start with the second condition, since the first condition will be obviously satis-
fied by the choices of Duplicator. We let λ and ρ be the values computed following
round g. If i ≤ λ, then Duplicator plays cpj , and if i ≥ ρ, Duplicator plays bpi .
Note that in this case the λ and ρ values will not change after round i + 1, and so
condition 2 will be satisfied. The remaining case is when λ < i < ρ. If we have
i − λ ≤ ρ − i, then Duplicator chooses cpj , and if ρ − i < i − λ, Duplicator picks
bpj . In the former case, i− λ ≤ ρ− i together with ρ− λ > 2k−g from the IH yield
ρ− i > 2k−g−1. This is exactly what we need since after round g+1 the value of ρ
remains unchanged but λ changes to i, and so we get the desired ρ−λ > 2k−(g+1).
In the second case, ρ− i < i−λ and ρ−λ > 2k−g yields i−λ > 2k−g−1. As after
round g + 1, λ remains as before but ρ is replaced by i, we get ρ − λ > 2k−(g+1)

as required. Thus, condition 2 is satisfied. Now let us consider the final condition.
As before, we will not detail the entire proof as it involves a great many cases. In-
stead, we illustrate the main ideas by considering what happens with T -assertions
when λ < i < ρ (the other cases are simpler). Suppose that Tj(d`, dg+1) holds
in IA1 (the case with Tj(d`, dg+1) or when we start in IA2 proceed similarly). As
λ < i < ρ, we know that d` must not have index i (otherwise either i ≤ λ or ρ ≤ i,
contradicting our earlier assumption). The only possibility is thus that d` = by−1

i−1

and dg+1 = b0i and λ = i − 1. It follows that j = y − 1 and Duplicator plays
e` = cy−1

i−1 . Moreover, i − λ = 1 and ρ − λ > 2k−i ≥ 2, so i − λ < ρ − i,
hence eg+1 = c0i . This yields the desired assertion Tj(e`, eg+1) = Ty−1(c

y−1
i−1 , c

0
i )

in IA2 .

To complete the proof, we must show that A1 and A2 disagree on q. More specifi-
cally we prove that 〈T ,A1〉 |=cons A(a) and 〈T ,A2〉 6|=cons A(a). For the first point,
suppose for a contradiction that there is a repair B of A1 w.r.t. T such that 〈T ,B〉 6|=
A(a). Then there can be no assertions in B of the forms Rj(a, b

p
i ) or Rj(a, c

p
i ), since

any such assertion would imply q because T |= ∃Rj v A. Since B is a maximal subset
ofA consistent with T , we know that adding any assertion Rj(a, b

p
i ) fromA1 to B will

cause a contradiction. Let us first consider the assertion R0(a, b01). We know that the
assertion T0(b01, b

1
1) (or T0(b01, b

0
2), if y = 1) contradicts R0(a, b01), and moreover, it is

the only such assertion since there are no other assertions inA involving the constant b01
and all assertions inA involving a are of the form Rj(a, b

p
i ) or Rj(a, b

p
i ), and we know



these do not appear in B. First consider the case where y = 1 and T0(b01, b
0
2) ∈ B. Then

B cannot contain the assertionB1(b02) (or S1(b02, w
B
1 ), ifB1 = ∃S1), since ∃T−0 v ¬B1

(andB1 = Bhy = Bn). Thus, in order for B∪{R0(a, b02)} to be inconsistent with T , B
must possess the assertion T0(b02, b

0
3). Continuing this line of reasoning, we are forced to

infer that B contains all the assertions T0(b01, b
0
2), T0(b02, b

0
3), . . . , T0(b0m−1, b

0
m). How-

ever, including T0(b0m−1, b
0
m) means excluding B1(b0m) / S1(b0m, w

B
1 ). As the latter is

the only assertion inAwhich contradictsR0(a, b0m), maximality of B means B contains
R0(a, b0m), and so 〈T ,B〉 |= A(a), contradicting our earlier assumption.

