
Inconsistency-tolerant Conjunctive Query
Answering for Simple Ontologies

Meghyn Bienvenu

LRI - CNRS & Université Paris-Sud, France
www.lri.fr/∼meghyn/ meghyn@lri.fr

1 Introduction

In recent years, there has been growing interest in using description logic (DL)
ontologies to query instance data. An important issue which arises in this setting
is how to handle the case in which the data (ABox) is inconsistent with the
ontology (TBox). Ideally, one would like to restore consistency by identifying and
correcting the errors in the data (using e.g. techniques for debugging or revising
DL knowledge bases, cf. [1]). However, such an approach requires the ability to
modify the data and the necessary domain knowledge to determine which part
of the data is erroneous. When these conditions are not met (e.g. in information
integration applications), an alternative is to adopt an inconsistency-tolerant
semantics in order to obtain reasonable answers despite the inconsistencies.

The related problem of querying databases which violate integrity constraints
has long been studied in the database community (cf. [2] and the survey [3]),
under the name of consistent query answering. The semantics is based upon the
notion of a repair, which is a database which satisfies the integrity constraints
and is as similar as possible to the original database. Consistent query answering
corresponds to evaluating the query in each of the repairs, and then intersecting
the results. This semantics is easily adapted to the setting of ontology-based data
access, by defining repairs as the inclusion-maximal subsets of the data which
are consistent with the ontology.

Consistent query answering for the DL-Lite family of lightweight DLs was
investigated in [4, 5]. The obtained complexity results are rather disheartening:
the problem was shown in [4] to be co-NP-hard in data complexity, even for
instance queries; this contrasts sharply with the very low AC0 data complexity for
(plain) conjunctive query answering in DL-Lite. Similarly discouraging results
were recently obtained in [6] for another prominent lightweight DL EL⊥ [7]. In
fact, we will see in Example 1 that if we consider conjunctive queries, only a single
concept disjointness axiom is required to obtain co-NP-hard data complexity.

In the database community, negative complexity results spurred a line of re-
search [8–10] aimed at identifying cases where consistent query answering is fea-
sible, and in particular, can be done using first-order query rewriting techniques.
The idea is to use targeted polynomial-time procedures whenever possible, and to
reserve generic methods with worst-case exponential behavior for difficult cases
(see [9] for some experimental results supporting such an approach). A similar in-
vestigation for DL-Lite ontologies was initiated in [11], where general conditions

were identified for proving either first-order expressibility or coNP-hardness of
consistent query answering for a given TBox and instance query.

The main objective of the present work is to gain a better understanding
of what makes consistent conjunctive query answering in the presence of on-
tologies so difficult. To this end, we conduct a fine-grained complexity analysis
which aims to characterize the complexity of consistent query answering based
on the properties of the ontology and the conjunctive query. We focus on sim-
ple ontologies, consisting of class subsumption (A1 v A2) and class disjointness
(A1 v ¬A2) axioms, since the problem is already far from trivial for this case. We
identify the number of quantified variables in the query as an important factor in
determining the complexity of consistent query answering. Specifically, we show
that consistent query answering is always first-order expressible for conjunctive
queries with at most one quantified variable; the problem has polynomial data
complexity (but is not necessarily first-order expressible) when there are two
quantified variables; and it may become coNP-hard starting from three quan-
tified variables. For queries having at most two quantified variables, we further
identify a necessary and sufficient condition for first-order expressibility.

To obtain positive results for arbitrary conjunctive queries, we propose a
novel inconsistency-tolerant semantics which is a sound approximation of the
consistent query answering semantics (and a finer approximation than the ap-
proximate semantics proposed in [4]). We show that under this semantics, first-
order expressibility of consistent query answering is guaranteed for all conjunc-
tive queries. Finally, in order to treat more expressive ontologies, and to demon-
strate the applicability of our techniques, we show how our positive results can
be extended to handle DL-Litecore ontologies without inverse roles.

Full proofs can be found in a long version available on the author’s website.

2 Preliminaries

Syntax. All the ontology languages considered in this paper are fragments of
DL-Litecore [12, 13]. We recall that DL-Litecore knowledge bases (KBs) are built
up from a set NI of individuals, a set NC of atomic concepts, and a set NR of atomic
roles. Complex concept and role expressions are constructed as follows:

B → A | ∃P C → B | ¬B P → R | R−

where A ∈ NC and R ∈ NR. A TBox is a finite set of inclusions of the form
B v C (B,C as above). An ABox is a finite set of (ABox) assertions of the
form A(a) (A ∈ NC) or R(a, b) (R ∈ NR), where a, b ∈ NI. We use Ind(A) to
denote the set of individuals in A. A KB consists of a TBox and an ABox.

Semantics An interpretation is I = (∆I , ·I), where ∆I is a non-empty set and
·I maps each a ∈ NI to aI ∈ ∆I , each A ∈ NC to AI ⊆ ∆I , and each P ∈ NR

to P I ⊆ ∆I × ∆I . The function ·I is straightforwardly extended to general
concepts and roles, e.g. (¬A)I = ∆I \ AI and (∃S)I = {c | ∃d : (c, d) ∈ SI}.
I satisfies G v H if GI ⊆ HI ; it satisfies A(a) (resp. P (a, b)) if aI ∈ AI

(resp. (aI , bI) ∈ P I). We write I |= α if I satisfies inclusion/assertion α. An
interpretation I is a model of K = (T ,A) if I satisfies all inclusions in T and
assertions in A. We say a KB K is consistent if it has a model, and that K entails
an inclusion/assertion α, written K |= α, if every model of K is a model of α.

In what follows, it will prove useful to extend the notions of satisfaction and
entailment to sets of concepts. We will say that a set of concepts {C1, . . . , Cn}
is consistent w.r.t. a TBox T if there exists a model I of T and an element
e ∈ ∆I such that e ∈ Ci for every 1 ≤ i ≤ n. Entailment of a concept from a set
of concepts is defined in the obvious way: T |= S v D if and only if for every
model I of T , we have ∩C∈SCI ⊆ DI .

Queries A (first-order) query is a formula of first-order logic with equality,
whose atoms are of the form A(t) (A ∈ NC), R(t, t′) (R ∈ NR), or t = t′ with t, t′

terms, i.e., variables or individuals. Conjunctive queries (CQs) have the form
∃y ψ, where y denotes a tuple of variables, and ψ is a conjunction of atoms
of the forms A(t) or R(t, t′). Instance queries are queries consisting of a single
atom with no variables (i.e. ABox assertions). Free variables in queries are called
answer variables, whereas bound variables are called quantified variables. We use
terms(q) to denote the set of terms appearing in a query q.

A Boolean query is a query with no answer variables. For a Boolean query q,
we write I |= q when q holds in the interpretation I, and K |= q when I |= q for
all models I of K. For a non-Boolean query q with answer variables v1, . . . , vk,
a tuple of individuals (a1, . . . , ak) is said to be a certain answer for q w.r.t.
K just in the case that K |= q[a1, . . . , ak], where q[a1, . . . , ak] is the Boolean
query obtained by replacing each vi by ai. Thus, conjunctive query answering is
straightforwardly reduced to entailment of Boolean CQs.

First-order rewritability It is shown in [12] that for every DL-Litecore TBox
T and CQ q, one can construct a first-order query q′ such that for every ABox
A and tuple a: T ,A |= q[a]⇔ IA |= q′[a], where IA denotes the interpretation
with domain Ind(A) that makes true precisely the assertions in A.

3 Consistent query answering for description logics

In this section, we formally recall the consistent query answering semantics,
present some simple examples which illustrate the difficulty of the problem, and
introduce the main problem which will be studied in this paper. For readability,
we will formulate our definitions and results in terms of Boolean CQs, but they
can be straightforwardly extended to general CQs.

The key notion underlying consistent query answering semantics is that of a
repair of an ABox A, which is an ABox which is consistent with the TBox and
as similar as possible to A. In this paper, we follow common practice and use
subset inclusion to compare ABoxes.

Definition 1. A repair of a DL ABox A w.r.t. a TBox T is an inclusion-
maximal subset B of A consistent with T . We use RepT (A) to denote the set of
repairs of A w.r.t. T .

Consistent query answering can be seen as performing standard query an-
swering on each of the repairs and intersecting the answers. For Boolean queries,
the formal definition is as follows:

Definition 2. A query q is said to be consistently entailed from a DL KB
(T ,A), written T ,A |=cons q, if T ,B |= q for every repair B ∈ RepT (A).

Just as with standard query entailment, we can ask whether consistent query
entailment can be tested by rewriting the query and evaluating it over the data.

Definition 3. A first-order query q′ is a consistent rewriting of a Boolean query
q w.r.t. a TBox T if for every ABox A, we have T ,A |=cons q iff IA |= q′.

As mentioned in Section 1, it was shown in [4] that consistent query answering
in DL-Litecore is co-NP-hard in data complexity, even for instance queries. which
means in particular that consistent rewritings need not exist. All known reduc-
tions make crucial use of inverse roles, and indeed, we will show in Section 7 that
consistent instance checking is first-order expressible for DL-Litecoreontologies
without inverse. However, in the case of conjunctive queries, the absence of in-
verses does not guarantee tractability. Indeed, the next example shows that only
a single concept disjointness axiom can yield coNP-hardness.

Example 1. We use a variant of UNSAT, called 2+2UNSAT, proved coNP-hard
in [14], in which each clause has 2 positive and 2 negative literals, where literals
involve either regular variables or the truth constants true and false. Consider
an instance ϕ = c1 ∧ . . . ∧ cm of 2+2-UNSAT over v1, . . . , vk, true, and false.
Let T = {T v ¬F}, and define A as follows:

{P1(ci, u), P2(ci, x), N1(ci, y), N2(ci, z) | ci = u ∨ x ∨ ¬y ∨ ¬z, 1 ≤ i ≤ m}
∪ {T (vj), F (vj) | 1 ≤ j ≤ k } ∪ {T (true), F (false)}

Then one can show that ϕ is unsatisfiable just in the case that (T ,A) consistently
entails the following query:

∃xy1...y4P1(x, y1)∧F (y1)∧P2(x, y2)∧F (y2)∧N1(x, y3)∧T (y3)∧N2(x, y4)∧T (y4)

Essentially, T v ¬F forces the choice of a truth value for each variable, so the
repairs of A correspond exactly to the set of valuations. Importantly, there is
only one way to avoid satisfying a 2+2-clause: the first two variables must be
assigned false and the last two variables must be assigned true. The existence of
such a configuration is checked by q.

We remark that the query in the preceding reduction does not have a particularly
complicated structure (in particular, it is tree-shaped). Its only notable property
is that it has several quantified variables.

In this paper, we aim to gain a better understanding of what makes consistent
conjunctive query answering so difficult (and conversely, what can make it easy).
To this end, we will consider the following decision problem:

ConsEnt(q, T): Is A such that T ,A |=cons q?

and we will try to characterize its complexity in terms of the properties of the
pair (q, T). We will in particular investigate the impact of limiting the number
of quantified variables in the query q.

In the next three sections, we focus on simple ontologies, consisting of inclu-
sions of the forms A1 v A2 and A1 v ¬A2 where A1, A2 ∈ NC. As Example 1
demonstrates, the problem is already non-trivial in this case. All obtained lower
bounds transfer to richer ontologies, and we will show in Section 7 that positive
results can also be extended to DL-Litecore ontologies without inverse roles.

4 Tractability for queries with at most two quantified
variables

In this section, we investigate the complexity of consistent query answering in the
presence of simple ontologies for CQs having at most two quantified variables.
We show this problem has tractable data complexity, and we provide necessary
and sufficient conditions for FO-expressibility.

We begin with queries with at most one quantified variable, showing that a
consistent rewriting always exists.

Theorem 1. Let T be a simple ontology, and let q be a Boolean CQ with at
most one quantified variable. Then ConsEnt(q, T) is first-order expressible.

Proof (Sketch). We show how to construct the desired consistent rewriting of q
in the case where q has a single quantified variable x. First, for each t ∈ terms(q),
we set Ct = {A | A(t) ∈ q}, and we let Σt be the set of all S ⊆ NC such that every
maximal subset U ⊆ S consistent with T is such that T |= U v Ct. Intuitively,
Σt defines the possible circumstances under which the conjunction of concepts
in Ct is consistently entailed. We can express this condition with the first-order
formula ψt:

ψt =
∨
S∈Σt

(
∧
A∈S

A(t) ∧
∧

A∈NC\S

¬A(t))

Now using the ψt, we construct q′:

q′ = ∃x
∧

R(t,t′)∈q

R(t, t′) ∧
∧

t∈terms(q)

ψt

It can be shown that q′ is indeed a consistent rewriting of q w.r.t. T . To see
why this is so, it is helpful to remark that the repairs of (T ,A) contain precisely
the role assertions in A, together with a maximal subset of concept assertions
consistent with T for each individual.

The next example shows that Theorem 1 cannot be extended to the class of
queries with two quantified variables.

. . .A A

B

A A A A

BBB B B

. . .A A

B

A A A A

BBB B BB

A

A1

. . .A A

B

A A A A

BBB B B

. . .A A

B

A A A A

BBB B BB

A

A2

Fig. 1: ABoxes for Example 2. Arrows indicate the role R, and each of the four
R-chains has length exceeding 2k.

Example 2. Consider q = ∃xy A(x)∧R(x, y)∧B(y) and T = {A v ¬B}. Suppose
for a contradiction that q′ is a consistent rewriting of q w.r.t. T , and let k be the
quantifier rank of q′. In Figure 1, we give two ABoxes A1 and A2, each consisting
of two R-chains of length > 2k. It can be verified that q is consistently entailed
from T ,A1. This is because in every repair, the upper chain will have A at one
end, B at the other, and either an A or B at all interior points; every such
configuration makes q true somewhere along the chain. On the other hand, we
can construct a repair for T ,A2 which does not entail q by always preferring A
on the top chain and B on the bottom chain. It follows that the interpretation
IA1 satisfies q′, whereas IA2 does not. However, one can show using standard
tools from finite model theory (cf. Ch. 3-4 of [15]) that no formula of quantifier
rank k can distinguish IA1 and IA2 , yielding the desired contradiction.

