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Abstract

The purpose of this paper is to examine how the propositional notions of prime im-
plicates and prime implicants might be appropriately extended to the modal logic K. We
begin the paper by considering a number of potential definitions of clauses and terms for K.
The different definitions are evaluated with respect to a set of syntactic, semantic, and
complexity-theoretic properties characteristic of the propositional definition. We then com-
pare the definitions with respect to the properties of the notions of prime implicates and
prime implicants that they induce. While there is no definition which perfectly generalizes
the propositional notion, we show that there does exist one definition which satisfies many
of the desirable properties of the propositional case. In the second half of the paper, we
consider the computational properties of this definition. To this end, we provide sound and
complete algorithms for generating and recognizing prime implicates, and we prove the prime
implicate recognition task to be Pspace-complete. While the paper focusses on the logic K,
all of our results hold equally well for multi-modal K and for concept expressions in the
description logic ALC.

1 Introduction

Prime implicates and prime implicants are important notions in artificial intelligence. They
have given rise to a significant body of work in automated reasoning and have been applied to a
number of different sub-areas in AI, among them distributed reasoning [1], belief revision (cf. [3],
[27]), non-monotonic reasoning (cf. [29]), relevance (cf. [23], [22], [21]), knowledge compilation
(cf. [6], [9]), and abduction and diagnosis (cf. [10], [13]). Traditionally, these concepts have been
studied in the context of propositional logic, but they have also been considered for many-valued
[30] and first-order logic ([24], [25]). Surprisingly, however, no definition of prime implicate or
prime implicant has ever been proposed for a modal or description logic, nor has it been shown
that no reasonable definition can be provided. Given the increasing interest in modal and
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description logics as knowledge representation languages, one naturally wonders whether these
notions can be suitably generalized to these more expressive logics.

This question is not only of theoretical but also of practical interest as there are a variety
of settings in which prime implicates/implicants could prove useful. One obvious domain of
application is abductive reasoning and diagnosis in modal and description logics, an as yet
largely unaddressed problem whose importance has been argued for in [14]. In this context, prime
implicants play the role of abductive explanations: the minimal explanations of an observation
o with respect to a background theory t are just the prime implicants of t→ o.

Prime implicates might also prove an important tool in rendering modal and description logic
knowledge bases more accessible to knowledge engineers and end users alike. For instance, prime
implicates might aid knowledge engineers in evaluating the consequences of adding new pieces
of information (“find all prime implicates of KB + new that are not prime implicates of KB”).
They could also be used as the basis for rich query languages that allow users to pose general
questions about the contents of a KB (“find all of the prime implicates concerning professors”).

The aim of this paper is to investigate the notions of prime implicates and prime implicants
for the modal logic K. We have chosen to begin our investigation with K simply because it
is the most basic modal logic. All of our results can be straightforwardly extended to multi-
modal K and, via the well-known correspondence [31], to concept expressions in the description
logic ALC. Other modal and description logics as well as interesting restricted forms of prime
implicates will be examined in future work.

Our paper is organized as follows. After some preliminaries, we consider how to generalize
the notions of clauses and terms to K. As there is no obvious definition, we enumerate a
list of syntactic, semantic, and complexity-theoretic properties of the propositional definitions,
which we then use to compare the different candidate definitions. We next consider the different
definitions in light of the notions of prime implicate and prime implicant they induce. Once again,
we list some basic properties from the propositional case that we would like to satisfy, and we
see how the different definitions measure up. In the second half of the paper, we investigate the
computational properties of the most satisfactory definition of prime implicates. We consider the
problems of prime implicate generation and recognition, and we provide sound and complete
algorithms for both tasks. We also study the complexity of the prime implicate recognition
problem, showing it to be Pspace-complete and thus of the same complexity as satisfiability
and deduction in K. We conclude the paper with a discussion of interesting avenues of future
research. In order to enhance readability, proofs have been omitted from the body of the text.
Full proofs for all results can be found in Appendix B.

2 Preliminary Definitions and Notation

In this section, we recall some standard notions from propositional logic, modal logic, and
computational complexity.

2.1 Propositional Logic

Formulae in propositional logic are built from a set of propositional variables and the logical
connectives ¬ (negation), ∧ (conjunction), and ∨ (disjunction). A literal is either a propositional
variable or the negation of a propositional variable. A clause is defined to be a disjunction of
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literals, and a term is a conjunction of literals. A formula is said to be in negation normal
form (NNF) if negation only appears directly before propositional variables. A formula is in
conjunctive normal form (CNF) if it is a conjunction of clauses, and it is in disjunctive normal
form (DNF) if it is a disjunction of terms. Any formula can be put into NNF in linear time,
but the transformation to CNF or DNF can be exponential in both time and space.

The semantics of propositional logic is defined with respect to valuations, which assign a
truth value to each of the propositional variables of the language. Satisfaction of a formula φ
by a valuation v is defined as follows:

• if φ is a propositional variable a, then v |= φ if and only if v(a) = true

• if φ = ¬ψ, then v |= φ if and only if it is not the case that v |= φ

• if φ = ψ1 ∧ ψ2, then v |= φ if and only if both v |= ψ1 and v |= φ2

• if φ = ψ1 ∨ ψ2, then v |= φ if and only if either v |= ψ1 or v |= φ2

A formula φ is said to be a logical consequence of a formula ψ just in the case that every valuation
satisfying φ also satisfies ψ. We say that φ is logically stronger than ψ whenever φ is a logical
consequence of ψ but ψ is not a logical consequence of φ.

A clause is a prime implicate of a formula if it is a logical consequence of the formula and
there are no logically stronger clauses implied by the formula. A term is a prime implicant of
a formula if it implies the formula and there are no logically weaker terms which imply the
formula. For a comprehensive overview of prime implicates and prime implicants, the reader is
directed to [26].

2.2 Modal Logic K

We briefly recall the basics of the modal logic K1. Formulae in K are built up from a set of
propositional variables V, the standard logical connectives, and the modal operators 2 and 3.
We will use var(φ) to refer to the set of propositional variables appearing in a formula φ. The
modal depth of a formula φ, written δ(φ), is defined as the maximal number of nested modal
operators appearing in φ, e.g. δ(3(a ∧ 2a) ∨ a) = 2. We define the length of a formula φ,
written |φ|, to be the number of occurrences of propositonal variables and logical connectives in
φ. Negation normal form (NNF) is defined just as in propositional logic. Every formula in K
can be transformed in linear time into an equivalent formula in NNF of the same modal depth
via a straightforward application of the equivalences ¬(φ∧ψ) ≡ ¬φ∨¬ψ, ¬(φ∨ψ) ≡ ¬φ∧¬ψ,
¬¬φ ≡ φ, ¬2φ ≡ 3¬φ, and ¬3φ ≡ 2¬φ (see Appendix A for details). For example, applying
this transformation to the formula ¬2(a ∧3(¬b ∨ c)) results in the formula 3(¬a ∨2(b ∧ ¬c))
which is in NNF.

A model for K is a tuple M = 〈W,R, v〉, where W is a non-empty set of possible worlds,
R ⊆ W ×W is a binary relation over worlds, and v : W × V → {true, false} is a valuation of
the propositional variables at each world. Satisfaction of a formula φ in a modelM at the world
w (written M, w |= φ) is defined as follows:

• M, w |= a if and only if v(w, a) = true

1Refer to [4] or [7] for good introductions to modal logic.
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• M, w |= ¬φ if and only if M, w 6|= φ

• M, w |= φ ∧ ψ if and only if M, w |= φ and M, w |= ψ

• M, w |= φ ∨ ψ if and only if M, w |= φ or M, w |= ψ

• M, w |= 2φ if and only if M, w′ |= φ for all w′ such that wRw′

• M, w |= 3φ if and only if M, w′ |= φ for some w′ such that wRw′

A formula φ is said to be a tautology, written |= φ, if M, w |= φ for every model M and world
w. A formula φ is satisfiable if there is some model M and some world w such that M, w |= φ.
If there is noM and w for whichM, w |= φ, then φ is called unsatisfiable, and we write φ |= ⊥.

In modal logic, the notion of logical consequence can be defined in one of two ways:

• a formula ψ is a global consequence of φ if whenever M, w |= φ for every world w of a
model M, then M, w |= ψ for every world w of M

• a formula ψ is a local consequence of φ ifM, w |= φ impliesM, w |= ψ for every modelM
and world w

The distinction between local and global consequence does not arise in propositional logic be-
cause each model contains a single possible world. In first-order logic, both notions of con-
sequence exist, but local consequence is by far the most studied. In this paper, we will only
consider the notion of local consequence, and we will take φ |= ψ to mean that φ is a local
consequence of ψ. Two formulae φ and ψ are called equivalent, written φ ≡ ψ, if both φ |= ψ
and ψ |= φ. A formula φ is logically stronger than ψ if φ |= ψ and ψ 6|= φ.

We now highlight some basic properties of logical consequence and equivalence in K which
will play an important role in the proofs of our results.

Theorem 1. Let γ, ψ, ψ1, ..., ψm, χ, χ1, ..., χn be formulae in K, and let γ be a propositional
formula. Then

1. ψ |= χ⇔|= ¬ψ ∨ χ⇔ ψ ∧ ¬χ |= ⊥

2. ψ |= χ⇔ 3ψ |= 3χ⇔ 2ψ |= 2χ

3. γ ∧3ψ1 ∧ ...∧3ψm ∧2χ1 ∧ ...∧2χn |= ⊥ ⇔ (γ |= ⊥ or ψi ∧χ1 ∧ ...∧χn |= ⊥ for some i)

4. |= γ ∨3ψ1 ∨ ... ∨3ψm ∨2χ1 ∨ ... ∨2χn ⇔ (|= γ or |= ψ1 ∨ ... ∨ ψm ∨ χi for some i)

5. 2χ |= 2χ1 ∨ ... ∨2χn ⇔ χ |= χi for some i

6. 3ψ1 ∨ ... ∨3ψm ∨2χ1 ∨ ... ∨2χn
≡ 3ψ1 ∨ ... ∨3ψm ∨2(χ1 ∨ ψ1 ∨ ... ∨ ψm) ∨ ... ∨2(χn ∨ ψ1 ∨ ... ∨ ψm)

Theorem 2. Let λ be a disjunction of propositional literals and formulae of the forms 3ψ and
2χ. Then each of the following statements holds:

1. If λ |= γ for some non-tautological propositional clause γ, then every disjunct of λ is either
a propositional literal or a formula 3ψ where ψ |= ⊥
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2. If λ |= 3ψ1 ∨ ... ∨3ψn, then every disjunct of λ is of the form 3ψ

3. If λ |= 2χ1 ∨ ...∨2χn and 6|= 2χ1 ∨ ...∨2χn, then every disjunct of λ is either a formula
of the form 2χ or a formula 3ψ where ψ |= ⊥

Theorem 3. Let λ = γ ∨ 3ψ1 ∨ ... ∨ 3ψm ∨ 2χ1 ∨ ... ∨ 2χn and λ′ = γ′ ∨ 3ψ′1 ∨ ... ∨ 3ψ′p ∨
2χ′1 ∨ ... ∨2χ′q be formulae in K. If γ are γ′ are both propositional and 6|= λ′, then

λ |= λ′ ⇔


γ |= γ′ and
ψ1 ∨ ... ∨ ψm |= ψ′1 ∨ ... ∨ ψ′p and
for every i there is some j such that χi |= ψ′1 ∨ ... ∨ ψ′p ∨ χ′j

2.3 Complexity Theory

We recall some basic definitions and results from computational complexity theory (cf. [28]). The
class P comprises all languages which can be recognized in polynomial time by a deterministic
Turing machine. The class NP contains all languages which can be recognized in polynomial time
by a non-deterministic Turing machine. The class co-NP is defined to be the set of all languages
whose complement belongs to NP. The class BH2 is defined as the set of languages L = L1∩L2

such that L1 is in NP and L2 is in co-NP. The class Pspace (respectively Expspace) is
comprised of those problems which can be solved in polynomial (respectively single-exponential)
space by a deterministic Turing machine. It is well-known that Pspace=Npspace=co-Pspace
and Exspace=Nexpspace=co-Expspace.

In [20], satisfiability and unsatisfiability of formulae in K were shown to be Pspace-complete.
For Pspace membership, Ladner exhibited a polynomial space tableaux-style algorithm for
deciding satisfiability of K formulae. Pspace-hardness was proven by means of a reduction
from QBF validity (the canonical Pspace-complete problem).

3 Literals, clauses, and terms in K
As we have seen in the previous section, the notions of prime implicates and implicants are
straightforwardly defined using the notions of clauses and terms. Thus, if we aim to provide
suitable definitions of prime implicates and implicants for the logic K, we first need to decide
upon a suitable definition of clauses and terms in K. Unfortunately, whereas clauses and terms
are standard notions in both propositional and first-order logic2, there is no generally accepted
definition of clauses and terms in K. Indeed, several quite different notions of clauses and terms
have been proposed in the literature for different purposes.

Instead of blindly picking a definition and hoping that it is appropriate, we prefer to list
a number of characteristics of literals, clauses, and terms in propositional logic, giving us a
principled means of comparing different candidate definitions. Each of the properties below
describes something of what it is to be a literal, clause, or term in propositional logic. Although

2One might wonder why we don’t simply translate our formulae in K into first-order formulae and then put
them into clausal form. The reason is simple: we are looking to define clauses and terms within the language of
K, and the clauses we obtain on passing by first-order logic are generally not expressible in K. Moreover, if we
were to define clauses in K as those first-order clauses which are representable in K, we would obtain a set of
clauses containing no 3 modalities, thereby losing much of the expressivity of K.
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our list cannot be considered exhaustive, we do believe that it covers the principal syntactic,
semantic, and complexity-theoretic properties of the propositional definition.

P1 Literals, clauses, and terms are in negation normal form.

P2 Clauses do not contain ∧, terms do not contain ∨, and literals contain neither ∧ nor ∨.

P3 Clauses (resp. terms) are disjunctions (resp. conjunctions) of literals.

P4 The negation of a literal is equivalent to another literal. Negations of clauses (resp. terms)
are equivalent to terms (resp. clauses).

P5 Every formula is equivalent to a finite conjunction of clauses. Likewise, every formula is
equivalent to a finite disjunction of terms.

P6 The task of deciding whether a given formula is a literal, term, or clause can be accomplished
in polynomial-time.

P7 The task of deciding whether a clause (resp. term) entails another clause (resp. term) can
be accomplished in polynomial-time.

One may wonder whether there exist definitions of literals, clauses, and terms for K satisfying
all of these properties. Unfortunately, we can show this to be impossible.

Theorem 4. Any definition of literals, clause, and terms for K that satisfies properties P1 and
P2 cannot satisfy P5.

The proof of Theorem 4 only makes use of the fact that ∧ does not distribute over 3 and
∨ does not distribute over 2, which means that our impossibility result holds equally well for
most standard modal and description logics.

The first definition that we will consider is that proposed in [8] in the context of abduction.
The authors define terms to be the formulae which can be constructed from the propositional
literals using only ∧, 2, and 3. Modal clauses and literals are not used in the paper but can be
defined analagously, yielding the following definition3:

L ::= a | ¬a |2L |3L
D1 C ::= a | ¬a |2C |3C |C ∨ C

T ::= a | ¬a |2T |3T |T ∧ T
It is easy to see by inspection that this definition satisfies properties P1-P2, P4, and P6.
Property P3 is not satisfied, however, since there are clauses that are not disjunctions of literals
– take for instance 2(a ∨ b). From Theorem 4 and the fact that both P1 and P2 are satisfied,
we can conclude that property P5 cannot hold. At first glance, it may seem that entailment
between clauses or terms could be accomplished in polynomial time, but this is not the case.
In fact, we can show this problem to be Np-complete. The proof relies on the very strong
resemblance between terms of D1 and concept expressions in the description logic ALE (for
which both unsatisfiability and deduction are known to be Np-complete).

3Note that here and in what follows, we let a range over propositional variables and L, C, and T range over
the sets of literals, clauses, and terms respectively.
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By using a slightly different definition, we can gain P3:

L ::= a | ¬a |2L |3L
D2 C ::= L |C ∨ C

T ::= L |T ∧ T
It can be easily verified that definition D2 satisfies properties P1-P4 and P6. As definition D1
does not satisfy P5, and definition D2 is even less expressive, it follows that D2 does not satisfy
P5 either. This reduced expressiveness does not however improve its computational complexity:
property P7 is still not satisfied as we can show that entailment between clauses or terms is
Np-complete using the same reduction as was used for definition D1.