We now consider the case where y > 1. We associate to each tuple (i, j) ∈
[1, . . . ,m − 1] × [0, . . . , n − 1] the unique assertion in A of the form Tj(b

p
i , b

p+1
i )

(with j = hp and p < y − 1), Tj(b
p
i , b

0
i+1) (with j = hp and p = y − 1), Dj(b

p
i )

(with hp < j < hp+1), or Sj(b
p
i , w

D
j ) (with hp < j < hp+1). Then we show by in-

duction on (i, j) ∈ [1, . . . ,m − 1] × [0, . . . , n − 1] (using the lexicographic ordering
to compare tuples) that the assertion associated with (i, j) must belong to B. The base
case, when (i, j) = (1, 0), was already treated above. For the induction step, suppose
that we have treated all tuples up to but not including (i, j), and let p be such that either
hp < j ≤ hp+1 or j = 0 and p = 0. We know that Rj(a, b

p
i ) does not appear in B, and

so there must be some assertion in B with which it conflicts. The assertion associated
with (i, j) does conflict with Rj(a, b

p
i ), so all that is needed is to show that there are no

other ways of obtaining a conflict. First we note that because of the IH, we know that the
assertion associated with the preceding tuple belongs to B. It is easily verified that this
assertion conflicts with Bj(b

p
i ), and thus Bj(b

p
i ) (which does conflict with Rj(a, b

p
i ))

cannot appear in B. Let us now consider the other assertions in A which involve the
individual bpi . First remark that any assertion B`(b

p
i ) with ` < j cannot conflict with

Rj(a, b
p
i ), since then T |= ∃R−j v ¬B`, and we would violate our earlier assump-

tion that the cause-conflict chain cannot be shortened. Assertions of the form B`(b
p
i )

with ` > j also cannot conflict with Rj(a, b
p
i ), since otherwise we would violate the

backwards relevance condition of type-2 chains (C6). Now suppose we have an asser-
tion D`(b

p
i ) (or S`(b

p
i , w

D
` )) with ` < j. In this case, we cannot have a conflict with

Rj(a, b
p
i ), or else T |= ∃R−j v ¬D`, and we would violate the forward relevance con-

dition of cause-conflict chains. If instead we have the same type of assertion but ` > j,
then a conflict withRj(a, b

p
i ) would imply that since then T |= ∃R−j v ¬D`, which vi-

olates the assumption of no shorter type-2 cause-conflict chain. Next consider an asser-
tion Thp−1(b

p
i ). If it conflicts withRj(a, b

p
i ), then we must have T |= ∃T−hp−1

v ¬∃R−j ,
which violates forward minimality condition. The last type of assertion which can in-
volve bpi is Thp

(bpi , b
p+1
i ) (or Thp

(bpi , b
0
i+1 if p = y − 1). If such an assertion were to

conflict with Rj(a, b
p
i ), this would mean that T |= ∃Thp

v ¬∃R−j , which would imply
the existence of a shorter type-2 chain, contrary to our earlier assumption. Thus, we
have shown that all assertions fromA which involve bpi , other than the assertion associ-
ated with (i, j), either do not belong to B or do not conflict with Rj(a, b

p
i ). From this,

we can conclude that the assertion associated with (i, j) belongs to B (and that Bj(b
p
i )

does not). In particular, Bj(b
p
i ) does not belong to B. As a result, we find that there

are no assertions in B which conflict with R0(a, b0m), contradicting the assumption that
〈T ,B〉 6|= A(a).



To see why 〈T ,A2〉 6|=cons A(a), consider the set B ⊆ A defined as follows:

B = {Thp
(cpi , c

p+1
i ) | 1 ≤ i ≤ m− 1, 0 ≤ p ≤ y − 2 }∪

{Thp
(cpi , c

0
i+1) | 1 ≤ i ≤ m− 1, p = y − 1 }∪

{Dj(c
p
i ) |Dj ∈ NC and 1 ≤ i ≤ m− 1, 1 ≤ p ≤ y − 1, hp−1 < j < hp

or 2 ≤ i ≤ m,hy−1 < j < hy }∪
{Sj(cpi , wDj ) |Dj = ∃Sj and 1 ≤ i ≤ m− 1, 1 ≤ p ≤ y − 1,

hp−1 < j ≤ hp or 2 ≤ i ≤ m and hy−1 < j ≤ hy }
{Bj(bpi ) |Bj ∈ NC and 1 ≤ i ≤ m− 1, 1 ≤ p ≤ y − 1, hp−1 < j ≤ hp ∪

or 2 ≤ i ≤ m and j = 0 or hy−1 < j ≤ hy }∪
{Sj(bpi , wBj ) |Bj = ∃Sj , and 1 ≤ i ≤ m− 1, 1 ≤ p ≤ y − 1,

hp−1 < j ≤ hp or 2 ≤ i ≤ m and hy−1 < j ≤ hy }∪
{T0(cy−1

m , v)} ∪ (A2 ∩ {Bn(b01), Sn(b01, wBn )})

