
Deciding FO-Rewritability in EL

Meghyn Bienvenu1 and Carsten Lutz2 and Frank Wolter3

1 LRI - CNRS & Université Paris Sud, France
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Abstract. We consider the problem of deciding, given an instance query A(x),
an EL-TBox T , and possibly an ABox signature Σ, whether A(x) is FO-rewri-
table relative to T and Σ-ABoxes. Our main results are PSPACE-completeness
for the case where Σ comprises all symbols and EXPTIME-completeness for the
general case. We also show that the problem is in PTIME for classical TBoxes
and that every instance query is FO-rewritable into a polynomial-size FO query
relative to every (semi)-acyclic TBox (under some mild assumptions on the data).

1 Introduction

Over the last years, query answering over instance data has developed into one of the
most prominent problems in description logic (DL) research. Many approaches aim
at utilizing relational databases systems (RDBMSs), exploiting their mature technol-
ogy, advanced optimization techniques, and the general infrastructure that those sys-
tems offer. Roughly, RDBMS-based approaches can be classified into query rewriting
approaches, where the original query and the DL TBox are compiled into an SQL query
that is passed to the RDBMS for execution [5], and combined approaches, where the
consequences of the TBox are materialized in the data in a compact form and some
query rewriting is used to ensure correct answers despite the compact representation
[12, 11]. This division is by no means strict, as illustrated by the approach presented in
[7] which is based on query rewriting, but also has strong similarities with combined
approaches.

A fundamental difference between the query rewriting approach and the combined
approach is that, in query rewriting, an exponential blowup of the query is often un-
avoidable [8] while the combined approach typically blows up both query and data
only polynomially [12, 11]. It is thus unsurprising that query execution is more efficient
in the combined approach than in the query rewriting approach, see the experiments
in [11]. Depending on the application, however, there can still be good reasons to use
pure query rewriting. Ease of implementation: Query rewriting approaches are often
easier to implement as they do not involve a data completion phase. When the TBox
is sufficiently small so that the exponential blowup of the query is not prohibitive or
when only a prototype implementation is aimed at, it may not be worthwhile to imple-
ment a full combined approach. Access limitations: If the user does not have permission
to modify the data in the database, materializing the consequences of the TBox in the
data might simply be out of the question. This problem arises notably in information
integration applications.



In this paper, we are interested in TBoxes formulated in the description logic EL,
which forms the basis of the OWL EL fragment of OWL 2 and is popular as a ba-
sic language for large-scale ontologies. In general, query rewriting approaches are not
applicable to EL because instance query answering in this DL is PTIME-complete re-
garding data complexity while AC0 data complexity marks the boundary of DLs for
which the pure query rewriting approach can be made work [5]. For example, the query
A(x) cannot be answered by an SQL-based RDBMS in the presence of the very simple
EL-TBox T = {∃r.A v A}, intuitively because T forces the concept name A to be
propagated unboundedly along r-chains in the data and thus the rewritten query would
have to express transitive closure of r. We say that A(x) is not FO-rewritable relative
to T , alluding to the known equivalence of first-order (FO) formulas and SQL queries.

Of course, such an isolated example does not rule out the possibility that some EL-
TBoxes, including those that are used in applications, still enjoy FO-rewritability. For
example, the query A(x) is FO-rewritable relative to the EL-TBox T ′ = {A v ∃r.A}:
since the additional instances of A stipulated by T ′ are ‘anonymous objects’ (nulls in
database parlance) rather than primary data objects, there is no unbounded propagation
through the data and, in fact, we can simply drop T ′ when answering A(x). Inspired
by these observations, the aim of this paper is to study FO-rewritability on the level of
individual TBoxes, essentially following the non-uniform approach initiated in [15]. In
particular, we are interested in deciding, for a given instance query (IQ) A(x) and EL-
TBox T , whether q is FO-rewritable relative to T . Sometimes, we additionally allow
as a third input an ABox-signature Σ that restricts the symbols which can occur in the
data [2, 3].

Our main result is that deciding FO-rewritability of IQs relative to general EL-
TBoxes (sets of concept inclusions C v D) is PSPACE-complete when the ABox signa-
ture Σ is full (i.e., all symbols are allowed in the ABox) and EXPTIME-complete when
Σ is given as an input. For proving these results, we establish some properties that are
of independent interest, such as: (1) whenever an IQ is FO-rewritable, then it is FO-
rewritable into a union of tree-shaped conjunctive queries; (2) an IQ is FO-rewritable
relative to all ABoxes iff it is FO-rewritable relative to tree-shaped ABoxes (see Sec-
tion 3 for a precise formulation). We also study more restricted forms of TBoxes, show-
ing that FO-rewritability of IQs relative to classical TBoxes (sets of concept definitions
A ≡ C and concept implications A v C with A atomic, cycles allowed) is in PTIME,
even when Σ is part of the input. For semi-acyclic TBoxes T (classical TBoxes without
cycles that involve only concept definitions, but potentially with cycles that involve at
least one concept inclusion), we observe that every IQ is FO-rewritable relative to T (for
any ABox signatureΣ) and that, under the mild assumption that the admitted databases
have domain size at least two, even a polynomial-sized rewriting is possible. While it is
not our primary aim in this first publication to actually generate FO-rewritings, we note
that all our results come with effective procedures for doing this (the rewritings are of
triple-exponential size in the worst case).

Although we focus on simple IQs of the form A(x), all results in this paper also
apply to instance queries of the form C(x) with C an EL-concept. The treatment of
conjunctive queries (CQs) is left for future work. We also discuss the connection of
FO-rewritability in EL to boundedness in datalog and in the µ-calculus. Proof details
can be found in the appendix.



2 Preliminaries

We remind the reader that EL-concepts are built up from concept names and the con-
cept > using conjunction C uD and existential restriction ∃r.C. When we speak of a
TBox without further qualification, we mean a general TBox, i.e., a finite set of concept
inclusions (CIs) C v D. Other forms of TBoxes will be introduced later as needed. An
ABox is a finite set of concept assertions A(a) and role assertions r(a, b) where A is a
concept name, r a role name, and a, b individual names. We use Ind(A) to denote the
set of all individual names used inA. It will sometimes be convenient to view an ABox
A as an interpretation IA, defined in the obvious way (see [15]).

Regarding query languages, we focus on instance queries (IQ), which have the form
A(x) with A a concept name and x a variable. We write T ,A |= A(a) if aI ∈ AI for
all models I of T and A and call a a certain answer to A(x) given A and T . We
use certT (A(x),A) to denote the set of all certain answers to A(x) given A and T .
To define FO-rewritability, we require first-order queries (FOQs), which are first-order
formulas constructed from atoms A(x), r(x, y), and x = y. We use ans(I, q) to denote
the set of all answers to the FOQ q in the interpretation I.

A signature is a set of concept and role names, which are uniformly called symbols
in this context. A Σ-ABox is an ABox that uses only concept and role names from Σ.
The full signature is the signature that contains all concept and role names.

Definition 1 (FO-rewritability). Let T be an EL-TBox and Σ an ABox signature. An
IQ q is FO-rewritable relative to T and Σ if there is a FOQ ϕ such that certT (A, q) =
ans(IA, ϕ) for all Σ-ABoxes A. Then ϕ is an FO-rewriting of q relative to T and Σ.

Example 1. Recall from the introduction that A(x) is not FO-rewritable relative to
T = {∃r.A v A} and the full signature. If we add ∃r.> v A to T , then A(x) is
FO-rewritable relative to the resulting TBox and the full signature, and ϕ(x) = A(x)∨
∃y r(x, y) is an FO-rewriting. If we chooseΣ = {A}, thenA(x) becomes FO-rewritable
also relative to the original T , with the trivial FO-rewritingA(x). Conversely, if a query
q is FO-rewritable relative to a TBox T ′ and a signature Σ, then q is FO-rewritable rel-
ative to T ′ and any Σ′ ⊆ Σ (take an FO-rewriting relative to T ′ and Σ and replace all
atoms which involve predicates that are not in Σ′ with false).

Sometimes, instance queries have the more general form C(x) with C an EL-
concept. Since C(x) is FO-rewritable relative to T and Σ whenever A(x) is FO-
rewritable relative to T ∪ {A ≡ C} and Σ, A a fresh concept name, queries of this
form are captured by the results in this paper.

3 General TBoxes – Upper Bounds

We first characterize failure of FO-rewritability of an IQ A(x) relative to a TBox T
and an ABox signature Σ in terms of the existence of certain Σ-ABoxes and then show
how to decide the latter. The following result provides the starting point. An ABox
is called tree-shaped if the directed graph (Ind(A), {(a, b) | r(a, b) ∈ A}) is a tree
and r(a, b), s(a, b) ∈ A implies r = s. A FOQ is a tree-UCQ if it is a disjunction



q1 ∨ · · · ∨ qn and each qi is a conjunctive query (CQ) that is tree-shaped (defined in
analogy with tree-shaped ABoxes) and where the root is the only answer variable; see
e.g. [15] for details on CQs.

Theorem 1. Let T be an EL-TBox, Σ an ABox signature, and A(x) an IQ. Then

1. If A(x) is FO-rewritable relative to T and Σ, then there is a tree-UCQ that is an
FO-rewriting of A(x) relative to T and Σ;

2. If ϕ(x) is an FO-rewriting of A(x) relative to T and tree-shaped Σ-ABoxes and
ϕ(x) is a tree-UCQ, then ϕ(x) is an FO-rewriting relative to T and Σ;

3. A(x) is FO-rewritable relative to T and Σ iff A(x) is FO-rewritable relative to T
and tree-shaped Σ-ABoxes.

Of the three points in Theorem 1, Point 1 is most laborious to prove. It involves applying
an Ehrenfeucht-Fraı̈ssé game and explicitly constructing a tree-UCQ as a disjunction of
certain EL-concepts (c.f. the characterization of FO-rewritability in terms of datalog
boundedness given in [15] and its proof). Point 2 can then be derived from Point 1, and
Point 3 is an immediate consequence of Points 1 and 2.

For a tree-shaped ABox A and k ≥ 0, we use A|k to denote the restriction of A to
depth k. The following provides the first version of the announced characterization of
FO-rewritability in terms of the existence of certain ABoxes.

Theorem 2. Let T be an EL-TBox, Σ an ABox signature, and A(x) an IQ. Then A(x)
is not FO-rewritable relative to T and Σ iff for every k ≥ 0, there is a tree-shaped
Σ-ABox A of depth exceeding k with root a0 s.t. T ,A |= A(a0) and T ,A|k 6|= A(a0).

The proof of Theorem 2 builds on Point 1 of Theorem 1. Note that if A(x) is FO-
rewritable relative to T and Σ, then there is a k ≥ 0 such that for all tree-shaped Σ-
ABoxesA of depth exceeding k with root a0, T ,A |= A(a0) implies T ,A|k |= A(a0).
In the proof of Theorem 2, we explicitly construct FO-rewritings which are tree-UCQs
of outdegree at most |T | and depth at most k.

To proceed, it is convenient to work with TBoxes in normal form, where all CIs
must be of one of the forms A v B1, A v ∃r.B, > v A, B1 u B2 v A, ∃r.B v A
with A,B,B1, B2 concept names. This can be assumed without loss of generality:

Lemma 1. For any EL-TBox T , ABox signature Σ, and IQ A(x), there is a TBox T ′
in normal form such that for any FOQ ϕ, we have that ϕ(x) is an FO-rewriting ofA(x)
relative to T and Σ iff ϕ(x) is an FO-rewriting of A(x) relative to T ′ and Σ.

To exploit Theorem 2 for building a decision procedure for FO-rewritability, we impose
a bound on k. The next theorem is proved using Theorem 2 and a pumping argument.

Theorem 3. Let T be an EL-TBox in normal form, Σ an ABox signature, A(x) an IQ,
and n = |(sig(T ) ∪ Σ) ∩ NC|. Then A(x) is not FO-rewritable relative to T and Σ
iff there exists a tree-shaped Σ-ABox A of depth exceeding 22n with root a0 such that4

T ,A |= A(a0) and T ,A|22n 6|= A(a0).

4 In the short version of this paper submitted to the DL2012 workshop, the bound is erroneously
stated as 2n.



Note that, with the remark after Theorem 2, we obtain a triple exponential upper bound
on the size of FO-rewritings. We conjecture that no shorter rewritings into tree-UCQs
are possible, and that this can be shown using examples from [13, 16]. Here, we only
remark that the bound in Theorem 3 cannot be significantly improved: for every n ≥ 1,
there is an EL-TBox T and an IQ A(x) such that |sig(T ) ∩ NC| = n, A(x) is FO-
rewritable relative to T and the full Σ, and for all ABoxes of depth at least 2n with
root a0, we have T ,A |= A(a0) iff T ,A|2n−1 |= A(a0). Such a T can be constructed
by simulating a binary counter, see Section 4 of [13]. Based on Theorem 3, we can
establish the following result.

Theorem 4. Deciding FO-rewritability of an IQ relative to an EL-TBox and an ABox
signature is in EXPTIME.

The proof utilizes non-deterministic bottom-up automata on finite, ranked trees: we
construct exponential-size automata that accept precisely the ABoxes A from Theo-
rem 3 and then decide their emptiness in PTIME.