Given that even very inexpressive definitions like D2 fail to gain us polynomial behavior,
it seems reasonable to explore some more expressive options. We begin with the following
definition of clauses that was proposed in [15] for the purpose of modal resolution:

D3 C ::= a | ¬a |2C |3ConjC |C ∨ C
ConjC ::= C |ConjC ∧ ConjC

This definition of clauses can be extended to a definition of terms and literals which satisfies P3
or P4, but there is no extension which satisfies both properties. Let us first consider one of the
possible extensions which satisfies P4 and a maximal subset of P1-P7:

L ::= a | ¬a |2L |3L
D3a C ::= a | ¬a |2C |3ConjC |C ∨ C

ConjC ::= C |ConjC ∧ ConjC
T ::= a | ¬a |2DisjT |3T |T ∧ T
DisjT ::= T |DisjT ∨DisjT

This definition satisfies P1, and P4-P6 (P5 is a consequence of Proposition 1.3 in [15]). It does
not satisfy P3 as there are clauses that are not disjunctions of literals – take for example 2(a∨b).
Given that definition D3a is strictly more expressive than definitions D1 and D2, it follows
that entailment between clauses or terms must be Np-hard, which means that D3a does not
satisfy P7. In fact, we can show that entailment between clauses or terms of definition D3a is
Pspace-complete. To do so, we modify the polynomial translation of QBF into K used to prove
Pspace-hardness of K so that the translated formula is a conjunction of clauses with respect to
D3a. We then notice that a formula φ is unsatisfiable if and only if 3φ entails 3(a ∧ ¬a). We
thus reduce QBF validity to entailment between clauses, making this task Pspace-hard, and
hence (being a subproblem of entailment in K) Pspace-complete. This same idea is used to
show Pspace-completeness for definitions D3b and D5 below.

If instead we extend D3 so as to enforce property P3, we obtain the following definition:

L ::= a | ¬a |2C |3ConjC
D3b C ::= a | ¬a |2C |3ConjC |C ∨ C

ConjC ::= C |ConjC ∧ ConjC
T ::= L |T ∧ T

This definition satisfies all of the properties except P2, P4, and P7. Property P4 fails to hold
because the negation of the literal 3(a ∨ b) is not equivalent to any literal. The proof that
P5 holds is constructive: we use standard logical equivalences to rewrite formulae as equivalent
conjunctions of clauses and disjunctions of terms (this is also what we do for definitions D4 and
D5 below).
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We now propose two rather simple definitions that satisfy properties P3, P4, and P5. The
first definition, which is inspired by the notion of modal atom proposed in [18], defines literals
as the set of formulae in NNF that cannot be decomposed propositionally.

L ::= a | ¬a |2F |3F
D4 C ::= L |C ∨ C

T ::= L |T ∧ T
F ::= a | ¬a |F ∧ F |F ∨ F |2F |3F

D4 satisfies all of the properties except P2 and P7. For P7, we note that an arbitrary formula
φ in NNF is unsatisfiable (a Pspace-complete problem) if and only if 3φ |= 3(a ∧ ¬a).

Definition D4 is very liberal, imposing no structure on the formulae behind modal operators.
If we define literals to be the formulae in NNF that cannot be decomposed modally (instead of
propositionally), we obtain a much stricter definition which satisfies exactly the same properties
as D4.

L ::= a | ¬a |2C |3T
D5 C ::= L |C ∨ C

T ::= L |T ∧ T
A summary of our analysis of the different definitions with respect to properties P1-P7 is

provided in the following table.

D1 D2 D3a D3b D4 D5
P1 yes yes yes yes yes yes
P2 yes yes no no no no
P3 no yes no yes yes yes
P4 yes yes yes no yes yes
P5 no no yes yes yes yes
P6 yes yes yes yes yes yes
P7 no (Np-complete) no (Pspace-complete)

Figure 1: Properties of the different definitions of literals, clauses, and terms.

Theorem 5. The results in Figure 1 hold.

Clearly deciding between different candidate definitions is more complicated than counting
up the number of properties that the definitions satisfy, the simple reason being that some
properties are more important than others. Take for instance property P5 which requires
clauses and terms to be expressive enough to represent all of the formulae in K. If we just
use the propositional definition (thereby disregarding the modal operators), then we find that
it satisfies every property except P5, and hence more properties than any of the definitions
considered in this section, and yet we would be hard-pressed to find someone who considers the
propositional definition an appropriate definition for K. This demonstrates that expressiveness
is a particularly important property, so important in fact that we should be willing to sacrifice
properties P2 and P7 to keep it. Among the definitions that satisfy P5, we prefer definitions
D4 and D5 to definitions D3a and D3b. The latter definitions have less in common with the
propositional definition and present no advantages over D4 and D5.

Of course, when it comes down to it, the choice of a definition must depend on the particular
application in mind. There may be very well be circumstances in which a less expressive or less
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elegant definition may prove to be the most suitable. In this paper we are using clauses and
terms to define prime implicates and prime implicants, so for us the most important criteria for
choosing a definition will be the quality of the notions of prime implicates and prime implicants
that the definition induces.

4 Prime Implicates/Implicants in K
Once a definition of clauses and terms has been fixed, we can define prime implicates and prime
implicants in exactly the same manner as in propositional logic:

Definition 6. A clause λ is an implicate of a formula φ if and only if φ |= λ. λ is a prime
implicate of φ if and only if:

1. λ is an implicate of φ

2. If λ′ is an implicate of φ such that λ′ |= λ, then λ |= λ′

Definition 7. A term κ is an implicant of the formula φ if and only if κ |= φ. κ is a prime
implicant of φ if and only if:

1. κ is an implicant of φ

2. If κ′ is an implicant of φ such that κ |= κ′, then κ′ |= κ

Of course, the notion of prime implicate (respectively implicant) that we get will be deter-
mined by the definition of clause (respectively term) that we have chosen. We will compare
different definitions using the following well-known properties of prime implicates/implicants in
propositional logic:

Finiteness The number of prime implicates (respectively prime implicants) of a formula is
finite modulo logical equivalence.

Covering Every implicate of a formula is entailed by some prime implicate of the formula.
Conversely, every implicant of a formula entails some prime implicant of the formula.

Equivalence A modelM is a model of φ if and only ifM is a model of all the prime implicates
of φ if and only if M is a model of some prime implicant of φ4.

Implicant-Implicate Duality Every prime implicant of a formula is equivalent to the nega-
tion of some prime implicate of the negated formula. Conversely, every prime implicate of
a formula is equivalent to the negation of a prime implicant of the negated formula.

Distribution If λ is a prime implicate of φ1 ∨ ...∨ φn, then there exist prime implicates λ1, ...,
λn of φ1, ..., φn such that λ ≡ λ1∨ ...∨λn. Likewise, if κ is a prime implicant of φ1∧ ...∧φn,
then there exist prime implicants κ1, ..., κn of φ1, ..., φn such that κ ≡ κ1 ∧ ... ∧ κn

4The property Equivalence is more commonly taken to mean that a formula is equivalent to the conjunction
of its prime implicates and the disjunction of its prime implicants. We have chosen a model-theoretic formulation
in order to allow for the possibility that the set of prime implicates/implicants is infinite.
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Finiteness ensures that the prime implicates/implicants of a formula can be finitely rep-
resented, while Covering means the prime implicates provide a complete representation of
the formula’s implicates. Equivalence guarantees that no information is lost in replacing a
formula by its prime implicates/implicants, whereas Implicant-Implicate Duality allows us
to transfer results and algorithms for prime implicates to prime implicants, and vice-versa.
Finally, Distribution relates the prime implicates/implicants of a formula to the prime impli-
cates/implicants of its sub-formulae. This property will play a key role in the prime implicate
generation algorithm presented in the next section.

We can show that definition D4 satisfies all five properties. For Finiteness and Covering,
we first demonstrate that every implicate λ of a formula φ is entailed by some implicate λ′ of
φ with var(λ′) ⊆ var(φ) and having depth at most δ(φ) + 1 (and similarly for implicants). As
there are only finitely many non-equivalent formulae on a finite language and with bounded
depth, it follows that there are only finitely many prime implicates/implicants of a given for-
mula, and that there can be no infinite chains of increasingly stronger implicates/implicants.
Equivalence follows directly from Covering and the property P5 of the previous section: we
use P5 to rewrite φ as a conjunction of clauses, each of which is implied by some prime impli-
cate of φ because of Covering. The property Implicant-Implicate Duality is an immediate
consequence of the duality between clauses and terms (P4). Distribution can be shown using
Covering plus the fact that a disjunction of clauses is a clause and a conjunction of terms is a
term (P3).

Theorem 8. The notions of prime implicates and prime implicants induced by definition D4
satisfy Finiteness, Covering, Equivalence, Implicant-Implicate Duality, and Distribu-
tion.

We remark by way of contrast that in first-order logic the notion of prime implicates in-
duced by the standard definition of clauses has been shown to falsify Finiteness, Covering,
Equivalence, and Distribution [24].

We now show that definition D4 is the only one of our definitions to satisfy all five prop-
erties. For definitions D1 and D2, we prove that Equivalence does not hold. This is a fairly
straightforward consequence of the fact that these definitions do not satisfy property P5. For
definitions D3a, D3b, and D5, we prove that 2(3ka) ∨ 3(a ∧ b ∧ 2k¬a) is a prime implicate
of 2(a ∧ b) for every k ≥ 1. We thereby demonstrate that not only do these definitions admit
formulae with infinitely many prime implicates but they also allow seemingly irrelevant clauses
to be counted as prime implicates. This gives us strong grounds for dismissing these definitions
as much of the utility of prime implicates in applications comes from their ability to eliminate
such irrelevant consequences.

Theorem 9. The notions of prime implicates and prime implicants induced by definitions D1
and D2, do not satisfy Equivalence. The notions of prime implicates and prime implicants
induced by D3a, D3b, and D5 falsify Finiteness.

While the comparison in the last section suggested that D5 was at least as suitable as D4 as
a definition of clauses and terms, the results of this section rule out D5 as a suitable definition
for prime implicates and prime implicants. In the remainder of the paper, we will concentrate
our attention on the notions of prime implicates and prime implicants induced by definition D4,
as these have been shown to be the most satisfactory generalizations of the propositional case.
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5 Prime Implicate Generation and Recognition

In this section, we investigate the computational aspects of modal prime implicates. As we will
only be considering the notion of prime implicates induced by definition D4, from now on we
will use the words “clause”, “term”, and “prime implicate” to mean clause, term, and prime
implicate with respect to definition D4.

We remark that we can focus without loss of generality on prime implicates since by Implicant-
Implicate Duality (Theorem 8) any algorithm for generating or recognizing prime implicates
can be easily adapted into an algorithm for generating or recognizing prime implicants.

5.1 Generating Prime Implicates

We start by considering the problem of generating the set of prime implicates of a given formula.
In propositional logic, this task can take an exponential amount of space and time since the
number of prime implicates is potentially exponential in the length of the formula. Since K
includes all of propositional logic, the same must be true of K.

Figure 2 presents the algorithm GenPI which computes the sets of prime implicates of a
given formula. The algorithm makes use of the helper function Dnf-4(φ) which returns a set
of satisfiable terms with respect to D4 whose disjunction is equivalent to φ. The details of this
function can be found in Appendix A.

Function GenPI(φ)
Input : a formula φ Output : a set of clauses

(1) If φ is unsatisfiable, return {3(a ∧ ¬a)}. Otherwise, set T = Dnf-4(φ).
(2) For each T ∈ T : let LT be the set of propositional literals in T and let DT

be the set of formulae ζ such that 3ζ is in T . If there are no literals of the
form 2ψ in T , then set ∆(T ) = LT ∪ {3ζ | ζ ∈ DT }. Otherwise, set ∆(T ) =

LT ∪ {2βT } ∪ {3(ζ ∧ βT ) | ζ ∈ DT }

where βT is the conjunction of formulae ψ such that 2ψ is in T .
(3) Set Candidates = {

∨
T∈T θT | θT ∈ ∆(T )}.

(4) For each λj ∈ Candidates: remove λj from Candidates if λk |= λj for some
λk ∈ Candidates with k < j, or if both λj |= λk and λk 6|= λj for k > j.

(5) Return Candidates.

Figure 2: Algorithm for prime implicate generation.

Our algorithm works as follows: in Step (1), we check whether φ is unsatisfiable, outputting
a contradictory clause if this is the case. For satisfiable φ, we set T equal to a set of satisfiable
terms whose disjunction is equivalent to φ. Because of Distribution, we know that every prime
implicate of φ is equivalent to some disjunction of prime implicates of the terms in T . In Step (2)
we set ∆(T ) equal to the propositional literals in T (LT ) plus the strongest 2-literal implied by T
(2βT ) plus the strongest 3-literals implied by T ({3(ζ∧βT ) | ζ ∈ DT }). It is not too hard to see
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that every prime implicate of T must be equivalent to one of the elements in ∆(T ). This means
that in Step (3) we are guaranteed that every prime implicate of the input formula is equivalent
to some candidate prime implicate in Candidates. During the comparison phase in Step (4),
non-prime candidates are eliminated, and exactly one prime implicate of each equivalence class
will be retained.

Theorem 10. The algorithm GenPI always terminates and outputs exactly the set of prime
implicates of the input formula.

By examining the prime implicates produced by the algorithm, we can put an upper bound
on the length of the smallest representation of a prime implicate.

Theorem 11. The length of the smallest representation of a prime implicate of a formula can
be no more than singly exponential in the length of the formula.

This upper bound is optimal as we can find formulae with exponentially large prime impli-
cates:

Theorem 12. The length of the smallest representation of a prime implicate of a formula can
be exponential in the length of the formula.

Similarly, by considering the number of candidate prime implicates constructed by our al-
gorithm, we can place a bound on the maximal number of non-equivalent prime implicates a
formula can possess.

Theorem 13. The number of non-equivalent prime implicates of a formula is at most doubly
exponential in the length of the formula.

This bound can also be shown to be optimal.

Theorem 14. The number of non-equivalent prime implicates of a formula may be doubly
exponential in the length of the formula.

We now illustrate the functioning of GenPI on an example:

Example 15. Set φ = a∧ ((3(b∧ c)∧3b)∨ (3b∧3(c∨ d)∧2e∧2f)). As φ is satisfiable, we
call the function Dnf-4 on φ, and it returns the following two terms: T1 = a∧3(b∧ c)∧3b and
T2 = a ∧3b ∧3(c ∨ d) ∧2e ∧2f . Now LT1 = {a}, DT1 = {b ∧ c, b}, and there are no 2-literals
in T1, so we get ∆(T1) = {a,3(b ∧ c),3b}. For T2, we get LT2 = {a}, DT2 = {b, c ∨ d}, and
βT2 = e∧f , giving us ∆(T2) = {a,2(e∧f),3(b∧e∧f),3((c∨d)∧e∧f)}. The set Candidates
will contain all the different possible disjunctions of elements in ∆(T1) with elements in ∆(T2),
of which there are 12: a ∨ a, a ∨2(e ∧ f), a ∨3(b ∧ e ∧ f), a ∨3((c ∨ d) ∧ e ∧ f), 3(b ∧ c) ∨ a,
3(b ∧ c) ∨2(e ∧ f), 3(b ∧ c) ∨3(b ∧ e ∧ f), 3(b ∧ c) ∨3((c ∨ d) ∧ e ∧ f), 3b ∨ a, 3b ∨2(e ∧ f),
3b∨3(b∧ e∧ f), and 3b∨3((c∨ d)∧ e∧ f). In Step 4, we will remove from Candidates the
clauses a∨2(e∧f), a∨3(b∧ e∧f), a∨3((c∨d)∧ e∧f), 3(b∧ c)∨a, and 3b∨a since they are
strictly weaker than a∨a. We will also eliminate the clauses 3b∨2(e∧f), 3b∨3(b∧e∧f), and
3b∨3((c∨d)∧e∧f) since they are weaker than the clauses 3(b∧c)∨2(e∧f), 3(b∧c)∨3(b∧e∧f),
3(b∧c)∨3((c∨d)∧e∧f). There are no further clauses to remove, so the algorithm will return the
four remaining clauses in Candidates, which are a∨a, 3(b∧c)∨2(e∧f), 3(b∧c)∨3(b∧e∧f),
and 3(b ∧ c) ∨3((c ∨ d) ∧ e ∧ f).
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Our algorithm corresponds to the simplest possible implementation of the distribution prop-
erty, and it is well-known that näıve implementations of the distribution property are already
computationally infeasible for propositional logic. The principal source of inefficiency is the high
number of clauses that are generated, so if we want to design a more efficient algorithm, we must
find a way to generate fewer candidate clauses. There are a couple of different techniques that
could be used. One very simple method which could yield a smaller number of clauses is to
eliminate from ∆(T ) those elements which are not prime implicates of T , thereby decreasing
the cardinalities of the ∆(T ) and hence of Candidates. To do this, we simply test whether βT
is a tautology (and remove it if it is) and then compare the 3-literals in ∆(T ), discarding any
weaker elements. If we apply this technique to Example 15, we would remove 3b from ∆(T1),
thereby reducing the cardinality of Candidates from 12 to 8.