We claim that B is a repair of A2 w.r.t. T such that 〈T ,B〉 6|= A(a). It is straightfor-
wardly verified that B is consistent with T , using the forward consistency and backward
consistency properties of the cause-conflict chain. The absence of any Rj assertions to-
gether with consistency yields 〈T ,B〉 6|= A(a). All that remains to be shown is the
maximality of B. First consider some assertion Rj(a, b

p
i ) ∈ A2. Then we know that

B |= Bj(b
p
i ), and since T |= ∃R−j v ¬Bj , it is impossible to add Rj(a, b

p
i ) with-

out introducing a contradiction. For assertions in A2 of the form Rj(a, c
p
i ) (j 6∈ SP),

the argument is similar: B |= Dj(c
p
i ), and since T |= ∃R−j v ¬Dj , we cannot con-

sistently add Rj(a, c
p
i ) to B. For Rj(a, c

p
i ) with j ∈ SP, we use B |= ∃Tj(cpi ) and

T |= ∃R−j v ¬∃Tj . We next must justify the absence of Bj (or Sj) assertions for the
c-individuals and the absence of Dj (or Sj) and Tj assertions for b-individuals. For an
assertion Bj(c

p
i ) (or Sj(c

p
i , w

B
j )), we simply use the fact that either Thp−1(c

p−1
i , cpi )

(and j = hp−1+1) or Dj−1(c
p
i ) or Sj−1(c

p
i , w

D
j ) appears in B. In the former case, we

use ∃T−hp−1
v ¬Bj , and in the latter cases, we use the inclusion Dj−1 v ¬Bj . The

argument for the missing Dj / Sj / Tj assertions for b-individuals is similar. Thus, no
assertion from A2 \ B can be consistently added to B.

C Proof of Theorem 3

We prove the two statements of the theorem in separate lemmas:

Lemma 2. If there exists a type-1 cause-conflict chain for T and α, then there also
exists a type-2 cause-conflict chain.

Proof. Suppose we have a type-2 cause-conflict chain of length n + 1. To turn it into
a type-1 cause-conflict chain, we perform the following steps. First, we create a second
chain by truncating the chain at µn, reversing it, and replacing each individual b which
does not appear in µn by a new individual b′. Then we take the original chain up to µn
and add to it the second chain (identifying µn and its image at the start of the second



chain). We claim that the result is a type-1 cause-conflict chain. We start by showing
that it is a valid cause-conflict chain. For forward consistency, we use the fact that
the original chain satisfies forward and backward consistency (so both “halves” of the
chain are forward consistent), plus the fact that the second half of the chain uses new
individual names and so cannot conflict with the first half of the chain. For forward
minimality, the reasoning is similar: forward and backward minimality of the original
chain guarantee forward minimality for each half, and then we leverage the fact that
the two halves cannot interact because of their lack of shared individuals. Condition C1
and C2 are obtained by using C1 and C2 of the original chain. Backward consistency
and minimality (C4 and C5) can be shown in the same way as forward consistency and
minimality.

Lemma 3. Assuming P6=NP, there exists T , α for which a type-2 cause-conflict chain
exists but no type-1 cause-conflict chain exists.

Proof. Let

T = { ∃R v A, ∃R− v ¬∃S, ∃R− v ¬B, ∃S− v ¬B, }

be the TBox used in Example 5. We show that deciding whether 〈T ,A〉 |=cons A(a)
can be decided in polynomial time in |A|. The procedure is as follows. We first check
whether the following condition holds:

(?) there exists c such that R(a, c) ∈ A and neither B(c) nor any S(c, d) belongs to A
If this condition holds, then there is no assertion in A which conflicts with R(a, c), so
R(a, c) must belong to all repairs of 〈T ,A〉. If does not hold, we check to see whether
the next condition holds:

(??) for every R(a, c) ∈ A, there is some assertion of the form S(c, d) in A
If (??) holds, then we can construct a set B which is consistent with T and inconsistent
with every cause ofA(a) by selecting for everyR(a, c) ofA(a) an assertion of the form
S(c, d). Thus, by Proposition 1, we have shown that A(a) is not consistently entailed,
and so can return no. If neither (?) nor (??) holds, then there is some R(a, c) ∈ A such
that B(c) ∈ A but no S(c, d) belongs to A. Clearly any repair which contradicts all
causes of A(a) must include B(c), and hence cannot include any assertion of the form
S(e, c). We can thus delete all incoming S-edges to c without affecting the existence
of a repair which does not entail A(a). We now repeat this procedure until we either
satisfy (?) and return a positive answer, or we satisfy (??) and return a negative answer.
As the size of A decreases with each iteration, we can be sure that eventually one of
these criteria will be satisfied, and the procedure will return the correct result. It is easy
to see that the procedure runs in polynomial time in |A|.

D Proof of Theorem 4

Termination: first we note that there are only finitely many pairs (C,D) in G, and hence
only finitely many iterations of the for-loop. Thus, the algorithm terminates if each of



the calls to auxRewrite terminates. To see why this is the case, notice that each branch
in the recursion tree for auxRewrite constructs a cause-conflict chain (assuming we
treat variables as individuals). This is because we always choose a new cause (the as-
sertion α) which is not already contradicted by one of the assertions selected so far.
Moreover, we know that the current cause has a conflict which contradicts the selected
conflict of the previous cause. Finally, we always make sure to choose a conflict which
is consistent with the set of assertions selected so far. Also note that by construction, the
cause-conflict chain we construct will be such that cpos(Σi) = bpos(Ωi) for all i ≥ 1.
Thus, by condition No Loops, we cannot have Υi = Υj where i < j except in the
case where Υj is the final inclusion in the chain. This means the recursion depth for
auxRewrite cannot exceed |CauseT(A)|+ 1.

Correctness: suppose that T , A(a) satisfy conditions Ordering and No Loops, and
let ¬ϕ be the output of Rewrite on input T , A(a). We aim to show that for all ABoxes
A, we have 〈T ,A〉 6|=cons A(a) if and only if IA |= ϕ. For the first direction, suppose
〈T ,A〉 6|=cons A(a), and let B be a repair of A w.r.t. T such that 〈T ,B〉 6|= A(a).
Define the sets C and D as follows:

C = {C ∈ CauseT(A) | ∃γ ∈ A with {γ} |= C(a) and ∃D ∈ ConflT(C) such that
∃β ∈ B with {β} |= D(a)}

D = {D | ∃C ∈ C such that D ∈ ConflT(C) and ∃β ∈ B with {β} |= D(a)}

We remark that the pair (C,D) satisfies conditions (a), (b), and (c), and so there will be
a disjunct ψ of ϕ which is associated with this pair. We intend to show that the disjunct
ψ is satisfied by IA. We know that ψ has the form

∃w1...wm
∧
β∈S

β ∧
∧
γ∈I

γ ∧
∧
C∈U

(∀x auxRewrite(T , A(a), C, x, S))

where

D = {B1, . . . , Bk,∃P1, . . . ,∃P`,∃P−`+1, . . . ,∃P−m}
S = {Bi(a)}ki=1 ∪ {Pi(a,wi)}`i=1 ∪ {Pi(wi, a)}mi=`+1

I = {vi 6= vj | vi, vj ∈ {a,w1, . . . , wm} and T , S ∪ {vi = vj} |= ⊥}
U = CauseT(A) \ C

Because of the way we constructed (C,D), we know that each of the assertions Bi(a)
belongs to B. We further know that we can find individuals ci such that Pi(a, ci) ∈ B
for every 1 ≤ i ≤ ` and Pi(ci, a) ∈ B for every ` + 1 ≤ i ≤ m. Define a valu-
ation σ by σ(wi) = ci. For convenience, we will apply valuations not only to vari-
ables but also to formulas, with the obvious meaning. We aim to show that the formula
σ(

∧
β∈S β ∧

∧
γ∈I γ ∧

∧
C∈U (∀x auxRewrite(T , A(a), C, x, S))) holds in IA. We

have already shown that σ(β) ∈ B ⊆ A for every β ∈ S, and hence IA |= σ(
∧
β∈S β).