When Σ is full, the characterization given in Theorem 3 can be further improved.
An ABox A is linear if it consists of role assertions r0(a0, a1), . . . , rn−1(an−1, an)
and concept assertions A(a) with a ∈ {a0, . . . , an}. Somewhat unexpectedly, with full
Σ we can replace the tree-shaped ABoxes from Theorem 3 with linear ones.

Theorem 5. Let T be an EL-TBox in normal form, A(x) an IQ, and n = |(sig(T ) ∪
Σ)∩NC|. Then A(x) is not FO-rewritable relative to T (and the full Σ) iff there exists
a linear ABox A of depth exceeding 22n with root a0 such that T ,A |= A(a0) and
T ,A|22n 6|= A(a0).

The surprisingly subtle proof of Theorem 5 is based on the careful extraction of a lin-
ear ABox from the tree-shaped one whose existence is guaranteed by Theorem 3. The
subtlety is largely due to the fact that it is not sufficient to simply select a linear chain
of individuals from the tree-shaped ABox; additionally, the concept assertions on that
chain have to be modified in a very careful way.

The following example shows that, when Σ is not full, tree-shaped ABoxes in The-
orem 3 cannot be replaced with linear ones.

Example 2. Let T = {Ai v Xi, Bi uXi v Yi, ∃r.Yi v Xi | i ∈ {1, 2}}∪
{X1 uX2 v X, B1 uB2 v Z, ∃r.Z v X},

Σ = {A1, A2, B1, B2, r}, and take the IQ X(x). The tree-shaped ABox

A = {r(a0, ai,0), r(ai,0, ai,1), . . . , r(ai,2n−1, ai,22n+1) | i ∈ {1, 2}}∪
{B(ai,0), . . . , B(ai,2n), Ai(ai,22n+1) | i ∈ {1, 2}},

with n as in Theorems 3 and 5, is of depth exceeding 22n and it can be verified that
T ,A |= X(a0), but T ,A|22n 6|= X(a0). However, for all linear Σ-ABoxes A, we have
T ,A |= X(a0) iff T ,A|1 |= X(a0).

Theorem 5 allows us to replace the non-deterministic tree automata in the proof of
Theorem 6 with word automata, improving the upper bound to PSPACE.

Theorem 6. Deciding FO-rewritability of an IQ relative to an EL-TBox and the full
ABox signature is in PSPACE.



4 General TBoxes – Lower Bounds

We establish lower bounds that match the upper bounds from the previous section.

Theorem 7. Deciding FO-rewritability of an IQ relative to a general EL-TBox and an
ABox signature Σ is (1) PSPACE-hard when Σ is full and (2) EXPTIME-hard when Σ
is an input.

The proof of Point 1 is by reduction of the word problem of polynomially space-
bounded deterministic Turing machines (DTMs). For Point 2, we use polynomially
space-bounded alternating Turing machines (ATMs). We start with the former.

Let M = (Q,Ω, Γ, δ, q0, qacc, qrej) be a DTM that solves a PSPACE-complete prob-
lem and p(·) its polynomial space bound. To simplify technicalities, we w.l.o.g. make
the following assumptions about M . We assume that, when started in any (not neces-
sarily initial) configuration C, then the computation of M terminates and uses at most
p(k) tape cells when k is the number of tape cells that are non-blank in C. We also
assume that M always terminates with the head on the right-most tape cell, that it never
attempts to move left on the left-most end of the tape, and that there are no transitions
defined for qacc and qrej. Let x ∈ Ω∗ be an input to M of length n. Our aim is to con-
struct a TBox T and select a concept name B such that B is not FO-rewritable relative
to T and the full signature iff M accepts x.

By Theorem 5, non-FO-rewritability of B w.r.t. T is witnessed by a sequence of
linear ABoxes of increasing depth. In the reduction, these ABoxes take the form of
longer and longer chains representing the computation of M on x, repeated over and
over again. Specifically, the tape contents, the current state, and the head position are
represented using the elements of Γ ∪ (Γ ×Q) as concept names. Each ABox element
represents one tape cell of one configuration, the role name r is used to move between
consecutive tape cells, the role name s is used to move between successor configurations
inside the same computation, and the role name t is used to separate computations. To
illustrate, suppose the computation of M on x = ab consists of the two configurations
qab and aq′b.5 This is represented by ABoxes of the form

{r(b1, b0), s(b2, b1), r(b3, b2), t(b4, b3), r(b5, b4), . . . , r(bk, bk−1)}

where additionally, the concept (a, q) is asserted for b0, b4, b8, . . . , b is asserted for
b1, b5, b9, . . . , a for b2, b6, b10, . . . , and (b, q′) for b3, b7, b11, . . . . If M accepts x, then
B is propagated backwards along these chains (from b0 to b1 etc.) unboundedly far,
starting from a single explicit occurrence of B asserted for b0. To ensure that the chain
in the ABox properly represents the computation of M on x, we will make sure that
B is already implied by a subchain of bounded length when there is a defect in the
computation, and thus the unbounded propagation of B gets disrupted resulting in FO-
rewritability of B relative to T .

The following CI in T results in backwards propagation of B provided that every
ABox individual is labeled with at least one symbol from Γ ∪ (Γ × Q). It also makes

5 uqv ∈ Γ ∗QΓ ∗ means that M is in state q, the tape left of the head is labeled with u, and
starting from the head position, the remaining tape is labeled with v.



sure that t-transitions occur exactly after the accepting state was reached:

∃r.(A uB) v B for all A ∈ Γ ∪ (Γ × (Q \ {qacc, qrej})) (1)

∃s.(A uB) v B for all A ∈ Γ ∪ (Γ × (Q \ {qacc, qrej})) (2)

∃t.(A uB) v B for all A ∈ Γ × {qacc}. (3)

There are many properties of witness ABoxes that need to be taken care of. We start
with enforcing that every tape cell has a unique label, that there is not more than one
head position per configuration, and at least one:

A uA′ v B for all distinct A,A′ ∈ Γ ∪ (Γ ×Q) (4)
(a, q) v H for all (a, q) ∈ Γ ×Q (5)

∃ri.H u ∃rjH v B for i < j < p(n) (6)
a v H for all a ∈ Γ (7)

H u ∃r.H u · · · u ∃rp(n)−1.H v B (8)

whereH is a concept name indicating that the head is on the current cell andH indicat-
ing that this is not the case. Note that, whenever one of the desired properties is violated
in an ABox, then B is implied by a subchain of length at most p(n), thus its unbounded
propagation is disrupted.

For technical reasons, we also want to ensure that configurations have length exactly
p(n) (with the possible exception of the first configuration, which can be shorter), again
via disruption of propagation:

∃rp(n).> v B (9)

∃S.∃ri.∃S′.> v B for all i < p(n)− 1 and S, S′ ∈ {s, t} (10)

We now enforce that the transition relation is respected and that the content of tape
cells which are not under the head does not change. Let forbid denote the set of all tuples
(A1, A2, A3, A) withAi ∈ Γ ∪(Γ×Q) such that whenever three consecutive tape cells
in a configuration c are labeled with A1, A2, A3, then in the successor configuration c′

of c, the tape cell corresponding to the middle cell cannot be labeled with A.

A u ∃ri.∃s.∃rp(n)−i−2.(A3 u ∃r.(A2 u ∃r.A1)) v B (11)

for all 0 ≤ i < p(n) and (A1, A2, A3, A) ∈ forbid.
It remains to set up the initial configuration. Recall that witness ABoxes consist of

repeated computations of M , which ideally we would all like to start in the initial con-
figuration for input x. It does not seem possible to enforce this for the first computation
in the ABox, so we live with this computation starting in some unknown configuration.
Then, we utilize the final states qacc and qrej to enforce that all computations in the ABox
except the first one must start with the initial configuration for x. LetA(0)

0 , . . . , A
(0)
p(n)−1

be the concept names that describe the initial configuration, i.e., when the input x is
x0 · · ·xn−1, then A(0)

0 = (x0, q0), A
(0)
i = xi for 1 ≤ i < n, and A(0)

i = xi is the blank
symbol for n ≤ i < p(n). Now put

∃ri.∃t.> v A(0)
i for all 0 ≤ i < p(n). (12)



Lemma 2. B is not FO-rewritable relative to T and the full signature iff M accepts x.

Proof. “if”. (sketch) Assume thatM accepts x. By Theorem 2, it is enough to show that
for every k ≥ 0, there is a tree-shaped ABox A with root a0 and of depth exceeding
k such that T ,A |= B(a0) and T ,A|k 6|= B(a0). Fix a k and let C1, . . . , Cm be a
sequence of configurations of length p(n) obtained by sufficiently often repeating the
accepting computation of M on x so that |C1| + · · · + |Cm| > k. We can convert
C1, . . . , Cm into the desired witness ABox A in a straightforward way: introduce one
individual name for each tape cell in each configuration, use the role name r to connect
cells within the same configuration, the role name s to connect configurations, the role
name t to connect computations, and the concept names from Γ ∪ (Γ ×Q) to indicate
the tape inscription, current state, and head position. We obtain a linear ABox A (tree-
shaped with outdegree one) of length > k. Add B(a) with a the only leaf of A. It can
be verified that A is as required.

“only if”. Assume that B is not FO-rewritable relative to T , let stepM be the max-
imum number of steps M makes starting from any configuration of length p(n) before
entering a final state, and let k = (2 · stepM + 2) · p(n) + p(n).

Claim 1. There is a tree-shaped ABoxA of depth exceeding k with root a0 such thatA
is closed under applications of CIs (4) to (10), T ,A |= B(a0), and T ,A|k 6|= B(a0).

Proof of claim. By Theorem 2, we find a tree-shaped ABox A′ of depth exceeding
k + p(n) + 1 with root a0 such that T ,A′ |= B(a0) and T ,A′|k+p(n)+1 6|= B(a0).
The desired ABox A is obtained by closing A′ under CIs (4) to (10). Clearly, we have
T ,A |= B(a0). Now consider that ABoxes A|k and A′|k. Since the CIs (4) to (10) are
non-recursive and of role depth at most p(n)+1, all atoms α ∈ A|k \A′|k are such that
T ,A′|k+p(n)+1 |= α. Since T ,A′|k+p(n)+1 6|= B(a0), we thus have T ,A|k 6|= B(a0),
as required. This finishes the proof of Claim 1.

Let T − be the restriction of T to CIs (1) to (3). SinceA and thus alsoA|k is closed
under applications of CIs (4) to (10), all CIs in T − are of the form C v B, and B
does not occur on the left-hand sides of CIs (4) to (10), we have T −,A |= B(a0) and
T −,A|k 6|= B(a0). We can assume w.l.o.g. that there is an individual a on level k + 1
ofA such that T −,A− 6|= B(a0), whereA− isA with the subtree rooted at a dropped.
Let b0, . . . , bk+1 be the (backwards) path in A from a to a0.

Claim 2. For 1 ≤ i ≤ k + 1, we have

(a) T −,A |= B(bi);
(b) T −,A− ∪ {B(bi)} |= B(a0).

Proof of claim.

(a) Follows from the fact that T −,A |= B(a0), T −,A− 6|= B(a0), and that all CIs in
T − are of the form C v B with C of role depth one.

(b) Fix a bi with 1 ≤ i ≤ k + 1. Let A+ be the ABox obtained from A by

– dropping all subtrees rooted at successors of bi and
– adding all concept assertions X(bi) with T −,A |= X(bi).



Since T −,A |= B(b0) and all CIs in T − are of role depth one, we have T −,A+ |=
B(b0). We have A+ ⊆ A− ∪ {B(bi)} as all CIs in T − are of the form C v B. Thus,
T −,A− ∪ {B(bi)} |= B(a0) and the proof of Claim 2 is finished.

For 1 ≤ i ≤ k + 1 and R ∈ {r, s, t}, we say that bi is an R-individual if
R(bi, bi−1) ∈ A. Let o be smallest index i such that bi is an s-individual or t-individual.
By CI (9), Point (b) of Claim 2, and since T −,A− 6|= B(a0) we have o ≤ p(n). Simi-
larly, by CIs (9) and (10) we can split the chain bo, . . . , bk+1 into consecutive subchains
of length precisely p(n) such that the first individual in each subchain is an s-individual
or t-individual and all others are r-individuals. By CIs (4) to (8), each such subchain
represents a unique configuration of M of length p(n). We thus obtain a sequence of
configurations C1, . . . , C` with ` > 2 · stepM + 1. By CIs (11), for all Ci, Ci+1 where
Ci+1 starts with an s-individual, Ci+1 must be a successor configuration of Ci. Since
M terminates after at most stepM steps starting from any configuration, there is a Ci
with i < stepM such that Ci is a final configuration. By CI (2) and qacc and qrej are
excluded in Point (a) of Claim 2, Ci+1 must start with a t-individual. By CI (12), Ci+1

must be the initial configuration of M on input x. The sequence Ci+1, . . . , C` is still of
length exceeding stepM + 1. It follows that an initial piece of this sequence represents
the computation of M on x, say Ci+1, . . . , Cj with j < `. As above, we can argue that
Cj+1 must start with a t-individual. Moreover, since qrej is excluded in CI (3), Cj must
be an accepting configuration, thus the computation of M on x is accepting. o

We now come to Point 2 of Theorem 7. Let M = (Q∃, Q∀, Ω, Γ, δ, q0, qacc, qrej) be
an ATM that solves an EXPTIME-complete problem. We assume qacc, qrej /∈ Q∃ ∪Q∀,
and thus no transitions are defined for qacc, qrej. We may also assume w.l.o.g. that both
for existential and universal states, there are exactly two transitions. Each transition
has the form (q, a,m) with m ∈ {−1,+1}, i.e., the Turing machine cannot make a
transition without moving its head. Let x ∈ Ω∗ be an input of length n to M . We
construct a TBox T and signature Σ such that a selected concept name B /∈ Σ is not
FO-rewritable relative to T and Σ iff M accepts x. The construction differs in some
crucial aspects from the PSPACE one given before:

(i) witness ABoxes are be tree-shaped and represent repeated computation trees rather
than repeated linear DTM computations;

(ii) an individual represents a whole configuration rather than only one tape cell;
(iii) the computation will proceed forward along role edges rather than backward.