We can generalize the preceding example to obtain sufficient conditions for
the inexistence of a consistent rewriting.

Theorem 2. Let T be a simple ontology, and let q be a Boolean CQ with two
quantified variables x, y. Assume that there do not exist CQs q1 and q2, each with
less than two quantified variables, such that q ≡ q1∧q2. Denote by Cx (resp. Cy)
the set of concepts A such that A(x) ∈ q (resp. A(y) ∈ q). Then ConsEnt(q, T)
is not first-order expressible if there exists S ⊆ NC such that:

- for v ∈ {x, y}, there is a maximal subset Dv ⊆ S consistent with T s.t.
T 6|= Dv v Cv

- for every maximal subset D ⊆ S consistent with T , either T |= D v Cx or
T |= D v Cy

Proof (Sketch). The proof generalizes the argument outlined in Example 2. In-
stead of having a single role connecting successive elements in the chains, we
establish the required relational structure for each pair of successive points. We
then substitute the set Dy for A, the set Dx for B, and the set S for {A,B}.
The properties of S ensure that if S is asserted at some individual, then we can
block the satisfaction of Cx using Dy, and we can block Cy using Dx, but we
can never simultaneously block both Cx and Cy. The assumption that q cannot
be rewritten as a conjunction of queries with less than two quantified variables
is used in the proof of T ,A2 6|=cons q to show that the only possible matches
of q involve successive chain elements (and not constants from the query). To
show IA1 and IA2 cannot be distinguished, we use Ehrenfeucht-Fräıssé games,

rather than Hanf locality, since the latter is inapplicable when there is a role
atom containing a constant and a quantified variable.

The following theorem shows that whenever the conditions of Theorem 2 are
not met, a consistent rewriting exists.

Theorem 3. Let T be a simple ontology, and let q be a Boolean CQ with two
quantified variables x, y. Then ConsEnt(q, T) is first-order expressible if q is
equivalent to a CQ with at most one quantified variable, or if there is no set S
satisfying the conditions of Theorem 2.

Proof (Sketch). When q is equivalent to a query q′ with at most one quantified
variable, then Theorem 1 yields a consistent rewriting of q′, and hence of q.
Thus, the interesting case is when there is no such equivalent query, nor any set
S satisfying the conditions of Theorem 2. Intuitively, the inexistence of such a
set S ensures that if at some individual, one can block Cx, and one can block Cy,
then it is possible to simultaneously block Cx and Cy (compare this to Example
2 in which blocking A causes B to hold, and vice-versa). This property is key,
as it allows different potential query matches to be treated independently.

Together, Theorems 2 and 3 provide a necessary and sufficient condition for
the existence of a consistent rewriting. We now reconsider T and q from Example
2 and outline a polynomial-time method for solving ConsEnt(q, T).

Example 3. Suppose we have an ABox A, and we wish to decide if T ,A |=cons q,
for T = {A v ¬B} and q = ∃xy A(x)∧R(x, y)∧B(y). The basic idea is to try to
construct a repair which does not entail q. We start by iteratively applying the
following rules until neither rule is applicable: (1) if R(a, b), A(a), B(a), B(b) ∈ A
but A(b) 6∈ A, then delete A(a) from A, and (2) if R(a, b), A(a), A(b), B(b) ∈ A
but B(a) 6∈ A, then delete B(b). Note that since the size of A decreases with
every rule application, we will stop after a polynomial number of iterations.
Once finished, we check whether there are a, b such that A(a), R(a, b), B(b) ∈ A,
B(a) 6∈ A, and A(b) 6∈ A. If so, we return ‘yes’ (to indicate T ,A |=cons q), and
otherwise, we output no’ (for T ,A 6|=cons q). Note that in the latter case, for all
pairs a, b with A(a), R(a, b), B(b) ∈ A, we have both B(a) and A(b). Thus, we
can choose to always keep A, thereby blocking all remaining potential matches.

By carefully generalizing the ideas outlined in Example 3, we obtain a tractabil-
ity result which covers all queries having at most two quantified variables.

Theorem 4. Let T be a simple ontology, and let q be a CQ with at most 2
quantified variables. Then ConsEnt(q, T) is polynomial in data complexity.

5 An improved coNP lower bound

The objective of this section is to show that the tractability result we obtained
for queries with at most two quantified variables cannot be extended further

B

AC

BC

C

B

AC

AC
AC

BC
vi c2

� c3
�

a� b�

d�

e�

vj
vk

Fig. 2: Abox Ac`
for clause c` = ¬vi ∨ ¬vj ∨ ¬vk.

to the class of conjunctive queries with three quantified variables. We will do
this by establishing coNP-hardness for a specific conjunctive query with three
quantified variables, thereby improving the lower bound sketched in Example 1.
Specifically, we will reduce 3SAT to ConsEnt(q, T) where:

T = {A v ¬B,A v ¬C,B v ¬C}
q = ∃x, y, z A(x) ∧R(x, y) ∧B(y) ∧R(y, z) ∧ C(z).

The first component of the reduction is a mechanism for choosing truth values
for the variables. For this, we create an ABox Avi

= {A(vi), C(vi)} for each
variable vi. It is easy to see that there are two repairs for Avi

w.r.t. T : {A(vi)}
and {C(vi)}. We will interpret the choice of A(vi) as assigning true to vi, and
the presence of C(vi) to mean that vi is false.

Next we need some way of verifying whether a clause is satisfied by the
valuation associated with a repair of ∪iAvi

. To this end, we create an ABox Ac`

for each clause c`; the ABox Aϕ encoding ϕ will then simply be the union of the
ABoxes Avi

and Ac`
. The precise definition of the ABox Ac`

is a bit delicate
and depends on the polarity of the literals in c`. Figure 2 presents a pictorial
representation of Ac`

for the case where c` = ¬vi ∨ ¬vj ∨ ¬vk (the ABoxes Avi ,
Avj , and Avk

are also displayed).
Let us now see how the ABox Ac`

pictured in Figure 2 can be used to test
the satisfaction of c`. First suppose that we have a repair B of Aϕ which contains
A(vi), A(vj), and A(vk), i.e. the valuation associated with the repair does not
satisfy c`. We claim that this implies that q holds. Suppose for a contradiction
that q is not entailed from T ,B. We first note that by maximality of repairs, B
must contain all of the assertions A(vj), R(vj , a`), B(a`), and R(a`, c2`). It follows
that including C(c2`) in B would cause q to hold, which means we must choose to
include B(c2`) instead. Using similar reasoning, we can see that in order to avoid
satisfying q, we must have C(d`) in B rather than B(d`), which in turn forces us
to select C(c3`) to block A(c3`). However, this is a contradiction, since we have
identified a match for q in B with x = vi, y = c2` , z = c3` . The above argument
(once extended to the other possible forms of Ac`

) is the key to showing that
the unsatisfiability of ϕ implies T ,Aϕ |= q.

Conversely, it can be proven that if one of c`’s literals is made true by the
valuation, then it is possible to repair Ac`

in such a way that a match for q
is avoided. For example, consider again Ac`

from Figure 2, and suppose that

the second literal vj is satisfied. It follows that C(vj) ∈ B, hence A(vj) 6∈ B,
which means we can keep C(c2`) rather than B(c2`), thereby blocking the match
at (vi, c2` , c

3
`). By showing this property holds for the different forms of Ac`

,
and by further arguing that we can combine “q-avoiding” repairs of the Ac`

without inducing a match for q, we can prove that the satisfiability of ϕ implies
T ,Aϕ 6|= q. We thus have:

Theorem 5. ConsEnt(q, T) is coNP-hard in data complexity for T = {A v
¬B,A v ¬C,B v ¬C} and q = ∃x, y, z A(x) ∧R(x, y) ∧B(y) ∧R(y, z) ∧ C(z).

6 Tractability through approximation

The positive results from Section 4 give us a polynomial algorithm for consistent
query answering in the presence of simple ontologies, but only for CQs with
at most two quantified variables. In order to be able to handle all queries, we
explore in this section alternative inconsistency-tolerant semantics which are
sound approximations of the consistent query answering semantics.

One option is to adopt the IAR semantics from [4]. We recall that this se-
mantics (denoted by |=IAR) can be seen as evaluating queries against the ABox
corresponding to the intersection of the repairs. Conjunctive query answering
under IAR semantics was shown in [5] tractable for general CQs in the presence
of DL-Lite ontologies (and a fortiori simple ontologies) using query rewriting.

To obtain a finer approximation of the consistent query answering semantics,
we propose a new inconsistency-tolerant semantics which corresponds to clos-
ing repairs with respect to the TBox before intersecting them. In the following
definition, we use clT (B) to denote the set of assertions entailed from T ,B.

Definition 4. A Boolean query q is said to be entailed from (T ,A) under ICR
semantics (“intersection of closed repairs”), written T ,A |=ICR q, if T ,D |= q,
where D =

⋂
B∈RepT (A) clT (B).

The following theorem, which is easy to prove, establishes the relationship
among the three semantics.

Theorem 6. For every Boolean CQ q and TBox T :

T ,A |=IAR q ⇒ T ,A |=ICR q ⇒ T ,A |=cons q

The reverse implications do not hold.

The next example illustrates the difference between IAR and ICR semantics:

Example 4. Let T = {A v C,B v C,A v ¬B} and A = {A(a), B(a)}. Then
C(a) is entailed from (T ,A) under ICR semantics, but not under IAR semantics.

Finally, we show that under ICR semantics, we can answer any conjunctive
query in polynomial time using query rewriting.

Theorem 7. Let T be a simple ontology and q a Boolean CQ. Then there exists
a first-order query q′ such that for every ABox A: T ,A |=ICR q iff IA |= q′.

Proof (Sketch). We first compute, using standard techniques, a union of conjunc-
tive queries ϕ such that for every A, we have T ,A |= q if and only if IA |= ϕ.
Next we use Theorem 1 to find a consistent rewriting ψA(t) of each concept atom
A(t) ∈ ϕ, and we let q′ be the first-order query obtained by replacing each oc-
currence of A(t) in ϕ by ψA(t). It can be shown that the query q′ is such that
T ,A |=ICR q if and only if IA |= q′.

7 Extension to inverse-free DL-Litecore

In this section, we show how the techniques we developed for simple ontologies
can be used to extend our positive results to DL-Litecore ontologies which do
not contain inverse roles (we will use DL-Liteno− to refer to this logic).

Our first result shows that the analogues of Theorems 1 and 4 hold for
DL-Liteno− ontologies. The main technical difficulty in adapting the proofs of
Theorems 1 and 4 is that role assertions may now be contradicted, which means
repairs need not have the same set of role assertions as the original ABox.

Theorem 8. Consider a DL-Liteno− ontology T , and a Boolean CQ q with
at most two quantified variables. Then ConsEnt(q, T) is polynomial in data
complexity, and first-order expressible if there is at most one quantified variable.

We can also extend the general first-order expressibility result for the new
ICR semantics (Theorem 7) to the class of DL-Liteno− ontologies.

Theorem 9. Let T be a DL-Liteno− ontology, and let q be a Boolean CQ. Then
there exists a first-order query q′ such that for every ABox A: T ,A |=ICR q if
and only if IA |= q′.

As noted earlier, consistent query answering in (full) DL-Litecore is coNP-
hard in data complexity even for instance queries, which means that neither of
the preceding theorems can be extended to the class of DL-Litecore ontologies.

8 Conclusion and Future Work

The detailed complexity analysis we conducted for consistent query answering
in the presence of simple ontologies provides further insight into the negative
complexity results obtained in [4, 6], by making clear how little is needed to ob-
tain first-order inexpressibility or intractability. Our investigation also yielded
some positive results, including the identification of novel tractable cases, such
as inverse-free DL-Litecore ontologies coupled with CQs with at most two quan-
tified variables (or coupled with arbitary CQs, under the new ICR semantics).

There are several natural directions for future work. First, it would be in-
teresting to explore how far we can push our positive results. We expect that

adding Horn inclusions and positive role inclusions should be unproblematic, but
role disjointness axioms will be more challenging. In order to handle functional
roles, we might try to combine our positive results with those which have been
obtained for relational databases under functional dependencies [10]. It would
also be interesting to try to build upon the results in this paper in order to
obtain a criterion for first-order expressibility (or tractability) which applies to
all conjunctive queries, regardless of the number of quantified variables.

Finally, we view the present work as a useful starting point in the develop-
ment of sound but incomplete consistent query answering algorithms for popular
lightweight DLs like (full) DL-Litecore and EL⊥. For example, our results could
be extended to identify some CQ-TBox pairs in these richer logics for which
consistent query answering is tractable. Another idea is to use the new ICR
semantics to lift tractability results for IQs (like those in [11]) to classes of CQs.