More substantial results could be achieved by using a technique developed in the framework
of propositional logic (cf. [26]) which consists in calculating the prime implicates of T1, then the
prime implicates of T1∨T2, then those of T1∨T2∨T3, and so on until we get the prime implicates
of the full disjunction of terms. By interleaving comparison and construction, we can eliminate
early on a partial clause that cannot give rise to prime implicates instead of producing all of
the extensions of the partial clause and then deleting them one by one during the comparison
phase. In our example, there were only two terms, but imagine that there was a third term T3.
Then by applying this technique, we would first produce the 4 prime implicates of T1 ∨ T2 and
then we would compare the 4|∆(T3)| candidate clauses of T1 ∨ T2 ∨ T3. Compare this with the
current algorithm which generates and then compares 12|∆(T3)| candidate clauses.

Given that the number of elements in Candidates can be doubly exponential in |φ|, cutting
down on the length of the input to GenPI could yield significant savings. As input formulae are
very often conjunctions of a number of sub-formulae, one idea would be to break conjunctions of
formulae into their conjuncts, and then calculate the prime implicates of each of the conjuncts.
Unfortunately, however, we cannot apply this method to every formula as the prime implicates
of the conjuncts are not necessarily prime implicates of the full conjunction. One solution which
was proposed in the context of approximation of description logic concepts (cf. [5], [32]) is to
identify simple syntactic conditions that guarantee that we will get the same result if we break
the formula into its conjuncts. For instance, one possible condition is that the conjuncts do not
share any propositional variables. The formula φ in our example satisfies this condition since
the variables in a and ((3(b∧ c)∧3b)∨ (3b∧3(c∨ d)∧2e∧2f)) are disjoint. By generating
the prime implicates of the conjuncts separately, we can directly identify the prime implicate a,
and we only have 6 candidate clauses of ((3(b∧c)∧3b)∨ (3b∧3(c∨d)∧2e∧2f)) to compare.
If we also remove weaker elements from the ∆(Ti) as suggested above, we get only 3 candidate
clauses for ((3(b∧ c)∧3b)∨ (3b∧3(c∨ d)∧2e∧2f)), all of which are prime implicates of φ.

The second source of inefficiency in our algorithm is the comparison phase in which we com-
pare all candidate clauses one-by-one in order to single out the strongest ones. This comparison
phase is simply unnecessary in propositional logic because we can test directly whether a clause
is a prime implicate or not, without considering all the other potential prime implicates. Clearly,
it would be desirable to be able to do something similar for prime implicates in K, and in the
next section, we study how we might do this.
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5.2 Recognizing Prime Implicates

We now consider the problem of recognizing prime implicates, that is, the problem of deciding
whether a clause λ is a prime implicate of a formula φ. In propositional logic, this problem is
BH2-complete [26], being as hard as both satisfiability and deduction. We simply test if the
clause is in fact an implicate, and then verify that no stronger clauses are implicates. In K,
satisfiability and unsatisfiability are both Pspace-complete, so we cannot hope to find a prime
implicate recognition algorithm with a complexity of less than Pspace.

Theorem 16. Prime implicate recognition is Pspace-hard.

In order to obtain a first upper bound, we can exploit Corollary 11 which tells us that there
exists a polynomial function f such that the length of the smallest representation of a prime
implicate of a formula φ is bounded by 2f(|φ|). This leads to a simple procedure for determining
if a clause λ is a prime implicate of a formula φ. We simply check for every clause λ′ of length
at most 2f(|φ|) whether λ′ is an implicate of φ which implies λ but is not implied by λ. If this
is the case, then λ is not a prime implicate (we have found a logically stronger implicate of φ),
otherwise, there exists no stronger implicate, so λ is a prime implicate. It is not too hard to see
that this algorithm can be carried out in exponential space, which gives us an Expspace upper
bound.

Theorem 17. Prime implicate recognition is in Expspace.

Of course the problem with this approach is that it doesn’t at all take into account the
structure of λ, so we end up comparing a huge amount of irrelevant clauses, which is exactly
what we were hoping to avoid. The algorithm that we propose later in this section avoids this
problem by using the information in the input formula and clause in order to cut down on the
number of clauses to test. The key to our algorithm is the following theorem which shows us
how the general problem of prime implicate recognition can be reduced to the more specialized
tasks of prime implicate recognition for propositional formulae, 2-literals, and 3-literals. To
simplify the presentation of the theorem, we let Π(φ) refer to the set of prime implicates of φ,
and we use the notation λ \ {l1, ..., ln} to refer to the clause obtained by removing each of the
literals li from λ. For example (a ∨ b ∨3c) \ {a,3c} refers to the clause b.

Theorem 18. Let φ be a formula of K, and let λ = γ1∨ ...∨γk∨3ψ1∨ ...∨3ψn∨2χ1∨ ...∨2χm
be a non-tautologous clause such that (a) χi ≡ χi ∨ ψ1 ∨ ... ∨ ψn for all i, and (b) there is no
literal l in λ such that λ ≡ λ \ {l}. Then λ ∈ Π(φ) if and only if the following conditions hold:

1. γ1 ∨ ... ∨ γk ∈ Π(φ ∧ ¬(λ \ {γ1, ..., γk}))

2. 2(χi ∧ ¬ψ1 ∧ ... ∧ ¬ψn) ∈ Π(φ ∧ ¬(λ \ {2χi})) for every i

3. 3(ψ1 ∨ ... ∨ ψn) ∈ Π(φ ∧ ¬(λ \ {3ψ1, ...,3ψn}))

We remark that the restriction to clauses for which χi ≡ χi ∨ ψ1 ∨ ... ∨ ψm for all i and for
which λ 6≡ λ \ {l} for all l is required. If we drop the first condition, then there are some non-
prime implicates that satisfy all three conditions, and if we drop the second, there are prime
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implicates which fail to satisfy one of the conditions5. These restrictions are without loss of
generality however since every clause can be transformed into an equivalent clause satisfying
them. For the first condition, we replace each 2χi by 2(χi∨ψ1∨ ...∨ψm), thereby transforming
a clause γ1 ∨ ... ∨ γk ∨3ψ1 ∨ ...3ψm ∨ 2χ1 ∨ ... ∨ 2χn into the equivalent γ1 ∨ ... ∨ γk ∨3ψ1 ∨
...3ψm ∨ 2(χ1 ∨ ψ1 ∨ ... ∨ ψm) ∨ ... ∨ 2(χn ∨ ψ1 ∨ ... ∨ ψm). Then to make the clause satisfy
the second condition, we simply remove from λ those literals for which λ ≡ λ \ {l} until no such
literal remains.

Theorem 18 shows us how prime implicate recognition can be split into three more specialized
sub-tasks, but it does not tell us how to carry out these tasks. Thus, in order to turn this theorem
into an algorithm for prime implicate recognition, we need to figure out how to test whether a
propositional clause, a 2-literal, or a 3-literal is a prime implicate of a formula.

Determining whether a propositional clause is a prime implicate of a formula in K is concep-
tually no more difficult than determining whether a propositional clause is a prime implicate of
a propositional formula. We first ensure that the clause is an implicate of the formula and then
make sure that all literals appearing in the clause are necessary.

Theorem 19. Let φ be a formula of K, and let γ be a non-tautologous propositional clause such
that φ |= γ and such that there is no literal l in γ such that γ ≡ γ \ {l}. Then γ ∈ Π(φ) if and
only if φ 6|= γ \ {l} for all l in γ.

We now move on to the problem of deciding whether a clause of the form 2χ is a prime
implicate of a formula φ. We remark that if 2χ is implied by φ, then it must also be implied by
each of the terms Ti ∈Dnf-4(φ). But if Ti |= 2χ, then by Theorem 1, it must be the case that
the conjunction of the 2-literals in Ti implies 2χ. This means that the formula 2β1 ∨ ... ∨2βn
(where βi is the conjunction of the formulae ζ such that 2ζ is in Ti) is an implicate of φ which
implies 2χ, and moreover it is the strongest such implicate. It follows then that 2χ is a prime
implicate of φ just in the case that 2χ |= 2β1 ∨ ... ∨ 2βn, which is true if and only if χ |= βi
for some i (by Theorem 1). Thus, by comparing the formula χ with the formulae βi associated
with the terms of φ, we can decide whether or not 2χ is a prime implicate of φ.

Theorem 20. Let φ be a formula of K, and let λ = 2χ be a non-tautologous clause such that
φ |= λ. Then λ ∈ Π(φ) if and only if there exists some term T ∈Dnf-4(φ) such that χ |= βT ,
where βT is the conjunction of formulae ψ such that 2ψ is in T .

Finally let us turn to the problem of deciding whether a clause 3ψ is a prime implicate of a
formula φ. Now we know by Covering that if 3ψ is an implicate of φ, then there must be some
prime implicate π of φ which implies 3ψ. It follows from Theorem 2 that π must be a disjunction
of 3-literals, and from Theorem 10 that π is equivalent to a disjunction

∨
T∈Dnf-4(φ) 3dT where

3dT is an element of ∆(T ) for every T (refer back to Figure 2 for the definition of ∆(T )). Accord-
ing to Definition 6, 3ψ is a prime implicate of φ just in the case that 3ψ |=

∨
T∈Dnf-4(φ) 3dT , or

equivalently when ψ |=
∨
T∈Dnf-4(φ) dT . Testing directly whether ψ |=

∨
T∈Dnf-4(φ) dT could take

exponential space in the worst case since there may be exponentially many terms in Dnf-4(φ).
5For the first condition, consider the formula φ = 3(a ∧ b ∧ c) ∨ 2a and the clause λ = 3(a ∧ b) ∨ 2(a ∧ ¬b).

It can be easily shown that λ is an implicate of φ, but λ is not a prime implicate of φ since there exist stronger
implicates (e.g. φ itself). Nonetheless, it can be verified that both 2(a∧¬b∧¬(a∧b)) ∈ Π(φ∧¬(λ\{2(a∧¬b)}))
and 3(a ∧ b) ∈ Π(φ ∧ ¬(λ \ {3(a ∧ b)})). For the second condition, consider the formula a and the clause a ∨ a.
We have a ∨ a 6∈ Π(a ∧ ¬a) even though a ∨ a is a prime implicate of a.
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Luckily, however, we can get around this problem by exploiting the structure of the formula π.
We remark that each dT is a conjunction of formulae ζ such that 2ζ or 3ζ appears in Nnf(φ)
outside the scope of modal operators – we will denote by X the set of formulae ζ satisfying this
condition. It follows that if ψ 6|=

∨
T∈Dnf-4(φ) dT then we can find a subset S ⊆ X such that

(a) ψ 6|=
∨
λ∈S λ and (b) every dT has at least one conjunct from the set S. This observation

yields the algorithm Test3PI given in Figure 3. The basic idea behind the algorithm is to try
out each of the different clauses built from the set X and to see if there is some clause which is
not implied by 3ψ but is implied by some implicate of φ which implies 3ψ. If we find such a
clause, then we know that 3ψ is not a prime implicate, and if no such clause exists, this means
that 3ψ implies the prime implicate

∨
T∈Dnf-4(φ) 3dT , so 3ψ must be a prime implicate of φ.

The algorithm can be shown to run in polynomial time since there can be at most |φ| elements
in X , and we can consider the terms in T ∈ Dnf-4(φ) one at a time.

Function Test3PI(3ψ, φ)
Input : a clause 3ψ and a formula φ such that φ |= 3ψ Output: yes or no

(0) If φ |= ⊥, return yes if ψ |= ⊥ and no otherwise.
(1) Set X equal to the set of formulae ζ such that 2ζ or 3ζ appears in Nnf(φ) outside

the scope of modal operators.
(2) For each S ⊆ X , test whether the following two conditions hold:

(a) ψ 6|=
∨
λ∈S λ

(b) for each Ti ∈ Dnf-4(φ), there exists conjuncts 3ηi,2µi,1, ...,2µi,k(i) of Ti
such that:
(i) {ηi, µi,1, ..., µi,k(i)} ∩ S 6= ∅
(ii) 3(ηi ∧ µi,1 ∧ ... ∧ µi,k(i)) |= 3ψ

Return no if some S satisfies these conditions, and yes otherwise.

Figure 3: Algorithm for identifying prime implicates of the form 3ψ. The helper functions Nnf
and Dnf-4 can be found in Appendix A.

Theorem 21. Let φ be a formula, and let 3ψ be an implicate of φ. Then the algorithm Test3PI
returns yes on input (3ψ, φ) if and only if 3ψ is a prime implicate of φ.

Theorem 22. The algorithm Test3PI runs in polynomial space.

We now present two examples which illustrate the functioning of the algorithm Test3PI.

Example 23. We use Test3PI to test whether the clause λ = 3(a∧ b) is a prime implicate of
φ = a ∧ (2(b ∧ c) ∨2(e ∨ f)) ∧3(a ∧ b).

As φ is satisfiable, we go directly to Step (1). In this step, we set X equal to the set of
formulae ζ such that 2ζ or 3ζ appears in Nnf(φ) outside the scope of modal operators. In our
case, we set X = {b ∧ c, e ∨ f, a ∧ b} since φ =Nnf(φ) and b ∧ c, e ∨ f , and a ∧ b are the only
formulae satisfying the requirements. In Step (2), we examine each of the different subsets of X
to determine whether they satisfy conditions (a) and (b). In particular, we consider the subset
S = {b∧c, e∨f}. We remark that this subset satisfies condition (a) since a∧b 6|= (b∧c)∨(e∨f).
In order to check condition (b), we first call the function Dnf-4 on φ which returns the two
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terms T1 = a∧2(b∧ c)∧3(a∧ b) and T2 = a∧2(e∨f)∧3(a∧ b). We notice that the conjuncts
3(a∧b) and 2(b∧c) of T1 satisfy conditions (i) and (ii) since b∧c ∈ S and 3(a∧b∧(b∧c)) |= λ.
We then notice that the conjuncts 3(a∧ b) and 2(e∨ f) of T2 also satisfy conditions (i) and (ii)
since e ∨ f ∈ S and 3(a ∧ b ∧ (e ∨ f)) |= λ. That means that we have found a subset S of X
which satisfies conditions (a) and (b), so the algorithm returns no. This is the correct output
since 3(a ∧ b ∧ ((b ∧ c) ∨ (e ∨ f))) is an implicate of φ which is strictly stronger than λ.

Example 24. We use Test3PI to test whether the clause λ = 3(a∧ b∧ c) is a prime implicate
of φ = a ∧ (2(b ∧ c) ∨2(e ∨ f)) ∧3(a ∧ b) ∧ ¬2(e ∨ f ∨ (a ∧ b ∧ c)).

We skip Step (0) since φ is satisfiable. In Step (1), we set X = {b∧c, e∨f, a∧b,¬e∧¬f∧(¬a∨
¬b∨¬c))} since Nnf(φ)=a∧(2(b∧c)∨2(e∨f))∧3(a∧b)∧3(¬e∧¬f ∧(¬a∨¬b∨¬c)). In Step
(2), we check whether there is some subset of X satisfying conditions (a) and (b). We claim that
there is no such subset. To see why, notice that a∧2(b∧c)∧3(a∧b)∧3(¬e∧¬f∧(¬a∨¬b∨¬c))
is the only term in Dnf-4(φ). Moreover, there is only one set of conjuncts of this term which
implies 3(a ∧ b ∧ c), namely {3(a ∧ b),2(b ∧ c)}. But that means that S must contain either
a∧ b or b∧ c in order to satisfy condition (b)(i). As a∧ b∧ c implies both a∧ b and b∧ c, we are
guaranteed that a∧ b∧ c will imply the disjunction of elements in S, thereby falsifying condition
(a). It follows that there is no subset of X satisfying the necessary conditions, so the algorithm
returns yes at the end of Step (3), which is the desired result.

Function TestPI(λ, φ)
Input: a clause λ and a formula φ Output: yes or no

(1) If φ 6|= λ, return no.
(2) If φ |= ⊥, then return yes if λ |= ⊥ and no if not. If |= λ, then return yes if
|= φ and no otherwise.

(3) For each li in λ = l1 ∨ ... ∨ ln, test if λ \ {li} ≡ λ, and if so, remove li from λ.
Let D = {3ψ1, ...,3ψm} be the set of 3-literals in λ. If D is non-empty, replace
each literal 2χ in λ by the literal 2(χ ∨ ψ1 ∨ ... ∨ ψm).

(4) Let P be the set of propositional literals which are disjuncts of λ. For each
l ∈ P, check whether φ |= λ \ {l}, and return no if so.

(5) Let B be the set of 2-literals appearing as disjuncts in λ. Check for each 2ζ in
B whether there is some T in Dnf-4(φ ∧ ¬(λ \ {2ζ})) for which the formula
2(ζ ∧ ¬ψ1 ∧ ... ∧ ¬ψk) implies the conjunction of 2-literals in T , and return no
if not.

(6) If D is empty, return yes, otherwise return Test3PI(3(
∨m
i=1 ψi), φ∧¬(λ \D)).

Figure 4: Algorithm for identifying prime implicates. Refer to Appendix A for the helper
function Dnf-4.