We also know that all of the inequalities in I must be satisfied by the valuation σ since
otherwise this would imply that B is not consistent with T . Thus, all that remains to
be shown is that each formula σ(∀x auxRewrite(T , A(a), C, x, S)) is satisfied by IA.
In other words, we must show that for every σ′ which extends σ to x, the formula



σ(∀x auxRewrite(T , A(a), C, x, S)) is satisfied by IA. We will prove this by induc-
tion on subformulas. Specifically, we will show the following statement holds

if σ is a valuation of Vars(G) ∪ {v} satisfying σ(G) ⊆ B, then
σ(auxRewrite(T , A(a), C, v,G)) holds in IA.

for all subformulas auxRewrite(T , A(a), C, v,G) of ψ. The base case is when a sub-
formula auxRewrite(T , A(a), C, v,G) does not have any proper auxRewrite subfor-
mulas, i.e. there are no subcalls to auxRewrite. If σ(α) does not appear in A, then the
first disjunct of the formula is satisfied by IA. Otherwise, σ(α) and C ∈ CauseT(A)
implies that σ(α) 6∈ B. Using the maximality of B, we can find an assertion γ ∈ B
which conflicts with σ(α). Note that if γ |= D(a) where D ∈ ConflT(C), then
we would have C ∈ C and D ∈ D, and so C would never appear as an argument
to auxRewrite. Hence, it must be the case that C = ∃R for some basic role R,
σ(α) = σ(R(a, x)) = R(a, b) for some b, and there is D ∈ ConflT(∃R−) such
that γ |= D(b). If D ∈ NC, then σ(auxRewrite(T , A(a), C, v,G)) contains a dis-
junct σ(D(x) ∧ ε). We know that the first part of this disjunct will be satisfied by
IA because σ(D(x)) = D(b) = γ ∈ B ⊆ A. For the second part (σ(ε), we note
that σ(T ∪ {β}) ⊆ B, and so consistency of B ensures all inequalities in ε must be
satisfied by σ. Next consider the case where D = ∃T . In this case, there is a dis-
junct σ(∃yT (x, y) ∧ ε) in auxRewrite(T , A(a), C, v,G). To see why it is satisfied,
let d be such that γ = T (b, d), and define σ′ as the extension of σ to the new vari-
able y which assigns σ′(y) = d. It is then easy to see that σ′(T (x, y) ∧ ε) is satisfied
in IA because of the presence of γ in B ⊆ A and because of the consistency of B
(which guarantees that the inequalities ε hold). Thus, we have shown that there is al-
ways some disjunct of auxRewrite(T , A(a), C, v,G) which is satisfied in IA, and
hence auxRewrite(T , A(a), C, v,G) holds in IA.

For the induction step, suppose that the statement holds for subformulas having at
most k nested auxRewrite subformulas. Let auxRewrite(T , A(a), C, v,G) be a sub-
formula of ψ having k+1 nested auxRewrite subformulas. In the simplest case, σ(α)
does not appear in A, and so the first disjunct of the formula is satisfied by IA. Let
us then consider the more interesting case where σ(α) ∈ A. Then there must be some
assertion γ ∈ B which conflicts with σ(α). Using the same reasoning as in the base
case, we deduce that there is a basic role R, an individual b, and a concept D such
that C = ∃R, σ(α) = σ(R(a, x)) = R(a, b), D ∈ ConflT(∃R−), and γ |= D(b).
We have already seen above that there is a valuation σ′ over Vars(G) ∪ {v} such that
σ′(G ∪ {β}) ⊆ B and σ′(β ∧ ε) holds in IA. We then notice that each formula sub-
formula auxRewrite(T , A(a), H, u,G ∪ {β}) with (H,u) ∈ ∆ has at most k nested
auxRewrite subformulas, and so we can apply the induction hypothesis to these for-
mulas using the valuation σ′. This allows us to infer σ′(auxRewrite(T , A(a), H, u,G∪
{β})) holds in IA for every (H,u) ∈ ∆. This concludes our proof that the formula
auxRewrite(T , A(a), C, v,G) is satisfied in IA.