References

1. Nikitina, N., Rudolph, S., Glimm, B.: Reasoning-supported interactive revision of
knowledge bases. In: Proc. of IJCAI. (2011) 1027–1032

2. Arenas, M., Bertossi, L.E., Chomicki, J.: Consistent query answers in inconsistent
databases. In: Proc. of PODS, ACM Press (1999) 68–79

3. Chomicki, J.: Consistent query answering: Five easy pieces. In: Proc. of ICDT.
(2007) 1–17

4. Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Inconsistency-tolerant
semantics for description logics. In: Proc. of RR. (2010) 103–117

5. Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Query rewriting for
inconsistent DL-Lite ontologies. In: Proc. of RR. (2011) 155–169

6. Rosati, R.: On the complexity of dealing with inconsistency in description logic
ontologies. In: Proc. of IJCAI. (2011) 1057–1062

7. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Proc. of IJCAI.
(2005) 364–369

8. Fuxman, A., Miller, R.J.: First-order query rewriting for inconsistent databases.
In: Proc. of ICDT. (2005) 337–351

9. Grieco, L., Lembo, D., Rosati, R., Ruzzi, M.: Consistent query answering under
key and exclusion dependencies: algorithms and experiments. In: Proc. of CIKM.
(2005) 792–799

10. Wijsen, J.: On the first-order expressibility of computing certain answers to con-
junctive queries over uncertain databases. In: Proc. of PODS. (2010) 179–190

11. Bienvenu, M.: First-order expressibility results for queries over inconsistent DL-
Lite knowledge bases. In: Proc. of DL. (2011)

12. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
Journal of Automated Reasoning 39(3) (2007) 385–429

13. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite family
and relations. Journal of Artificial Intelligence Research 36 (2009) 1–69

14. Donini, F.M., Lenzerini, M., Nardi, D., Schaerf, A.: Deduction in concept lan-
guages: From subsumption to instance checking. Journal of Logic and Computation
4(4) (1994) 423–452

15. Libkin, L.: Elements of Finite Model Theory. Springer (2004)

A Omitted Proofs

Theorem 1

Proof. Let T and q be as stated in the theorem. To simplify the presentation, we
assume that q does have a quantified variable, call it x. The proof is similar (but
a bit simpler) if there are no quantified variables in q. We first build a formula
for each term in q. For t ∈ terms(q), we set Ct = {A | A(t) ∈ q}, and we define
Σt as the set of all S ⊆ NC such that every maximal subset U ⊆ S consistent
with T satisfies T |= U v Ct. We can then use Σt to define the formula ψt:

ψt =
∨
S∈Σt

(
∧
A∈S

A(t) ∧
∧

A∈NC\S

¬A(t))

Using the ψt, we construct q′:

q′ = ∃x
∧

R(t,t′)∈q

R(t, t′) ∧
∧

t∈terms(q)

ψt

Our aim is to show that q′ is indeed a consistent rewriting of q w.r.t. T , and
hence that ConsEnt(q, T) is first-order expressible.

For the first direction, take some ABox A with IA |= q′. Then there must
exist an individual a from A which, when substituted for x in q′, makes all atoms
in q′ hold in IA. Let q′a (resp. qa) be the ground query obtained by substituting
a for x in q′ (resp. q). Consider some repair B of A w.r.t. T . Because T is a
simple ontology, there is no way of contradicting a role assertion, and hence B
must contain the same role assertions as A. As IA |= q′a, it follows that all role
atoms in q′a belong to A, and hence also to B. As qa and q′a have the same role
atoms, it follows that all role atoms in qa appear in B. Now we wish to show that
the concept atoms in qa are entailed from (T ,B). Since IA |= q′a, we know that
for every individual name c in q′, the set {B | B(c) ∈ A} belongs to Σc, which
means that every maximal subset U ⊆ {B | B(c) ∈ A} consistent with T is such
that T |= U v Cc. For the same reason, we know the set {B | B(a) ∈ A} belongs
to Σx, which means every maximal subset U ⊆ {B | B(a) ∈ A} consistent with
T is such that T |= U v Cx. To complete the argument, we note that because
B is a repair, and T does not contain any roles, for each individual b, the set
Sb = {B | B(b) ∈ B} must be a maximal subset of {B | B(b) ∈ A} consistent
with T . From this, we can conclude that all concept atoms in qa are entailed
from (T ,B). It follows that qa, hence q, is consistently entailed from (T ,A).

For the second direction, suppose that IA 6|= q′. We first consider the case
where IA 6|= ψc for some individual c in q′. If this is the case, then we can find a
maximal subset Sc of {B | B(c) ∈ A} consistent with T such that T 6|= Sc v Cc.
We then let B be any repair such that {B(c) | B ∈ Sc} ⊆ B (such a repair
must exist since Sc is consistent with T). It is easy to see that T ,B 6|= B(c) for
some B ∈ Cc, which yields T ,B 6|= q. Next suppose instead that IA |= ψc for
every individual c in q′. As IA 6|= q′, for every individual a, we have IA 6|= q′a

(where as above, q′a denotes q′ with a substituted for x). That means that for
each individual a, either IA 6|= αa for some role atom αa ∈ q′a, or IA 6|= ψx,a,
where ψx,a denotes the formula ψx with x replaced by a. In the latter case, we
can find a maximal subset Sa of {B | B(a) ∈ A} consistent with T such that
T 6|= Sa v Cx. We create a repair B consisting of:

- all role assertions in A
- for each a such that IA 6|= ϕx,a: the assertions {B(a) | B ∈ Sa}
- for all other individuals a from A, any maximal subset of {B(a) | B(a) ∈ A}

consistent with T

By construction, the set B is a maximal subset of A consistent with T . We wish
to show that T ,B 6|= q. Consider the following interpretation I defined as follows:

- ∆I is the set of individuals from B
- aI = a, for each individual a from B
- AI = {d | T ,B |= A(d)}
- RI = {(d, e) | R(d, e) ∈ B}

Clearly I is a model of T ,B. We need to show that I 6|= qa for every individual
a. First suppose that a is such that IA 6|= αa for some role atom αa ∈ q′a.
Then since qa and q′a have the same role atoms, and A and B agree on role
assertions, it follows that αa 6∈ B, hence I 6|= qa. Now consider the other case in
which IA 6|= ψx,a. Then since Sa is the set of concepts asserted at a in B, and
T 6|= Sa v Cx, it follows that there is an atom B(a) ∈ qa such that a 6∈ BI ,
hence I 6|= qa. We have thus shown that T ,B 6|= q. As a result, we obtain the
desired T ,A 6|=cons q. ut
Theorem 2

Proof. Let T , q, Cx, and Cy be as in the statement of the theorem. Suppose
that S ⊆ NC is such that:

- for v ∈ {x, y}, there is a maximal subset Dv ⊆ S consistent with T s.t.
T 6|= Dv v Cv

- for every maximal subset D ⊆ S consistent with T , either T |= D v Cx or
T |= D v Cy

Further assume, for a contradiction, that q′ is a consistent rewriting of q w.r.t.
T . Let k be the quantifier rank of q′, and fix m = 2k + 2. Let c1, . . . , cn be the
individuals appearing in q. We wish to create two ABoxes A1 and A2 such that
T ,A1 |= q and T ,A2 |= q. The ABoxes will use fresh individuals a1, . . . , am and
b1, . . . , bm. They will both have the following role assertions:

- {R(ci, cj) | R(ci, cj) ∈ q}
- {R(ci, aj), R(ci, bj) | R(ci, x) ∈ q, 1 ≤ j < m}
- {R(aj , ci), R(bj , ci) | R(x, ci) ∈ q, 1 ≤ j < m}
- {R(ci, aj), R(ci, bj) | R(ci, y) ∈ q, 1 < j ≤ m}
- {R(aj , ci), R(bj , ci) | R(y, ci) ∈ q, 1 < j ≤ m}

- {R(ai, ai)R(bi, bi) | R(x, x) ∈ q, 1 ≤ j < m}
- {R(ai, ai)R(bi, bi) | R(y, y) ∈ q, 1 < j ≤ m}
- {R(aj , aj+1), R(bj , bj+1) | R(x, y) ∈ q, 1 ≤ j < m}
- {R(aj+1, aj), R(bj+1, bj) | R(y, x) ∈ q, 1 ≤ j < m}

The ABox A1 contains the following concept assertions:

- {A(ci) | A(ci) ∈ q}
- {A(a1) | A ∈ Dy}
- {A(am) | A ∈ Dx}
- {A(ai) | A ∈ S, 1 < i < m}
- {A(bi) | A ∈ S, 1 ≤ i ≤ m}

The ABox A2 contains the concept assertions:

- {A(ci) | A(ci) ∈ q}
- {A(a1) | A ∈ Dy}
- {A(ai) | A ∈ S, 1 < i ≤ m}
- {A(bi) | A ∈ S, 1 ≤ i < m}
- {A(bm) | A ∈ Dx}

We need to show that (a) IA1 and IA2 are indistinguishable by all first-order
formulas of quantifier rank at most k, (b) IA1 |= q′, and and (c) IA2 |= q′.

We start by showing IA1 and IA2 to be indistinguishable. For this, we will
use the technique of Ehrenfeucht-Fräıssé games (cf. Chapter 3 of [15] for an
introduction). We need to show how Duplicator can win the k-round game on
the pair of first-order structures IA1 and IA2 . More specifically, we will show
that Duplicator can play in such a way as to satisfy the following property (?)
after each round i.

Let d = (d−n−1, d0, d1, d2, . . . , di) be the vector composed of c1, . . . , cn, a1, am
followed by the sequence of i points played so far in IA1 , and let e =
(e−n−1, e0, e1, e2, . . . , ei) be the vector starting by c1, . . . , cn, a1, bm and
finishing with the i points played so far in IA2 . Then we have the fol-
lowing:
1. if d` ∈ {aj , bj}, then e` ∈ {aj , bj}
2. letting ρ = max({j | d` ∈ {aj , bj}, d` 6= e`}) and λ = min({j | d` ∈
{aj , bj}, d` = e`}), we have ρ− λ > 2k−i

3. (d, e) define a partial isomorphism between IA1 and IA2

We will proceed by induction on i. The base case is when i = 0, i.e. the
game has not yet begun. In this case, we have d = (c1, . . . , cn, a1, am) and
e = (c1, . . . , cn, a1, bm). The first and third conditions clearly hold, and for the
second, we remark that λ = 1 and ρ = m, hence ρ− λ = m− 1 = 2k + 1 > 2k.

For the induction step, assume that Duplicator can play so as to satisfy the
property for the first i rounds, and we consider what happens in round i+1. For
simplicity, we will suppose that in round i+ 1 spoiler selects a point di+1 from
IA1 , but the proof is analogous if spoiler picks a point ei+1 from IA2 . There are
four cases:

Case 1: di+1 = d` for some −n− 1 ≤ ` ≤ i.
In this case, Duplicator responds with e`, and the property trivally holds for
round i+ 1.

Case 2: di+1 = aj and d` = bj for some −1 ≤ ` ≤ i (but di+1 6= d` for all
−n− 1 ≤ ` ≤ i).
Then Duplicator plays aj if d` = e` and otherwise plays bj . Clearly the
first part of the property is satisfied. For the second part, we note that Du-
plicator’s choice ensures that λ and ρ have the same values after rounds i
and i + 1, and by the induction hypothesis, we had ρ − λ > 2k−i following
round i. Hence, after round i + 1 we have ρ − λ > 2k−i > 2k−(i+1). The
proof of the third condition is long, so we give only the essential points.
We first need to show that di+1 ∈ AIA1 if and only if ei+1 ∈ AIA2 . If
di+1 = a1, then we have ei+1 = b1, and we are done, since {A | A(b1) ∈
A1} = {A | A(b1) ∈ A1} = S. If di+1 = am, then we have ei+1 = bm, and
{A | A(am) ∈ A1} = {A | A(bm) ∈ A1} = S. Finally, the other possibility is
that di+1 is equal to some aj with 1 < j < m. But then both di+1 and ei+1

will have the same set of asserted concepts, namely S. For roles, there are
several cases to consider, but they are all similar, so we will focus on just
one: (di+1, dj) ∈ RIA1 for some −n − 1 ≤ j ≤ i + 1. We need to show that
(ei+1, ej) ∈ RIA2 . If di+1 = a1, then we know that ei+1 = a1, and that dj is
either some constant cp, a1, or a2. Now it follows directly from the definition
of A1 and A2 that R(a1, cp) ∈ A1 if and only if R(a1, cp) ∈ A2 for every
constant cp. Similarly we have R(a1, a1) ∈ A1 if and only if R(a1, a1) ∈ A2.
Finally suppose that we have dj = a2, and so R(a1, a2) ∈ A1. As currently
ρ − λ > 2k−i ≥ 1, it follows that ρ > 2, and hence that ej = a2. It then
suffices to remark that the construction of A1 and A2 ensures R(a1, a2) ∈ A1

if and only if R(a1, a2) ∈ A2. The case where di+1 = aj for some 1 < j ≤ m
can be handled in a similar manner.

Case 3: di+1 ∈ {aj , bj} and d` 6∈ {aj , bj} for all −n− 1 ≤ ` ≤ i.
We thus have j 6= 1 and j 6= m. We only consider the case where di+1 = aj
(the case where di+1 = bj proceeds analogously). We let λ and ρ be the
values computed following round i. If j ≤ λ, then Duplicator plays aj , and
if j ≥ ρ, Duplicator plays bj . Note that in both cases the λ and ρ values will
not change after round i+ 1, and so the second part of the property will still
be satisfied. The remaining case is when λ < j < ρ. Since ρ− λ > 2k−i from
the IH, we know that either j−λ ≤ 2k−i+1 or ρ−j ≤ 2k−i+1 (but not both).
In the former case, Duplicator chooses aj , and in the latter case, Duplicator
picks bj . In the former case, j−λ ≤ 2k−i+1 together with ρ−λ > 2k−i yields
ρ − j > 2k−i−1. This is exactly what we need since after round i + 1 the
value of ρ remains unchanged but λ changes to j, and so we get the desired
ρ − λ > 2k−(i+1). In the second case, ρ − j ≤ 2k−i+1 and ρ − λ > 2k−i

yields j − λ > 2k−i−1. Since after round i + 1, λ remains as before but ρ

is replaced by j, we get ρ − λ > 2k−(i+1) as required. Thus, the second
part of (?) is satisfied, and clearly, the first part holds as well. To show
the third condition, we simply need to use the same ideas as for Case 2.
The only interesting situation is role assertions which involve two “chain”
individuals, i.e. R(di+1, d`) or R(d`, di+1) in which −1 ≤ ` ≤ i + 1 with
d` ∈ {a1, . . . , am, b1, . . . , bm}. Given the structure ofA1, the only possibilities
for d` are aj−1, aj , or aj+1. As for Case 2, we can use the fact that ρ−λ > 2
to infer that e` ∈ {aj−1, aj , aj+1} if d` = aj , and e` ∈ {bj−1, bj , bj+1} if
d` = bj . This allows us to show that the corresponding role assertion for
d`, e` holds in IA2 .