In Figure 4, we present our algorithm for testing whether a clause λ is a prime implicate
of a formula φ. The first two steps of the algorithm treat the limit cases where λ is not an
implicate or where one or both of φ and λ is a tautology or contradiction. In Step (3), we apply
equivalence-preserving transformations to λ to make it satisfy the requirements of Theorem 18.
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Then in Steps (4), (5), and (6) we use the procedures from Theorems 19, 20, and 21 to test
whether the three conditions in Theorem 18 are verified. If the three tests succeed, then by
Theorem 18, the clause is a prime implicate, so we return yes. If some test fails, we return no
as the clause has been shown not to be a prime implicate.

Theorem 25. The algorithm TestPI always terminates, and it returns yes on input (λ, φ) if
and only if λ is a prime implicate of φ.

We demonstrate the functioning of TestPI on an example.

Example 26. We use TestPI to test if the clauses λ1 = b, λ2 = 2b ∨ 2(e ∨ f), λ3 = a ∨ 3a,
λ4 = 3(a ∧ b), and λ5 = 3(a ∧ b ∧ c) ∨ 3(a ∧ b ∧ c ∧ f) ∨ 2(e ∨ f) are prime implicates of
φ = a ∧ (2(b ∧ c) ∨2(e ∨ f)) ∧3(a ∧ b).
– For λ1, we output no in Step (1) since φ 6|= λ1.
– For λ2, we skip Steps (1) and (2) since λ |= λ2 and neither φ |= ⊥ nor |= λ2. In Step (3), we
make no changes to λ2 since it contains no redundant literals nor any 3-literals. We skip Step (4)
since λ2 has no propositional disjuncts. In Step (5), we return no since Dnf-4(φ∧¬(λ2\{2b})) =
{a ∧2(b ∧ c) ∧3(a ∧ b) ∧3(¬e ∧ ¬f)} and 2b 6≡ 2(b ∧ c).
– For λ3, we proceed directly to Step (3) since λ |= λ3, φ 6|= ⊥, and 6|= λ3. No modifications are
made to λ3 in Step (3) as it does not contain any redundant literals or 2-literals. In Step (4), we
test whether or not φ |= λ3\{a}. As φ 6|= λ3\{a}, we proceed on to Step (5), and then directly on
to Step (6) since λ3 contains no 2-literals. In Step (6), we call Test3PI(3a, φ∧¬(λ3 \ {3a})),
which outputs no since φ ∧ ¬(λ3 \ {3a}) |= ⊥ and a 6|= ⊥.
– For λ4, Steps (1)-(5) are all inapplicable, so we skip directly to Step (6). In this step, we call
Test3PI with as input the clause 3(a ∧ b) and the formula φ ∧ ¬(λ4 \ {3(a ∧ b)}) = φ. We
have already seen in Example 23 above that Test3PI returns no on this input, which means
that TestPI also returns no.
– For λ5, we proceed directly to Step (3), where we delete the redundant literal 3(a∧b∧c∧f) and
then modify the literal 2(e∨f). At the end of this step, we have λ5 = 3(a∧b∧c)∨2((e∨f)∨(a∧
b∧c)). Step (4) is not applicable since there are no propositional disjuncts in λ5. In Step (5), we
continue since Dnf-4(φ∧¬(λ5\{2((e∨f∨(a∧b∧c))})) = {a∧2(e∨f)∧3(a∧b)∧2(¬a∨¬b∨¬c)},
and 2(((e ∨ f ∨ (a ∧ b ∧ c)) ∧ (¬a ∨ ¬b ∨ ¬c)) ≡ 2(e ∨ f) ∧ 2(¬a ∨ ¬b ∨ ¬c). In Step (6), we
return yes since we call Test3PI on input (3(a ∧ b ∧ c), φ ∧ ¬(λ5 \ {3(a ∧ b ∧ c)})), and we
have previously shown in Example 24 that Test3PI returns yes on this input.

We show in the appendix that the algorithm TestPI runs in polynomial space. As we have
already shown that TestPI decides prime implicate recognition, it follows that this problem is
in Pspace:

Theorem 27. Prime implicate recognition is in Pspace.

By putting together Theorems 16 and 27, we obtain a tight complexity bound for the prime
implicate recognition problem.

Corollary 28. Prime implicate recognition is Pspace-complete.
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6 Conclusion and Future Work

The first contribution of this work is a detailed comparison of several different possible definitions
of clauses, terms, prime implicates, and prime implicants for the modal logic K. The results
of this investigation were largely positive: although we have shown that no perfect definition
exists, we did exhibit a very simple definition which satisfies most of the desirable properties
of the propositional case. The second contribution of our work is a thorough investigation of
the computational aspects of the selected definition. To this end, we presented a sound and
complete algorithm for generating prime implicates, as well as a number of optimizations to
improve the efficiency of the algorithm. An examination of the structure of the prime implicates
generated by our algorithm allowed us to place bounds on the length of prime implicates and
on the number of prime implicates a formula can possess. We provided a decision procedure
for recognizing prime implicates, and we proved the prime implicate recognition problem to be
Pspace-complete, which is the lowest complexity that could reasonably be expected. Although
the focus of the paper was on the logic K, all of our results are easily lifted to multi-modal K
and to concept expressions in the well-known description logic ALC.

As was mentioned in the introduction, one of the principal applications of prime implicants
in propositional logic is to the area of abduction and diagnosis, where prime implicants play the
role of abductive explanations. The results of our paper can be directly applied to the problem
of abduction in K: our notion of prime implicants can be used as a definition of abductive
explanations in K, and our prime implicate generation algorithm provides a means of producing
all of the abductive explanations to a given abduction problem. Moreover, because the notion
of term underlying our definition of abductive explanations is more expressive than that used in
[8], we are able to find explanations which are overlooked by Cialdea Mayer & Pirri’s method.
For instance, if we look for an explanation of the observation c given the background informa-
tion 2(a ∨ b) → c, we obtain 2(a ∨ b), whereas their framework yields 2a and 2b. This is an
argument in favor of our approach since generally in abduction one is looking to find the weakest
conditions guaranteeing the truth of the observation given the background information.

The other domain of application which was cited in the introduction was the development
of tools for querying modal/description logic knowledge bases. As in general a user is interested
in generating some but not all of the consequences of a knowledge base, a necessary prerequisite
for the development of such tools is the introduction of more refined notions of prime implicates
and algorithms for generating them. There are a couple different variants on the notion of prime
implicate which we are interested in looking at in future work. The first is the notion of Φ-prime
implicates which are defined to be the strongest new consequences of Φ when expanded by a
formula. It is this notion of prime implicate which could be used by a knowledge engineer to
examine the effects of adding a new piece of information to a knowledge base. We could also
define a new variety of prime implicate which groups together all of the prime implicates of a
formula which mention non-trivially the propositional variables in a specified set. This type
of prime implicate would prove useful to anyone who wanted to find out what information a
knowledge base contained about a particular topic of interest, like for instance our example
user who wants to find out what the knowledge base says about professors. Another kind of
prime implicate which we are interested in studying is the notion of prime implicate over a sub-
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language. This type of prime implicate could prove useful if we were interested in discovering
all of the relationships holding between a given subset of propositional variables. We expect
that the algorithms that we have constructed for the standard notion of prime implicates will
provide a useful starting point in the development of algorithms for these new varieties of prime
implicates.

In this paper, we have studied prime implicates with respect to the local consequence rela-
tion, so it is natural to wonder how things would be different if we were to define prime implicates
with respect to the global consequence relation. This question is particularly interesting given
that global consequence is the type of consequence used in description logic ontologies. Unfor-
tunately, our preliminary investigations suggest that defining and generating prime implicates
with respect to the global consequence relation will likely prove more difficult than for the local
consequence relation. For one thing, if we use a definition of clause which is reasonably ex-
pressive, then the notion of prime implicates we obtain does not satisfy Covering since we can
construct infinite sequences of stronger and stronger implicates. Take for instance the formula
¬a ∨3a which implies each of the formulae in the infinite sequence ¬a ∨3a, ¬a ∨3(a ∧3a),
¬a∨3(a∧3(a∧3a)), ... This is a familiar situation for description logic practitioners since these
infinite sequences are responsible for the inexistence of most specific concepts in many common
DLs (cf. [19]) and the lack of uniform interpolation for ALC TBoxes [17]. The standard solution
to this problem is to simply place a bound on the depth of formulae to be considered, effectively
blocking these problematic infinite sequences. This will not allow us to regain Covering, but it
will give us a weaker version of this property, which should be sufficient for most applications.
The development of generation algorithms for the global consequence relation may also prove
challenging, since it is unclear at this point whether we will be able to draw inspiration from
pre-existing methods or whether we will have to start from scratch. Despite these potential dif-
ficulties, we feel that this subject is worth exploring since it could contribute to the development
of more flexible ways of accessing information in description logic ontologies.

Once we will have completed our investigation of prime implicates/implicants in K, we plan
to move on to study these notions in other popular modal and description logics, beginning with
modal logics of knowledge and belief and expressive description logics used for the semantic web.
We are confident that the experience gained from our investigation of K will prove very helpful
in the exploration of other modal and description logics.

Appendix A. Helper Functions

The function Nnf in Figure 5 is well-known in the literature. We recall a few of its properties:

Lemma A.1 The output of Nnf(φ) is a formula in negation normal form which is equivalent to
φ. It has depth δ(φ) and contains only those propositional variables appearing in φ. The output
of Nnf(φ) has length no greater than 2|φ|.

We now highlight some properties of the function Dnf-4 presented in Figure 5:

Lemma A.2 Dnf-4 always terminates. If the input is a satisfiable formula φ, the set returned
by Dnf-4(φ) is non-empty, and the disjunction of the formulae in this set is a disjunction of
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Function Nnf(φ): returns a formula in NNF which is equivalent to φ
Case 1: φ = a or φ = ¬a. Return φ.
Case 2: φ = φ1 ? φ2, where ? is ∨ or ∧. Return Nnf(φ1)?Nnf(φ2).
Case 3: φ = 4ψ where 4 is 2 or 3. Return 4Nnf(ψ).
Case 4a: φ = ¬¬ψ. Return Nnf(ψ).
Case 4b: φ = ¬(φ1 ∨ φ2). Return Nnf(¬φ1)∧Nnf(¬φ2).
Case 4c: φ = ¬(φ1 ∧ φ2). Return Nnf(¬φ1)∨Nnf(¬φ2).
Case 4d: φ = ¬2ψ. Return 3Nnf(¬ψ).
Case 4e: φ = ¬3ψ. Return 2Nnf(¬ψ).

Function Dnf-4(φ): returns a set of terms with respect to D4 whose disjunction
is equivalent to φ
(1) Set Σ = {{Nnf(φ)}}.
(2) Apply the following rules until no rule is applicable:

∧-rule If S ∈ Σ and S = {ψ ∧ ζ} ∪ S′, set Σ = Σ \ S ∪ {S′ ∪ {ψ} ∪ {ζ}}
∨-rule If S ∈ Σ and S = {ψ∨ζ}∪S′, set Σ = Σ\S∪{S′∪{ψ}}∪{S′∪{ζ}}

(3) Return {
∧
σ∈S σ |S ∈ Σ and S is consistent}

Figure 5: Helper functions for the prime implicate generation and recognition algorithms pre-
sented in Figures 2, 3, and 4.

terms with respect to D4 which is equivalent to φ.

Proof. The lemma is a consequence of the soundness and termination of standard tableaux
algorithms, but we prove it here for completeness.

To prove termination, we prove that there can be at most 2|φ| − 1 executions of rules in
Step 2. To do so, we show by induction that if a set S contains k occurrences of ∧ or ∨ outside
the scope of the modal operators, then there can be at most 2k − 1 applications of the rules to
{S}. Clearly this holds when k = 0 because in this case no rule is applicable. Suppose then that
the statement holds for k ≤ n, and let S be some set with n + 1 occurrences of ∧ or ∨ outside
the modal operators. If we apply the ∧-rule to S, we obtain a new set S′ which contains only n
occurrences of ∧ or ∨ outside the scope of the modal operators. By assumption, there can be
at most 2n − 1 rule applications to {S′}, which yields a total of at most 2n rule applications to
{S}, which is no greater than 2n+1 − 1. Now suppose instead that the ∨-rule is applied to {S},
yielding two new sets S1 and S2 each having at most n occurrences of ∧ or ∨ outside the modal
operators. By the induction hypothesis, we can only apply 2n − 1 rules to each of S1 and S2.
As Dnf-4 treats different elements in Σ separately, the number of rules that can be applied to
{S1, S2} is simply the sum of the number of rules applied to S1 and the number of rules applied
to S2. Thus, we find that we can apply no more than 1 + 2 ∗ (2n − 1) = 2n+1 − 1 rules to {S}.
As there can never be more than |φ| occurrences of ∧ or ∨ in φ, and the transformation to NNF
preserves the number of ∧ or ∨ symbols, there can be at most 2|φ|−1 executions of rules in Step
2. This is enough to ensure termination of Dnf-4 since the transformation to NNF in Step 1
clearly terminates.

We next show by induction that the disjunction of the conjunctions of formulae in the sets S
in Σ is equivalent to φ at every moment in the execution of the algorithm. We first remark that
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the statement is true initially because we start off with a single disjunct Nnf(φ), and we know
that Nnf(φ) is equivalent to φ. Moreover, we know that if the disjunction of the conjunctions
of formulae in the sets in Σ is equivalent to φ before the execution of the ∧-rule, then the
same holds after the execution of the ∧-rule since we have replaced the conjunction of formulae
in {ψ ∧ ζ} ∪ S′ by the conjunction of formulae in the equivalent {ψ} ∪ {ζ} ∪ S′. Similarly,
if the statement holds before executing the ∨-rule, it will also hold after the execution since
(
∧
σ∈S′ σ) ∧ (φ ∨ ζ) ≡ ((

∧
σ∈S′ σ) ∧ φ) ∨ ((

∧
σ∈S′ σ) ∧ ζ). It follows then that the disjunction of

the conjunctions of formulae in the sets S in Σ is always equivalent to φ.
Suppose now that φ is satisfiable. Then it must also be the case that the disjunction of the

conjunctions of formulae in the sets in Σ at the end of Step 2 is also satisfiable. But that means
that there must be at least one S ∈ Σ which is satisfiable, so there will be at least one formula∧
σ∈S σ which is returned by the algorithm. Moreover, since φ is equivalent to the disjunction

of the conjunctions of formulae in the sets in Σ at the end of Step 2, φ must also be equivalent
to the the disjunction of the conjunctions of formulae in the satisfiable sets in Σ at the end of
Step 2. It follows that the disjunction of the formulae outputted by Dnf-4(φ) is equivalent to
φ.

To complete the proof, we need to show that the disjunction of the formulae outputted by
Dnf-4(φ) is a disjunction of terms with respect to D4. Now every element in every set of Σ
at the end of Step 2 must be in NNF since the first element in Σ is in NNF and the operations
performed in Step 2 do not add any negation symbols. Moreover, when we exit Step 2, there
can be no element in any set of Σ of the form φ1 ∧ φ2 or φ1 ∨ φ2, which means that every set in
Σ must contain only literals with respect to D4. Since a conjunction of literals with respect to
D4 is a term with respect to D4, all of the formulae returned by Dnf-4 must be terms, hence
the disjunction of formulae in Dnf-4(φ) is a disjunction of terms with respect to D4.

Lemma A.3 There are at most 2|φ| terms in Dnf-4(φ). Each of the terms in Dnf-4(φ) has
length at most 2|φ|, depth at most δ(φ), and contains only those propositional letters appearing
in φ.

Proof. We remark that each application of a rule in Step 2 increases by at most one the number
of elements in Σ. As we begin with a single element in Σ, and we have shown in the proof of
Lemma A.2 that there can be at most 2|φ| − 1 rule applications, it follows that there can be at
most 2|φ| elements in Σ at the end of Step 2, and hence at most 2|φ| terms in Dnf-4(φ).

Let us define the length of a set of formulae to be the length of the conjunction of its elements.
Initially, the unique set in Σ has length at most 2|φ|, since by Lemma A.1 the length of Nnf(φ)
is no more than double that of φ. An application of the ∧-rule to a set S gives a set of the same
length. An application of the ∨-rule to a set gives two new sets, each having a smaller length
than its parent. Thus, at the end of Step 2, all sets in Σ have length at most 2|φ|, which means
that the terms in Dnf-4(φ) also have length at most 2|φ|.