For the second direction, suppose IA |= ϕ. We aim to construct a set B ⊆ A which
is consistent with T and satisfies 〈T ,B〉 6|= A(a). As IA |= ϕ, there must be some
disjunct ψ of ϕ such that IA |= δ. Let (C,D) be the pair of sets which were used to



produce ψ. We know that ψ has the following form:

ψ = ∃w1...wm
∧
β∈S

β ∧
∧
γ∈I

γ ∧
∧
C∈U

(∀x auxRewrite(T , A(a), C, x, S))

We can thus find a valuation σ0 mapping variablesw1, . . . , wm to individuals c1, . . . , cm
such that

σ0(
∧
β∈S

β ∧
∧
γ∈I

γ ∧
∧
C∈U

(∀x auxRewrite(T , A(a), C, x, S))

holds in IA. We define B0 as the set {σ0(β) | β ∈ S}. Note that we can be sure that B0

is consistent with T becauseD is consistent with T and σ satisfies the inequalities in I .
Also note that every cause C(a) ∈ A of A(a) with C ∈ NC must conflict with some
assertion in B0, since otherwise C 6∈ C would imply that there is a conjunct ¬C(a) in
ψ, and such a conjunct could not be satisfied by IA. At this point, however, there may
be many role assertions which cause A(a) which do not conflict with B0. We thus need
to add assertions to B0 to obtain a larger set B which conflicts with every cause inA. In
order to do so, we will construct an ordered labelled tree which will make explicit how
the auxRewrite conjuncts are satisfied in IA (i.e. how are variables instantiated and
which disjuncts are made true), and then we will show how a traversal of this tree allows
us to consistently extend B so as to contradict all causes inA. The nodes of the tree will
correspond to pairs (auxRewrite(T , A(a),∃T, x, S), σ) of auxRewrite subformulas
coupled with a valuation such that σ(auxRewrite(T , A(a),∃T, x, S)) holds in IA.
Each such node is naturally associated with a cause for A(a), namely σ(T (a, x)). Each
node in the tree, excepting the root, will be labelled with an assertion which conflicts
with the node’s associated cause. Formally, the tree is defined as follows:

− the children of the root are the pairs (auxRewrite(T , A(a),∃T, x, S), σ) such that:
– ∀x auxRewrite(T , A(a),∃T, x, S) is a conjunct of ψ
– σ extends σ0 to variable x
– σ(T (a, x)) ∈ A

− the children of the root are ordered in such a way that a node (auxRewrite(T , A(a),
C1, x, S), σ) appears to the left of a node (auxRewrite(T , A(a), C2, x, S), σ′)
whenever C1 < C2

− for every non-root node n = (auxRewrite(T , A(a),∃T, x, S), σ), let

δ = (∃y)(β ∧ ε ∧
∧

(H,v)∈∆
auxRewrite(T , A(a), H, v, S ∪ {β}))

be a disjunct of auxRewrite(T , A(a),∃T, x, S) such that σ(δ) holds in IA. If δ is
preceded by a quantifier ∃y, then let c be a constant which can be substituted for y
to make σ(δ) hold, and define σ′ as the extension of σ to y with σ′(y) = c. If the
quantifier was omitted, set σ′ = σ. Then:

– we label node n with the assertion σ′(β)
– the children of n are all pairs (auxRewrite(T , A(a),∃R, v, S∪{β}), σ′) such

that (∃R, v) ∈ ∆ and σ′(R(a, v)) ∈ A



The finiteness of the formula ψ ensures the finiteness of the constructed tree. A simple
inductive argument shows that for every node (κ, σ), the formula κ(σ) holds in IA and
the cause associated with (κ, σ) is present inA. Finally, we note that because of the way
β is selected, we can be sure that the label σ′(β) of a node conflicts with its associated
cause.

It is now straightforward to use the tree to construct the desired B. We start with B =
B0, and then we perform a depth-first left-to-right traversal of the tree. Whenever we
are at a node whose associated cause is not yet contradicted by B, we add its label to B
and continue our depth-first traversal. If we reach a cause which is already contradicted
by B, we simply skip the subtree under the current cause and pursue the traversal as
if we had visited the subtree. When we return to the root, we continue on to the next
unexamined child node. We aim to show that at the end of our traversal the set B is
consistent with T and 〈T ,B ∪ {α}〉 |= ⊥ for every cause α ∈ A of the IQ A(a). For
the latter property, take some cause α ∈ A. If α corresponds to a cause-type C ∈ C,
then our construction ensures that the original B contains a conflict for it. Otherwise, α
must correspond to a cause-type C ∈ U , which means there is child of the root whose
associated cause is α. It follows that at least once during the depth-first traversal we will
visit a node with associated cause α, and so at the first such occurrence, a conflict for α
will be added to B.