This completes our proof that IA1 and IA2 are indistinguishable by formulas of
quantifier rank at most k. We can thus conclude that IA1 |= q′ if and only if
IA2 |= q′.

Now we move on to showing that IA1 |= q′. It is sufficient to show that
T ,A1 |=cons q. Take some repair B ofA1 w.r.t. T . Because T is a simple ontology,
we know that B contains all role assertions from A as well as a maximal subset
of concept assertions consistent with T for each individual. We know that for
each ci, the set {A | A(ci) ∈ q} must be consistent with T , otherwise, we can
find a conjunctive query without any quantified variables which is equivalent
to q (e.g. the ground query A(c) ∧ B(c) for some A,B such that T |= A v
¬B). In particular, this means that for every atom A(cp) ∈ q, we must have
A(cp) ∈ B, and so all ground concept atoms in q hold in B. Next we note that
since Dy is consistent with T , B contains all assertions in {A(a1) | A ∈ Dy}.
As T |= Dy v Cx, we obtain T ,B |= A(a1) for every A ∈ Cx. Using a similar
argument, we get T ,B |= A(am) for every A ∈ Cy. We also know that every
maximal subset D ⊆ S consistent with T is such that either T |= D v Cx or
T |= D v Cy. It follows that for each ai with 1 < i < m, either T ,B |= A(ai)
for every A ∈ Cx, or T ,B |= A(ai) for every A ∈ Cy. We can thus infer that
there must be some 1 ≤ i < m such that T ,B |= A(ai) for every A ∈ Cx
and T ,B |= A(ai+1) for every A ∈ Cy. By the way we have constructed A1, if
R(x, cp) ∈ q, we have R(ai, cp) ∈ A, and if R(cp, x) ∈ q, we have R(cp, ai) ∈ A.
Likewise, if R(y, cp) ∈ q, we have R(ai+1, cp) ∈ A, and if R(cp, y) ∈ q, we have
R(cp, ai+1) ∈ A. Additionally, we have that R(x, y) ∈ q implies R(ai, ai+1),
R(y, x) ∈ q implies R(ai+1, ai), R(x, x) ∈ q implies R(ai, ai), and R(y, y) ∈ q
implies R(ai+1, ai+1). As B contains all role assertions in A, it follows that all
of these atoms hold in B. We have thus shown that all atoms in the first-order
formula obtained from q by replacing x with a and y with b are entailed from
T ,B. We thus have T ,B |= q, and hence T ,A |=cons q, as desired.

Finally to complete the proof we need to prove IA2 6|= q′, which can be shown
by proving T ,A2 6|=cons q. Consider the ABox B ⊆ A consisting of:

- all role assertions from A
- all concept assertions A(cp) from A, for 1 ≤ p ≤ n
- all concept assertions A(ai) with A ∈ Dy, for 1 ≤ i ≤ m
- all concept assertions A(bi) with A ∈ Dx, for 1 ≤ i ≤ m

B is a repair of A w.r.t. T since Dy and Dx are both maximal subsets of S
consistent with T , and {A | A(cp) ∈ q}must be satisfiable w.r.t. T , else one could
find a CQ without quantified variables which is equivalent to q. Our objective is
to show that T ,B 6|= q. Define I as follows:

- ∆I = {a1, . . . , am, b1, . . . , bm, c1, . . . , cn}
- aIi = ai, likewise for the bi and ci
- AI = {d | T ,B |= A(d)}
- RI = {(d, e) | R(d, e) ∈ B}

In other words, the interpretation interprets all individuals as themselves, and
makes true precisely the role assertions in B and the concept assertions entailed
from T ,B. Since T 6|= Dy v Cy, there is some Ay ∈ Cy such that T 6|= Dy v Ay.
It follows that for each 1 ≤ i ≤ m, we have ai 6∈ AIy . In a similar manner,
we can find Ax ∈ Cx such that for every 1 ≤ i ≤ m, bi 6∈ AIx . It follows that
no ai makes the concept atoms for y true, nor can any bi be used to satisfy
the concept atoms for x. As a consequence, we know that for any pair (d, e)
such that d, e ∈ {a1, . . . , am, b1, . . . , bm} substituting d for x and e for y yields a
query which does not hold in I. Finally, we need to ensure that the remaining
individuals ci cannot be used to make q hold in I. We know no ai can be
substituted for x, and no bi can be substituted for y. There are thus three cases
to consider: (d, e) = (aj , ci), (d, e) = (ci, bj), or (d, e) = (ci, cj). In the first case,
in which (d, e) = (aj , ci), it must be the case that for every R(x, y) ∈ q, we
have R(x, ci) ∈ q. Similarly, for every R(y, x) ∈ q, we must have R(ci, x) ∈ q,
and for every R(y, y) ∈ q, we must have R(ci, ci) ∈ q. It must also be the case
that for every atom A(y) ∈ q, there exists a corresponding atom B(ci) such
that T |= B v A. Taken together, these facts imply that the query obtained
by removing all atoms mentioning y is equivalent to q, and thus we have found
an equivalent query with at most one quantified variable. The second case is
symmetric and proceeds analogously to the previous one. In the third case, in
which (d, e) = (ci, cj), we have that: R(x, y) ∈ q implies R(ci, cj) ∈ q, R(y, x) ∈ q
implies R(cj , ci) ∈ q, R(x, x) ∈ q implies R(ci, ci) ∈ q, R(y, y) ∈ q implies
R(cj , cj) ∈ q, A(x) ∈ q implies some B(ci) ∈ q with T |= B v A, and A(y) ∈ q
implies some B(cj) ∈ q with T |= B v A. It is not hard to see that by removing
all non-ground atoms from q, we obtain a ground CQ which is equivalent to q.
Since we know that there does not exist any CQs equivalent to q with less than
two quantified variables, it follows that there cannot be a match for q involving
one of the ci. We can thus infer that there is no match for q in the interpretation
I. As I is a model of T ,B, it follows that T ,B 6|= q, and hence that T ,A 6|=cons q.

ut

Theorem 3

Proof. Let T and q be as in the statement of the theorem. We start with the
case in which q is equivalent to q1 ∧ q2, where q1 and q2 are both CQs with at
most one quantified variable. Then we can apply Theorem 1 to q1 and q2 to
obtain consistent rewritings q′1 and q′2 of q1 and q2 respectively, given T . We

then simply remark that q′1 ∧ q′2 must be a consistent rewriting for q1 ∧ q2, and
hence for q.

Now we consider the more interesting case in which q is not equivalent to any
conjunction q1 ∧ q2 of CQs q1, q2 each having less than two quantified variables,
and there is no set of concepts S satisfying the conditions of Theorem 2. Note
that the former property implies that there is some atom in q which contains
both quantified variables x and y. To see why, note that if there is no such
atom, we can partition q into qx which contains all atoms in q which do not
mention y, and qy which contains all atoms which do contain y. It follows from
the second property that for every set S ⊆ NC, if there is a maximal subset
Dx ⊆ S consistent with T s.t. T 6|= Dx v Cx, and there is a maximal subset
Dy ⊆ S consistent with T s.t. T 6|= Dy v Cy, then there is a maximal subset
Dxy ⊆ S consistent with T s.t. both T 6|= Dxy v Cx and T 6|= Dxy v Cy. Or
in more informal terms, if we can block Cx, and we can block Cy, then we can
simultaneously block Cx and Cy.

Interestingly, this property allow us to adopt exactly the same rewriting
approach as was used for the single quantified variable case (Theorem 1). As in
that proof, for each t ∈ terms(q), we set Σt equal to the set of all sets S ⊆ NC such
that every maximal subset U ⊆ S consistent with T is such that T |= U v Ct,
where Ct = {A | A(t) ∈ q}. We use the same definition of ψt:

ψt =
∨
S∈Σt

(
∧
A∈S

A(t) ∧
∧

A∈NC\S

¬A(t))

We use almost the same definition for q′, just adding the extra quantified vari-
able y:

q′ = ∃xy
∧

R(t,t′)∈q

R(t, t′) ∧
∧

t∈terms(q)

ψt

It remains to be shown that under our assumptions, q′ is indeed a consistent
rewriting of q w.r.t. T . The first direction proceeds almost identically to the
single variable case, so we concentrate on the second direction.

For the second direction, suppose that IA 6|= q′. If IA 6|= ψc for some indi-
vidual c in q′, then we can build a repair with T ,B 6|= q just as in the proof of
Theorem 1. So we suppose that IA |= ψc for every individual c in q′. As IA 6|= q′,
for every pair of individuals (a, b), we have IA 6|= q′a,b, where q′a,b denotes q′ with
x replaced by a and y replaced by b. For each pair (a, b), it must either be the
case that IA 6|= αa,b for some role atom αa,b ∈ q′a,b, or that IA 6|= ψx,a, or that
IA 6|= ψy,b (where ψx,a is ψx with x replaced by a, and similarly for ψy,b). In the
second case, we can find a maximal subset Sa,x of {B | B(a) ∈ A} consistent
with T such that T 6|= Sa,x v Cx. In the third case, we can find a maximal subset
Sb,y of {B | B(b) ∈ A} consistent with T such that T 6|= Sb,y v Cy. Note that it
is possible that both IA 6|= ψx,a and IA |= ψy,a. If this is the case, then because
of our assumption of no sets S satisfying the conditions of Theorem 2, we know
that we can also find a maximal subset Sa,x,y of {B | B(a) ∈ A} consistent with
T such that both T 6|= Sa,x,y v Cx and T 6|= Sa,x,y v Cy. We can now use these
sets to define a repair B consisting of:

- all role assertions in A
- for each a such that IA 6|= ψx,a and IA 6|= ψy,a: the assertions {B(a) | B ∈
Sa,x,y}

- for each a such that IA 6|= ψx,a and IA |= ψy,a: the assertions {B(a) | B ∈
Sa,x}

- for each a such that IA 6|= ψy,a and IA |= ψx,a: the assertions {B(a) | B ∈
Sa,y}

- for all other individuals a from A, any maximal subset of {B(a) | B(a) ∈ A}
consistent with T

By construction, the set B is a maximal subset of A consistent with T , since
we kept all role assertions and a maximal subset of concept assertions for each
individual. We will now show that T ,B 6|= qa,b for every pair of individuals (a, b).
The case where (a, b) is such that IA 6|= αa,b for some role atom αa,b ∈ q′a,b is
uninteresting, so we consider instead the second case, in which IA 6|= ψx,a. Let
V be the set of concepts asserted at a in B. We know from the construction of
B that V is either Sa,x or Sa,x,y, and in both cases, this yields T 6|= V v Cx. As
a consequence, there must be an atom B(a) ∈ qa such that T ,B 6|= B(a), which
gives us T ,B 6|= qa. The final case, in which IA 6|= ψy,b, proceeds analogously. It
follows that there is no a for which T ,B |= qa, which means T ,B 6|= q. We can
thus conclude that T ,A 6|=cons q. ut

Theorem 4

Proof. Consider the following algorithm which takes as input a simple ontology
T , an ABox A, and a conjunctive query q with two quantified variables x, y.

1. For each ground atom α ∈ q, output no if T ,A 6|=cons α.
2. Set Cx = {A | A(x) ∈ q} and Cy = {A | A(y) ∈ q}.
3. Initialize Σ to the tuples (a, b, `) such that (a, b) satisfy:

- if R(x, y) ∈ q, then R(a, b) ∈ A
- if R(y, x) ∈ q, then R(b, a) ∈ A
- if R(x, x) ∈ q, then R(a, a) ∈ A
- if R(y, y) ∈ q, then R(b, b) ∈ A
- if R(x, c) ∈ q, then R(a, c) ∈ A
- if R(c, y) ∈ q, then R(c, b) ∈ A

and ` is defined as follows:
- ` = xy if there is a maximal subset Dx ⊆ {A | A(a) ∈ A} consistent

with T such that T 6|= Dx v Cx, and there is maximal subset Dy ⊆ {A |
A(b) ∈ A} consistent with T such that T 6|= Dy v Cy.

- ` = x if there is a maximal subset Dx ⊆ {A | A(a) ∈ A} consistent with
T such that T 6|= Dx v Cx, but every maximal subset Dy ⊆ {A | A(b) ∈
A} consistent with T is such that T |= Dy v Cy.

- ` = y if there is maximal subset Dy ⊆ {A | A(b) ∈ A} consistent with
T such that T 6|= Dy v Cy, but for every maximal subset Dx ⊆ {A |
A(a) ∈ A} consistent with T is such that T |= Dx v Cx.

- ` = 0 if every maximal subset Dx ⊆ {A | A(a) ∈ A} consistent with T
is such that T |= Dx v Cx, and every maximal subset Dy ⊆ {A | A(b) ∈
A} consistent with T is such that T |= Dy v Cy.