The conjuncts of the terms in Dnf-4(φ) are all sub-formulae of Nnf(φ). By Lemma A.1,
Nnf(φ) has precisely the same depth and propositional letters as φ. It follows then that the terms
in Dnf-4(φ) have depth at most δ(φ) and contain only those propositional symbols appearing
in φ.
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Appendix B. Proofs

Theorem 1 Let γ, ψ, ψ1, ..., ψm, χ, χ1, ..., χn be formulae in K, and let γ be a propositional
formula. Then

1. ψ |= χ⇔|= ¬ψ ∨ χ⇔ ψ ∧ ¬χ |= ⊥

2. ψ |= χ⇔ 3ψ |= 3χ⇔ 2ψ |= 2χ

3. γ ∧3ψ1 ∧ ...∧3ψm ∧2χ1 ∧ ...∧2χn |= ⊥ ⇔ (γ |= ⊥ or ψi ∧χ1 ∧ ...∧χn |= ⊥ for some i)

4. |= γ ∨3ψ1 ∨ ... ∨3ψm ∨2χ1 ∨ ... ∨2χn ⇔ (|= γ or |= ψ1 ∨ ... ∨ ψm ∨ χi for some i)

5. 2χ |= 2χ1 ∨ ... ∨2χn ⇔ χ |= χi for some i

6. 3ψ1 ∨ ... ∨3ψm ∨2χ1 ∨ ... ∨2χn
≡ 3ψ1 ∨ ... ∨3ψm ∨2(χ1 ∨ ψ1 ∨ ... ∨ ψm) ∨ ... ∨2(χn ∨ ψ1 ∨ ... ∨ ψm)

Proof. The first statement is a well-known property of local consequence, but we prove it here
for completeness:

ψ |= χ ⇔ M,w |= ψ implies M,w |= χ for all M,w
⇔ M,w 6|= ψ or M,w |= χ for all M,w
⇔ M,w |= ¬ψ or M,w |= χ for all M,w
⇔ |= ¬ψ ∨ χ
⇔ M,w 6|= ψ ∧ ¬χ for all M,w
⇔ ψ ∧ ¬χ |= ⊥

For the second statement, if ψ 6|= χ, then there is some M, w such that M, w |= ψ ∧ ¬χ.
Create a new model M′ from M by adding a new world w′ and placing a single arc from
w′ to w. Then M′, w′ |= 3ψ ∧ 2¬χ, which means that 3ψ ∧ 2¬χ is satisfiable and hence
3ψ 6|= 3χ (since 2¬χ ≡ ¬3χ). For the other direction, suppose 3ψ 6|= 3χ. Then there exists
M, w such that M, w |= 3ψ ∧ ¬3χ ≡ 3ψ ∧ 2¬χ. But this means that there is some w′ for
which ψ ∧ ¬χ, hence ψ 6|= χ. To complete the proof, we use the following chain of equivalences:
2ψ |= 2χ⇔ ¬2χ |= ¬2ψ ⇔ 3¬χ |= 3¬ψ ⇔ ¬χ |= ¬ψ ⇔ ψ |= χ.

For 3, suppose that γ ∧3ψ1 ∧ ...∧3ψm ∧2χ1 ∧ ...∧2χn 6|= ⊥. Then there existM, w such
thatM, w |= γ∧3ψ1∧...3ψm∧2χ1∧...∧2χn. AsM, w |= γ, we cannot have γ |= ⊥, nor can we
have ψi ∧χ1 ∧ ...∧χn |= ⊥ since for each i there is some w′ such thatM, w′ |= ψi ∧χ1 ∧ ...∧χn.
Now for the other direction suppose that γ and all of the ψi ∧ χ1 ∧ ... ∧ χn are satisfiable.
Then there is some propositional model w of γ, and for each i, we can find Mi, wi such that
Mi, wi |= ψi∧χ1∧ ...∧χn. Now we construct a new Kripke structure which contains the models
Mi and the world w and in which there are arcs going from w to each of the wi. It is not hard
to see that this new model Mnew we have Mnew, w |= γ ∧ 3ψ1 ∧ ...3ψm ∧ 2χ1 ∧ ...2χn, so
γ ∧3ψ1 ∧ ...3ψm ∧2χ1 ∧ ... ∧2χn 6|= ⊥.

Statement 4 follows easily from the third statement. We simply notice that γ ∨3ψ1 ∨ ... ∨
3ψm ∨2χ1 ∨ ...∨2χn is a tautology just in the case that its negation ¬γ ∧3¬χ1 ∧ ...∧3¬χn ∧
2¬ψ1 ∧ ... ∧2¬ψm is unsatisfiable.
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For 5, we use statements 1 and 4 to get the following chain of equivalences:

2χ |= 2χ1 ∨ ... ∨2χn
⇔ |= 3¬χ ∨2χ1 ∨ ... ∨2χn
⇔ |= ¬χ ∨ χi for some i
⇔ χ |= χi for some i

The first implication of the equivalence in 6 is immediate since 3ψ1 ∨ ... ∨ 3ψm |= 3ψ1 ∨
... ∨3ψm and 2χi |= 2(χi ∨ ψ1 ∨ ... ∨ ψm) for all i. For the other direction, we remark that by
using statements 1 and 3, we get the following equivalences:

2(χi ∨ ψ1 ∨ ... ∨ ψm) |= 2χi ∨3ψ1 ∨ ... ∨3ψm
⇔ 2(χi ∨ ψ1 ∨ ... ∨ ψm) ∧ ¬(2χi ∨3ψ1 ∨ ... ∨3ψm) |= ⊥
⇔ 2(χi ∨ ψ1 ∨ ... ∨ ψm) ∧3¬χi ∧2¬ψ1 ∧ ... ∧2¬ψm |= ⊥
⇔ (χi ∨ ψ1 ∨ ... ∨ ψm) ∧ ¬χi ∧ ¬ψ1 ∧ ... ∧ ¬ψm |= ⊥

As (χi ∨ψ1 ∨ ...∨ψm)∧¬χi ∧¬ψ1 ∧ ...∧¬ψm is clearly unsatisfiable, it follows that 2(χi ∨ψ1 ∨
...∨ψm) |= 2χi ∨3ψ1 ∨ ...∨3ψm for every i and hence that 3ψ1 ∨ ...∨3ψm ∨2(χ1 ∨ψ1 ∨ ...∨
ψm)∨ ...∨2(χn ∨ψ1 ∨ ...∨ψm) |= 3ψ1 ∨ ...∨3ψm ∨2χ1 ∨ ...∨2χn, completing the proof.

Theorem 2 Let λ be a disjunction of propositional literals and formulae of the forms 3ψ and
2χ. Then each of the following statements holds:

1. If λ |= γ for some non-tautologous propositional clause γ, then every disjunct of λ is either
a propositional literal or a formula 3ψ where ψ |= ⊥

2. If λ |= 3ψ1 ∨ ... ∨3ψn, then every disjunct of λ is of the form 3ψ

3. If λ |= 2χ1 ∨ ...∨2χn and 6|= 2χ1 ∨ ...∨2χn, then every disjunct of λ is either a formula
of the form 2χ or a formula 3ψ where ψ |= ⊥

Proof. For (1), let γ be a non-tautologous propositional clause such that λ |= γ, and suppose for
a contradiction that λ contains a disjunct 2χ or a disjunct 3ψ where ψ 6|= ⊥. In the first case,
we have 2χ |= γ, and hence |= 3¬χ∨ γ. It follows from Theorem 1 that |= γ, contradicting our
assumption that γ is not a tautology. In the second case, we have 3ψ |= γ, and thus |= 2¬ψ∨γ.
By Theorem 1, either |= ¬ψ or |= γ. In both cases, we reach a contradiction since we have
assumed that ψ 6|= ⊥ and 6|= γ. It follows then that λ cannot have any 2-literals or satisfiable
3-literals as disjuncts.

The proofs of (2) and (3) proceed similarly.

Theorem 3 Let λ = γ∨3ψ1∨...∨3ψm∨2χ1∨...∨2χn and λ′ = γ′∨3ψ′1∨...∨3ψ′p∨2χ′1∨...∨2χ′q
be formulae in K. If γ are γ′ are both propositional and 6|= λ′, then

λ |= λ′ ⇔


γ |= γ′ and
ψ1 ∨ ... ∨ ψm |= ψ′1 ∨ ... ∨ ψ′p and
for every i there is some j such that χi |= ψ′1 ∨ ... ∨ ψ′p ∨ χ′j
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Proof. Since we have 6|= λ′, we know that 6|= γ′ and 6|= ψ′1 ∨ ... ∨ ψ′p ∨ χ′i for all i. Using this
information together with Theorem 1, we get the following equivalences:

γ |= λ′ ⇔ |= ¬γ ∨ γ′ ∨3ψ′1 ∨ ... ∨3ψ′p ∨2χ′1 ∨ ... ∨2χ′m
⇔ |= ¬γ ∨ γ′
⇔ γ |= γ′

3ψ1 ∨ ... ∨3ψm |= λ′ ⇔ 3(ψ1 ∨ ... ∨ ψm) |= λ′

⇔ |= γ′ ∨3ψ′1 ∨ ... ∨3ψ′p ∨2¬(ψ1 ∨ ... ∨ ψm) ∨2χ′1 ∨ ... ∨2χ′q
⇔ |= ψ′1 ∨ ... ∨ ψ′p ∨ ¬(ψ1 ∨ ... ∨ ψm)
⇔ ψ1 ∨ ... ∨ ψm |= ψ′1 ∨ ... ∨ ψ′p

2χi |= λ′ ⇔ |= γ′ ∨3(ψ′1 ∨ ... ∨ ψ′p ∨ ¬χi) ∨2χ′1 ∨ ... ∨2χ′q
⇔ there is some j such that |= ψ′1 ∨ ... ∨ ψ′p ∨ ¬χi ∨ χ′j
⇔ there is some j such that χi |= ψ′1 ∨ ... ∨ ψ′p ∨ χ′j

To complete the proof, we use the fact λ |= λ′ if and only if γ |= λ′, 3ψ1 ∨ ... ∨3ψm |= λ′, and
2χi |= λ′ for every i.

Theorem 4 Any definition of literals, clause, and terms for K that satisfies properties P1 and
P2 cannot satisfy P5.

Proof. We remark that the set of clauses (respectively terms) with respect to definition D1 is
precisely the set of formulae in NNF which do not contain ∧ (respectively ∨), i.e. D1 is the
most expressive definition satisfying both P1 and P2. Thus, to show the result, it suffices to
show that D1 does not satisfy P5.

Suppose for a contradiction that D1 does satisfy P5. Then there must exist clauses λ1, ..., λn
such that 3(a ∧ b) ≡ λ1 ∧ ... ∧ λn. Each of the clauses λi is a disjunction li,1 ∨ .... ∨ li,pi . By
distributing ∧ over ∨, we obtain the following:

3(a ∧ b) ≡
∨

(j1,...,jn)∈{1,...,p1}×...×{1,...,pn}

n∧
i=1

li,ji

from which we can infer that for each (j1, ..., jn) ∈ {1, ..., p1} × ...× {1, ..., pn} we have

n∧
i=1

li,ji |= 3(a ∧ b)

The formulae li,ji are either propositional literals or formulae of the form 2κ or 3κ for some
clause κ. Thus each

∧n
i=1 li,ji must have the following form:

γ1 ∧ ... ∧ γk ∧3ψ1 ∧ ... ∧3ψm ∧2χ1 ∧ ... ∧2χn

where γ1, ..., γk are propositional literals and ψ1, ..., ψm, χ1, ..., χn are clauses with respect to
D1. As we know that

∧n
i=1 li,ji |= 3(a ∧ b), by Theorem 1 it must be either be the case that∧n

i=1 li,ji is inconsistent or there must be some 3ψq such that

3ψq ∧2χ1 ∧ ... ∧2χn |= 3(a ∧ b)
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It is evident that we cannot have 3ψq |= 3(a∧ b) since ψq is a clause with respect to D1 and no
such clause can imply a∧b. But this means that there must be some χr which is not a tautology
(or else we wouldn’t have 3ψq ∧2χ1 ∧ ...2χl |= 3(a ∧ b)). Let us then consider the formula

τ =
∨

{(j1,...,jn)|
Vn
i=1 li,ji 6≡⊥}

2χj1,...,jn

where 2χj1,...,jn is a non-tautological 2-formula appearing in
∧n
i=1 li,ji . Now clearly it must be

the case that ∨
(j1,...,jn)∈{1,...,p1}×...×{1,...,pn}

n∧
i=1

li,ji |= τ

and hence that
3(a ∧ b) |= τ

since 3(a ∧ b) ≡
∨

(j1,...,jn)∈{1,...,p1}×...×{1,...,pn}
∧n
i=1 li,ji . But according to Theorem 2, a satisfi-

able 3-literal cannot imply a disjunction of 2-literals unless that disjunction is a tautology, so
we must have |= τ . But then by Theorem 1 there must be some χj1,...,jn which is a tautology,
contradicting our earlier assumption that the χj1,...,jn are all non-tautologous. We can thus con-
clude that there is no set of clauses λ1, ..., λn with respect to D1 such that 3(a∧b) ≡ λ1∧...∧λn,
and hence that any definition which satisfies P1 and P2 must not satisfy P5.

In order to prove Theorem 5, we will make use of the following lemmas:

Lemma 5.1 Definition D5 satisfies P5.

Proof. We demonstrate that any formula in K in NNF is equivalent to a formula in conjunction
of clauses with respect to definition D5. The restriction to formulae in NNF is without loss of
generality as every formula is equivalent to a formula in NNF. The proof proceeds by induction
on the structural complexity of formulae. The base case is propositional literals, which are
already conjunctions of clauses since every propositional literal is a clause with respect to D5.
We now suppose that the statement holds for formulae ψ1 and ψ2 and show that it holds for
more complex formulae.

We first consider φ = ψ1 ∧ ψ2. By assumption, we can find clausal concepts ρi and ζj
such that ψ1 ≡ ρ1 ∧ ... ∧ ρn and ψ2 ≡ ζ1 ∧ ... ∧ ζm. Thus, φ is equivalent to the formula
ρ1 ∧ ... ∧ ρn ∧ ζ1 ∧ ... ∧ ζm, which is a conjunction of clauses with respect to D5.

Next we consider φ = ψ1 ∨ ψ2. By the induction hypothesis, we have ψ1 ≡ ρ1 ∧ ... ∧ ρn and
ψ2 ≡ ζ1 ∧ ... ∧ ζm for some clausal concepts ρi and ζj . Thus, φ ≡ (ρ1 ∧ ... ∧ ρn) ∨ (ζ1 ∧ ... ∧ ζm),
which can be written equivalently as φ ≡ ∧(i,j)∈{1,...,n}×{1,...,m}(ρi ∨ ζj). Since the union of two
clauses produces another clause, all of the ρi ∨ ζj are clauses, completing the proof.

We now consider the case where φ = 2ψ1. By assumption, ψ1 ≡ ρ1 ∧ ... ∧ ρn, where each ρi
is a clause. So φ ≡ 2(ρ1 ∧ ... ∧ ρn). But we also know that 2(ρ1 ∧ ... ∧ ρn) ≡ 2ρ1 ∧ ... ∧2ρn. It
follows that φ is equivalent to 2ρ1 ∧ ... ∧ 2ρn, which is a conjunction of clauses since the 2ρi
are all clauses.

Finally, we consider φ = 3ψ1. Using the induction hypothesis, we have φ ≡ 3(ρ1 ∧ ... ∧ ρn)
for clauses ρi. But since the ρi are clauses, each ρi is a disjunction of literals li,1∨ ...∨ li,pi . After
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distributing ∧ over ∨ and ∨ over 3, we find that φ is equivalent to the formula∨
(j1,...,jn)∈{1,...,p1}×...×{1,...,pn}

3(l1,j1 ∧ l2,j2 ∧ ... ∧ ln,jn)

which is a clause with respect to D5.
The proof that every formula is equivalent to a disjunction of terms with respect to D5

proceeds analagously.

Lemma 5.2 Every clause (respectively term) with respect to D5 is a clause (respectively term)
with respect to definitions D3a, D3b, and D4.

Proof. We will show by induction that every clause C (resp. term T ) with respect to D5 is a
clause (resp. term) with respect to definitions D3a, D3b, and D4 and a disjunction of terms
with respect to D3a (resp. conjunction of clauses with respect to D3a and D3b). We need this
stronger formulation of the statement to prove some of the sub-cases. The base case is when C
and T are propositional literals, in which case both statements clearly hold since propositional
literals are both clauses and terms with respect to definitions D3a, D3b, and D4 (and hence
also disjunctions of terms with respect to D3a and conjunctions of clauses with respect to D3a
and D3b). We now suppose that the statement holds for all proper sub-clauses and sub-terms
appearing in C and T , and we aim to show that the statement holds for C and T .

We first consider the clause C. Now C is a clause with respect to D5 so it can either be
a propositional literal or a formula of the form C1 ∨ C2 for clauses C1 and C2, 2C1 for some
clause C1, or 3T1 for some term T1. The case where C is a propositional literal has already been
treated in the base case. Let us thus consider the case where C = C1 ∨C2. The first part of the
statement holds since by the induction hypothesis both C1 and C2 are clauses with respect to
definitions D3a, D3b, and D4, and for all three definitions the disjunction of two clauses is a
clause. The second half of the statement is also verified since both C1 and C2 are disjunctions of
terms with respect to D3a, and thus so is their disjunction C1 ∨C2. We next consider the case
where C = 2C1 for some clause C1 with respect to D5. The first part of the statement follows
easily as we know that C1 must also be a clause with respect to D3a, D3b, and D4, and for
all of these definitions putting a 2 before a clause yields another clause. The second part of the
statement holds as well since C1 is a disjunction of terms with respect to D3a and thus 2C1

is a term with respect to this same definition. We now suppose that C = 3T1 for some term
T1 with respect to D5. For definitions D3a and D3b, we know from the induction hypothesis
that T1 is a conjunction of clauses with respect to D3a and D3b and hence that 3T1 is a clause
with respect to these definitions. For D4, the result obviously holds since we are allowed to put
anything behind 3. The second part of the statement holds since by the induction hypothesis
T1 is a term with respect to D3a and hence 3T1 is also a term with respect to this definition.