In Point (i), “repeated computation trees” means that one copy of the tree is repeatedly
appended to at least one leaf of another copy of the tree. The concept name B then
propagates bottom-up through these repeated trees.

We use concept names from the set

C = (Γ × [1, . . . , p(n)]) ∪ (Γ ×Q× [1, . . . , p(n)]) ⊆ Σ

to specify contents of the tape cells, the head position and the current state. For easy
reference, we use Ci to denote the restriction of C to all tuples with last component i.
Auxilliary concept names P1, . . . , Pp(n), which are not in Σ, indicate that the contents



of a given tape cell have been specified, and Tape /∈ Σ does the same for the whole
tape:

A v Pi for all A ∈ Ci, 1 ≤ i ≤ p(n) (13)
P1 u · · · u Pn v Tape (14)

We use the role name r1 to link successor configurations of existential restrictions and
first successor configurations of universal configurations, and r2 to link second suc-
cessor configurations of universal configurations. The following CIs make sure that
(i) whenever an individual describes a configuration, then every tape cell is labeled
with some symbol in this configuration and (ii) the appropriate successors are present:
for all (a, q, i) ∈ C with q ∈ Q∃, put

Tape u (a, q, i) u ∃r1.(Tape uB) v B. (15)

For all (a, q, i) ∈ C with q ∈ Q∀, put

Tape u (a, q, i) u ∃r1.(Tape uB) u ∃r2.(Tape uB) v B. (16)

By disrupting the propagation ofB, we can ensure that every cell is labeled with at most
one symbol, that there is exactly one head and state, and that symbols that are not under
the head do not change when the TM makes a transition. Technically, this is achieved
with the help of a concept name E /∈ Σ, which signals an error. We also use auxiliary
concept names Hi, Hi /∈ Σ:

A uA′ v E for all distinct A,A′ ∈ Ci, 1 ≤ i ≤ p(n) (17)

(a, q, i) v Hi for all (a, q, i) ∈ Ci, 1 ≤ i ≤ p(n) (18)

(a, i) v Hi for all (a, i) ∈ Ci, 1 ≤ i ≤ p(n) (19)

Hi uHj v E for 1 ≤ i < j ≤ p(n) (20)

H1 uH2 u · · · uHp(n) v E (21)

Hi uAa,j u ∃r`.Bb,j v E for all Aa,j ∈ Caj and Bbj ∈ Cbj , a 6= b, (22)

distinct i, j ∈ [1, . . . , p(n)], and ` ∈ {1, 2}

where Cai denotes the restriction of Ci to those tuples with first component a. Errors in
a computation tree imply B at the root of that tree:

Tape u ∃r`.E v E for ` ∈ {1, 2} (23)

E v B (24)

To ensure that the transition relation is respected, we use the following CIs: for all
(a, q, i) ∈ C with q ∈ Q∃ and δ(q, a) = {(q1, a1,m1), (q2, a2,m2)}, and all tuples
(a′, q′, i′), (a′′, i) ∈ C with (q′, i′) 6= (q`, i+m`) or a′′ 6= a` for all ` ∈ {1, 2}, put

(a, q, i) u ∃r1.((a′′, i) u (a′, q′, i′)) v E (25)



For all (a, q, i) ∈ C with q ∈ Q∀ and δ(q, a) = {(q1, a1,m1), (q2, a2,m2)}, put for
` ∈ {1, 2}:

(a, q, i) u ∃r`.(a′, q′, i′) v E for all (a′, q′, i′) ∈ C with (q′, i′) 6= (q`, i+m`)(26)

(a, q, i) u ∃r`.(a′, i) v E for all a′ ∈ Γ with a′ 6= a` (27)

We did not yet introduce a way to start the propagation of B (except errors). This is
achieved via an additional concept name Start ∈ Σ. To ensure that the represented
computation is accepting, Start implies B only at accepting final configurations of the
TM:

Start u (a, qacc, i) v B (28)

Since the depth of computation trees is bounded, we did not yet achieve unbounded
propagation. The following CI allows the propagation of B along multiple computation
trees plugged together in the way described above. It also sets up the initial configura-
tion in all computation trees except the topmost one. Note that we use a different role
name t for plugging trees together:

(a, qacc, i) u ∃t.(A0
1 u . . . uA0

p(n) uB) v B (29)

where (abusing notation) we useA0
1, . . . , A

0
p(n) to denote the sequence of symbols from

C that corresponds to the initial configuration. We also have to prevent continued travel
along r when the computation has stopped: for all (a, q, i) ∈ C with q ∈ {qacc, qrej},
put

(a, q, i) u ∃r`.> v E for ` ∈ {1, 2} and q ∈ {qacc, qrej}. (30)

Lemma 3. B is not FO-rewritable relative to T and Σ iff M accepts x.

Proof. “if”. (sketch) Assume that M accepts x. Then there is an accepting computation
tree T of M on x. By Theorem 2, it is enough to show that for every k ≥ 0, there
is a tree-shaped ABox A with root a0 and of depth exceeding k such that T ,A |=
B(a0) and T ,A|k 6|= B(a0). Note that the computation tree T can be converted into
a tree-shaped ABox AT in a straightforward way: introduce one individual name for
each configuration, use the concept names from C to describe the actual computations
at their corresponding individual names, and use the role names r and s to connect
configurations in the intended way. By repeatedly appending copies of the ABox AT
to leaves of this ABox using the role name t, generate a tree-shaped ABox A of depth
exceeding k (it is enough to start with one copy ofAT , append a second copy at a single
leaf of the first copy, a third copy at a single leaf of the second copy, and so on). Finally,
add the concept name Start to all leaves of A. It can be verified that A is as required.

“only if”. Assume that B is not FO-rewritable relative to T , let stepM be the max-
imum length of a path in a computation tree of M (starting at any configuration, not
necessarily an initial one), and let k = 2 · stepM + 1. By Theorem 2, we find a
tree-shaped ABox A of depth exceeding k with root a0 such that T ,A |= B(a0) and
T ,A|k 6|= B(a0). We can assume w.l.o.g. that there is an individual a on level k + 1
of A such that T ,A− 6|= B(a0), where A− is A with the subtree rooted at a dropped.
Let a0, . . . , ak+1 be the path in A from a0 to a, and call an ai with i > 0 on this



path an R-individual if R(ai−1, ai) ∈ A, for R ∈ {r1, r2, t}. Let a0, . . . , ap be the
longest prefix of a0, . . . , ak+1 that does not contain any t-individuals. In what follows,
a configuration C ′ is a 1-successor configuration of C when C is existential and C ′ is a
successor configuration or C is universal and C ′ is the first successor configuration; C ′

is a 2-successor configuration of C when C is universal and C ′ is the second successor
configuration. We show by induction on i that

1. T ,A− 6|= E(ai);
2. T ,A |= Tape(ai) and the assertions A(ai) ∈ A with A ∈ C represent a proper

configuration Ci of M ;
3. if ai is an r`-individual, ` ∈ {1, 2}, thenCi is an `-successor configuration ofCi−1.

for every i ≤ p.

For the induction start (i = 0), Point 1 is true since T ,A− 6|= B(a0) and by CI (24),
and Point 3 is vacuously true. For Point 2, first note that

(∗) for each right-hand side C of the CIs (17), (20), (21), (22), we have T ,A 6|= C(a0).

Otherwise, we obtain T ,A− |= C(a0) by the claim, implying T ,A− |= E(a0), which
is a contradiction to Point 1. Since T ,A |= B(a0) and T ,A− 6|= B(a0) and all concepts
in T are of role depth at most one, some concept name must be ‘propagated up’ from
a1 to a0, which can only be due to one of the CIs (15), (16), or (23). Since all these CIs
have Tape on their left-hand side, we have T ,A |= Tape(a0). By (13) and (14) and
since Tape /∈ Σ, for 1 ≤ i ≤ p(n) we have A(ai) ∈ A for some A ∈ Ci. By (∗), these
assertions indeed represent a proper configuration C0.

For the induction step, we start with Point 1. Assume to the contrary that T ,A− |=
E(ai). By Point 2 of IH and the claim, we have T ,A− |= Tape(ai−1). By CI (23),
T ,A− |= E(ai−1), in contradiction to Point 1 of IH. The proof of Point 2 is exactly
as in the induction start. It remains to deal with Point 3, which is a consequence of
CIs (25)-(27) and the fact that, by Point 1 of IH, T ,A− 6|= E(ai−1). This finishes the
proof of Points 1-3.

By Point 3, the length of the configuration sequence C0, . . . , Cp is bounded by
stepM +1, and so p is bounded by stepM . Since k > 2 · stepM +1, we have k > p and
the individual ap+1 exists. By choice of a0, . . . , ap, ap+1 must be a t-individual, but
cannot be an r`-individual for any ` ∈ {1, 2}. Since T ,A |= B(a0), T ,A− 6|= B(a0),
and all concepts in T are of role depth one, some concept name must be ‘propagated up’
from ap+1 to ap. Since CI (29) is the only CI referring to the role name t, this CI must
be used in the propagation. By the left-hand side of CI (29), the set {A | A(ap+1) ∈ A}
includes all concept names that represent the initial configuration for x.

We can now select a set of individial names I ⊆ Ind(A) such that the restriction
A|I of A to those assertions that refer only to individuals in I is tree-shaped, rooted at
ap+1, and satisfies the following conditions, for all nodes a ∈ I:

(a) T ,A |= B(a) and T ,A− 6|= E(a);
(b) T ,A |= Tape(a) and the assertions A(a) ∈ A with A ∈ C represent a proper

configuration Ca of M ;



(c) if Ca is an existential configuration, then a has a single successor b that is an r1-
individual;

(d) if Ca is a universal configuration, then a has two successors b1, b2 in B with b1 an
r1-individual and b2 an r2-individual;

(e) if r`(a, b) ∈ B, then Cb is an `-successor configuration of Ca, ` ∈ {1, 2}.

Let ap+1, . . . , aq be the shortest prefix of ap+1, . . . , ak that consists only of r`-indivi-
duals, for some ` ∈ {1, 2}. We start the selection of individual names with setting
I := {ap+1, . . . , aq}. We can argue as in the analysis of the chain a0, . . . , ap above that
ap+1, . . . , aq satisfies Points 1 to 3, for p + 1 ≤ i ≤ q. Thus, Points (b) and (e) from
above are also satisfied, and so is the second part of Point (a). Note that q ≤ 2 · stepM ,
and thus the individual aq+1 exists and is a t-individual, but not an r`-individual for
any `. A concept name X must be propagated up from aq+1 to aq which must be due
to CI (29). Thus, X must actually be B and we have T ,A |= B(aq). An analysis of
the CIs in T reveals that the upwards propagation of B from aq+1 to aq cannot result
in any other concept name than B being propagated further up to aq−1, . . . , a0. Since
we know that some concept name is propagated up along this path, we can derive that
T ,A |= B(ai) for all i ≤ q. Thus, the first part of Point (a) is satisfied.

To also satisfy Points (c) and (d), we may have to select additional individual names
to be included in I . During this extension of I , we will always maintain Properties (a),
(b), and (e). We only treat the case of universal configurations, and leave existential ones
to the reader. Assume that there is some a ∈ I such that Ca is a universal configuration.
By (a), we have T ,A |= B(a). Since B /∈ Σ, this must be due to some CI. Since Ca is
universal, this CI must be CI (16), and thus we find an ri-successor ai of a in A with
T ,A |= Tape u B(ai), for i ∈ {1, 2}. We also have T ,A− 6|= E(ai) for i ∈ {1, 2}
since the contrary would imply T ,A− |= B(a0), and thus Point (a) is satisfied for
a1 and a2. We can argue as before that (b) and (e) are also satisfied. This finishes the
definition of I . Note that the depth of the resulting ABox A|I is bounded by stepM.