4. Apply the following rules until either there is some (a, b, 0) ∈ Σ or there are
no applicable rules:
R1 If (a, b, x) ∈ Σ, then:

• remove all tuples of the form (a, d, x) or (a, d, xy) from Σ
If it is the case that every maximal subset Dx ⊆ {A | A(a) ∈ A} consis-
tent with T such that T 6|= Dx v Cx is also such that T |= Dx v Cy,
then:
• replace each tuple in Σ of the form (d, a, y) by (d, a, 0)
• replace each tuple in Σ of the form (d, a, xy) by (d, a, x)

R2 If (a, b, y) ∈ Σ, then:
• remove all tuples of the form (d, b, y) or (d, b, xy) from Σ

If it is the case that every maximal subset Dy ⊆ {A | A(b) ∈ A} consis-
tent with T such that T 6|= Dy v Cy is also such that T |= Dy v Cx,
then:
• replace each tuple in Σ of the form (b, d, x) by (b, d, 0)
• replace each tuple in Σ of the form (b, d, xy) by (b, d, y)

5. Return yes if there is some (a, b, 0) ∈ Σ, else return no.

Intuitively, at the beginning of Step 4, the set Σ contains all possible substi-
tutions of individuals for x and y which may potentially cause q to hold in a
repair of A. In order to construct a repair which does not entail q, we must block
each of these possible matches. The label ` indicates which position(s) can be
blocked. For instance, the label ‘x’ indicates the we can block Cx from holding
at the first individual in the tuple but cannot prevent Cy from holding at the
second individual; similarly, we use the label 0 to record that we can neither
prevent Cx at the first individual nor Cy at the second individual. During Step
4, we block position x whenever that is the only blockable position, and likewise,
we block position y whenever it is the only blockable position. We then update
Σ by removing any tuples whose possible match has been blocked, and recording
which positions are no longer blockable in other tuples.

A simple examination of the definition of Σ and the rules R1 and R2 suffices
to show that Σ always satisfies the following properties:

P1 There is at most one tuple (a, b, `) in Σ for each pair (a, b) of individuals
from A.

P2 If (a, b, x) ∈ Σ, then there exists a maximal subset Dx ⊆ {A | A(a) ∈ A}
consistent with T such that T 6|= Dx v Cx.

P3 If (a, b, y) ∈ Σ, then there exists a maximal subset Dy ⊆ {A | A(b) ∈ A}
consistent with T such that T 6|= Dy v Cy.

We now proceed to the proof of correctness of the algorithm.

Soundness. Suppose that T ,A 6|=cons q. We wish to show that the algorithm
returns no. If T ,A 6|=cons α for some ground atom α ∈ q, then this is immediate.
Otherwise, assume all ground atoms are consistently entailed, and let B be a
repair of A w.r.t. T such that T ,B 6|= q. Define an interpretation I as follows:

- ∆I is the set of individuals from B
- aI = a, for each individual a from B
- AI = {d | T ,B |= A(d)}
- RI = {(d, e) | R(d, e) ∈ B}

As I is the minimal model of T ,B, and we know T ,B 6|= q, it follows that q
does not hold in I. Now let M be the set of pairs (a, b) such that there is some
(a, b, `) ∈ Σ at the end of Step 3. We know that for every (a, b) ∈M , all atoms
of the query hold in I, except possibly atoms of the form A(x) or A(y). It follows
that for every (a, b) ∈M , there is either some A ∈ Cx such that a 6∈ AI , or some
A ∈ Cy such that b 6∈ AI . We define a function val : M → {x, y, xy} as follows:

- val(a, b) = xy if there is both some A ∈ Cx such that a 6∈ AI , and some
A ∈ Cy such that b 6∈ AI .

- val(a, b) = x if there is some A ∈ Cx such that a 6∈ AI , but no A ∈ Cy such
that b 6∈ AI .

- val(a, b) = y if there is some A ∈ Cy such that b 6∈ AI , but no A ∈ Cx such
that a 6∈ AI .

We define a partial order � of {0, x, y, xy} as follows: xy � x, xy � y, x � 0, and
y � 0. Our objective will be to show that the following property always holds
for Σ:

(?) if (a, b, `) ∈ Σ, then ` � val(a, b)

This implies that at the beginning of Step 5, there are no tuples (a, b, 0) ∈ Σ,
and hence the algorithm returns no. The proof is by induction on the number
of rule applications that have been made. We first note that property (?) hold
for Σ when there have not been any rule applications. This is trivially the case
when ` = xy. For (a, b) such that (a, b, x) ∈ Σ before any rule applications,
we know from the way Σ was initialized in Step 3 that every maximal subset
Db ⊆ {A | A(b) ∈ A} consistent with T is such that T |= Db v Cy. It follows
that there is no A ∈ Cy such that b 6∈ AI . As I 6|= q, there must be some A ∈ Cx
such that a 6∈ AI , and so we have val(a, b) = x. The case of (a, b) such that
(a, b, y) belongs to the original Σ proceeds analogously. Now suppose that (?)
holds when there have been at most n rule applications, and consider the n+1th
rule application. If it is R1 which is triggered by some tuple (a, b, x) ∈ Σ, and
the extra condition in R1 is not met, then we only remove elements from Σ, and
so the property (?) continues to hold. Consider then the more interesting case
in which the condition is satisfied, which may cause some tuple (d, a, xy) to be
replaced by (d, a, x), or (d, a, y) to be replaced by (d, a, 0). Because (a, b, x) ∈ Σ
at the start of the rule application, we know that x � val(a, b), and hence
val(a, b) = x. It follows that there must be some A ∈ Cx such that a 6∈ AI .
However, the condition tells us that any maximal subset Dx of {A | A(a) ∈ A}
such that T 6|= Dx v Cx must also satisfy T |= Dx v Cy. It follows that for
every A ∈ Cy, we have a ∈ AI . Then since I 6|= q, it follows that for every
(d, a) ∈ M , there must be some A ∈ Cx such that d 6∈ AI . This means that for
every (d, a) ∈ M , we have val(d, a) = x. Thus, from the induction hypothesis,

we know that at the start of the rule application, every tuple (d, a, `′) ∈ Σ must
be such that `′ = xy or `′ = x. In the former case, we will replace (d, a, xy) by
(d, a, x), which preserves property (?). The case where it is R2 which is applied
in the n+ 1-th rule application proceeds analogously.

Completeness. To show completeness, suppose that the algorithm returns no.
We need to show that T ,A 6|=cons q. First consider the case where no is returned
at Step 1. In this case, there is some ground atom α ∈ q such that T ,A 6|=cons α,
which implies also that T ,A 6|=cons q. So let us now consider the more interesting
case in which all ground atoms are consistently entailed, and no is returned only
in Step 5. We will use the rule applications from Step 4 to guide the construc-
tion of a repair. First, we note that each application of a rule during Step 4 is
concerned with some particular individual. We will say that this individual is
the target of the rule application. Note that each individual can be the target of
at most one rule application, since applying the rule means removing all tuples
containing the targeted individual from Σ. Also note that all tuples in Σ at the
end of Step 4 must either have label 0 or xy, since any tuple with label x or y
makes one of the rules applicable. As we know the algorithm returns no in Step
5, there must only be tuples labelled xy. We now proceed to the definition of
a repair B. We include in B the role assertions in A together with a maximal
subset of concept assertions for each individual a, determined as follows.

- Case 1: a is the target of an application of R1, and the extra condition was
not satisfied.
Then property P2 and the non-satisfaction of the extra rule condition ensures
that we can find a maximal subset Dx ⊆ {A | A(a) ∈ A} consistent with
T such that both T 6|= Dx v Cx and T 6|= Dx v Cy. We choose the set of
assertions {A(a) | A ∈ Dx} for a.

- Case 2: a is the target of an application of R1, and the extra condition was
satisfied.
By property P2, we know that we can find a maximal subset Dx of {A |
A(a) ∈ A} consistent with T such that T 6|= Dx v Cx. We let Dx be any
such set, and include in B the set of assertions {A(a) | A ∈ Dx}.

- Case 3: a is the target of an application of R2, and the extra condition was
not satisfied.
Then property P3 and the non-satisfaction of the extra rule condition ensures
that we can find a maximal subset Dy ⊆ {A | A(a) ∈ A} consistent with
T such that both T 6|= Dy v Cy and T 6|= Dy v Cx. We choose the set of
assertions {A(a) | A ∈ Dy} for a.

- Case 4: a is the target of an application of R2, and the extra condition was
satisfied.
By property P3, there is a maximal subset Dy of {A | A(a) ∈ A} consistent
with T such that T 6|= Dy v Cy. We let Dy be any such set, and include in
B the set of assertions {A(a) | A ∈ Dy}.

- Case 5: a appears in some tuple of Σ at the end of Step 4, and has not been
the target of any rule application.

By above, we know the tuple in Σ containing a at the end of Step 4 must
have label ‘xy’, which means that this tuple was originally given the label
‘xy’ in Step 3. Thus, we can find a maximal subset Dx of {A | A(a) ∈ A}
consistent with T such that T 6|= Dx v Cx. We choose the set of assertions
{A(a) | A ∈ Dx}.

- Case 6: a is neither the target of a rule application, nor appears in any tuple
at the end of Step 4.
We choose an arbitary maximal subset of {A(a) | A(a) ∈ A} consistent with
T .

Since B contains a maximal subset of {A(a) | A(a) ∈ A} consistent with T for
each individual a, it is clear that B is a repair of A w.r.t. T . We let I be the
following interpretation:

- ∆I is the set of individuals from B
- aI = a, for each individual a from B
- AI = {d | T ,B |= A(d)}
- RI = {(d, e) | R(d, e) ∈ B}

We wish to show that q does not hold in I. Suppose for a contradiction that
q does hold when x is replaced by d and y is replaced by e. It follows that the
pair (d, e) satisfies the conditions in Step 3, so some tuple (d, e, `) will be added
to Σ. The first possibility is that there is a rule application during Step 4 which
targets either d or e and causes the removal of a tuple (d, e, `′) from Σ (possibly
with ` 6= `′). First, suppose that (d, e, `′) is removed when applying R1 to d.
Then d belongs to Case 1 or Case 2, and so D = {A | A(d) ∈ B} is such that
T 6|= D v Cx. If instead the removal is due to applying R2 to e, then e belongs
to either Case 3 or Case 4, and D = {A | A(e) ∈ B} satisfies T 6|= D v Cy. Thus,
we either show that d cannot be subsituted for x, or that e cannot be substituted
for y, contradicting our assumption that (d, e) defines a match of q in I. Let us
now consider the other possibility, which is that Σ contains a tuple (d, e, `′) after
Step 4. We know from above that `′ = xy. If d was not the target of any rule
application, then we fall into Case 5, and we have that {A | A(d) ∈ B} = Dx for
some set Dx satisfying T 6|= Dx v Cx. It is also possible that d was the target
of an application of R2, but the condition was not satisfied (Case 3), in which
case {A | A(d) ∈ B} = Dy for some set Dy satisfying both T 6|= Dy v Cy and
T 6|= Dy v Cx. Either way, we can infer that there is some A ∈ Cx such that
d 6∈ AI , contradicting our assumption that (d, e) defines a match of q. We have
thus found a model I of T ,B such that I 6|= q. It follows that T ,B 6|= q, and
hence T ,A 6|=cons q.

Complexity. Note that for Step 1, we can use the query rewriting approach from
Theorem 1 to decide consistent entailment for the ground atoms in polynomial
time in |A|. It is easy to see that the construction of Σ in Step 3 and the
application of a rule during Step 4 can both take only polynomial time. Finally,
we note that the total number of rule applications in Step 4 cannot exceed
|A| × |A| since each rule application decreases the cardinality of the set {(a, b) |
(a, b, `) ∈ Σ for some `}. ut

Theorem 5

Proof. We reduce the well-known coNP-complete problem 3SAT to ConsEnt(q, T)
where

T = {A v ¬B,A v ¬C,B v ¬C}
q = ∃x, y, z A(x) ∧R(x, y) ∧B(y) ∧R(y, z) ∧ C(z).

Consider some instance ϕ = c1 ∧ . . . ∧ cm of 3SAT over variables v1, . . . , vn. We
need to create an ABox Aϕ such that ϕ is satisfiable if and only if T ,Aϕ 6|=cons q.
To this end, we show how to create ABoxes which encode each variable and
clause. For each vi, we create the ABox

Avi
= {A(vi), C(vi)}

Intuitively, Avi
serves to select a truth value for vi. We remark that every repair

of Avi must contain precisely one of A(vi) and C(vi). When a repair keeps A,
we will interpret this as assigning the value T (true) to vi, and when C is kept,
this signifies that vi receives the value F (false).

The definition of Ac`
for a clause c` will depend on the polarity of the literals

in c`. In order to cut the number of cases from 8 to 4, we can assume w.l.o.g. that
if c` has one negative literal and two positive literals, then the negative literal
is the first literal in c`. Likewise, we will suppose that if c` has one positive
literal and two negative literals, then the positive literal is the third literal in c`.
Thus there are four possible shapes for c`: c` = vi ∨ vj ∨ vk, c` = ¬vi ∨ vj ∨ vk,
c` = ¬vi¬ ∨ vj ∨ vk, and c` = ¬vi ∨ ¬vj ∨ ¬vk. Figure 3 provides a pictorial
representation of the ABox Ac`

for all four cases. The arrows indicate the role
R. Note that if the variable vi appears in one of c`’s literals, then the ABox Avi

is a subset of Ac`
. Also note that all individuals appearing in Ac`

which are not
of the form vi are specific to Ac`

, i.e. they do not appear in Acp for any p 6= `.
The general ABox Aϕ representing ϕ will be the union of these ABoxes:

Aϕ =
⋃

1≤`≤m

Ac`

We need to show that Aϕ satifies the desired property, that is, T ,Aϕ 6|=cons q if
and only if ϕ is satisfiable.

For the first direction, suppose that ϕ is satisfiable, and consider some partic-
ular satisfying valuation val : {v1, . . . , vn} → {T, F}. We will use this valuation
to construct a repair B of Aϕ such that T ,B 6|= q. The set B will contain all
role assertions from A, as well as all concept assertions D(a) such that D is
the only concept asserted at a in B, since all of these assertions must belong to
every repair. Then for each variable vi, we include A(vi) in B if val(vi) = T , and
otherwise, we include C(vi). Finally, to define the remaining concept assertions,
we consider each subABox Ac`

separately. This is unproblematic because of the
following property: if we have repairs Bc1 , . . . ,Bcm

which all agree with B on the
concept assertions at the individuals vi, then the set ∪m`=1Bc`

is a repair of A.