We now consider the term T , which is known to be either a propositional literal or a formula
of the form T1 ∧ T2 for terms T1 and T2, 2C1 for some clause C1, or 3T1 for some term T1. If
T = T1 ∧ T2, the first half of the statement holds since we know T1 and T2 to be terms with
respect to D3a, D3b, and D4, and conjunctions of terms are also terms for all three definitions.
The second half is also verified since both T1 and T2 are assumed to be conjunctions of clauses
with respect to D3a and D3b, which means that T is also a conjunction of clauses with respect
to these definitions. Next suppose that T = 2C1. For definitions D3b and D4, it is easy to
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see that T is a literal and hence a term. For D3a, the induction hypothesis tell us that C1 is a
disjunction of terms, from which we can deduce that 2C1 is a term. Moreover, since C1 is known
to be a clause with respect to D3a and D3b, then 2C1 must also be a clause with respect to
these definitions, so T is a conjunction of clauses with respect to both D3a and D3b. Finally,
we treat the case where T = 3T1. For D3a, we use the fact that T1 is a term with respect to
D3a, which means that 3T1 must also be a term. For D3b, we use the supposition that T1 is a
conjunction of clauses with respect to D3b, from which we get that 3T1 is a literal and hence
a term. The first part of the statement clearly holds for D4 as well since any formula behind 3

yields a literal and thus a term. The second half of the statement follows from the fact that by
the induction hypothesis T1 is a conjunction of clauses with respect to D3a and D3b, so 3T1

is a clause (and hence a conjunction of clauses) with respect to these definitions.

φU,S = φ1,1 ∧ ... ∧ φ1,m ∧ ψ

where the φi,j are defined inductively as follows

φi,j =
{

3φi+1,j , if either i ≤ n, ui ∈ Sj , or i > n and ui−n ∈ Sj
2φi+1,j , if either i ≤ n, ui 6∈ Sj , or i > n and ui−n 6∈ Sj

for i ∈ {1, ..., 2n} and φ2n+1,j = >, and ψ = 2...2︸ ︷︷ ︸
2n

⊥.

Figure 6: The formula φU ,S which codes an instance U = {u1, ..., un}, S = {S1, ..., Sm} of the
exact cover problem.

Lemma 5.3 Entailment between terms or clauses is Np-complete for both definitions D1 and
D2.

Proof. In the proofs of both Np-membership and Np-hardness, we will exploit the relationship
between terms in D1 and D2 and concept expressions in the description logic ALE (cf. [2]).
We recall that concept expressions in this logic are constructed as follows (we use a modal
logic syntax and assume a single modal operator in order to facilitate comparison between the
formalisms):

φ ::= > |⊥ | a | ¬a |φ ∧ φ |2φ |3φ

The semantics of the symbols > and ⊥ is as one would expect: M, w |= > and M, w 6|= ⊥ for
every modelM and world w. The semantics of atomic literals, conjunctions, and universal and
existential modalities is exactly the same as for K.

It is not hard to see that every term with respect to D1 or D2 is a concept expression in
ALE . As entailment between ALE expressions is decidable in nondeterministic polynomial time
(cf. [12]), it follows that deciding entailment between terms with respect to either D1 or D2 can
also be accomplished in nondeterministic polynomial time, i.e. these problems belong to Np.

It remains to be shown that these problems are Np-hard. To prove this, we show how the
polynomial-time reduction in [11] (adapted from the original proof in [12]) of the Np-complete
exact cover (XC) problem (cf. [16]) to unsatisfiability in ALE can be modified so as to give a
polynomial-time reduction from XC to entailment between terms with respect to D1 or D2.
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The exact cover problem is the following: given a set U = {u1, ..., un} and a set S =
{S1, ..., Sm} of subsets of U , determine whether there exists an exact cover, that is, a subset
{Si1 , ..., Siq} of S such that Sih ∩Sik = ∅ for h 6= k and

⋃q
k=1 Sik = U . It has been demonstrated

in [11] that U ,S has an exact cover if and only if the formula φU ,S pictured in Figure 6 is
unsatisfiable. Notice that φU ,S is not a term with respect to either D1 and D2 as it uses the
symbols > and ⊥. We would like to find a similar formula which is a term with respect to our
definitions and which is satisfiable if and only if φU ,S is. Consider the formula

φ′U ,S = φ′1,1 ∧ ... ∧ φ′1,m ∧ ψ′

where φ′i,j and ψ′ are defined exactly like φi,j and ψ except that we replace > by a and ⊥ by
¬a. It is easy to verify that φ′U ,S is indeed a term with respect to both D1 and D2. Moreover,
it is not too hard to see that φ1,1 ∧ ...∧ φ1,m |= 32n> if and only if φ′1,1 ∧ ...∧ φ′1,m |= 32na and
hence that φU ,S and φ′U ,S are equisatisfiable. As U ,S has an exact cover if and only if φU ,S is
unsatisfiable, and φU ,S is unsatisfiable just in the case that φ′U ,S is, it follows that U ,S has an
exact cover if and only if φ′U ,S is unsatisfiable. Moreover, φ′U ,S can be produced in linear time
from φU ,S , so we have a polynomial-time reduction from XC to unsatisfiability of terms in D1
or D2. But a formula is unsatisfiable just in the case that it entails the term a ∧ ¬a. So, XC
can be polynomially-reduced to entailment between terms with respect to to either D1 or D2,
making these problems Np-hard and hence Np-complete.

In order to show the Np-completeness of clausal entailment, we remark that for both defini-
tions D1 and D2, the function Nnf transforms negations of clauses into terms and negations of
terms into clauses. This means that we can test whether a clause λ entails a clause λ′ by testing
whether the term Nnf(¬λ′) entails the term Nnf(¬λ). Likewise, we can test whether a term κ
entails another term κ′ by testing whether the clause Nnf(¬κ′) entails the clause Nnf(¬κ). As
the NNF transformation is polynomial, it follows that entailment between clauses is exactly as
difficult as entailment between terms, so clausal entailment is Np-complete.

(i) q0
(ii)

∧m
i=0((qi → ∧j 6=i¬qj) ∧2(qi → ∧j 6=i¬qj) ∧ ... ∧2m(qi → ∧j 6=i¬qj))

(iiia)
∧m
i=0((qi → 3qi+1) ∧2(qi → 3qi+1) ∧ ... ∧2m(qi → 3qi+1))

(iiib)
∧
{i|Qi=∀}2i(qi → (3(qi+1 ∧ pi+1) ∧3(qi+1 ∧ ¬pi+1)))

(iv)
∧m−1
i=1 (

∧m−1
j=i 2j((pi → 2pi) ∧ (¬pi → 2¬pi)))

(v) 2m(qm → θ)

Figure 7: The formula f(β) is the conjunction of the above formulae.

Lemma 5.4 Entailment between clauses or terms of definition D5 is Pspace-complete.

Proof. Membership in Pspace is immediate since entailment between arbitrary formulae in K
can be decided in polynomial space. To prove Pspace-hardness, we adapt an existing proof of
Pspace-hardness of K.

Figure 7 presents an encoding of a QBF β = Q1p1...Qmpmθ in a K-formula f(β) that is used
in [4] to demonstrate the Pspace-hardness of K. The formula f(β) has the property that it is
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(i’) q0
(ii’)

∧m
i=0(

∧
j 6=i((¬qi ∨ ¬qj) ∧2(¬qi ∨ ¬qj) ∧ ... ∧2m(¬qi ∨ ¬qj)))

(iiia’)
∧m
i=0((¬qi ∨3qi+1) ∧2(¬qi ∨3qi+1) ∧ ... ∧2m(¬qi ∨3qi+1))

(iiib’)
∧
{i|Qi=∀}2i(¬qi ∨3(qi+1 ∧ pi+1)) ∧2i(¬qi ∨3(qi+1 ∧ ¬pi+1))

(iv’)
∧m−1
i=1 (

∧m−1
j=i (2j(¬pi ∨2pi) ∧2j(pi ∨2¬pi)))

(v’) 2m(¬qm ∨ θ1) ∧ .... ∧2m(¬qm ∨ θl)

Figure 8: The formula f ′(β) is the conjunction of the above formulae, where the formulae θi in
(v’) are propositional clauses such that θ ≡ θ1 ∧ ... ∧ θl.

satisfiable just in the case that β is a QBF-validity. As the formula f(β) can be generated in
polynomial-time from β, and the QBF-validity problem is known to be Pspace-hard, it follows
that satisfiability of formulae in K is Pspace-hard as well.

In Figure 8, we show a modified encoding. We claim that the following:

(1) f(β) and f ′(β) are logically equivalent

(2) if θ is in CNF, then f ′(β) is a conjunction of clauses with respect to D5

(3) if θ is in CNF, then f ′(β) can be generated in polynomial time from f(β)

To show (1), it suffices to show that (i)≡(i’), (ii)≡(ii’), (iiia)≡(iiia’), (iiib)≡(iiib’), (iv)≡(iv’),
and (v)≡(v’). The first equivalence is immediate since (i) and (i’) are identical. (ii)≡(ii’) follows
from the fact that 2k(qi → ∧j 6=i¬qj) ≡ ∧j 6=i2k(¬qi ∨ ¬qj). (iiia)≡(iiia’) holds since (iiia’) is
just (iiia) with qi → 3qi+1 replaced with ¬qi ∨ 3qi+1. We have (iiib)≡(iiib’) since 2i(qi →
(3(qi+1 ∧ pi+1)∧3(qi+1 ∧¬pi+1))) ≡ 2i(¬qi ∨3(qi+1 ∧ pi+1))∧2i(¬qi ∨3(qi+1 ∧¬pi+1)). The
equivalence (iv)≡(iv’) holds as 2j((pi → 2pi)∧ (¬pi → 2¬pi)) ≡ 2j(¬pi∨2pi)∧2j(pi∨2¬pi).
Finally, we have (v)≡(v’) since θ ≡ θ1 ∧ ... ∧ θl. Thus, f(β) and f ′(β) are logically equivalent.

To prove (2), we show that each of the component formulae in f ′(β) is a conjunction of
clauses with respect to D5, provided that θ is in CNF. Clearly this is the case for (i’) as (i’)
is a propositional literal. The formula (ii’) is also a conjunction of clauses with respect to
D5 since it a conjunction formulae of the form 2k(¬qi ∨ ¬qj). Similarly, (iiia’), (iiib’), and
(iv’) are all conjunctions of clauses since the formulae 2k(¬qi∨3qi+1), 2i(¬qi∨3(qi+1∧pi+1)),
2i(¬qi∨3(qi+1∧¬pi+1)), 2k(¬pi∨2pi), and 2k(pi∨2¬pi) are all clauses with respect to D5. The
formula (v’) must also be a conjunction of clauses since the θi are assumed to be propositional
clauses, making each 2m(¬qm∨θi) a clause with respect to D5, and (v’) a conjunction of clauses
with respect to D5.

For (3), it is clear that we can transform (i), (iiia), (iiib), and (iv) into (i’), (iiia’), (iiib’),
and (iv’) in polynomial time as the transformations involve only simple syntactic operations and
the resulting formulae are at most twice as large. The transformation from (ii) to (ii’) is very
slightly more involved, but it is not too hard to see the resulting formula is at most m times as
large as the original (and m can be no greater than the length of f(β)). The only step which
could potentially result in an exponential blow-up is the transformation from (v) to (v’), as we
put θ into CNF. But under the assumption that θ is already in CNF, the transformation can be
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executed in polynomial time and space, as all we have to do is separate θ into its conjuncts and
rewrite the (qm → θi) as (¬qm ∨ θi).

Now let β = Q1p1...Qmpmθ be some QBF such that θ = θ1 ∧ ... ∧ θl for some propositional
clauses θi. Let f ′(β) be the formula as defined in Figure 8. By (2) above, we know that
f ′(β) = λ1 ∧ ...∧λp for some clauses λi with respect to D5. Now consider the following formula

ζ = 3(2λ1 ∧ ... ∧2λp ∧3(2(a ∨ ¬a)))

We can show that f ′(β) is satisfiable if and only if ζ is satisfiable as follows:

ζ is unsatisfiable
⇔ 2λ1 ∧ ... ∧2λp ∧3(2(a ∨ ¬a) is unsatisfiable
⇔ λ1 ∧ ... ∧ λl ∧2(a ∨ ¬a) is unsatisfiable
⇔ λ1 ∧ ... ∧ λl is unsatisfiable
⇔ f ′(β) is unsatisfiable

But we also know from (1) above that f ′(β) ≡ f(β), and from [4] that f(β) is satisfiable just
in the case that β is a QBF validity. It is also easy to see that ζ is satisfiable if and only
if ζ does not entail the contradiction 3(a ∧ ¬a). Putting this altogether, we find that β is
valid just in the case that ζ does not entail 3(a ∧ ¬a). As ζ and 3(a ∧ ¬a) are both clauses
and terms with respect to D5, we have shown that the QBF-validity problem for QBF with
propositional formulae in CNF can be reduced to the problems of entailment of clauses or terms
with respect to D5. Moreover, this is a polynomial time reduction since it follows from (3) that
the transformation from β to ζ can be accomplished in polynomial time. This suffices to show
Pspace-hardness, since it is well-known that QBF-validity remains Pspace-hard even when we
restrict the propositional part θ to be a formula in CNF (cf. [28]).

Theorem 5 The results in Figure 1 hold.

Proof. The satisfaction or dissatisfaction of properties P1 and P2 can be immediately deter-
mined by inspection of the definitions, as can the satisfaction of P3 by definitions D2, D3b,
D4, and D5. Counterexamples to P3 for definitions D1 and D3a were provided in body of
the paper: the formula 2(a∨ b) is a clause but not a disjunction of literals with respect to both
definitions.

In order to show that definition D3b does not satisfy P4, we remark that the negation of
the literal 3(a ∨ b) is equivalent to 2(¬a ∧ ¬b) which cannot be expressed as a literal in D3b.
For each of the other definitions, it can be shown (by a straightforward inductive proof) that
Nnf(¬L) is a literal whenever L is a literal, that Nnf(¬C) is a term whenever C is a clause, and
that Nnf(¬T ) is a clause whenever T is a term. This is enough to prove that these definitions
satisfy P4 since Nnf(φ) is equivalent to φ (by Lemma A.1).

Since we know that definitions D1 and D2 satisfy both properties P1 and P2, it follows by
Theorem 4 that these definitions do not satisfy P5. We have seen in Lemma 5.1 that definition
D5 does satisfy P5, i.e. that every formula is equivalent to some conjunction of clauses with
respect to D5 and some disjunction of terms with respect to D5. As every clause (resp. term) of
D5 is also a clause (resp. term) with respect to definitions D3a, D3b, and D4 (by Lemma 5.2),
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it follows that every formula is equivalent to some conjunction of clauses and some disjunction
of terms with respect to these definitions, which means they all satisfy P5.

It is easy to see that property P6 is satisfied by all of the definitions since all of our defini-
tions are context-free grammars, and it is well-known that deciding membership for context-free
grammars can be accomplished in polynomial time.

From Lemma 5.3, we know that deciding entailment between clauses or terms with respect
to either D1 or D2 is Np-complete (and hence not in P, unless P=Np). Entailment between
clauses/terms is Pspace-complete for D5 (Lemma 5.4). As every clause (resp. term) of D5 is
also a clause (resp. term) with respect to definitions D3a, D3b, and D4 (from Lemma 5.2), it
follows that entailment between clauses or terms is Pspace-hard for these definitions. Member-
ship in Pspace is immediate since entailment between arbritary K formulae is in Pspace.

We prove Theorem 8 in several steps:

Lemma 8.1 The notions of prime implicates and prime implicants induced by D4 satisfy
Implicant-Implicate Duality.

Proof. Suppose for a contradiction that we have a prime implicant κ of some formula φ which is
not equivalent to the negation of a prime implicate of ¬φ. Let λ be a clause which is equivalent
to ¬κ (there must exist such a clause because of property P4, cf. Theorem 5). The clause λ is an
implicate of ¬φ since κ |= φ and λ ≡ ¬κ. Since we have assumed that λ is not a prime implicate,
there must be some implicate λ′ of ¬φ such that λ′ |= λ and λ 6|= λ′. But then let κ′ be a term
equivalent to ¬λ′ (here again we use P4). Now κ′ must be an implicant of φ since ¬φ |= ¬κ′.
Moreover, κ′ is strictly weaker than κ since λ′ |= λ and λ′ 6|= λ and κ ≡ ¬λ and κ′ ≡ ¬λ′. But
this means that κ cannot be a prime implicant, contradicting our earlier assumption. Hence,
we can conclude that every prime implicant of a formula φ is equivalent to the negation of some
prime implicate of ¬φ. The proof that every prime implicate of a formula φ is equivalent to the
negation of a prime implicant of ¬φ proceeds analagously.