Since ap+1 makes true all concept names that represent the initial configuration
for x, Point (b) ensures that Cap+1

is the initial configuration for x. ThusA|I represents
the computation ofM on x and it remains to show that this computation is accepting. To
this end, consider a leaf a ofA|I . ThenCa is a final configuration, i.e., the state is qacc or
qrej. By Point (a) and CI (24), we have T ,A |= B(a) and T ,A− 6|= E(a). By CI (30),
a does thus not have any r1- or r2-successors in A. Consequently, T ,A |= B(a) is
due to CI (28) or (29). In both cases, we have that A(a) ∈ A for some A of the form
(a, qacc, i), thus by Point (b), Ca is an accepting final configuration. o

5 Classical TBoxes

A classical TBox T is a finite set of concept definitions A ≡ C and CIs A v C where
A is a concept name. No concept name is allowed to occur more than once on the left
hand side of a statement in T .

Theorem 8. Deciding FO-rewritability of an IQ relative to a classical EL-TBox and
an ABox signature is in PTIME.



We give examples illustrating FO-rewritability in classical TBoxes and give the main
idea of the proof.

Example 3. (a) The IQ A(x) is not FO-rewritable relative to the classical TBox {A ≡
∃r.A} and the full ABox signature.

(b) The concept name A has a cyclic definition in the TBox T = { A ≡ Bu∃r.A,B v
∃r.A } which often indicates non-FO-rewritability, but in this case the IQ A(x) has an
FO-rewriting relative to T and the full ABox signature, namely ϕ(x) = A(x) ∨B(x).

To present the idea of the proof, we use an appropriate normal form for classical
TBoxes. A concept name A is defined in T if there is a definition A ≡ C ∈ T and
primitive otherwise; A is non-conjunctive in T if it occurs in T , but there is no CI of
the form A ≡ B1 u · · · uBn in T with n ≥ 1 and B1, . . . , Bn concept names. We use
non-conj(T ) to denote the set of non-conjunctive concepts in T . A classical TBox T
is in normal form if it is a set of statements A ≡ ∃r.B and A ≡ B1 u · · · uBn where
B,B1, . . . , Bn are concept names and B1, . . . , Bn are non-conjunctive. For every clas-
sical TBox T , one can construct in polynomial time a classical TBox T ′ in normal form
that uses additional concept names such that T ′ |= T and every model of T can be ex-
panded to a model of T ′ [10]. It is not hard to verify that an IQ A(x) is FO-rewritable
relative to T and Σ if and only if it is FO-rewritable relative to T ′ and Σ, provided that
A is not among the new concept names introduced during the construction of T ′. For a
classical TBox T in normal form and a concept name A, define

non-conjT (A) =
{
{A} if A is non-conjunctive in T
{B1, . . . , Bn} if A ≡ B1 u · · · uBn ∈ T .

Our polytime algorithm utilizes an ABox introduced in [10, 9] in the context of conser-
vative extensions and logical difference: given a classical TBox T in normal form and
an ABox signature Σ, we compute in polytime a polysize Σ-ABoxAT ,Σ with individ-
ual names aB , B non-conjunctive in T , such that for any Σ-ABox A, individual name
a in A, and concept name A the following conditions are equivalent:

– T ,A 6|= A(a);
– there exists B ∈ non-conjT (A) such that (A, a) is simulated by (AT ,Σ , aB) (see

appendix).

It follows that to check whether A(x) is FO-rewritable, instead of considering arbitrary
tree-shaped Σ-ABoxes A and A|k as in Theorem 2, it suffices to consider the tree
unfolding of AT ,Σ at aB and its restriction to depth k, for all B ∈ non-conjT (A). The
original search problem has been reduced to the problem of analysing the tree unfolding
of AT ,Σ . A polytime algorithm performing that analysis is given in the appendix.

6 Semi-Acyclic TBoxes

It is easy to see that every IQ is FO-rewritable relative to every acyclic EL-TBox and ev-
ery ABox signature Σ. We observe that the same holds for semi-acyclic TBoxes, where



some cycles are still allowed, and that it is possible to find rewritings of polynomial size
when only databases of domain size at least two are admitted.

A semi-acyclic TBox is defined like a classical TBox, except that definitorial cycles
are disallowed, i.e., there cannot be concept definitions A0 ≡ C0, . . . , An−1 ≡ Cn−1
such that Ai occurs in Ci+1modn. Note that cycles via concept inclusions, such as A v
∃r.A, are still permitted. Let T be a semi-acyclic TBox and Σ an ABox signature. For
an EL-concept C, we use preT ,Σ(C) to denote the FO-formula

∨
B∈Σ | T |=BvC B(x).

For all concept names A and EL-concepts C and D and role names r, set

ϕΣ>,T (x) = true

ϕΣA,T (x) = preT ,Σ(A) if A is primitive
ϕΣA,T (x) = ϕΣC,T (x) if A ≡ C ∈ T

ϕΣCuD,T (x) = ϕΣC,T (x) ∧ ϕΣD,T (x)
ϕΣ∃r.C,T (x) = preT ,Σ(∃r.C) ∨ ∃y.(r(x, y) ∧ ϕΣC,T [y/x]) if r ∈ Σ
ϕΣ∃r.C,T (x) = preT ,Σ(∃r.C) if r /∈ Σ

where ϕ[x/y] denotes the result of first renaming all bound variables in ϕ so that y does
not occur, and then replacing the free variable x of ϕ with y.

Lemma 4. For all IQsA(x), ϕΣA,T (x) is an FO-rewriting ofA(x) relative to T andΣ.

The size of ϕΣA,T (x) can clearly be exponential in the size of T , for example when
A = An and T = {Ai ≡ ∃r.Ai−1 u ∃s.Ai−1 | 1 ≤ i ≤ n}. To reduce ϕΣA,T
to polynomial size, we can use Avigad’s observation that FO supports structure shar-
ing [1]. More precisely, let ϕ be a positive FOQ (such as ϕΣA,T ) whose subformulas
include ψ(x1), . . . , ψ(xn). The multiple occurences of ψ can be avoided by rewriting
ϕ to ∃u∀y∀z

(
(ψ(y) ↔ z = u) → ϕ′

)
where ϕ′ is ϕ with each ψ(xi) replaced with

y = xi → z = u. Intuitively, we iterate over all y and memorize whether ψ(y) holds
using identity of z with u. Since we need at least two different ‘values’ for z to make
this trick work, the resulting FOQ is an FO-rewriting only on ABoxes with at least two
individual names.

7 Related Work

In [15], deciding FO-rewritability is studied in the context of the expressive DLALCFI
and several of its fragments. In general, though, the setup in that paper is different:
while we are interested in deciding FO-rewritability of a single query relative to a
TBox, the results in [15] concern deciding whether, for a given TBox T , all queries
are FO-rewritable relative to T . It is shown that this problem is decidable for Horn-
ALCFI-TBoxes of depth at most two and for Horn-ALCF-TBoxes (queries are IQs
or, equivalently, CQs). As a by-product of these results, a close connection between
FO-rewritability of TBoxes formulated in Horn DLs and boundedness of datalog pro-
grams is observed, see e.g. [6, 18] for the latter problem. In its original formulation,
the following result is established for a larger class of TBoxes, namely materializable
ALCFI-TBoxes of depth one.



Lemma 5 ([15]). For every (general) EL-TBox T in normal form, there is a datalog
program ΠT such that for every ABox signature Σ and IQ A(x), the predicate A is
bounded in ΠT relative to Σ-databases iff A(x) is FO-rewritable relative to T and Σ.

In [15], the program ΠT is of exponential size. Since we are only interested in EL-
TBoxes, it is easy to find a ΠT of polynomial size. More specifically, ΠT consists of

A(x)← true if > v A ∈ T
B(x)← r(x, y), A(x) if ∃r.A v B ∈ T X∃r.A(x)← B(x) if B v ∃r.A ∈ T
B(x)← A1(x), A2(x) if A1 uA2 v B ∈ T (where possibly A1 = A2)
B(x)← X∃r.A(x) if ∃r.B0 v B ∈ T and T |= A v B0

This allows to carry over the 2EXPTIME upper bound for predicate boundedness of con-
nected monadic datalog programs [6] to FO-rewritability of an IQ relative to a general
EL-TBoxes and an ABox signature.6

Note that boundedness has been studied also in the context of the µ-calculus and
monadic second order (MSO) logic [17, 4]. Here, an EXPTIME upper bound is known
from [17] and it seems likely that this result can be utilized to find an alternative proof
of Theorem 6. In particular, it is possible to find a µ-calculus rewriting ϕ of an IQ
A(x) relative to an EL-TBox T and ABox signature Σ: proceeding similarly to the
construction of the above datalog program ΠT , we can find a µ-calculus formula ϕT ,Σ
such that for all Σ-ABoxes A and a ∈ Ind(A), we have T ,A |= A(a) iff IA, a |= ϕ.
When simultaneous fixpoints are admitted, ϕ even has polynomial size.

8 Conclusions

It would be interesting to generalize the results presented in this paper to more expres-
sive DLs and to more expressive query languages. Regarding the former, we note that
using the techniques in [14, 15] it is possible to derive a NEXPTIME upper bound for
deciding FO-rewritability of IQs relative to Horn-ALCI-TBoxes and ABox signatures.
Regarding the latter, CQs are a natural choice and we believe that a mix of techniques
from this paper and those in [3] might provide a good starting point. It is interesting
to note that FO-rewritability of all IQ-atoms A(x) in a CQ q does not imply that q is
FO-rewritable and the converse fails, too.
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A Proofs for Section 3

Canonical Models for General EL-TBoxes

The notion of a canonical model used in various places throughout Appendix A, so we
recall the definition here. Let T be a general EL-TBox andA an ABox. For a ∈ Ind(A),
a path forA and T is a finite sequence a r1 C1 r2C2 · · · rn Cn, n ≥ 0, where the Ci are
concepts that occur in T (potentially as a subconcept) and the ri are roles such that the
following conditions are satisfied:

– a ∈ Ind(A),
– T ,A |= ∃r1.C1(a) if n ≥ 1,
– T |= Ci v ∃ri+1.Ci+1 for 1 ≤ i < n.

The domain ∆IT ,A of the canonical model IT ,A for T and A is the set of all paths for
A and T . If p ∈ ∆IT ,A \ Ind(A), then tail(p) denotes the last concept Cn in p. Set

AIT ,A := {a ∈ Ind(A) | T ,A |= A(a)} ∪ {p ∈ ∆IT ,A \ Ind(A) | T |= tail(p) v A}
rIT ,A := {(a, b) | r(a, b) ∈ A} ∪ {(p, q) ∈ ∆IT ,A ×∆IT ,A | q = p · r C for some C}
aIT ,A := a for all a ∈ Ind(A)

It is standard to prove the following.

Lemma 6. IT ,A is a model of T and A such that for any a ∈ Ind(A) and EL-concept
C, we have aIT ,A ∈ CIT ,A iff T ,A |= C(a).

Characterizations of (Non)-FO-Rewritability in Terms of Tree-Shaped ABoxes

Theorem 1. Let T be an EL-TBox, Σ an ABox signature, and A(x) an IQ. Then

1. If A(x) is FO-rewritable relative to T and Σ, then there is a tree-UCQ that is an
FO-rewriting of A(x) relative to T and Σ;

2. If ϕ(x) is an FO-rewriting of A(x) relative to T and tree-shaped Σ-ABoxes and
ϕ(x) is a tree-UCQ, then ϕ(x) is an FO-rewriting relative to T and Σ;

3. A(x) is FO-rewritable relative to T and Σ iff A(x) is FO-rewritable relative to T
and tree-shaped Σ-ABoxes.

Proof. Point 1. Let A(x) be FO-rewritable relative to T and Σ, and let ϕ(x) be an
FO-rewriting of quantifier rank n. Put k = 2n − 1.

Note that a tree-shaped Σ-ABoxA can be viewed as an EL-concept CA in an obvi-
ous way: ifA has root a andA1(a), . . . , Am(a), r1(a, b1), . . . r`(a, b`) are all assertions
in A that involve a, then define CA = A1 u · · · u Am u ∃r1.CA|b1 u · · · u ∃r`.CA|b`
where A|bi denotes the restriction of A to the sub-ABox rooted at bi. Let Γ be the set
of all ABoxes A|k where A is a minimal tree-shaped Σ-ABox with root a such that
T ,A |= A(a). It is not hard to show that the outdegree of any A ∈ Γ is bounded by
|T |, thus Γ is finite. We claim that the tree-UCQ ψ(x) =

∨
A∈Γ CA is an FO-rewriting

of A(x) relative to T and Σ (where the concepts CA are seen as FO-formulas with one
free variable in the standard way). A central observation is the following.



Claim. For all tree-shaped Σ-ABoxes A with root a0, we have that T ,A |= A(a0)
implies T ,A|k |= A(a0).