To see why this is so, we note that the ABoxes interact solely at the vi, which
have concept A or C. Thus it is not possible for a match to “crossover” from one
Ac`

to some other Ac`′ . It thus remains to be shown that for every clause c` we
can find a repair Bc`

which contains A(vi) if val(vi) = T , and C(vi) otherwise,
and is such that q does not hold. There are many cases to consider, since we
need to account for the four different forms for the ABox Ac`

, as well as which
literals in c` are satisfied by val. We give the details just for one form of clause:
c` = ¬vi∨¬vj∨¬vk. We consider the seven possible valuations of vi, vj , vk which
satisfy c`, and for each, we list a set of concept assertions which give rise to a
repair in which q does not hold:

- val(vi) = F, val(vj) = T, val(vk) = T :
fixed: C(vi), A(vj), A(vk)
choose: B(c2`), C(c3`), C(g`)

- val(vi) = T, val(vj) = F, val(vk) = T
fixed: A(vi), C(vj), A(vk)
choose: C(c2`), C(c3`), C(g`)

- val(vi) = T, val(vj) = T, val(vk) = F
fixed: A(vi), A(vj), C(vk)
choose: B(c2`), A(c3`), B(g`)

- val(vi) = T, val(vj) = F, val(vk) = F
fixed: A(vi), C(vj), C(vk)
choose: C(c2`), C(c3`), C(g`)

- val(vi) = F, val(vj) = F, val(vk) = T
fixed: C(vi), C(vj), A(vk)
choose: C(c2`), C(c3`), C(g`)

- val(vi) = F, val(vj) = T, val(vk) = F
fixed: C(vi), A(vj), C(vk)
choose: B(c2`), C(c3`), C(g`)

- val(vi) = F, val(vj) = F, val(vk) = F
fixed: C(vi), C(vj), C(vk)
choose: C(c2`), C(c3`), C(g`)

It can be verified in a similar manner that for each of the other three structures
of c`, we can also construct a repair of Ac`

with the required properties. Then,
as explained above, we can take the union of the repairs of the Ac`

to obtain a
repair of Aϕ w.r.t. T which does not make q true. We can thus conclude that
T ,Aϕ 6|=cons q.

For the second direction, suppose that there is a repair B of Aϕ such that
T ,B 6|= q. We need to show that ϕ is satisfiable. Note that because T contains
only concept disjointness axioms, the interpretation IB is a model of T ,B, and
moreover, it is a minimal model for T ,B. We now that since B is a repair,
it contains either A(vi) or C(vi) (but not both). We define a valuation val :
{v1, . . . , vn} → {T, F} by setting val(vi) = T if A(vi) ∈ B, and val(vi) = F if
C(vi) ∈ B. It remains to be shown that val satisfies ϕ. To do so, we suppose for
a contradiction that val does not satisfy c`, and then we show that if this were
the case, then we would have IB |= q. There are four cases depending on the

structure of ϕ. As the ideas are similar throughout, we provide the details for
just one case: c` = ¬vi∨¬vj ∨¬vk. We first note that since we have assumed val
does not satisfy c`, we have val(vi) = T , val(vj) = T , and val(vk) = T . It follows
from the definition of val that B contains A(vi), A(vj), and A(vk). If C(c2`) ∈ B,
then we would have a match for q (using x = vj , y = e`, and z = c2`). As we
know there are no matches for q, it follows that B(c2`) ∈ B (remember that one
of B(c2`) and C(c2`) must belong to B, by maximality). Now we consider c3` . We
remark that if B(g`) ∈ B then there is a match for q (using the substitution
x = vk, y = g`, z = f`). Thus, we must have C(g`) ∈ B. But this in turn means
that A(c3`) ∈ B would cause q to hold, so we must have C(c3`). However, we know
have A(vi), B(c2`), and C(c3`) in B, and also R(c1` , c

2
`) and R(c2` , c

3
`), since B must

have the same role assertions as A. This means that T ,B |= q, contradicting
our earlier assumption to the contrary. Since assuming that val does not satisfy
some c` leads to a contradiction, we can conclude that val satisfies all clauses,
and so ϕ is satisfiable. ut
Theorem 7

Proof. Suppose we have a simple ontology T and a Boolean CQ q. Then because
every simple ontology is a DL-Litecore ontology, we can use existing algorithms
for DL-Litecore to find a union of conjunctive conjunctive queries q′ such that
for every A, we have T ,A |= q if and only if IA |= q′. Let A(t) be an atom in
one of the CQs of q′. If t is an individual, then A(t) is a Boolean CQ with no
quantified variables, so using Theorem 1, we can find a consistent rewriting ϕA(t)

of A(t). For atoms A(t) such that t is a variable, we can use Theorem 1 to find
a consistent rewriting ϕA(c) of A(c) (where c is a fresh individual). Then it is
easily verified that the formula ϕA(t) obtained by substituting t for c in ϕA(c) is
a consistent rewriting of the non-Boolean query A(t), i.e. we have that for every
individual a, T ,A |=cons A(a) if and only if IA |= ϕaA(t), where ϕaA(t) denotes
the Boolean query obtained by replacing t with a in ϕA(t). Now we let ψ be the
first-order formula obtained by replacing each atom A(t) by ϕA(t). We want to
show that T ,A |=ICR q if and only if IA |= ψ.

For the first direction, suppose that T ,A |=ICR q. We want to show that
IA |= ψ. Because T ,A |=ICR q, we know that T ,B |= q, where B = {α |
T ,A |=cons α} (since the assertions in the intersection of closed repairs are
precisely those assertions which are consistently entailed). It follows then that
IB |= q′, and hence there is some CQ σ which is a disjunct of the UCQ q′ such
that IB |= σ. If σ has variables v1, . . . , vk, let (a1, . . . , ak) be a substitution
for v1, . . . , vk which makes σ hold in IB. Let σ′ be the disjunct of ψ which
was obtained by replacing each atom A(t) in σ by ϕA(t). Note that σ′ contains
exactly the same variables, namely v1, . . . , vk. Suppose for a contradiction that
IA 6|= σ′. This means in particular that (a1, . . . , ak) does not define a match
for σ′ in IA. It follows that one of the conjuncts of σ′ is not satisfied in IA
under the substitution (a1, . . . , ak). There are two types of conjuncts: role atoms
which were conjuncts of the CQ σ, and formulas of the form ϕA(t) where A(t)
is a conjunct of σ. First suppose that there is a role atom conjunct α which
does not hold. Then this means that the role assertion obtained by applying the

A

AB

B
AB

c1
�

c2
�

d�

e�

vk

vj

vi

AC

AC

AC

(a) c` = vi ∨ vj ∨ vk

AB
c2
�

vi

AC

vk

AC

B
e�

vj

AC

(b) c` = ¬vi ∨ vj ∨ vk

c2
�

B BC
e�

vi

AC

vk

AC

AC
vj

(c) c` = ¬vi ∨ ¬vj ∨ vk

c2
�

BC

c3
�

AC

nnn

B
e�

AC
vj

BC

C

B

f�

g�

h�

vk

AC

vi

AC

(d) c` = ¬vi ∨ ¬vj ∨ ¬vk

Fig. 3: ABox Ac`

substitution (a1, . . . , ak) to α does not belong to A. But in this case, this same
role assertion will not belong to B, so this conjunct of σ will not hold in IB under
substitution (a1, . . . , ak), contradicting our assumption to the contrary. Thus, it
must be the case that there is some conjunct ϕA(t) of σ′ which is not satisfied
in IA by (a1, . . . , ak). This means that the assertion α obtained from A(t) by
applying the substitution (a1, . . . , ak) is not consistently entailed from T ,A. It
follows that α 6∈ B, so the atom α, which is a conjunct of σ, does not hold in
IB under substitution (a1, . . . , ak), again contradicting our earlier assumption.
Thus, we can conclude that IA |= σ′, and hence IA |= ψ.

For the other direction, suppose that IA |= ψ. We wish to show that T ,A |=ICR

q. As IA |= ψ, there must be some disjunct σ′ of ψ and a substitution (a1, . . . , ak)
for the variables v1, . . . , vk appearing in σ′ such that the ground CQ τ obtained
by applying the substitution (a1, . . . , ak) to σ′ holds in IA. It follows that all role
assertions which are conjuncts of τ belong to A. It also follows that all concept
assertions which are conjuncts of τ are consistently entailed from T ,A. Now let
B = {α | T ,A |=cons α}. We have that all conjuncts of the ground CQ τ belong
to B. Let σ be the CQ in the UCQ q′ such that σ′ is the formula obtained by
replacing each atom A(t) in σ by ϕA(t). Note that σ′ contains exactly the same
variables, namely v1, . . . , vk. We claim that IB |= σ, and this is witnessed by
the substitution (a1, . . . , ak). First take some role atom which is a conjunct of
σ. Then we have already seen that the role assertion obtained by applying the
substitution (a1, . . . , ak) belongs to B, so this conjunct of σ holds in IB. Next
take some concept atom which is a conjunct of σ. Then the concept assertion
obtained by applying the substitution (a1, . . . , ak) to this atom is one of the con-
juncts of τ . It follows from what we showed above, that this assertion belongs
to B, and hence holds in IB. We thus have IB |= σ, and hence IB |= q′. From
this we can conclude that T ,B |= q, and as a consequence, T ,A |=ICR q. ut

We prove the two statements in Theorem 8 separately, starting with the
first-order expressibility result.

Proposition 1. Consider a DL-Liteno− ontology T , and a Boolean CQ q with
at most one quantified variable. Then ConsEnt(q, T) is first-order expressible.

Proof. Let T and q be as stated in the theorem. We consider only the case where
q has one quantified variable, call it x. The proof is easily modified to handle
the case where there are no quantified variables in q. Our construction of the
rewriting q’ will be similar to that given for the case of simple ontologies. We first
build a formula for each term in q. For t ∈ terms(q), we set Ct = {A | A(t) ∈ q},
and Rt = {∃R | some atom R(t, t′) ∈ q} We then define Σt as the set of all
S ⊆ NC ∪{∃R | R ∈ NR} such that every maximal subset U ⊆ S consistent with
T satisfies (a) T |= U v Ct, and (b) Rt ⊆ U . We next define the formula ψt
using Σt:

ψt =
∨
S∈Σt

(
∧
A∈S

A(t) ∧
∧

A∈NC\S

¬A(t) ∧
∧
∃R∈S

∃uR(t, u) ∧
∧
∃R 6∈S

¬∃uR(t, u))

Using the ψt, we construct q′:

q′ = ∃x
∧

R(t,t′)∈q

R(t, t′) ∧
∧

t∈terms(q)

ψt

We need to show that q′ is indeed a consistent rewriting of q w.r.t. T , which
gives us the first-order expressibility of ConsEnt(q, T).

For the first direction, take some ABox A with IA |= q′. Then there must
exist an individual a from A which, when substituted for x in q′, makes all atoms
in q′ hold in IA. Let q′a (resp. qa) be the query obtained by substituting a for x in
q′ (resp. q). Consider some repair B of A w.r.t. T . We need to show that all atoms
in qa are entailed from (T ,B). Since IA |= q′a, we know that for every individual
name c in q′, the set {B | B(c) ∈ A} ∪ {∃R | R(c, d) ∈ A} belongs to Σc, which
means that every maximal subset U ⊆ {B | B(c) ∈ A} ∪ {∃R | R(c, d) ∈ A}
consistent with T is such that T |= U v Cc and Rc ⊆ U . For the same reason, we
know the set {B | B(a) ∈ A} ∪ {∃R | R(a, d) ∈ A} belongs to Σx, which means
every maximal subset U ⊆ {B | B(a) ∈ A}∪ {∃R | R(c, d) ∈ A} consistent with
T is such that T |= U v Cx and Rx ⊆ U . We then note that because B is a
repair, for each individual b, the set Sb = {B | B(b) ∈ B} ∪ {∃R | R(c, d) ∈ B}
must be a maximal subset of {B | B(b) ∈ A} ∪ {∃R | R(c, d) ∈ A} consistent
with T . From this, we can conclude that all concept atoms in qa are entailed
from (T ,B). For a role assertion R(t, t′) ∈ qa, we know from the definition of
q′ that R(t, t′) is a conjunct of q′a, so R(t, t′) must belong to A. Because T is
a DL-Liteno− ontology, a role assertion can only be contradicted via its first
argument. So we can use the fact that ∃R ∈ St to infer that there is no assertion
in B which conflicts with R(t, t′), and hence R(t, t′) belongs to B. We have thus
shown that all atoms in qa belong to B. It follows that qa, hence q, is consistently
entailed from (T ,A).