Now we turn to consistency of B with T . Suppose for a contradiction that B is
inconsistent, and let γ1, γ2 ∈ B be such that 〈T , {γ1, γ2} |= ⊥. We know that the
original B, before tree traversal, must be consistent, so at least one of γ1 and γ2 must
have been added during the tree traversal. Suppose then that γ1 was added to B be-
fore γ2. We suppose without loss of generality that there is no γ′1 which was added
before γ1 which conflicts with γ2. First suppose that γ1 belongs to the original B and γ2

was added when visiting node (auxRewrite(T , A(a),∃T, x, S), σ). Then by construc-
tion, γ1 = σ(β1) for some β1 ∈ S and γ2 = σ′(β2) where β2 is the first conjunct of
auxRewrite(T , A(a),∃T, x, S). The conjunct ε of auxRewrite(T ,
A(a),∃T, x, S) will contain all inequalities that are needed to ensure that S ∪ {β2} is
consistent with T . As σ′ was chosen so as to make auxRewrite(T , A(a),∃T, x, S)
hold, σ′ must verify ε, and so γ1 and γ2 must be consistent, contradicting our as-
sumption to the contrary. Exactly the same argument applies when γ2 was added at
a node which is a successor of the node where γ1 was added, since we still have that
γ1 = σ(β1) for some β1 ∈ S.

Let us now consider the more interesting case where γ1 was added at node

n1 = (auxRewrite(T , A(a),∃T1, x1, S1), σ1),

γ2 was added at node

n2 = (auxRewrite(T , A(a),∃T2, x2, S2), σ2),

and n2 is not a successor of n1. For i ∈ {1, 2}, we letDi be the concept in ConflT(∃Ti)
which was selected at node ni; δi be the disjunct of auxRewrite(T , A(a),∃Ti, xi, Si)
which is associated with Di; βi be the first conjunct of δi; and σ′i the extension of σi to
any new variable in γi. We know that σ′i(βi) = γi.



First consider the case where γ1
D1v¬D2•−−−−−−−→ γ2. Then we must have σ1(x1) =

σ2(x2) and D2 ∈ ConflT(∃T−2 ) ∩ ConflT(D1). We must also have 〈T , S1 ∪ {β1} ∪
{T2(a, x1)}〉 6|= ⊥ since otherwise σ2(T2(a, x2)) = σ1(T2(a, x1)) would already be
contradicted by some assertion B by the time we visit n2, in which case γ2 would
not have been added. It follows that the pair (∃T2, x1) will be added to ∆, and so
n1 will have a child (auxRewrite(T , A(a),∃T2, x1, S1 ∪ {β1}), σ′1). This is a con-
tradiction since this would again imply that B contains a conflict for γ2 before the
node n2 is visited. A similar argument applies in the case where D1 = ∃X and

γ1
D1v¬∃X−•−−−−−−−−−→ γ2, except this time we will have (∃T2, x2) ∈ ∆, yielding a child

node (auxRewrite(T , A(a),∃T2, x2, S1 ∪ {β1}), σ′1).
The remaining case is when we have D2 = ∃Y and either γ1

D1v¬∃Y −•−−−−−−−−→ γ2 or

γ1
∃X−v¬∃Y −•−−−−−−−−−−→ γ2 (where D1 = ∃X). In this case, we show that we can construct

a cause-conflict chain which satisfies conditions C1 and C3. To build the chain, first
let p0 . . . pk be the sequence of nodes on the path from the root to n1, excluding the
root. I.e. pk = n1 and p0 is the unique child of the root which is an ancestor of n1. For
each 1 ≤ i ≤ k, we let Ri be the cause-type associated with the node pi, and let vi be
the variable associated with it (i.e. Ri and vi are the third and fourth arguments of the
auxRewrite expression of pi). We can then set µi = Ri(a, vi) and Υi = ∃Ri v A.
Let χi be the selected disjunct of node pi’s associated formula. We set ρi equal to
the first conjunct of χi, and we use the inclusion Γi = ∃R−i v ¬Di, where Di is
the concept associated with disjunct χi. For the assertion λi, we choose any assertion