Proof of Claim. For any a ∈ Ind(A), let A|ak denote the sub-ABox of A obtained by
keeping only individual names b that are within distance at most k from a, i.e., there is
a sequence a0, . . . , a` ∈ Ind(A) such that ` ≤ k and for all i < ` there is a role name r
such that r(ai, ai+1) ∈ A or r(ai+1, ai) ∈ A. Let Â denote the ABox that consists of n
disjoint copies ofA|ak, for all a ∈ Ind(A); we assume w.l.o.g. that the individual names
in Â are disjoint from those in A. Then, A1 is the disjoint union of A and Â while A2

is the disjoint union of A|k and Â.
One can show, using Ehrenfeucht-Fraı̈ssé games with n rounds, that IA1

|= ϕ[a0]
iff IA2

|= ϕ[a0]. Specifically, a winning strategy for duplicator is to keep in round m
the distance 2n−m from elements that have already received a pebble, whenever this is
possible; if spoiler selects an element b in round m, then:

– first assume that b is within distance 2n−m of an element c that has received a
pebble within a previous round and let c′ be the other element played in that round;
then duplicator selects an element b′ according to the ‘local 2n−m-isomorphism’
around c and c′, picking an element that relates to c′ in the same way that b relates
to c;

– now assume that no element within distance 2n−m of b has yet received a pebble
and that b corresponds to the element b0 in A (which includes the case that b is in
the connected componentA ofA1 or in the connected componentA|k ofA2); then
duplicator replies by selecting the element that corresponds to b0 in a copy of A|b0k
which has not yet received any pebble.

Since T ,A |= A(a0) and the connected component of A1 that contains a0 is A, we
must have T ,A1 |= A(a0) (a formal proof uses canonical models). It follows that
IA1
|= ϕ[a0] since ϕ is an FO-rewriting of A(x) w.r.t. T . As we have just shown, this

yields IA2 |= ϕ[a0], thus T ,A2 |= A(a0), which (again via canonical models) implies
T ,A|k |= A(a0) as required. End of proof of claim.

To show that ψ(x) is as required, let A be a Σ-ABox and a ∈ Ind(A) and first
assume that T ,A |= A(a). Since every EL-TBox is unraveling tolerant [15], we can
unravel the sub-ABox of A rooted at a into a tree-shaped Σ-ABox A′ with root a
such that T ,A′ |= A(a). Take a minimal tree-shaped Σ-ABox A′′ ⊆ A′ such that
T ,A′′ |= A(a). Then CA′′|k is a disjunct of ψ(x) and a ∈ (CA′′|k)

IA′′ ⊆ (CA′′|k)
IA′ .

Since there is a simulation for IA′ to IA, we have a ∈ (CA′′|k)
IA and thus IA |= ψ[a].

Conversely, assume that IA |= ψ[a], i.e., a ∈ (CB|k)
IA for some B|k ∈ Γ . Since

T ,B |= A(a) by choice of Γ , the claim yields T ,B|k |= A(a). Since a ∈ (CB|k)
IA ,

there is a simulation from B|k into A, thus T ,A |= A(a) as required.

Point 2. Let ϕ(x) be an FO-rewriting of A(x) relative to T and tree-shaped Σ-
ABoxes such that ϕ(x) is a tree-UCQ. LetA be aΣ-ABox (not necessarily tree-shaped)
and a ∈ Ind(A). Let A′ be the unraveling of A into a tree-shaped Σ-ABox with root
a. Then T ,A |= A(a) iff T ,A′ |= A(a) because of unraveling tolerance. Since ϕ(x)
is an FO-rewriting relative to T and tree-shaped Σ-ABoxes, we have T ,A′ |= A(a) iff
IA′ |= ϕ[a]. Since ϕ(x) is a tree-UCQ and there is a simulation from IA to IA′ and



vice versa, IA′ |= ϕ[a] iff IA |= ϕ[a]. In summary, T ,A |= A(a) iff IA |= ϕ[a] as
required.

Point 3 is an immediate consequence of Points 1 and 2. o

Theorem 2. Let T be an EL-TBox, Σ an ABox signature, and A(x) an IQ. Then A(x)
is not FO-rewritable relative to T and Σ iff for every k ≥ 0, there exists a tree-shaped
Σ-ABox A of depth exceeding k with root a0 such that

1. T ,A |= A(a0);
2. T ,A|k 6|= A(a0).

Proof. “if” Assume that A(x) is FO-rewritable relative to T and Σ. By Point 1 of
Theorem 1, there is an FO-rewriting ϕ(x) that is a tree-UCQ. Let k be the maximum
number of atoms in any disjunct of ϕ(x). It is simple to show k is the required bound,
i.e., there is no tree-shaped Σ-ABox A of depth exceeding k such that Points 1 and 2
from the theorem are satisfied. Let A be a tree-shaped Σ-ABox of depth exceeding k
with root a0 and T ,A |= A(a0). We have T ,A |= A(a0) iff IA |= ϕ[a0] iff IA|k |=
ϕ[a0] (since each disjunct in ϕ is a connected query that involves an answer variable
and has at most k atoms) iff T ,A|k |= A(a0).

“only if”. Assume that there is a k ≥ 0 for which there is no tree-shaped Σ-ABox
A of depth exceeding k such that Points 1 and 2 from the theorem are satisfied. Let Γ
be the set of all tree-shaped Σ-ABoxes A of depth at most k such that T ,A |= A(a)
where a denotes the root of A and A is minimal with Property (i). It is not hard to
show that the outdegree of any A ∈ Γ is bounded by |T |, thus Γ is finite. We aim
to show that ϕ(x) =

∨
A∈Γ CA is an FO-rewriting of A(x) relative to T and Σ (see

proof of Theorem 1 for the definition of CA). We have to prove that for all tree-shaped
Σ-ABoxes A, certT (A, A(x)) = ans(IA, ϕ(x)).

For the “⊇” direction, note that IA |= ϕ(a) implies a ∈ (CB)
IA for some B ∈ Γ

and thus T ,A |= CB(a); it is not hard to show (using canonical models) that, since
T ,B |= A(b) with b root of B, this yields T ,A |= A(a) as required. For “⊆”, let
T ,A |= A(a) and let A|a be the sub-ABox of A rooted at a. If the depth of A|a does
not exceed k, then CAa is a disjunct of ϕ and thus IA |= ϕ(a) as required. Otherwise,
T ,A |= A(a) and the assumption that there is no tree-shaped Σ-ABox that exceeds
depth k and satisfies Points 1 and 2 from the theorem yields T ,A|a,k |= A(a) where
A|a,k denotes the restriction of Aa to depth k. It follows that CA|a,k

is a disjunct of ϕ.
Since clearly T ,A |= CA|a,k

(a), we again have IA |= ϕ(a) as required. o

Lemma 1. For any EL-TBox T , ABox signature Σ, and IQ A(x), there is a TBox T ′
in normal form such that for any FOQ ϕ, we have that ϕ(x) is an FO-rewriting of A(x)
relative to T and Σ iff ϕ(x) is an FO-rewriting of A(x) relative to T ′ and Σ.
Proof. Let T , Σ, and A(x) be given. We use sub(T ) to denote the set of subconcepts
C of (concepts that occurs in) T . For every C ∈ sub(T ) that is neither a concept name
nor >, introduce a concept name XC that does not occur in T and Σ and is distinct
from A. Set

σ(C) =


C if C ∈ NC ∪ {>}
XD1

uXD2
if C = D1 uD2

∃r.XD if C = ∃r.D



and define
T ′ =

⋃
CvD∈T

XC v XD ∪
⋃

C∈sub(T )

XC ≡ σ(C).

After replacing CIs A v B1 u B2 with A v B1 and A v B2, T ′ is of the required
form. Using the fact that the concept names XC do not occur in T , Σ, A, it is not hard
to prove that certT (A, A(x)) = certT ′(A, A(x)) for all Σ-ABoxes A. o

For every ABox A and a ∈ Ind(A), we write CN
|=
A (a) to denote the set of concept

names A with A, T |= A(a).

Theorem 3. Let T be an EL-TBox in normal form, Σ an ABox signature, A(x) an IQ,
and n = |(sig(T ) ∪Σ) ∩ NC|. Then A(x) is not FO-rewritable relative to T and Σ iff
there exists a tree-shaped Σ-ABox A of depth exceeding 22n with root a0 such that

1. T ,A |= A(a0);
2. T ,A|22n 6|= A(a0).

Proof. Since the “only if” direction is an immediate consequence of Theorem 2, we
concentrate on “if”. Thus assume that there is a tree-shaped Σ-ABox A of depth ex-
ceeding 22n with root a0 that satisfies Conditions 1 and 2 from the theorem. We may
assume w.l.o.g. that A is minimal in the sense that, for every individual a , we have
T ,A− 6|= A(a0), where A− is obtained from A by dropping the subtree rooted at a.
Let k > 0. We have to show that there is a tree-shaped Σ-ABox A of depth exceed-
ing k with root a0 such that Conditions 1 and 2 from Theorem 2 are satisfied. While
constructing this ABox, it is convenient to assume a certain naming scheme for the in-
dividuals in Ind(A), namely that they are of the form aw with w a word over the infinite
alphabet N, and that whenever r(aw, bw′) ∈ A, then w′ = w · n for some n ∈ N.
Clearly, the root node a0 fits this scheme.

Let aw be a node in A on level 22n + 1 and let A− debote the result of dropping
in A the subtree rooted at aw. On the path from a0 to a, there must be at least two
individuals au and au′ with the same value for CN|=A (·) and CN

|=
A−(·). Assume w.l.o.g.

that u is a proper prefix of u′. Let the new ABox B be obtained from A by taking the
subtree rooted at au and plugging it in at au′ , i.e., B is defined as follows where X is
obtained from A by dropping the subtree rooted at au′ and rp(ap, au′) is the incoming
edge to au′ in A:

B = X ∪ {rp(ap, au′)} ∪ {r(au′v1 , au′,v2) | r(auv1 , auv2) ∈ A} ∪
{A(au′v) | A(auv) ∈ A}.

Clearly, the depth of B exceeds 22n + 1. Let x be such that w = ux and set w′ = u′x.
Then aw′ is the ‘copy’ of aw in B. Let B− be the result of dropping in B the subtree
rooted at aw′ . We establish the following claim.

Claim.

1. CN
|=
B (av) = CN

|=
A (av) for all av ∈ Ind(X );

2. CN
|=
B (au′v) = CN

|=
A (auv) for all au′v ∈ Ind(B);

3. CN
|=
B−(av) = CN

|=
A−(av) for all av ∈ Ind(X );

4. CN
|=
B−(au′v) = CN

|=
A−(auv) for all au′v ∈ Ind(B−).



The proof is by a straightforward induction, noting that in any tree-shaped ABox Y , the
value of CN|=Y (a) for any a ∈ Ind(A) depends only on the values of CN|=Y (b) for all
successors b of a in Y because T is in normal form. Details are left to the reader.

It is an immediate consequence of Points 1 and 3 and the minimality of A that
T ,B |= A(a0) and T ,B− 6|= A(a0). Since the level of aw′ in B clearly exceeds 22n+1,
this entails T ,B|22n+1 6|= A(a0), as required.

Repeating the operation used to obtain B from A, we will eventually find the re-
quired ABox of depth exceeding k such that Conditions 1 and 2 from Theorem 2 are
satisfied. o

Characterizations of (Non)-FO-Rewritability in Terms of Linear ABoxes

We aim at proving Theorem 5. In view of Theorem 3, it is clearly sufficient to show the
following.

Lemma 7. Let T be an EL-TBox in normal form, A(x) an IQ, and k ≥ 0. If there is
a tree-shaped ABox A of depth exceeding k with root a0 such that T ,A |= A(a0) and
T ,A|k 6|= A(a0), then there is a linear ABox A′ that satisfies the same properties.

For an ABox A and an a ∈ Ind(A), we use

– CNA(a) to denote the restriction of A to assertions of the form A(a);
– CN

|=
A (a) to denote the set of all assertions A(a) with T ,A |= A(a);

– succA(a) to denote the set of all assertions in A that are of the form r(a, b);
– SCN

|=
A (a) to denote the ABox that comprises all concept assertions A(b) such that

T ,A |= A(b) and b is a successor of a in A;
– upr,A(a) to denote the ABox {B(a) | ∃r.A v B ∈ T }.

For a set of concept assertions B, we write T ,A |= B if T ,A |= A(a) for allA(a) ∈ B.
We will make use of the following straightforward properties.

Lemma 8. Let T be an EL-TBox in normal form, A a tree-shaped ABox, and a ∈
Ind(A). Then for all A ∈ NC,

T ,A |= A(a) iff T , (CNA(a) ∪ succA(a) ∪ SCN
|=
A (a)) |= A(a).

Lemma 9. Let T be an EL-TBox in normal form, A a tree-shaped ABox, a ∈ Ind(A),
r(a, b) ∈ A. Then for all A ∈ NC, we have

T ,A |= A(a) iff T , (A−b ∪
⋃

B∈CN|=A (b)

upr,B(a)) |= A

where A−b is A with r(a, b) and the subtree rooted at b dropped.

We say that an ABox A′ is a fragment of an ABox A if A′ ⊆ A ∪ {A(a) |
T ,A |= A(a)}. Instead of proving Lemma 8 directly, we establish the following
lemma; Lemma 8 is then an immediate consequence by taking n = 1 and S1 = {A}.



Lemma 10. Let A be a tree-shaped ABox of depth exceeding k with root a0 and let
S1, . . . , Sn be sets of assertions of the form A(a0) such that

(i) T ,A |= Si for some i with 1 ≤ i ≤ n and
(ii) T ,A|k 6|= Si for 1 ≤ i ≤ n.