For the second direction, suppose that IA 6|= q′. We first consider the case
where there is some atom R(c, d) ∈ q with (c, d individuals) such that IA 6|=
R(c, d). Then R(c, d) 6∈ A, and since there is no way to entail a such an assertion,
we must have T ,B 6|= R(c, d) for every repair B, hence T ,A 6|=cons q. Next we
suppose that IA 6|= ψc for some individual c in q′. This means that we can find
a maximal subset Sc of {B | B(c) ∈ A} ∪ {∃R | R(c, d) ∈ A} consistent with
T such that T 6|= Sc v Cc or Rc 6⊆ Sc. We then let B be any repair such that
{B(c) | B ∈ Sc}∪{R(c, d) | R(c, d) ∈ A,∃R ∈ Sc} ⊆ B (such a repair must exist
since Sc is consistent with T , and T has no inverse roles). It is not hard to see
that either T ,B 6|= B(c) for some B ∈ Cc, or T ,B 6|= ∃R(c) for some ∃R ∈ Rc
(and hence there are no role assertions of the form R(c,) in B). In both cases,
we obtain T ,B 6|= q. Now consider the remaining case in which IA |= ψc for
every individual c in q′ and IA |= R(c, d) for every ground atom R(c, d) ∈ q. As
IA 6|= q′, for every individual a, we have IA 6|= q′a (where as above, q′a denotes
q′ with a substituted for x). That means that for each individual a, one of the
following holds:

(i) IA does not satisfy the formula ψx,a obtained by replacing x with a in ψx

(ii) there is some conjunct R(t, t′) of q with x ∈ {t, t′} which is not satisfied after
x is replaced by a

If (i) holds, then we can find a maximal subset Sa of {B | B(a) ∈ A} ∪ {∃R |
R(a, d) ∈ A} consistent with T such that either T 6|= Sa v Cx or Rx 6⊆ Sa. If
(ii) holds, then let αa be the role assertion R(t, t′) with x is replaced by a. We
have that αa 6∈ A. Using the above, we construct a set B ⊆ A as follows:

- for each a such that IA 6|= ψx,a: the assertions {B(a) | B ∈ Sa} ∪ {R(a, b) |
R(a, b) ∈ A,∃R ∈ Sa}

- for all other individuals a from A, any maximal subset of {B(a) | B(a) ∈
A} ∪ {R(a, b) | R(a, b) ∈ A} consistent with T

By construction, the set B is a maximal subset of A consistent with T . We now
show that T ,B 6|= q. To do so, we consider the following interpretation J :

- ∆J = Ind(B) ∪ {wR | R ∈ NR}
- aI = a, for each individual a from B
- AI = {d | T ,B |= A(d)}
- RI = {(d, e) | R(d, e) ∈ B} ∪
{(d,wR) | d ∈ Ind(B) and T ,B |= ∃R(d)}

It is easily seen that J is a model of T ,B. We intend to show that J 6|= qa
for every a. First consider the case (i) in which IA 6|= ψx,a. Then from our
construction of Sa, we know that either T 6|= Sa v Cx or Rx 6⊆ Sa. In the
former case, there is an atom B(a) ∈ qa such that T ,B 6|= B(a). It follows that
a 6∈ BJ , and hence J 6|= qa. In the latter case, there is some ∃R ∈ Rx such that
there is no assertion of the form R(a, d) ∈ B. It follows that there is some atom
R(a, e) ∈ qa such that (a, e) 6∈ RJ , which again yields J 6|= qa. Finally consider
case (ii) in which there is a (ground) role atom αa of qa such αa 6∈ A. Then we
also have αa 6∈ B, and so J 6|= qa. We have thus shown that there is no a for
which J |= qa, which means that J 6|= q. As a result, we have found a repair of
A which does not entail q given T , which yields the desired T ,A 6|=cons q. ut

We now prove the remainder of Theorem 8.

Proposition 2. Consider a DL-Liteno− ontology T , and a Boolean CQ q with
at most two quantified variables. Then ConsEnt(q, T) is polynomial in data
complexity, and first-order expressible if there is at most one quantified variable.

Proof. The proof of Theorem 4, but includes a fair number of modifications
in order to account for the existential concepts in the TBox. We will use the
following algorithm which takes as input a DL-Liteno− ontology T , an ABox A,
and a conjunctive query q with two quantified variables x, y.

0. If there is v ∈ {x, y} such that v occurs only once in q, as the second
argument of some role assertion R(t, v), then let q′ = q \ {R(t, v)} ∪ {F (t)}
and T ′ = T ∪ {∃R v F}, for some fresh concept name F . As q′ has at
most one quantified variable, we can use the query rewriting approach from
Proposition A to check whether T ′,A |=cons q

′. We output yes if so, and no
if not.

1. For each ground atom α ∈ q, output no if T ,A 6|=cons α (again we can use
the procedure from Proposition A to perform this check). For each atom
R(c, z) ∈ q with z ∈ {x, y} and c ∈ NI, output no if T ,A 6|=cons ∃zR(c, z).

2. Set Cx = {A | A(x) ∈ q} and Cy = {A | A(y) ∈ q}.
3. Initialize Σ to the tuples (a, b, `) such that (a, b) satisfy:

- if R(x, y) ∈ q, then R(a, b) ∈ A
- if R(y, x) ∈ q, then R(b, a) ∈ A
- if R(x, x) ∈ q, then R(a, a) ∈ A
- if R(y, y) ∈ q, then R(b, b) ∈ A
- if R(x, c) ∈ q, then R(a, c) ∈ A
- if R(c, y) ∈ q, then R(c, a) ∈ A

and ` is defined as follows:
- ` = xy if there is a maximal subset Dx ⊆ {A | A(a) ∈ A} ∪ {∃S |

some S(a, d) ∈ A} consistent with T satisfying the condition (X) (see
below), and there is a maximal subset Dy ⊆ {A | A(b) ∈ A} ∪ {∃S |
some S(b, d) ∈ A} consistent with T satisfying condition (Y).

- ` = x if there is a maximal subset Dx ⊆ {A | A(a) ∈ A} ∪ {∃S |
some S(a, d) ∈ A} consistent with T satisfying the condition (X), and

there is no maximal subset Dy ⊆ {A | A(b) ∈ A}∪{∃S | some S(b, d) ∈
A} consistent with T satisfying condition (Y).

- ` = y if there is a maximal subset Dy ⊆ {A | A(b) ∈ A} ∪ {∃S |
some S(b, d) ∈ A} consistent with T satisfying condition (Y), but no

maximal subset Dx ⊆ {A | A(a) ∈ A} ∪ {∃S | some S(a, d) ∈ A}
consistent with T satisfying the condition (X).

- ` = 0 if there is no maximal subset Dx ⊆ {A | A(a) ∈ A} ∪ {∃S |
some S(a, d) ∈ A} consistent with T satisfying the condition (X), and

no maximal subset Dy ⊆ {A | A(b) ∈ A} ∪ {∃S | some S(b, d) ∈ A}
consistent with T satisfying condition (Y).

where the conditions (X) and (Y) are as follows:
(X) T 6|= Dx v Cx or T |= Dx v ¬∃R for some R such that there is an

atom R(x, t) ∈ q.
(Y) T 6|= Dy v Cy or T |= Dy v ¬∃R for some R such that there is an

atom R(y, t) ∈ q.
4. Apply the following rules until either there is some (a, b, 0) ∈ Σ or there are

no applicable rules:
R1 If (a, b, x) ∈ Σ, then:

• remove all tuples of the form (a, d, x) or (a, d, xy) from Σ

If it is the case that every maximal subset Dx ⊆ {A | A(a) ∈ A}∪ {∃S |
some S(a, d) ∈ A} consistent with T which satisfies condition (X) is

also such that T |= Dx v Cy and T 6|= Dx v ¬∃R for every R such that
there is an atom R(y, t) ∈ q, then:
• replace each tuple in Σ of the form (d, a, y) by (d, a, 0)
• replace each tuple in Σ of the form (d, a, xy) by (d, a, x)

R2 If (a, b, y) ∈ Σ, then:
• remove all tuples of the form (d, b, y) or (d, b, xy) from Σ

If it is the case that every maximal subset Dy ⊆ {A | A(b) ∈ A} ∪ {∃S |
some S(b, d) ∈ A} consistent with T which satifies condition (Y) is also

such that T |= Dy v Cx and T 6|= Dy v ¬∃R for every R for which there
is an atom R(x, t) ∈ q, then:
• replace each tuple in Σ of the form (b, d, x) by (b, d, 0)
• replace each tuple in Σ of the form (b, d, xy) by (b, d, y)

5. Return yes if there is some (a, b, 0) ∈ Σ, else return no.

Let us briefly highlight the differences between the above algorithm and the
original algorithm from the proof of Theorem 4. We have an additional Step
0, whose purpose is to treat the limit case in which a role atom can be satis-
fied using an existential concept. We reduce this to the one-variable case, for
which Proposition A provides a polynomial-time procedure via query rewriting.
In Step 1, in addition for checking consistent entailment of ground atoms, we
perform this check also for queries of the form ∃zR(c, z) where c is an individual
and z a variable. If the check fails, this implies q is not consistently entailed.
If the check succeeds, then we know that there do not exist any assertions in
A which can prevent c from having an R-successor. In Step 3, the definition of
the labels ` is modified because there are now two ways to spoil a query: either
by ensuring that some concept atom does not hold, or by contradicting a role
atom. Likewise, the rules R1 and R2 in Step 4 are slightly modified to account
for these two ways of spoiling the query.

A simple examination of the definition of Σ and the rules R1 and R2 suffices
to show that Σ always satisfies the following properties:

P1 There is at most one tuple (a, b, `) in Σ for each pair (a, b) of individuals
from A.

P2 If (a, b, x) ∈ Σ, then there exists a maximal subset Dx ⊆ {A | A(a) ∈ A}
consistent with T satisfying (X).

P3 If (a, b, y) ∈ Σ, then there exists a maximal subset Dy ⊆ {A | A(b) ∈ A}
consistent with T satisfying (Y).

We now proceed to the proof of correctness of the algorithm.

Soundness. Suppose that T ,A 6|=cons q. We wish to show that the algorithm
returns no, which can happen either in Step 0, Step 1, or Step 5. Consider
first the case in which there is v ∈ {x, y} such that v occurs only once in q as
the second argument of some role assertion R(t, v). Say that v = y (the case
where v = x is similar). Then, we check in Step 0 whether T ′,A |=cons q

′, for
q′ = q \ {R(t, y)} ∪ {F (t)} and T ′ = T ∪ {∃R v F} (F a fresh concept name).
We need to show that T ′,A 6|=cons q

′ (to get the desired output no). Suppose
for a contradiction that T ′,A |=cons q

′. Since T ,A 6|=cons q, we have a repair B
of A w.r.t. T such that T ,B 6|=cons q. Note that B must also be a repair of A
w.r.t. T ′, since T ′ does not allow us to infer any new disjointness constraints.
Let I be any model of T ,B such that I 6|= q, and let I ′ be obtained by taking
I and extending it to the augmented vocabulary of T ′ by interpreting the new
concept F as F I

′
= (∃R)I

′
. It is easy to see that I ′ is a model of T ′,B. and so

we must have I ′ |= q′ since T ′,A |=cons q
′. Take any element u of ∆I

′
whose

substitution for x makes q′ hold in I ′. Now if t = x, then F (x) ∈ q′, so we also
have u ∈ (∃R)I

′
because F I

′
= (∃R)I

′
. Similarly if t = c for some individual

c, then F (c) ∈ q′, so cI
′ ∈ F I′ = (∃R)I

′
. In both case, let w be a witness for

membership in (∃R)I
′
. Then we can make q hold in I by substituting u for x

and w for y. which contradicts I 6|= q. Thus, T ′,A 6|=cons q
′, and so the algorithm

outputs no.
Now let us assume that the conditions in Step 0 do not apply, and so we

proceed on to Step 1. In this step, we will output no if T ,B 6|=cons α for some
ground atom α ∈ q, or if T ,B 6|=cons ∃zR(c, z) for some atom R(c, z) ∈ q with
z ∈ {x, y}. Thus, let us consider the case where all of these atomic queries are
consistently entailed, and we proceed on to Step 3. Let us consider a repair B of
A w.r.t. T such that T ,B 6|= q. Define an interpretation I as follows:

- ∆I is the union of the set Ind(B) of individuals from B and the set {wR |
R ∈ NR}

- aI = a, for each individual a from B
- AI = {d | T ,B |= A(d)}
- RI = {(d, e) | R(d, e) ∈ B} ∪
{(d,wR) | d ∈ Ind(B) and T ,B |= ∃R(d)}

By construction, I is a model of T ,B (note that because of the lack of inverses,
nothing can be deduced concerning the wR). It is also not hard to see that I is
minimal among models of T ,B, and so T ,B 6|= q implies I 6|= q. Now let M be
the set of pairs (a, b) such that there is some (a, b, `) ∈ Σ at the end of Step 3. We
will use qab to denote the ground CQ obtained by replacing x with a and y with
b. Note that because I 6|= q, we also have I 6|= qab for every a, b ∈ NI. Because of
the successful consistent entailment checks in Step 2, and the conditions which
must be satisfied to have (a, b) ∈ M , we know that for every (a, b) ∈ M , I
satisfies all atoms in qab except possibly atoms of the form A(a), R(a, d), A(b),
or R(b, d). Since I 6|= q, it follows that some atom in qab of one of the previous
forms must not hold in I. More precisely, at least one of the following conditions
must hold:

(i) there is some A ∈ Cx such that a 6∈ AI
(ii) there is some R(a, d) ∈ qab such that (a, d) 6∈ RI
(iii) there is some A ∈ Cy such that b 6∈ AI
(iv) there is some R(b, d) ∈ qab such that (b, d) 6∈ RI

We define a function val : M → {x, y, xy} as follows:

- val(a, b) = xy if at least one of (i) and (ii) holds, and at least one of (iii) and
(iv) holds

- val(a, b) = x if at least one of (i) and (ii) holds, but neither (iii) nor (iv)
holds

- val(a, b) = y if at least one of (iii) and (iv) holds, but neither (i) nor (ii)
holds

We define a partial order � of {0, x, y, xy} as follows: xy � x, xy � y, x � 0,
and y � 0. We want to show that the following property always holds for Σ:

(?) if (a, b, `) ∈ Σ, then ` � val(a, b)

This implies that at the beginning of Step 5, there are no tuples (a, b, 0) ∈ Σ,
and hence the algorithm returns the desired output no.