Lemma 8.2 Every implicate λ (w.r.t. definition D4) of a formula φ is entailed by some implicate
λ′ (w.r.t. definition D4) of φ with var(λ′) ⊆ var(φ) and with depth at most δ(φ) + 1. Likewise
every implicant κ (w.r.t. definition D4) of φ entails an implicant κ′ (w.r.t. definition D4) of φ
with var(κ′) ⊆ var(φ) and depth at most δ(φ) + 1.

Proof. We intend to show that the following statement holds: for any formula φ and any im-
plicate λ of φ, there exists a clause λ′ such that φ |= λ′ |= λ and var(λ′) ⊆ var(φ) and
δ(λ) ≤ δ(φ) + 1. So let φ be an arbitrary formula, and let λ be some implicate of φ. If φ
is a tautology, then we can set λ′ = a ∨ ¬a (where a ∈ var(φ)). If λ ≡ ⊥, then we can set
λ′ = 3(a ∧ ¬a) (where a ∈ var(φ)), as this clause verifies all of the necessary conditions. Now
we consider the case where neither φ nor λ is a tautology or a falsehood, and we show how to
construct the clause λ′. The first thing we do is use Dnf-4 from Appendix A to rewrite φ as a
disjunction of satisfiable terms Ti with respect to D4 such that the Ti contain only the variables
appearing in φ and have depth at most δ(φ):

φ = T1 ∨ ... ∨ Tz
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As φ |= λ, it must be the case that Ti |= λ for every Ti. Our aim is to find a clause λi for each
of the terms Ti such that Ti |= λi |= λ and var(λi) ⊆ var(Ti) and δ(λi) ≤ δ(Ti). So consider
some Ti. Since Ti is a term, it has the form γ1 ∧ ... ∧ γk ∧ 3ψ1 ∧ ... ∧ 3ψm ∧ 2χ1 ∧ ... ∧ 2χn,
where γ1, ..., γk are propositional literals. As λ is a clause, it must be of the form ρ1 ∨ ...∨ ρp ∨
3ε1 ∨ ... ∨3εq ∨ 2ζ1 ∨ ... ∨ 2ζr, where ρ1, ..., ρp are propositional literals. As Ti |= λ, it must
be the case that the formula

γ1 ∧ ... ∧ γk ∧3ψ1 ∧ ... ∧3ψm ∧2χ1 ∧ ... ∧2χn∧
¬ρ1 ∧ ... ∧ ¬ρp ∧2¬ε1 ∧ ... ∧2¬εq ∧3¬ζ1 ∧ ... ∧3¬ζr

is unsatisfiable. By Theorem 1, one of the following must hold:

(a) there exists γu and ρv such that γu ≡ ρv

(b) there exists ψu such that ψu ∧ χ1 ∧ ... ∧ χn ∧ ¬ε1 ∧ ... ∧ ¬εq |= ⊥

(c) there exists ζu such that ¬ζu ∧ χ1 ∧ ... ∧ χn ∧ ¬ε1 ∧ ... ∧ ¬εq |= ⊥

Now if (a) holds, we can set λi = γu since Ti |= γu |= λ, δ(γu) = 0 ≤ δ(Ti), and var(γu) =
{γu} ⊆ var(Ti). If it is (b) that holds, then it must be the case that

ψu ∧ χ1 ∧ ... ∧ χn |= ε1 ∨ ... ∨ εq

and hence that
3(ψu ∧ χ1 ∧ ... ∧ χn) |= 3ε1 ∨ ... ∨3εq |= λ

We can set λi = 3(ψu∧χ1∧...∧χn), since Ti |= 3(ψu∧χ1∧...∧χn) |= λ, δ(3(ψu∧χ1∧...∧χn)) ≤
δ(Ti), and var(3(ψu ∧ χ1 ∧ ... ∧ χn)) ⊆ var(Ti). Finally, if (c) holds, then it must be the case
that

χ1 ∧ ... ∧ χn |= ε1 ∨ ... ∨ εq ∨ ζu
and hence that

2(χ1 ∧ ... ∧ χn) |= 3ε1 ∨ ... ∨3εq ∨2ζu |= λ

So we can set λi = 2(χ1 ∧ ... ∧ χn), as Ti |= 2(χ1 ∧ ... ∧ χn) |= λ, δ(2(χ1 ∧ ... ∧ χn)) ≤ δ(Ti),
and var(2(χ1 ∧ ... ∧ χn)) ⊆ var(Ti). Thus, we have shown that for every Ti, there is some λi
such that Ti |= λi |= λ and var(λi) ⊆ var(Ti) and δ(λi) ≤ δ(Ti). But then λ1 ∨ ... ∨ λz is a
clause implied by every Ti, and hence by φ, and such that var(λi) ⊆ ∪ivar(Ti) ⊆ var(φ) and
δ(λi) ≤ maxi δ(Ti) ≤ δ(φ).

Now let κ be an implicant of φ, and let λ be the formula Nnf(¬κ). We know from Lemma A.1
that λ ≡ ¬κ, and it is straightforward to show that λ must be a clause with respect to D4. But
then λ is an implicate of ¬φ, so there must be some clause λ′ with var(λ′) ⊆ var(¬φ) = var(φ)
and depth at most δ(¬φ) + 1 = δ(φ) + 1 such that ¬φ |= λ′ |= λ. Let κ′ be Nnf(¬λ′).
It can be easily verified that κ′ is a term. Moreover, by Lemma A.1, we have κ′ ≡ ¬λ′,
var(κ′) = var(¬λ′) = var(λ′), and δ(κ′) = δ(¬λ′) = δ(λ′). But then κ′ is a term such that
var(κ′) ⊆ var(φ), δ(κ′) ≤ δ(φ) + 1, and κ |= κ′ |= φ.

Lemma 8.3 The notions of prime implicates and prime implicants induced by D4 satisfy
Finiteness.
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Proof. Consider an arbitrary formula φ. From Lemma 8.2, we know that for each prime implicate
λ of φ, there must be an implicate λ′ of φ containing only those propositional atoms appearing
in φ and such that δ(λ′) ≤ δ(φ) + 1 and λ′ |= λ. But since λ is a prime implicate, we must also
have λ |= λ′ and hence λ ≡ λ′. Thus, every prime implicate of φ is equivalent to some clause
built from the finite set of propositional symbols in φ and having depth at most δ(φ) + 1. As
there are only finitely many non-equivalent formulae on a finite alphabet and with fixed depth,
it follows that there can be only finitely many distinct prime implicates. By Lemma 8.1, every
prime implicant of φ is equivalent to the negation of some prime implicate of ¬φ. It follows then
that every formula can only have finitely many distinct prime implicants.

Lemma 8.4 The notions of prime implicates and prime implicants induced by D4 satisfy Cov-
ering.

Proof. Let φ be an arbitrary formula. From Lemma 8.2, we know that every implicate of φ is
entailed by some implicate of φ whose propositional variables are contained in var(φ) and whose
depth is at most δ(φ) + 1. Now consider the following set

Σ = {σ |φ |= σ, σ is a clause, var(σ) ⊆ var(φ), δ(σ) ≤ δ(φ) + 1}

and define another set Π from Σ as follows:

Π = {σ ∈ Σ | 6 ∃σ′ ∈ Σ. σ′ |= σ and σ 6|= σ′}

In other words, Π is the set of all of the logically strongest implicates of φ having depth at most
δ(φ) + 1 and built from the propositional letters in φ. We claim the following:

(1) every π ∈ Π is a prime implicate of φ

(2) for every implicate λ of φ, there is some π ∈ Π such that π |= λ

We begin by proving (1). Suppose that (1) does not hold, that is, that there is some π ∈ Π
which is not a prime implicate of φ. Since π is by definition an implicate of φ, it follows that
there must be some implicate λ of φ such that λ |= π and π 6|= λ. But by Lemma 8.2, there is
some implicate λ′ of φ such that δ(λ′) ≤ δ(φ)+1, var(λ′) ⊆ var(φ), and λ′ |= λ. But that means
that λ′ is an element of Σ which implies but is not implied by π, contradicting the assumption
that π is in Π. We can thus conclude that every element of Π must be a prime implicate of φ.

For (2): let λ be some implicate of φ. Then by Lemma 8.2, there exists some clause λ′ ∈ Σ
such that λ′ |= λ. If λ′ ∈ Π, we are done. Otherwise, there must exist some σ ∈ Σ such that
σ |= λ′ and λ′ 6|= σ. If σ ∈ Π, we are done, otherwise, we find another stronger member of Σ.
But as Σ has finitely many elements modulo equivalence, after a finite number of steps, we will
find some element which is in Π and which implies λ. Since we have just seen that all members
of Π are prime implicates of φ, it follows that every implicate of φ is implied by some prime
implicate of φ.

For the second part of Covering, let κ be an implicant of φ, and let λ be a clause equivalent
to ¬κ (there must be one because D4 satisfies P4). Now since κ |= φ, we must also have ¬φ |= λ.
According to what we have just shown, there must be some prime implicate π of ¬φ such that
¬φ |= π |= λ. By Lemma 8.1, π must be equivalent to the negation of some prime implicant ρ
of φ. But since ρ ≡ ¬π and π |= λ and λ ≡ ¬κ, it follows that κ |= ρ, completing the proof.
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Lemma 8.5 The notions of prime implicates and prime implicants induced by D4 satisfy Equiv-
alence.

Proof. Let φ be some formula in K, and suppose thatM is a model of every prime implicate of
φ. As D4 is known to satisfy property P5 (by Theorem 5), we can find a conjunction of clauses
which is equivalent to φ. By Covering (Lemma 8.3), each of these clauses is implied by some
prime implicate of φ, so M must be a model of each of these clauses. It follows that M is a
model of φ. For the other direction, we simply note that by the definition of prime implicates if
M is a model of φ, then it must also be a model of every prime implicate of φ. We have thus
shown thatM is a model of φ if and only if it is a model of every prime implicate of φ. Using a
similar argument, we can show thatM is a model of φ if and only if it is a model of some prime
implicant of φ.

Lemma 8.6 The notions of prime implicates and prime implicants induced by D4 satisfy Dis-
tribution.

Proof. Let λ be a prime implicate of φ1 ∨ ...∨ φn. Now for each φi, we must have φi |= λ. From
Covering, we know that there must exist some prime implicate λi for each φi such that λi |= λ.
This means that the formula λ1∨...∨λn (which is a clause because it is the disjunction of clauses)
entails λ. But since λ is a prime implicate, it must also be the case that λ |= λ1 ∨ ... ∨ λn, and
hence λ ≡ λ1 ∨ ... ∨ λn. The proof for prime implicants is entirely similar.

Theorem 8 The notions of prime implicates and prime implicants induced by definition D4
satisfy Finiteness, Covering, Equivalence, Implicant-Implicate Duality, and Distribu-
tion.

Proof. Follows directly from Lemmas 8.1-8.6.

Lemma 9.1 The notions of prime implicates and prime implicants induced by definitions D1
and D2 do not satisfy Equivalence.

Proof. The proof is the same for both definitions. Suppose that Equivalence holds. Then for
every formula φ, the set Π of prime implicates of φ is equivalent to φ. But this means that the
set Π ∪ {¬φ} is inconsistent, and hence by compactness of K that there is some finite subset
S ⊆ Π ∪ {¬φ} which is inconsistent. If φ 6≡ ⊥, then we know that the set S must contain ¬φ
because the set of prime implicates of φ cannot be inconsistent. But then the conjunction of
elements in S \ {¬φ} is a conjunction of clauses which is equivalent to φ. It follows that every
formula φ is equivalent to some conjunction of clauses. As we have shown earlier in the proof
of Theorem 4 that there are formulae which are not equivalent to a conjunction of clauses with
respect to D1 or D2, it follows that Equivalence cannot hold for these definitions.

Lemma 9.2 The notions of prime implicates and prime implicants induced by definitions D3a,
D3b, and D5 do not satisfy Finiteness.

Proof. Suppose that clauses are defined with respect to definition D3a, D3b, or D5 (the proof
is the same for all three definitions). Consider the formula φ = 2(a∧b). It follows from Theorem
3 that φ implies λk = 2(3ka)∨3(a∧ b∧2k¬a) for every k ≥ 1. As the formulae λk are clauses
(with respect to D3a, D3b, and D5), the λk are all implicates of φ. To complete the proof,
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we show that every λk is a prime implicate of φ. Since the λk are mutually non-equivalent, it
follows that φ has infinitely many prime implicates modulo equivalence.

Consider some λk and some implicate µ = 3ψ1 ∨ ...∨3ψm ∨2χ1 ∨ ...∨2χn of φ that implies it
(by Theorem 2 there cannot be any propositional literals in µ). Using Theorem 3 and the fact
that φ |= µ |= λk, we get the following:

(a) a ∧ b |= χi ∨ ψi ∨ ... ∨ ψm for some χi

(b) χi |= (3ka) ∨ (a ∧ b ∧2k¬a) for every χi

(c) ψ1 ∨ ... ∨ ψm |= a ∧ b ∧2k¬a

Let χi be such that a ∧ b |= χi ∨ ψi ∨ ... ∨ ψm. We remark that χi must be satisfiable since
otherwise we can combine (a) and (c) to get a ∧ b |= a ∧ b ∧ 2k¬a. Now by (b), we know that
χi |= (3ka) ∨ (a ∧ b ∧ 2k¬a) and hence that χi ∧ (2k¬a) ∧ (¬a ∨ ¬b ∨ 3ka) is inconsistent. It
follows that both χi ∧ (2k¬a)∧¬a and χi ∧ (2k¬a)∧¬b are inconsistent. Using Theorem 1, we
find that either χi |= 3ka or χi |= a ∧ b. As χi is a satisfiable clause with respect to definitions
D3a, D3b, and D5, it cannot imply a ∧ b, so we must have χi |= 3ka. By putting (a) and (c)
together, we find that

a ∧ b ∧ ¬χi |= ψ1 ∨ ... ∨ ψm |= a ∧ b ∧2k¬a

It follows that ¬χi |= 2k¬a, i.e. 3ka |= χi. We thus have χi ≡ 3ka and ψ1 ∨ ... ∨ ψm ≡
a ∧ b ∧ 2k¬a. As 3ka |= χi and a ∧ b ∧ 2k¬a |= ψ1 ∨ ... ∨ ψm, by Theorem 3 we get 2(3ka) ∨
3(a∧ b∧2k¬a) |= 2χi ∨3ψi ∨ ...∨3ψm |= µ and hence λk ≡ µ. We have thus shown that any
implicate of φ which implies λk must be equivalent to λk. This means that each λk is a prime
implicate of φ, completing the proof.

Theorem 9 The notions of prime implicates and prime implicants induced by definitions D1
and D2, do not satisfy Equivalence. The notions of prime implicates and prime implicants
induced by D3a, D3b, and D5 falsify Finiteness.

Proof. Follows directly from Lemmas 9.1 and 9.2.

In the proof of Theorem 10, we will make use of the following lemmas:

Lemma 10.1 The algorithm GenPI always terminates.

Proof. We know from Lemma A.2 that the algorithm Dnf-4 always terminates and returns a
finite set of formulae. This means that there are only finitely many terms T to consider. For
each T , the set ∆(T ) contains only finitely many elements (this is immediate given the definition
of ∆(T )), which means that the set Candidates also has finite cardinality. In the final step,
we compare at most once each pair of elements in Candidates. As the comparison always
terminates, and there are only finitely many pairs to check, it follows that the algorithm GenPI
terminates.