Then there is a linear ABox A′ with root a0 that is a fragment of A and satisfies (i)
and (ii).

Proof. The proof is by induction on k.

Induction start, i.e., k = 0. LetA, a0, and S1, . . . , Sn be as in the lemma. Since T ,A |=
Si(a0) for some i and by Lemma 9, there is an Ω ⊆ SCN

|=
A (a0) such that, for some

Si0 , we have
T , (CNA(a0) ∪ succA(a0) ∪Ω) |= Si0 . (†)

Assume w.l.o.g. that Ω is inclusion-minimal with this property. Then Ω is non-empty:
otherwise, we have T , (CNA(a0)∪succA(a0)) |= Si0 which yields T ,CNA(a0) |= Si0
since T does not contain CIs of the form ∃r.> v A, which yields T ,A|0 |= Si0 in
contradiction to Condition (ii) of the lemma. Choose an individual name a1 that occurs
in Ω and let r0(a0, a1) be the (unique) role assertion in A that connects a0 and a1. Let
Ω1 be the set of all assertions A(a1) ∈ Ω and Ω− = Ω \Ωa1 . Define a new ABox

A′ = CNA(a0) ∪ {r0(a0, a1)} ∪Ωa1 ∪
⋃

r(a0,b)∈A∧A(b)∈Ω−
upr,A(a0).

Note thatA′ is linear and a fragment ofA. From (†) and Lemma 10, we obtain T ,A′ |=
Si0 . To show that T ,A′|0 6|= Si for all Si, assume to the contrary that for some i,

T , (CNA(a0)
⋃

r(a0,b)∈A∧A(b)∈Ω−
upr,A(a0)) |= Si.

By Lemma 10, we have

T , (CNA(a0) ∪ succA(a0) ∪Ω−) |= Si,

in contradiction to the minimality of Ω.

Induction step. Assume that k > 0 and let A, a0, and S1, . . . , Sn be as in the lemma.
Since T ,A |= Si for some i and by Lemma 9, there is anΩ ⊆ SCN

|=
A (a0)\SCN

|=
A|k(a0)

such that, for some Si, we have

T , (CNA(a0) ∪ succA(a0) ∪ SCN
|=
A|k(a0) ∪Ω) |= Si.

Since T ,A|k 6|= Si for all i and by Lemma 9, Ω is non-empty. Choose an individual
name a1 that occurs in Ω and let r0(a0, a1) be the (unique) role assertion in A that
connects a0 and a1. LetΩ− = {A(b) ∈ Ω | a 6= b} and let T1, . . . , Tm be all inclusion-
minimal subsets of CN|=A (a1) \ CN

|=
A|k(a1) such that for each Ti, there is an Sji with

T , (CNA(a0) ∪ succA(a0) ∪ SCN
|=
A|k(a0) ∪Ω

− ∪ Ti(a1)) |= Sji . (†)



By choice of Ω, there is at least one such Ti. Finally, let B denote the restriction of
A to the subtree rooted at a1. We aim to apply the induction hypothesis (IH) with
B playing the role of A, a1 the role of a0, and T1, . . . , Tm the role of S1, . . . , Sn.
Indeed, we have T ,B |= Ti even for all i with 1 ≤ i ≤ m by choice of Ti and since
CN
|=
A (a1) = CN

|=
B (a1) and T ,B|k−1 6|= Ti for 1 ≤ i ≤ m by choice of Ti and since

CN
|=
B|k−1

(a1) ⊆ CN
|=
A|k(a1). Thus the IH is indeed applicable and we obtain a linear

ABox B′ that is a fragment of B (and thus of A) such that

(i′) T ,B′ |= Ti for some i with 1 ≤ i ≤ m;
(ii′) T ,B′|k−1 6|= Ti for 1 ≤ i ≤ m.

Let Γ be the set of all pairs (r,A) with r(a0, b) ∈ A and A(b) ∈ SCN
|=
A|k(a0) ∪ Ω

−.
Define

A′ = CNA(a0) ∪ {r0(a0, a1)} ∪ B′ ∪
⋃

r,A∈Γ
upr,A(a0)

Note that A′ is linear and a fragment of A. It thus remains to show the following:

– T ,A′ |= Si for some i.
By (i′), we have T ,B′ |= Ti for some i. From (†), we thus obtain

T , (CNA(a0) ∪ succA(a0) ∪ SCN
|=
A|k(a0) ∪Ω

− ∪ B′) |= Sji .

Now, Lemma 10 yields

T , (CNA(a0) ∪ {r0(a0, a1)} ∪
⋃

r,A∈Γ
upr,A(a0) ∪ B′) |= Sji

and it remains to note that the ABox in the above statement is A′.

– T ,A′|k 6|= Si for 1 ≤ i ≤ n.
Assume to the contrary that T ,A′|k |= Si. By definition of A′, this means that

T , (CNA(a0) ∪ {r0(a0, a1)} ∪ B′|k−1 ∪
⋃

r,A∈Γ
upr,A(a0)) |= Si.

By Lemma 10, we obtain

T , (CNA(a0) ∪ succA(a0) ∪ CN
|=
B′|k−1

(a1) ∪ SCN
|=
A|k(a0) ∪Ω

−) |= Si.

Since B′ is a fragment of A, we have CN
|=
B′|k−1

(a1) ⊆ CN
|=
A (a1). By choice of

T1, . . . , Tm, this means that Ti ⊆ CN
|=
B′|k−1

(a1) for some i with 1 ≤ i ≤ m, in
contradiction to (ii′).

o



ExpTime Decision Procedure

To develop an EXPTIME procedure for deciding the existence of a tree-shapedΣ-ABox
that satisfies Conditions (1) and (2) of Theorem 3, we utilize non-deterministic bottom-
up automata on finite, ranked trees. Such an automaton has the form A = (Q,F , Qf , Θ)
with Q a finite set of states, F a ranked alphabet, Qf ⊆ Q a set of final states, and Θ
a set of transition rules of the form f(q1, . . . , qn)→ q, where n ≥ 0, f ∈ F is of rank
n, and q1, . . . , qn, q ∈ Q. Transition rules for predicates of rank 0 replace initial states.

Automata work on finite, node-labeled, ordered trees T = (V,E, `), where V is a
finite set of nodes, E ⊆ V × V is a set of edges, and ` is a node-labeling function that
maps each node v ∈ V with i successors to a predicate `(v) ∈ F of rank i. We assume
an implicit total order on the successors of each node. A run of the automaton A on T
is a map ρ : V → Q such that ρ(ε) ∈ Qf , with ε ∈ V the root of T , and for all v ∈ V
with `(v) = f and where v has (ordered) successors v1, . . . , vn, n ≥ 0, we have that
f(ρ(v1), . . . , ρ(vn)) → ρ(v) is a rule in Θ. An automaton A accepts a tree T if there
is a run of A on T . We use L(A) to denote the set of all trees accepted by A. It can be
computed in polynomial time whether L(A) = ∅.

Given an EL-TBox T , ABox signatureΣ, and IQA(x), we outline how to construct
an automaton AT ,Σ,A = (Q,F , Qf , Θ) such that L(AT ,Σ,A) is empty if and only if
there is some tree-shapedΣ-ABox satisfying the conditions of Theorem 3. The automa-
ton AT ,Σ,A takes as input trees whose nodes are labeled with tuples 〈t, r1, . . . , rk〉,
where t is a set of concept names from Σ, and r1, . . . , rk are role names from Σ. We
choose k in such a way that if there exists tree-shapedΣ-ABox satisfying the conditions
of Theorem 3, then there exists one in which every non-leaf individual has precisely k
successors. To every tree T = (V,E, `), we can associate the tree-shaped Σ-ABox

AT :={A(av) | v ∈ V and `(v) = 〈t, r1, . . . , rk〉 with A ∈ t} ∪
{r(av, avi) | vi is i-th successor of v and `(v) = 〈t, r1, . . . , rk〉 with ri = r}.

The states in Q are of the form (c1, σ1, c2, σ2) where c1, c2 ∈ [0, . . . , 22n + 1] (with
n = |T |) and σ1, σ2 are types, i.e. subsets of NC. States with c1 = 0, c2 = 1, A ∈ σ1,
and A 6∈ σ2 are final.

The first state component c1 implements a counter which is used to check whether
the input tree has depth at least 22n+1. The second state component σ1 is used to keep
track of the atomic concepts that are entailed at the ABox individual associated with a
tree node; requiring thatA belong to σ1 at the root enforces thatA is entailed at the root
a0 of AT . The third state component c2 serves to identify nodes which appear on the
first 22n levels of T . Finally, the fourth state component σ2 computes the set of entailed
atomic concepts with respect to the ABox AT |22n , exploiting the value of the counter
c2 in order to identify the leaves of AT |22n . By prohibiting A from appearing in σ2 at
the root, we ensure that T ,A′T 6|= A(a0).

We now give the proof of Theorem 6 which is based upon the automaton construc-
tion outlined in Section 3.

Theorem 6. Deciding FO-rewritability of an IQ relative to an EL-TBox and ABox
signature is in EXPTIME.



Proof. Let T be an EL-TBox, Σ be an ABox signature, A0(x) be an IQ, and n =
|(sig(T ) ∪ Σ) ∩ NC|. Because of Lemma 1, we can assume without loss of generality
that T is in normal form. In particular, this means that every subconcept ∃r.C in T has
C ∈ NC. We will use the term type to denote a subset of NC, and Σ-type to denote a
subset of Σ ∩ NC. Given a set of EL-concepts S, we will use typeT (S) to denote the
type {B ∈ NC | T |= uS v B}. We use ex(T ) to denote the number of concepts of
the form ∃r.B that occur in T .

Define an automaton A = (Q,F , Qf , ∆) as follows:

– F = {〈τ, r1, . . . , rn〉 | τ is a Σ-type, r1, . . . , rn ∈ Σ ∩ NR, 0 ≤ n ≤ ex(T )}
where each 〈τ, r1, . . . , rn〉 is of rank n;

– Q is the set of tuples (c1, σ1, c2, σ2) such that c1, c2 ∈ [0, . . . , 22n + 1] and σ1, σ2
are types;

– Qf = {(c1, σ1, c2, σ2) ∈ Q | c1 = 0, c2 = 1, A0 ∈ σ1, A0 6∈ σ2};
– Θ consists of all rules f(q1, . . . , qn)→ q with f = 〈τ, r1, . . . , rn〉, qi = (di1, d

i
2, χ

1
i , χ

i
2),

q = (c1, c2, σ1, σ2) such that:

c1 =


22n + 1 f has rank 0

0 min1≤i≤n d
i
1 = 0

min1≤i≤n d
i
1 − 1 otherwise

c2 ∈


{0, . . . , 22n + 1} f has rank 0

{22n, 22n + 1} d12 = . . . = dn2 = 2n + 1

{v − 1} d12 = . . . = dn2 = v with v ≤ 22n

{0} otherwise

σ1 =

{
typeT (τ) f has rank 0

typeT (τ ∪ {∃r.B | r = ri and B ∈ χi2 for some i}) otherwise

σ2 =


typeT (τ) f has rank 0

typeT (τ) c2 = 22n + 1

typeT (τ ∪ {∃r.B | r = ri and B ∈ χi2 for some i}) otherwise

We briefly explain the intuition behind the automaton construction. The first state com-
ponent c1 implements a counter which is used to check whether the input tree has depth
at least 22n + 1. More precisely, the transition rules in Θ assign a c1-value of 22n + 1
to leaf nodes; internal nodes receive a c1-value which is either one less than the least
c1-value of its children, or 0 if the latter is negative. Trees accepted by the automaton
have c1 = 0 at the root, and hence have depth at least 22n + 1.

The second state component σ1 is used to keep track of the atomic concepts that
are entailed at the ABox individual associated with a tree node. More precisely, the
transition rules will ensure that a node v is assigned a set σ1 which contains precisely
those B ∈ NC such that T ,AT |= B(av). Thus, requiring that A belong to σ1 at the
root enforces that A is entailed at the root a0 of AT .

The third state component c2 serves to identify nodes which appear on the first 22n

levels of T . At leaf nodes, we guess a value between 0 and 22n + 1. For internal nodes,



the transition rules verify that a node’s children all have the same c2-value. If the value
is between 1 and 22n, then this means the counter is “active”, and so we decrement the
counter by one; if the value is 22n + 1, then we either stay at 22n + 1 or switch to 22n

(starting the counter); and if the value is 0, we stay at 0. Since Qf requires that the root
have c2 = 1, it follows that in every run, the nodes at level l ≤ 22n have c2-value l+1.

Finally, the fourth state component σ2 computes the set of entailed atomic concepts
with respect to the restriction AT |22n , exploiting the value of the counter c2 in order to
identify the leaves of AT |22n . By prohibiting A from appearing in σ2 at the root, we
ensure that T ,AT |22n 6|= A(a0).

Since A is single-exponentially large in |T | and the emptiness problem can be
decided in polynomial time in the size of the automaton, it remains to establish the
following claim (using the arguments informally presented above) to obtain a single-
exponential-time procedure for FO-rewritability of IQs.