The proof is by induction on the number of rule applications that have been
made. We first note that property (?) hold for Σ when there have not been
any rule applications. This is trivially the case when ` = xy. For (a, b) such that
(a, b, x) ∈ Σ before any rule applications, we know from the way Σ was initialized
in Step 3 that every maximal subset Db ⊆ {A | A(b) ∈ A}∪{∃S | some S(b, d) ∈
A} consistent with T is such that T |= Dy v Cy and T 6|= Dy v ¬∃R. It follows
that there is no A ∈ Cy such that b 6∈ AI (so (iii) does not hold), nor any
assertion in B which could contradict a role assertion of the form R(b, d). As T
does not contain any inverse roles, role assertions can only be contradicted via
the first argument. Thus, it follows that every assertion in A of the form R(b, d)
must also appear in B. This means all role atoms in qab of the form R(b, d) hold
in I (so (iv) does not hold). As I 6|= q, there are only two remaining possibilities:
either there is some A ∈ Cx such that a 6∈ AI (condition (i)), or there is some
R(a, d) ∈ qab such that (a, d) 6∈ RI (condition (ii)). Thus, we have shown that
(i) or (ii) must hold, and (iii) and (iv) both do not hold, which mean we must
have val(a, b) = x. The case of (a, b) such that (a, b, y) belongs to the original Σ
proceeds analogously.

Now suppose that (?) holds when there have been at most n rule applica-
tions, and consider the n+ 1th rule application. If it is R1 which is triggered by
some tuple (a, b, x) ∈ Σ, and the extra condition in R1 is not met, then we only
remove elements from Σ, and so the property (?) continues to hold. Consider
then the more interesting case in which the condition is satisfied, which may
cause some tuple (d, a, xy) to be replaced by (d, a, x), or (d, a, y) to be replaced
by (d, a, 0). Because (a, b, x) ∈ Σ at the start of the rule application, we know
that x � val(a, b), and hence val(a, b) = x. It follows that there must be either
some A ∈ Cx such that a 6∈ AI , or some R(a, d) ∈ qab such that (a, d) 6∈ RI .
We then remark that the set Da = {A | A(a) ∈ B} ∪ {∃S | some S(a, d) ∈ B}
is a maximal subset of {A | A(a) ∈ A} ∪ {∃S | some S(a, d) ∈ A}, since oth-
erwise we could add some additional assertion from A to B without causing
inconsistency w.r.t. T (recall again that by the lack of inverses, role assertions
can only be contradicted via their first argument). Note that because there is
some A ∈ Cx such that a 6∈ AI , or some R(a, d) ∈ qab such that (a, d) 6∈ RI ,
the set Da must satisfy property (X). Then we can use the fact that the extra
condition of R1 is satisfied to infer that T |= Dx v Cy and T 6|= Dx v ¬∃R
for every R such that there is an atom R(y, t) ∈ q. Then since I 6|= q, it follows
that for every (d, a) ∈ M , there must be some A ∈ Cx such that d 6∈ AI , or
some R(d, e) ∈ qab such that (d, e) 6∈ RI . This means that for every (d, a) ∈M ,
we have val(d, a) = x. Thus, from the induction hypothesis, we know that at
the start of the rule application, every tuple (d, a, `′) ∈ M must be such that
`′ = xy or `′ = x. In the former case, we will replace (d, a, xy) by (d, a, x), which

preserves property (?). The case where it is R2 which is applied in the n+ 1-th
rule application proceeds analogously.

Completeness. To show completeness, suppose that the algorithm returns no.
We need to show that T ,A 6|=cons q. The first possibility is that the algorithm
returns no in Step 0. In this case, there is v ∈ {x, y} such that v occurs only once
in q as the second argument of some role assertion R(t, v). We will assume v = x
(the case where v = y proceeds analogously). The algorithm will then check
whether T ′,A |=cons q

′, where q′ = q \ {R(t, v)} ∪ {F (t)} and T ′ = T ∪ {∃R v
F}, for some fresh concept name F . As the output is no, we must have that
T ′,A 6|=cons q

′. Let B be some repair of A w.r.t. T ′ such that T ,B 6|= q′, and let
I ′ be a model of T ′,B such that I 6|= q′. Note that B must also be a repair of A
w.r.t. T , since T ′ does not allow us to infer any new disjointness constraints. Let
I be the intrepretation which is the same as I ′ except that it does not interpret
F . Suppose for a contradiction that I |= q. Let (u,w) be a substitution which
makes q hold in I. We remark that this means that if t = x, then (u,w) ∈ RI ,
hence u ∈ F I

′
. Similarly, if t = c for some individual c, then (cI , w) ∈ RI ,

hence cI ∈ F I′ . It follows that we have a match for q′ in I ′ by setting x to u,
contradicting the fact that I ′ 6|= q′. Thus, it must be the case that I 6|= q, hence
T ,B 6|= q, so T ,A 6|=cons q.

Consider next the case where no is returned at Step 1. In this case, there
is some ground atom α ∈ q such that T ,A 6|=cons α, or some atom R(c, z) ∈ q
with z ∈ {x, y} and c ∈ NI such that T ,A 6|=cons ∃zR(c, z). In both cases, we
immediately obtain T ,A 6|=cons q.

Let us now consider the last and most interesting case in which all of these
atomic queries are consistently entailed, and no is returned only in Step 5. We
will use the rule applications from Step 4 to guide the construction of a repair.
As in the proof of Theorem 4, we will speak of an individual being the target
of a rule application. Again, we have that each individual can be the target of
at most one rule application, since applying the rule means removing all tuples
containing the targeted individual from Σ. We also know that all tuples in Σ at
the end of Step 4 must either have label 0 or xy, since any tuple with label x or y
makes one of the rules applicable. Since the algorithm returns no in Step 5, there
must only be tuples labelled xy. We now proceed to the definition of a repair B.
We consider each individual a separately and determine which assertions of the
form A(a) or R(a, b) to include in B.

Case 1: a is the target of an application of R1, and the extra condition was not
satisfied.
Then property P2 and the non-satisfaction of the extra rule condition ensures
that we can find a maximal subset Dx ⊆ {A | A(a) ∈ A}∪{∃S | some S(a, d) ∈
A} consistent with T such that

- either T 6|= Dx v Cx or T |= Dx v ¬∃R for some R such that there is an
atom R(x, t) ∈ q

- either T 6|= Dx v Cy or T |= Dy v ¬∃R for some R such that there is an
atom R(y, t) ∈ q

We include in B the concept assertions in {A(a) | A ∈ NC ∩ Dx}, and the role
assertions in {R(a, b) | R(a, b) ∈ A,∃R ∈ Dx}.

Case 2: a is the target of an application of R1, and the extra condition was
satisfied.
By property P2, we know that we can find a maximal subset Dx ⊆ {A | A(a) ∈
A}∪{∃S | some S(a, d) ∈ A} consistent with T such that either T 6|= Dx v Cx
or T |= Dx v ¬∃R for some R such that there is an atom R(x, t) ∈ q. We let Dx

be any such set. We include in B all concept assertions in {A(a) | A ∈ NC∩Dx},
and role assertions in {R(a, b) | R(a, b) ∈ A,∃R ∈ Dx}.

Case 3: a is the target of an application of R2, and the extra condition was not
satisfied.
Then property P3 and the non-satisfaction of the extra rule condition ensures
that we can find a maximal subset Dy ⊆ {A | A(b) ∈ A}∪{∃S | some S(a, d) ∈
A} consistent with T such that:

- either T 6|= Dy v Cy or T |= Dy v ¬∃R for some R such that there is an
atom R(y, t) ∈ q

- either T 6|= Dy v Cx or T |= Dy v ¬∃R for some R for which there is an
atom R(x, t) ∈ q

We include in B the concept assertions in {A(a) | A ∈ NC ∩ Dy}, and the role
assertions in {R(a, b) | R(a, b) ∈ A,∃R ∈ Dy}.

Case 4: a is the target of an application of R2, and the extra condition was
satisfied.
By property P3, there is a maximal subset a maximal subset Dy ⊆ {A |
A(b) ∈ A} ∪ {∃S | some S(a, d) ∈ A} consistent with T such that either
T 6|= Dy v Cy or T |= Dy v ¬∃R. We let Dy be any such set, and include
in B all concept assertions in {A(a) | A ∈ NC ∩ Dy}, and role assertions in
{R(a, b) | R(a, b) ∈ A,∃R ∈ Dy}.

Case 5: a appears in some tuple of Σ at the end of Step 4, and has not been
the target of any rule application.
By above, we know the tuple in Σ containing a at the end of Step 4 must have
label ‘xy’, which means that this tuple was originally given the label ‘xy’ in
Step 3. Thus, we can find a Dx ⊆ {A | A(a) ∈ A} ∪ {∃S | some S(a, d) ∈ A}
consistent with T such that either T 6|= Dx v Cx or T |= Dx v ¬∃R for some
R such that there is an atom R(x, t) ∈ q. We include in B all concept assertions
in {A(a) | A ∈ NC∩Dx}, and role assertions in {R(a, b) | R(a, b) ∈ A,∃R ∈ Dx}.

Case 6: a is neither the target of a rule application, nor appears in any tuple
at the end of Step 4.

We choose an arbitary maximal subset of {A(a) | A(a) ∈ A} ∪ {R(a, b) ∈
R(a, b) ∈ A} consistent with T .

By the above construction, we know that for each a, we have included in B a
maximal subset of {A(a) | A(a) ∈ A} ∪ {R(a, b) ∈ R(a, b) ∈ A} consistent with
T . Since there are no inverse roles in T , it follows that B is consistent with T ,
and so it is a repair of A w.r.t. T . We let I be the following interpretation:

- ∆I = Ind(B) ∪ {wR | R ∈ NR}
- aI = a, for each individual a from B
- AI = {d | T ,B |= A(d)}
- RI = {(d, e) | R(d, e) ∈ B} ∪
{(d,wR) | d ∈ Ind(B) and T ,B |= ∃R(d)}

It is easy to see that I is a model of T ,B. We wish to show that q does not
hold in I. Suppose for a contradiction that q does hold when x is replaced by
d and y is replaced by e. It follows that the pair (d, e) satisfies the conditions
in Step 3, so some tuple (d, e, `) will be added to Σ. The first possibility is that
there is a rule application during Step 4 which targets either d or e and causes
the removal of a tuple (d, e, `′) from Σ (possibly with ` 6= `′). First, suppose
that (d, e, `′) is removed when applying R1 to d. Then d belongs to Case 1 or
Case 2, and so D = {A | A(d) ∈ B} ∪ {∃S | S(d, e) ∈ B} is such that ei-
ther T 6|= D v Cx or T |= D v ¬∃R for some R such that there is an atom
R(x, t) ∈ q. But then q cannot be satisfied by substituting d for x. If instead the
removal is due to applying R2 to e, then e belongs to either Case 3 or Case 4, and
D = {A | A(e) ∈ B}∪{∃S | S(e, d) ∈ B} satisfies T 6|= D v Cy or T |= D v ¬∃R
for some R such that there is an atom R(y, t) ∈ q. But this means that q can-
not be satisfied by substituting e for y. Thus, in either case, we contradict our
assumption that (d, e) defines a match of q in I. Let us now consider the other
possibility, which is that Σ contains a tuple (d, e, `′) after Step 4. We know from
above that `′ = xy. If d was not the target of any rule application, then we
fall into Case 5, and we have that {A | A(d) ∈ B} ∪ {∃S | S(d, f) ∈ B} = Dx

for a set Dx such that either T 6|= Dx v Cx or T |= Dx v ¬∃R for some R
such that there is an atom R(x, t) ∈ q. It is also possible that d was the target
of an application of R2, but the condition was not satisfied (Case 3), in which
case {A | A(d) ∈ B} ∪ {∃S | S(d, f) ∈ B} = Dy for some set Dy which satisfies
either T 6|= Dy v Cx or T |= Dy v ¬∃R for some R such that there is an atom
R(x, t) ∈ q. Either way, we can infer that there is some A ∈ Cx such that d 6∈ AI ,
or some atom R(x, t) ∈ q such that d 6∈ ∃RI , contradicting our assumption that
(d, e) defines a match of q. We have thus found a model I of T ,B such that
I 6|= q. It follows that T ,B 6|= q, and hence T ,A 6|=cons q.

Complexity. Note that for Steps 0 and 1, we can use the query rewriting
approach from Proposition A to decide consistent entailment for CQs with at
most one quantified variable in polynomial time in |A|. It is easy to see that
the construction of Σ in Step 3 and the application of a rule during Step 4
can both take only polynomial time. Finally, we note that the total number of

rule applications in Step 4 cannot exceed |A| × |A| since each rule application
decreases the cardinality of the set {(a, b) | (a, b, `) ∈ Σ for some `}. ut

Theorem 9

Proof. The proof is very similar to the proof of Theorem 7, except that in addi-
tion to replacing each atom A(t) in q′ by its consistent rewriting ϕA(t) of A(t),
we must also do the same for role atoms. Thus, the only interesting part of the
proof is to show how to compute the consistent rewritings of atoms in q′. Let
A(t) be an atom in one of the CQs of q′. If t is an individual, then A(t) is a
Boolean CQ with no quantified variables, so using Proposition , we can find
a consistent rewriting ϕA(t) of A(t). For atoms A(t) such that t is a variable,
we can use Proposition to find a consistent rewriting ϕA(c) of A(c) (where c is
a fresh individual). Then the formula ϕA(t) obtained by substituting t for c in
ϕA(c) is a consistent rewriting of the non-Boolean query A(t), i.e. we have that
for every individual a, T ,A |=cons A(a) if and only if IA |= ϕaA(t), where ϕaA(t)

denotes the Boolean query obtained by replacing t with a in ϕA(t). For a role
atom R(t, t′), if both t, t′ are individuals, then we directly obtain a consistent
rewriting ϕR(t,t′) of R(t, t′) by applying Proposition . If one or both of t, t′ is a
variable, then we use the same trick as above. More precisely, we introduce two
fresh individuals c, d, and we compute, using Proposition , a consistent rewriting
ϕR(c,d) of R(c, d). Then by subsituting t for c and t′ for d, we obtain a formula
ϕR(t,t′) which is a consistent rewriting of the non-Boolean query R(t, t′). ut