λi such that either ρi−1
DivE•−−−−−→ λi (or ρi−1

∃V −i vE•−−−−−−−→ λi if Di = ∃Vi) and

λi
Ev¬∃R−i•−−−−−−−−→ µi for some conceptE. We know such an assertion must exists because

of the way children of nodes are defined. Finally, for the end of the chain, we set λk+1 =
β2, µk+1 = σ1(T2(a, x1)), Σk+1 is either D1 v ¬∃Y − or ∃X− v ¬∃Y − (where
D1 = ∃X), and Ωk+1 =. Now we can instantiate the variables with individuals in any
way we like as long as we map distinct variables to distinct individuals and we ensure
ρk = γ1 is mapped to β1. It can be verified that we obtain in this manner a proper
cause-conflict chain. The conditions defining the children of a node ensure that ρi are
always chosen so as to not contradict ρj selected earlier on the path from the root (giving
forward consistency) and that we only allow as child nodes causes which are not already
contradicted by some previous ρj (ensuring forward minimality). Conditions C1 and
C3 are satisfied by construction. We have thus shown that there is a cause-conflict chain
satisfying C1 and C3 which starts with ∃R0 v A and ends with ∃T2 v A. Because of
the property Ordering, we must have ∃T2 < ∃R0. But this is a contradiction since it
implies that we would have already visited a node with associated cause σ2(T2(a, x2))
and added a conflict for it to B before beginning the path to n1, and a fortiori before
visiting the node n2.

E Proof of Theorem 5

Given a TBox T and a CQ q, we first compute (in the standard manner) a UCQ q′ =
q1 ∨ ... ∨ qn such that for all ABoxes A, we have 〈T ,A〉 |= q if and only if IA |= q′.



Then to each disjunct qi we add the conjunction of the negations of all atomic queries
which could contradict one of the atoms in the disjunct (e.g. if a disjunct containsA(x),
and the TBox entails A v ¬B, we will add ¬B(x) to the disjunct). This yields a new
first-order query q′′. We claim that q′′ is satisfied by an ABox A if and only if the
original CQ q is cautiously entailed from T ,A. For the first direction, suppose that q
is cautiously entailed from T ,A, and let Ar ⊆ A denote the intersection of the repairs
of A w.r.t. T . Then since 〈T ,Ar〉 |= q, we must also have IAr |= q′. There must thus
be a disjunct δ of q′ which is satisfied by Ar, and so we can find a match π for δ in
IAr . Now let δ∗ be the disjunct of q′′ which was obtained from δ. We claim that π is a
match for δ∗ in IA, and hence that IA |= q′′. First note that each conjunct of δ∗ which
also appears in δ is a positive atom α(v) for which we know α(π(v)) holds in IAr . As
Ar ⊆ A, the assertion α(π(v)) must also hold in IA. Consider next a new conjunct of
δ∗, which must be of one of the following forms: ¬A(x), ¬∃y S(x, y), or ¬∃y S(y, x).
Suppose for a contradiction that a conjunct ¬∃y S(x, y) is not satisfied. Then there
must exist an individual c such that S(π(x), c) appears in IA. But we know from the
construction of q′′ that the assertion S(π(x), c) conflicts with assertion α(π(v)) for
some atom α(v) ∈ δ. It follows that α(π(v)) does not appear in IAr , contradicting our
earlier assumption to the contrary. The argument is analogous for the two other types of
new conjuncts.

For the second direction, suppose that IA |= q′′, and let π be a match which makes
some disjunct δ∗ of q′′ hold true. Consider some atom α(v) which is a conjunct of
δ∗ and the corresponding disjunct δ in q′. We know that α(π(v)) holds in IA, and
we wish to show that α(π(v)) holds also in IAr . Suppose this is not the case. Then
the maximality of Ar implies that there must be some assertion in A which conflicts
with α(π(v)) given T . By construction, such an assertion must conflict with one of the
negative conjuncts of δ∗, but this contradicts the fact that π is a match which makes δ∗

hold in IA. Thus, it must be the case that π makes all conjuncts of δ hold in IAr , and
so 〈T ,Ar〉 |= q, hence 〈T ,A〉 |=caut q.