Claim 1. L(A) 6= ∅ iff A0 is not FO-rewritable relative to T and Σ.

Before we can establish Claim 1, we prove the following technical result.

Claim 2. For everyΣ-ABoxA, EL-TBox T in normal form, a ∈ Ind(A), andA ∈ NC,
we have T ,A |= A(a) iff A ∈ typeT (ta) where ta = {B ∈ Σ | B(a) ∈ A} ∪ {∃r.B |
B ∈ NC and there exists b such that r(a, b) ∈ A and T ,A |= B(b)}.

Since the “if” direction is straightforward, we concentrate on the “only if” direction.
Let A be a Σ-ABox and T an EL-TBox in normal form. Assume that A ∈ NC is such
that A /∈ typeT (ta). We have to show that T ,A 6|= A(a). Using Lemma 6, for each
b ∈ Ind(A) we can find an interpretation Ib and an element dIb ∈ ∆Ib such that for all
atomic conceptsB ∈ NC, we have dIb ∈ BIb iffB ∈ typeT (tb): in that lemma, simply
choose the ABox {B(b) | B ∈ typeT (tb)}. We may assume that the ∆Ib are mutually
disjoint. Take the following union I of the models Ib:

– ∆I =
⋃
b∈Ind(A)∆

Ib ;
– BI =

⋃
b∈Ind(A)B

Ib , for B ∈ NC;
– rI =

⋃
b∈Ind(A) r

Ib ∪ {(dIb , dIc) | r(b, c) ∈ A}, for r ∈ NR;
– bI = dIb , for b ∈ Ind(A).

Note that by construction, I is a model ofA. We now show that I is also a model of T .
We recall that T is in normal form, and so each inclusion in T has one of the following
forms:

B v > B1 v B2 B1 v ∃r.B2 > v B B1uB2 v B3 ∃r.B1 v B2

where B,B1, B2, B3 ∈ NC. We note that it follows from the construction of I that for
all B ∈ NC, b ∈ Ind(A), and d ∈ ∆Ib , we have

d ∈ BIb iff d ∈ BI

Using this property and the fact that each Ib is a model of T , we can immediately
derive the satisfaction of inclusions in T of the forms B v >, B1 v B2, > v B, and
B1 u B2 v B3. Next take some inclusion B1 v ∃r.B2 ∈ T and d ∈ ∆I such that



d ∈ BI1 . We know that d belongs to some Ib. As Ib is a model of T , it follows there
is some e ∈ Ib such that (d, e) ∈ rIb and e ∈ BIb2 . As rIb ⊆ rI and BIb2 ⊆ BI2 ,
we obtain (d, e) ∈ rI and e ∈ BI2 , so this inclusion is satisfied in I. Finally, suppose
we have an inclusion ∃r.B1 v B2 ∈ T and d ∈ (∃r.B1)

I . If d is not the root of
some Ib, then we can simply use the fact that each Ib is a model of T . So suppose
that d = dIb . Then we have that ∃r.B1 ∈ tb, and so B2 ∈ typeT (tb). It follows that
d = dIb ∈ BIb2 ⊆ BI2 . We have thus shown that all inclusions in T hold in I, so I
is a model of T . To complete the proof of the claim, we note that dIa 6∈ AIa , hence
aI = dIa 6∈ AI , yielding the desired T ,A 6|= A(a).

We now prove Claim 1, starting with the “if” direction. Suppose that A0 is not
FO-rewritable relative to T and Σ. It follows from Theorem 3 that there exists a tree-
shaped Σ-ABox A of depth exceeding 22n with root a0 such that T ,A |= A0(a0),
and T ,A|22n 6|= A0(a0). When r(a, b) ∈ A, we call b a successor of a in A. By
Claim 2, we can assume without loss of generality that the number of successors of
each a ∈ Ind(A) inA is bounded by ex(T ). Indeed, if it is not the case, choose for each
∃r.B (with B ∈ NC) some b ∈ Ind(A) with r(a, b) ∈ A and T ,A |= B(b) (if such a
b exists), and then drop all subtrees rooted at successors of a in A that have not been
chosen. The resulting ABox still entailsA0(a0) given T due to Claim 2 and the fact that
for all individual names a in the resulting ABox, the set typeT (a) did not change. It is
also clear that the operation preserves the non-entailment of A0(a0) for the restriction
of the ABox to depth 22n, which also means that the modified ABox continues to have
depth exceeding 22n.

For each individual inA, fix a total order on the successors. For a ∈ Ind(A), we use
τA(a) to denote the set {A ∈ Σ | A(a) ∈ A}. Define a tree T = (V,E, `) as follows:

– V = Ind(A);
– E = {(a, b) ∈ V × V | r(a, b) ∈ A} and the order of successor in T agrees with

the chosen order on successors in A;
– `(a) = 〈τA(a), r1, . . . , rn〉 where ri is the (unique!) role such that ri(a, ai) ∈ A,

with ai the i-th successor of a.

Define a mapping ρ that maps each a ∈ Ind(A) to the state (c1, c2, σ1, σ2) defined as
follows:

– letting dTa be the depth of the subtree of T based at a, we set c1 = (22n+1)−dTa

if dTa
≤ 22n + 1, else c1 = 0

– letting da be the level of a in T , we set c2 = d if da ≤ 22n, else c2 = 22n + 1
– σ1 = {B ∈ NC | T ,A |= B(a)}
– σ2 = {B ∈ NC | T ,A|22n |= B(a)} if c2 ≤ 22n, else σ2 = typeT (τA(a))

We show that ρ is a run of A on T . Let ρ(a0) = (c1, c2, σ1, σ2). By definition of ρ,
we have c2 = 0 (since a0 has depth 0) and c1 = 0 (since dT > 22n). Next note that
T ,A |= A0(a0) and T ,A |= A0(a0) imply respectively that A0 ∈ σ1 and A0 6∈ σ2.
We thus have ρ(a0) ∈ Qf . It remains to show that ρ respects the transition rules in Θ.
This can be shown by induction on the co-depth of a node. For the base case, consider
some individual a with no successors in T , and let ρ(a) = (c1, c2, σ1, σ2). Since a
is a leaf node, we have c1 = 22n + 1, and c2 ∈ {0, . . . , 22n + 1} which satisfies



the conditions of Θ. From Claim 2 and the fact that a is a leaf node, we have that
T ,A |= C(a) iff C ∈ typeT (τA(a)). It follows that c1 and c2 also satisfy Θ. For
the induction step, suppose that the property holds for all b ∈ Ind(A) which are less
than k steps from some leaf node in A, and let a be some individual which is exactly
distance k from a leaf node. Suppose that `(a) = 〈τA(a), r1, . . . , rn〉, with ei being
the i-th child of a. Let ρ(a) = (c1, c2, σ1, σ2), and let ρ(bi) = (di1, d

i
2, χ

1
i , χ

i
2) for

each 1 ≤ i ≤ n. Let m = min1≤i≤n d
i
1. If m = 0, then this means that for one

of the children bi, the subtree rooted at bi has depth at least 22n + 1, hence di1 = 0.
It follows the same must be true of the subtree rooted at a, yielding c1 = 0, which
means Θ is satisfied. If instead m = min1≤i≤n d

i
1 > 0, then the maximum depths of

a subtree rooted at some child bi is g, where g = 22n + 1 −m. So the subtree rooted
at a must have depth g + 1, which means c1 = m − 1, again satisfying Θ. We know
that c2 is either the depth of a in T , or 22n + 1, whichever is smaller. Now if c2 is
22n+1, this means its children b1, . . . , bn all have the same depth greater than 22n+1,
hence d12 = . . . = dn2 = 22n + 1. If instead c2 < 22n + 1, then the child nodes all
have depth c2 + 1, so d12 = . . . = dn2 = c2 + 1. In both cases, Θ is respected. Next
we note that σ1 = {B ∈ NC | T ,A |= B(a)}, and by Claim 2, T ,A |= B(a) if
and only if B ∈ typeT (ta) where ta = {D ∈ Σ | D(a) ∈ A} ∪ {∃r.D | D ∈
NC and there exists b such that r(a, b) ∈ A and T ,A |= D(b)}. From the definition
of ρ, we have χ1

i = {D ∈ NC | T ,A |= D(bi)} for each 1 ≤ i ≤ n It follows
that σ1 = typeT (τA(a) ∪ {∃r.D | r = ri and D ∈ χi2 for some i}, and hence that
the conditions of Θ are satisfied w.r.t. σ1. Finally, for σ2, we remark that Θ is trivially
satisfied when c2 = 22n+1, and otherwise, we can use a similar argument as was used
for c1 to show that σ2 = typeT (τ ∪ {∃r.D ∈| r = ri and D ∈ χi2 for some i}).

For the “only if” direction of Claim 1, let T = (V,E, `) be a tree accepted by A,
and ρ be a run of A on T . Define a tree-shaped Σ-ABox

A :={A(av) | v ∈ V and `(v) = 〈t, r1, . . . , rn〉with A ∈ t} ∪

{r(av, avi) | vi is i-th successor of v and `(v) = 〈t, r1, . . . , rn〉 with ri = r}

Let a0 be the root of A.We want to show that A witnesses the non-FO-rewritability
of A0(x). More precisely, we aim to prove that (i) A has depth at least 22n + 1, (ii)
T ,A |= A0(a0), and (iii) T ,A|22n 6|= A0(a0).

First note that if ρ(a0) = (c1, c2, σ1, σ2), then we must have c1 = 0, c2 = 1,
A0 ∈ σ1, and A0 6∈ σ2. For (i), we note that c1 = 0 means that A has depth at least
22n + 1, since Θ ensures that leaf nodes start with value 22n + 1 and that values are
decremented by exactly one when moving from child to parent. For (ii), we show the
following claim, where ρ(v) = (cv1, c

v
2, σ

v
1 , σ

v
2).

Claim 4. For all v ∈ V and B ∈ σv1 : T ,A |= B(av).

The proof is by induction on the co-depth of v. If v is a leaf and B ∈ σv1 , then the
definition of Θ and A yields B ∈ typeT ({A | A(av) ∈ A}). It follows that T ,A |=
B(av). Now let v be a non-leaf with `(v) = 〈t, r1, . . . , rn〉 and successors v1, . . . , vn.
Moreover, let C ∈ σv1 . Then from the definition of A and Θ, we have

B ∈ typeT ({A | A(av) ∈ A} ∪ {∃r.D | r = ri, D ∈ σvi1 for some 1 ≤ i ≤ n})



By the induction hypothesis, we know that D ∈ σvi1 implies T ,A |= D(avi). Thus, we
also have T ,A |= B(av). This completes the proof of Claim 4. Using this claim, we
can infer that T ,A |= A0(a0), as desired.

To show (iii), we start by establishing the following claim:

Claim 5. For all v ∈ V with depth d ≤ 22n: cv2 = d+ 1.

The proof of Claim 5 proceeds by induction on the depth of v. If v has depth 0 (i.e. it is
the root node a0), then we know from above that cv2 = 0. Now suppose the claim holds
for all nodes with depth at most k, and consider some node v with depth k + 1 ≤ 22n.
We know from the IH that v’s unique parent node u is such that cu2 = k. Thus, from the
definition of Θ and the fact that ρ is a run, we must have cv2 = k + 1. This completes
the proof of Claim 5. We now use this claim to establish the following:

Claim 6. For all v ∈ V with depth at most 22n: σv2 = {D ∈ NC | T ,A|22n |= D(av)}

The proof is by induction on the co-depth of av in A|22n . We thus have two base cases:
leafs in A of depth at most 22n and non-leaves in A with precisely depth 22n. First
suppose av is a leaf of A appearing at depth at most 22n. Then by definition of Θ, we
will have σv2 = typeT ({A | A(av) ∈ A}), and by Claim 2, we have σv2 = {D ∈ NC |
T ,A |= D(av)}, and hence σv2 = {D ∈ NC | T ,A|22n |= D(av)}. Next consider
the case where av is a non-leaf individual in A with depth 22n. Then by Claim 5, we
have cv2 = 22n + 1, which means that σv2 = typeT ({A | A(av) ∈ A}). It follows then
by Claim 2 and the fact that av is a leaf in A|22n with the same concept assertions as
in A that σv2 = {D ∈ NC | T ,A|22n |= D(av)}. Now suppose that the claim holds
for individuals whose co-depth in A|22n is at most k, and let av have co-depth k + 1.
Suppose that `(v) = 〈t, r1, . . . , rn〉 with successors v1, . . . , vn. Using Claim 5, we can
infer that cv2 < 22n + 1. Then using the definitions of A and Θ, we have:

σv2 = typeT ({A | A(av) ∈ A} ∪ {∃r.D | r = ri and D ∈ χi2 for some i})

By the induction hypothesis, we know that for each child avi , we have σvi2 = {D ∈
NC | T ,A|22n |= D(avi)}. It follows then from Claim 2 that σv2 = {D ∈ NC |
T ,A|22n |= D(av)}. This completes the proof of Claim 6. We can apply this claim to
the root individual a0, using the fact that A0 6∈ σa02 to infer that T ,A|22n 6|= A0(a0).

Now that we have found an ABox A satisfying properties (i), (ii), and (iii), we can
use Theorem 3 to infer that A0 is not FO-rewritable relative to T and Σ. o

PSpace Decision Procedure

To obtain a PSPACE upper bound, we define a word automaton which accepts (words
representing) linear ABoxes satisfying Conditions (1) and (2) of Theorem 5. Instead of
defining a word automaton from scratch, we adapt the tree automaton construction from
the EXPTIME upper bound.

Consider some EL-TBox T and IQ A(x), and let A = (Q,F , Qf , ∆) be the tree
automaton for T ,NC, A, as defined in the proof of Theorem 6. We define another tree
automaton A` = (Q,F ′, Qf , ∆′) by restricting the alphabet and transition rules:



– F ′ = {〈τ〉 | τ is a NC-type } ∪ {〈τ, r〉 | τ is a NC-type, r ∈ NR}
– ∆′ contains all transitions from ∆ using only symbols of arity 0 or 1

Note that because A` only uses symbols with arities at most 1, L(A`) consists of trees
with branching factor 1, or equivalently, words. Every such tree/word defines a linear
ABox. Also note that by construction, we have F ⊆ F ′ and ∆′ ⊆ ∆. This allows
us to reuse the arguments from the proof of Theorem 6 to show that L(A`) consists
of all words of length 22n + 1 such that the associated linear ABox A is such that
T ,A |= A(a0) and T ,A|22n 6|= A(a0) (where a0 is the root of A). Thus, if L(A`)
is non-empty, then there is a witness ABox satisfying the conditions of Theorem 5.
Conversely, if there is a linear ABox satisfying the required conditions, we can assume
that it has precisely length 22n + 1, and hence L(A`) 6= ∅.

The automaton A` has exponentially many states, so to obtain a PSPACE proce-
dure, we must test for emptiness without actually constructing A`. We note that given
a symbol f ∈ F ′ and a pair of states q, q′ ∈ Q, it can be decided in polytime (hence
polyspace) whether f(q) → q′. This means that we can decide non-emptiness by con-
structing on-the-fly a linear tree and associated run, by working from leaf to root and
keeping only the two most recently generated symbol-state pairs in memory. A binary
counter is used to count the number of pairs generated, and when we reach 22n+1, we
stop and check whether the current pair contains a state from Qf .

B Proofs for Section 5

We introduce some notions and results required for the proofs. A relation S between
two Σ-ABoxes A1 and A2 is called a simulation if

– (a, b) ∈ S and A(a) ∈ A1 imply A(b) ∈ A2;
– (a, b) ∈ S and r(a, a′) ∈ A1 imply that there exists b′ with (a′, b′) ∈ S and
r(b, b′) ∈ A2.

We say that (A1, a1) is simulated by (A2, a2), in symbols (A1, a1) ≤ (A2, a2), if there
exists a simulation S between A1 and A2 with (a1, a2) ∈ S. The following lemma is
readily checked.

Lemma 11. For any twoΣ-ABoxesA1 andA2, if (A1, a1) ≤ (A2, a2), then (T ,A1) |=
C(a1) implies (T ,A2) |= C(a2), for all EL-concepts C.

We now define the ABox AT ,Σ in detail. It uses an individual name aA, for each con-
cept name A that is non-conjunctive in T , and an additional individual name aΣ . For
each concept name A that is primitive in T , set

A(A) = {E(aA) | E ∈ Σ, T 6|= E v A} ∪ {r(aA, aΣ) | r ∈ Σ}

For each concept definition A ≡ ∃r.B ∈ T , set

A(A) = {E(aA) | E ∈ Σ, T 6|= E v A} ∪ {s(aA, aΣ) | r 6= s ∈ Σ}
∪{r(aA, aE) | E ∈ non-conjT (B), r ∈ Σ}



and let AΣ = {r(aΣ , aΣ) | r ∈ Σ} ∪ {A(aΣ) | A ∈ Σ}. Finally we set

AT ,Σ = AΣ ∪ {A(A) | A non-conjunctive in T }.

The following lemma characterizes the ABox AT ,Σ (cf. [9]).

Lemma 12. For every classical EL-TBox T in normal form, every ABox-signature Σ,
and concept name A, the following conditions are equivalent for every Σ-ABox A and
individual name a in A:

– there exists B ∈ non-conjT (A) such that (A, a) ≤ (AT ,Σ , aB);
– T ,A 6|= A(a).

We illustrate the ABox AT ,Σ using examples.

Example 4. (a) For T = {A ≡ ∃r.A} and Σ = {A, r}, we have AT ,Σ = {r(aA, aA),
r(aΣ , aΣ), A(aΣ)}.
(b) For T = {A v ∃r.A} and Σ = {A, r}, we have AT ,Σ = {r(aA, aA), r(aA, aΣ),
r(aΣ , aΣ), A(aΣ)}.

We also require the following result about inclusions that follow from classical EL-
TBoxes [10].

Lemma 13. Let T be a normal EL TBox, r a role name, A a primitive concept name
in T and D an EL-concept.

1. If
T |=

l

1≤i≤n

Ai u
l

1≤j≤m

∃rj .Cj v A

where Ai are concept names and Cj are EL-concepts. Then there exists Ai, 1 ≤
i ≤ n, such that T |= Ai v A.

2. Assume now
T |=

l

1≤i≤n

Ai u
l

1≤j≤m

∃rj .Cj v ∃r.D,

where Aj are concept names and Cj are EL-concepts, then
– there exists Ai, 1 ≤ i ≤ n, such that T |= Ai v ∃r.D or
– there exists rj such that rj = r and T |= Cj v D.

We now describe the PTIME algorithm for deciding FO-rewritability of IQs relative
to classical EL-TBoxes in normal form. First compute the polysized ABox AT ,Σ , in
polytime. Define a labeling function L that assigns to every aB , B non-conjunctive in
T , the set of concept names L(aB) = {A | B ∈ non-conjT (A)}. Remove from each
L(aB) all concept names A for which one of the following conditions is true:

1. there is no Σ-ABox A with A, T |= A(a) (decidable in polytime [2]);
2. there is a B′ ∈ non-conjT (A) that is primitive in T and with B′(aB) 6∈ AT ,Σ ;
3. there is a B′ ∈ non-conjT (A) with B′ ≡ ∃s.A′ ∈ T s.t. s 6∈ Σ and B′(aB) 6∈
AT ,Σ .



Denote the resulting labeling function by L0. Remove, recursively, from every L0(aB)
each concept name A such that

(∗) there exists B′ ∈ non-conjT (A) with B′(aB) 6∈ AT ,Σ and B′ ≡ ∃r.A′ ∈ T such
that there is no B′′ ∈ non-conjT (A

′) with A′ ∈ L0(aB′′)

and denote the result by L∗0. Clearly, L∗0 can be computed in polytime.

Lemma 14. A(x) is FO-rewritable relative to T and Σ iff A 6∈ L∗0(aB) for some
B ∈ non-conjT (A).

Proof. Some notation is required. For every concept name B that is non-conjunctive
in T , the unfolding of AT ,Σ at aB up to depth k, in symbols A≤kB , is the following
Σ-ABox: Ind(A≤kB ) consists of all paths

p = aX0
r1aX1

· · · rnaXn

such that k ≥ n ≥ 0,X0 = B, aXi
∈ Ind(AT ,Σ) for all 0 ≤ i ≤ n, and ri+1(aXi

, aXi+1
) ∈

AT ,Σ , for all 0 ≤ i < n. Now A≤kB contains the assertions:

– r(p, praX), for all p, praX ∈ Ind(A≤kB );
– A(p), for all A such that A(tail(p)) ∈ AT ,Σ and p ∈ Ind(A≤kB ).

Observe that T ,A≤kB 6|= A(aB) whenever T ,AT ,Σ 6|= A(aB) (since the function h
from A≤kB to AT ,Σ defined by setting h(p) = tail(p) is a homomorphism).

We say that p ∈ Ind(A≤kB ) has depth m, in symbols depth(p) = m, if p ∈
Ind(A≤mB ) \ Ind(A≤m−1B ).

(⇒) Assume that there exists B ∈ non-conjT (A) with A ∈ L∗0(aB). We show that
A is not FO-rewritable w.r.t. T and Σ using Theorem 2.

Assume k > 0 is given. We have T ,A≤kB 6|= A(aB). Thus, it is sufficient to con-
struct a Σ-ABox Ak+B that coincides with A≤kB up to depth k and such that T ,Ak+B |=
A(aB). We set

Ak+B = A≤k+1
B ∪ {r(q, p) | dept(q) = k, depth(p) = k + 1, r ∈ Σ} ∪
{r(p, p) | depth(p) = k + 1, r ∈ Σ} ∪
{A′(p) | depth(p) = k + 1, A′ ∈ Σ}

We prove that T ,Ak+B |= A(aB). To this end, we show by induction, starting from
k + 1 downward, for every i ≤ k + 1, path p, and concept name A′:

Claim 1. If A′ ∈ L∗0(tail(p)) and tail(p) = B with depth(p) = i, then T ,Ak+B |=
A′(p).

For i = k + 1, Claim 1 follows from the condition that A′ is not Σ-empty (otherwise
A′ 6∈ L0(tail(p)) by definition of labeling function L0 (Condition 1)).

Assume Claim 1 is proved for i+ 1. We show Claim 1 for i.



Assume A′ ∈ L∗0(tail(p)) and tail(p) = B with depth(p) = i. We distinguish
two cases. First assume A′ = B. By Condition 2 for labeling function L0, A′ is not
primitive. By Condition 3 for labeling function L0, B ≡ ∃r.E ∈ T for some r ∈ Σ.
Thus, by definition of L∗0 using elimination rule (∗), there exists B′′ ∈ non-conjT (E)
with E ∈ L∗0(aB′′). By IH, T ,Ak+B |= E(praB′′). But then T ,Ak+B |= ∃r.E(p) and,
therefore, T ,Ak+B |= A′(p), as required.

Now assume A′ 6= B. We have A ≡ B1 u · · · u Bn ∈ T and B = Bi for some
1 ≤ i ≤ n. Let

X = {Bj | 1 ≤ j ≤ n} \ {B | B(tail(p)) ∈ AT ,Σ}

By Condition 2 for L0, no member of X is primitive in T . By Condition 3 for L0, for
all Bj ∈ X , Bj ≡ ∃rj .Ej ∈ T for some rj ∈ Σ. Thus, by (∗), there exist B′′j ∈
conjT (Ej) with Ej ∈ L(aB′′j ). By IH, T ,Ak+B |= Ej(praB′′j ). But then T ,Ak+B |=
∃rj .Ej(p) and, therefore, T ,Ak+B |= A′(p), as required. This finishes the proof of
Claim 1.

For p = aB we obtain T ,Ak+B |= A(aB), as required.

(⇐) Assume that there does not exist B ∈ non-conjT (A) with A ∈ L∗0(aB). We show
FO-rewritability of A(x) w.r.t. T and Σ.

We first require the following:

Claim 2. If for every B ∈ conjT (A) there exists k > 0 such that T ,Ak+B 6|= A(aB),
then A(x) is FO-rewritable relative to T and Σ.

Assume A(x) is not FO-rewritable relative to T and Σ and let k > 0. By Theorem 2,
there exists a tree-shapedΣ-ABoxesAk such that T ,Ak |= A(a0) but T ,A′k 6|= A(a0)
for the restriction of A′k to depth k. By Lemma 13, (A′k, a0) ≤ (AT ,Σ , aB) for some
B ∈ non-conjT (A). But then (A′k, a0) ≤ (A≤kB , aB) because A′k has depth k, and
(Ak, a0) ≤ (Ak+B , aB), by the definition of Ak+B . We have derived a contradiction
since T ,Ak+B |= A(aB) follows from Lemma 12.

Claim 3. For all A′ and B ∈ non-conjT (A
′) with A′ 6∈ L∗0(aB): T ,Ak+B 6|= A′(aB) for

all k > M2, where M is the number of concept names in T .

First, it follows from Lemma 14 that if A′ 6∈ L0(aB) then T ,A1+
B 6|= A′(aB).

Now the proof is by induction on the number of applications of (∗). Assume that
the claim holds for all k > m for all A′ and B ∈ non-conjT (A

′) such that A′ is
deleted from L0(aB) after at most m applications of (∗). Assume that A0 is deleted
from L(aB0) by the next application of (∗). Then there exists B′ ∈ non-conjT (A0)
withB′(aB0) 6∈ A andB′ ≡ ∃r.A′′ ∈ T and there does not existB′′ ∈ non-conjT (A

′′)
with A′′ not deleted from L0(aB′′).

We have, by IH, T ,Ak+B 6|= A′′(aB′′) for all B′′ ∈ non-conjT (A
′′), for k > m. But

then T ,Ak+1+
B 6|= ∃r.A′′(aB0

) (using Lemma 14), and so T ,Ak+1+
B 6|= B′(aB0

), for
all k > m. Hence T ,Ak+1+

B 6|= A0(aB0), for all k > m, as required.
Claim 2 and 3 together imply FO-rewritability of A(x) relative to T and Σ. o