Lemma 10.2 The algorithm GenPI outputs exactly the set of prime implicates of the input
formula.
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Proof. We first prove that every prime implicate of a term T is equivalent to some element
in ∆(T ). Let T = γ1 ∧ ... ∧ γk ∧ 3ψ1 ∧ ... ∧ 3ψm ∧ 2χ1 ∧ ... ∧ 2χn be some term, and let
λ = ρ1 ∨ ... ∨ ρp ∨3ε1 ∨ ... ∨3εq ∨ 2ζ1 ∨ ... ∨ 2ζr be one of its prime implicates. As T |= λ, it
must be the case that

γ1 ∧ ... ∧ γk ∧3ψ1 ∧ ... ∧3ψm ∧2χ1 ∧ ... ∧2χn∧
¬ρ1 ∧ ... ∧ ¬ρp ∧2¬ε1 ∧ ... ∧2¬εq ∧3¬ζ1 ∧ ... ∧3¬ζr

is unsatisfiable. By Theorem 1, one of the following must hold:

(a) there exists γu and ρv such that γu ≡ ρv

(b) there exists ψu such that ψu ∧ χ1 ∧ ... ∧ χn |= ε1 ∨ ... ∨ εq

(c) there exists ζu such that χ1 ∧ ... ∧ χn |= ζu ∨ ε1 ∨ ... ∨ εq

If (a) holds, then γu |= λ, so λ must be equivalent to γu or else we would have found a stronger
implicate, contradicting our assumption that λ is a prime implicate of T . But then the result
holds since γu is in ∆(T ). If (b) holds, then the formula 3(ψu ∧ χ1 ∧ ... ∧ χn) is an implicate
of T which implies λ, so λ ≡ 3(ψu ∧ χ1 ∧ ... ∧ χn). We are done since 3(ψu ∧ χ1 ∧ ... ∧ χr) is
a member of ∆(T ). Finally we consider the case where (c) holds. In this case, 2(χ1 ∧ ... ∧ χn)
is an implicate of T which implies λ, and so is equivalent to λ (as λ is a prime implicate). But
then we have the desired result since 2(χ1 ∧ ... ∧ χn) is one of the elements in ∆(T ). Thus we
can conclude that every prime implicate of a term T is equivalent to some element in ∆(T ). By
Lemma A.2, the elements in Dnf-4(φ) are terms, and their disjunction is equivalent to φ. As
D4 satisfies Distribution, it follows that every prime implicate of the input φ is equivalent to
some element in Candidates. This means that if an element λi in Candidates is not a prime
implicate of φ, then there is some prime implicate π of φ that implies but is not implied by λi,
and hence some λj ∈ Candidates such that λj |= λi and λi 6|= λj . Thus, during the comparison
phase, this clause will be removed from Candidates. Now suppose that the clause λ is a prime
implicate of φ. Then we know that there must be some λi ∈ Candidates such that λi ≡ λ, and
moreover, we can choose λi so that there is no λj with j < i such that λj |= λi. When in the
final step we compare λi with all the clauses λj with j 6= i, we will never find that λj |= λi for
j < i, nor can we have λj |= λi 6|= λj for some j > i, otherwise λ would not be a prime implicate.
It follows then that λi remains in the set Candidates which is returned by the algorithm. We
have thus shown that the output of GenPI with input φ is precisely the set of prime implicates
of φ.

Theorem 10 The algorithm GenPI always terminates and outputs exactly the set of prime
implicates of the input formula.

Proof. Follows directly from Lemmas 10.1 and 10.2.

Theorem 11 The length of the smallest representation of a prime implicate of a formula can
be no more than singly exponential in the length of the formula.

Proof. Prime implicates generated by GenPI can have at most 2|φ| disjuncts as there are at
most 2|φ| terms in Dnf-4(φ) by Lemma A.3. Moreover, each disjunct has length at most 2|φ|
(also by Lemma A.3). This gives us a total of 2|φ| ∗ 2|φ| symbols, to which we must add the at
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most 2|φ| − 1 disjunction symbols connecting the disjuncts. We thus find that the length of the
smallest representation of a prime implicate of a formula φ is at most 2|φ| ∗ 2|φ|+ (2|φ|− 1).

Theorem 12 The length of the smallest representation of a prime implicate of a formula can
be exponential in the length of the formula.

Proof. Consider the formula

φ = (
n∧
i=1

(2ai1 ∨2ai2)) ∧3(¬a11 ∧ ¬a21 ∧ ... ∧ ¬an1)

and the clause
λ =

∨
(i1,...,in)∈{1,2}n

(i1,...,in)6=(1,1,...,1)

2(a1i1 ∧ a2i2 ∧ ... ∧ anin)

where aij 6= akl whenever i 6= k or j 6= l. We aim to show that (a) λ is a prime implicate of φ,
and (b) any clause equivalent to λ must have length at least |λ|. This is enough to prove the
result since λ clearly has size exponential in n, whereas the size of φ is only linear in n.

We begin by proving that λ is a prime implicate of φ. Let λ′ be a clause such that φ |= λ′

and λ′ |= λ. Now since λ′ |= λ, it follows from Theorem 2 that λ′ is equivalent to a clause of
the form 2χ1 ∨ ...∨2χm. As φ |= λ′, then we must have T |= λ′ for every T ∈ Dnf-4(φ). Since
λ′ contains only 2-literals, this means that 2βT |= λ′ for every T ∈ Dnf-4(φ), where βT is the
conjunction of formulae ρ such that 2ρ is a conjunct of T . We thus get that

∨
T 2βT |= λ′. But

we remark that the disjuncts of λ are exactly the strongest 2-literals of the terms in Dnf-4(φ),
i.e. λ ≡

∨
T 2βT . It follows that λ′ ≡

∨
T 2βT ≡ λ, from which we can conclude that λ is a

prime implicate of φ.
We now show that there are no more compact ways of representing λ. Let λ′ be a shortest

clause which is equivalent to λ. As λ′ is equivalent to λ, it follows from Theorem 2 that λ′ is a
disjunction of 2-literals and of inconsistent 3-literals. But since λ′ is assumed to be a shortest
representation of λ, it cannot contain any inconsistent 3-literals or any redundant 2-literals,
since we could remove them to find an equivalent shorter clause. So λ′ must be of the form
2χ1∨ ...∨2χm, where χl 6|= χj whenever l 6= j. Now since λ′ |= λ, every disjunct 2χp must also
imply λ. As λ is a disjunction of 2-literals, it follows from Theorem 3 that every disjunct 2χp
of λ′ implies some disjunct 2δq of λ. But that means that every 2χp must have length at least
2n, since each χp is a satisfiable formula which implies a conjunction of n distinct propositional
variables. We also know that every disjunct 2δq of λ implies some disjunct 2χp of λ′ since
λ |= λ′. We now wish to show that no two disjuncts of λ imply the same disjunct of λ′. Suppose
that this is not the case, that is, that there are distinct disjuncts 2δ1 and 2δ2 of λ and some
disjunct 2χp of λ′ such that 2δ1 |= 2χp and 2δ2 |= 2χp. Now since 2δ1 and 2δ2 are distinct
disjuncts, there must be some i such that 2δ1 |= ai1 and 2δ2 |= ai2 or 2δ1 |= ai2 and 2δ2 |= ai1.
We know that 2χp |= 2δq for some δq, and that every δq implies either ai1 or ai2, so either
2χp |= 2ai1 or 2χp |= 2ai2. But we know that the 2δq each imply either 2ai1 or 2ai2 but not
both, so one of 2δ1 and 2δ2 must not imply 2χp. This contradicts our earlier assumption that
2δ1 |= 2χp and 2δ2 |= 2χp, so each disjunct of λ must imply a distinct disjunct of λ′. We have
thus demonstrated that λ′ contains just as many disjuncts as λ. As we have already shown that
the disjuncts of λ′ are no shorter than the disjuncts of λ, it follows that |λ′| ≥ |λ|, and hence
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|λ′| = |λ|. We conclude that every clause equivalent to λ has length at least |λ|, completing the
proof.

Theorem 13 The number of non-equivalent prime implicates of a formula is at most doubly
exponential in the length of the formula.

Proof. We know from Theorem 10 that every prime implicate of φ is equivalent to some clause
returned by GenPI. Every such clause is of the form

∨
T∈Dnf-4(φ) θT where θT ∈ ∆(T ). As there

can be at most 2|φ| terms in Dnf-4(φ)) by Lemma A.3, these clauses can have no more than
2|φ| disjuncts. Moreover, there are at most 2|φ| choices for each disjunct θT since the cardinality
of ∆(T ) is bounded above by the size of T , which we know from Lemma 1.3 to be no more
than 2|φ|. It follows then that there are at most (2|φ|)2|φ| clauses returned by GenPI, hence at
most (2|φ|)2|φ| non-equivalent prime implicates of φ.

Theorem 14 The number of non-equivalent prime implicates of a formula may be doubly expo-
nential in the length of the formula.

Proof. Let n be some natural number, and let a11, a12, ..., an1, an2, b11, b12, b12, ..., bn1, bn2 be
distinct propositional variables. Consider the formula φ defined as

n∧
i=1

((3ai1 ∧2bi1) ∨ (3ai2 ∧2bi2))

It is not hard to see that there will be 2n terms in Dnf-4(φ), corresponding to the 2n ways
of deciding for each i ∈ {1, ..., n} whether to take the first or second disjunct. Each term
T ∈ Dnf-4(φ) will be of the form

n∧
i=1

(3ai f(i,T ) ∧2bi f(i,T ))

where f(i, T ) ∈ {1, 2} for all i. For each T , denote by D(T ) the set of formulae {3(a f(i,T ) ∧
b1 f(1,T ) ∧ ... ∧ bn f(n,T ))) | 1 ≤ i ≤ n}. Now consider the set of clauses C defined as

{
∨

T∈Dnf-4(φ)

dT | dT ∈ D(T )}

Notice that there are n2n clauses in C since each clause corresponds to a choice of one of the n
elements in D(T ) for each of the 2n terms T in Dnf-4(φ). This number is doubly-exponential in
|φ| since the length of φ is linear in n. In order to complete the proof, we show that (i) all of the
clauses in C are prime implicates of φ and (ii) that the clauses in C are mutually non-equivalent.

We begin by showing that λ1 6|= λ2 for every pair of distinct elements λ1 and λ2 in C. This
immediately gives us (ii) and will prove useful in the proof of (i). Let λ1 and λ2 be distinct clauses
in C. As λ1 and λ2 are distinct, there must be some term T ∈ Dnf-4(φ) for which λ1 and λ2

choose different elements from D(T ). Let d1 be the disjunct from D(T ) appearing as a disjunct
in λ1, let d2 be the element in D(T ) which is a disjunct in λ2, and let aj,k be the a-literal which
appears in d2 (and hence not in d1). Consider the formula ρ = 2(¬aj,k ∧ ¬b1,k1 ∧ ... ∧ ¬bn,kn),
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where the tuple (k1, ..., kn) is just like the tuple associated with T except that the 1’s and 2’s
are inversed. Clearly d1 ∧ ρ is consistent, since the variables in ρ do not appear in d1. But ρ
is inconsistent with every disjunct in λ2, since by construction every disjunct in λ2 contains a
literal whose negation appears in ρ. It follows that λ2 |= ¬ρ but λ1 6|= ¬ρ, and hence λ1 6|= λ2.

We now prove (i). Let λ be a clause in C, and let π be a prime implicate of φ which
implies λ. By Theorem 10, we know that π must be equivalent to one of the clauses outputted
by GenPI, and more specifically to a clause outputted by GenPI which is a disjunction of
3-literals (because of Theorem 2). We remark that the set C is composed of exactly those
candidate clauses which are disjunctions of 3-literals, so π must be equivalent to some clause
in C. But we have just shown that the only element in C which implies λ is λ itself. It follows
that π ≡ λ, which means that λ is a prime implicate of φ.

Theorem 16 Prime implicate recognition is Pspace-hard.

Proof. The reduction is simple: a formula φ is unsatisfiable if and only if 3(a ∧ ¬a) is a prime
implicate of φ. This suffices as the problem of checking the unsatisfiability of formulae in K is
known to be Pspace-complete.

Theorem 17 Prime implicate recognition is in Expspace.

Proof. Consider the following algorithm for determining whether a clause λ is a prime implicate
of φ: check for each clause λ′ of length at most 2|φ| ∗ 2|φ| + (2|φ| − 1) which is an implicate of
φ whether both λ′ |= λ and λ 6|= λ′. If there is some λ′ satisfying these conditions, return no,
otherwise return yes. Notice that if this algorithm returns yes, then there is no implicate of
length at most 2|φ| ∗ 2|φ| + (2|φ| − 1) that is strictly stronger than λ, and hence by Corollary
11 no strictly stronger implicate of any length, making λ a prime implicate. If the algorithm
returns no, then we have found a clause implied by φ which is strictly stronger than λ, so λ
is not a prime implicate. The algorithm is thus both correct and complete. As the algorithm
consists solely in testing the satisfiability and unsatisfiability of formulae having length at most
singly-exponential in |φ| + |λ|, and both tasks can be accomplished in polynomial space in the
size of the input, the algorithm can be executed in exponential space.

We will need the following two lemmas for Theorem 18:

Lemma 18.1 Let φ be a formula of K, and let λ = γ1∨...∨γk∨3ψ1∨...∨3ψm∨2χ1∨...∨2χn be
a non-tautologous clause. Suppose furthermore that there is no literal l in λ such that λ ≡ λ\{l}.
If λ ∈ Π(φ), then γ1 ∨ ... ∨ γk ∈ Π(φ ∧ ¬(λ \ {γ1, ..., γk})) and 3(ψ1 ∨ ... ∨ ψn) ∈ Π(φ ∧ ¬(λ \
{3ψ1, ...,3ψm})) and for every i, 2(χi ∧ ¬ψ1 ∧ ... ∧ ¬ψm) ∈ Π(φ ∧ ¬(λ \ {2χi})).

Proof. We will prove the contrapositive: if γ1 ∨ ... ∨ γk 6∈ Π(φ ∧ ¬(λ \ {γ1, ..., γk})) or 3(ψ1 ∨
... ∨ ψn) 6∈ Π(φ ∧ ¬(λ \ {3ψ1, ...,3ψm})) or there is some i for which 2(χi ∧ ¬ψ1 ∧ ... ∧ ¬ψm) 6∈
Π(φ ∧ ¬(λ \ {2χi})), then λ 6∈ Π(φ). We will only consider the case where φ |= λ because if
φ 6|= λ then we immediately get λ 6∈ Π(φ).

Let us first suppose that γ1 ∨ ...∨ γk 6∈ Π(φ∧¬(λ \ {γ1, ..., γk})). Since φ |= λ, we must also
have φ∧¬(λ\{γ1, ..., γk}) |= γ1∨ ...∨γk, so γ1∨ ...∨γk is an implicate of φ∧¬(λ\{γ1, ..., γk}). As
γ1∨...∨γk is known not to be a prime implicate of φ∧¬(λ\{γ1, ..., γk}), it follows that there must
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be some clause λ′ such that φ∧¬(λ \ {γ1, ..., γk}) |= λ′ |= γ1 ∨ ...∨ γk 6|= λ′. Consider the clause
λ′′ = λ′∨3ψ1∨ ...∨3ψm∨2χ1∨ ...∨2χn. We know that φ |= λ′′ since φ∧¬(λ\{γ1, ..., γk}) |= λ′

and that λ′′ |= λ since λ′ |= γ1 ∨ ... ∨ γk. We also have that λ 6|= λ′′ since λ′ must be equivalent
to a propositional clause (by Theorem 2) and the propositional part of λ does not imply λ′. It
follows then that φ |= λ′′ |= λ 6|= λ′′, so λ 6∈ Π(φ).

Next suppose that 3(ψ1 ∨ ... ∨ ψn) 6∈ Π(φ ∧ ¬(λ \ {3ψ1, ...,3ψm})). Now 3(ψ1 ∨ ... ∨ ψn)
must be an implicate of φ ∧ ¬(λ \ {3ψ1, ...,3ψm}) since we have assumed that φ |= λ. As
3(ψ1 ∨ ... ∨ ψn) is not a prime implicate of φ ∧ ¬(λ \ {3ψ1, ...,3ψm}), it follows that there
is some λ′ such that φ ∧ ¬(λ \ {3ψ1, ...,3ψm}) |= λ′ |= 3(ψ1 ∨ ... ∨ ψn) 6|= λ′. Let λ′′ =
γ1 ∨ ...∨ γk ∨λ′ ∨2χ1 ∨ ...∨2χn. Because of Theorem 2, we know that λ′ is a disjunction of 3-
literals, so according to Theorem 3 we must have λ 6|= λ′′ since 3(ψ1∨...∨ψn) 6|= λ′. We also know
that φ |= λ′′ since φ ∧ ¬(λ \ {3ψ1, ...,3ψm}) |= λ′ and that λ′′ |= λ since λ′ |= 3(ψ1 ∨ ... ∨ ψn).
That means that φ |= λ′′ |= λ 6|= λ′′, so λ 6∈ Π(φ).

Finally consider the case where there is some i for which 2(χi ∧ ¬ψ1 ∧ ... ∧ ¬ψm) 6∈ Π(φ ∧
¬(λ \ {2χi})). We know that φ |= λ and hence that φ ∧ ¬(λ \ {2χi}) |= 2χi. Moreover, since
¬(λ \ {2χi}) |= ¬3ψj for all j, we have φ ∧ ¬(λ \ {2χi}) |= 2(χi ∧ ¬ψ1 ∧ ... ∧ ¬ψm). Thus, if
2(χi ∧ ¬ψ1 ∧ ... ∧ ¬ψm) 6∈ Π(φ ∧ ¬(λ \ {2χi})), it must mean that there is some λ′ such that
φ ∧ ¬(λ \ {2χi}) |= λ′ |= 2(χi ∧ ¬ψ1 ∧ ... ∧ ¬ψm) 6|= λ′. By assumption, λ is not a tautology,
so 2(χi ∧ ¬ψ1 ∧ ... ∧ ¬ψm) cannot be a tautology either. As λ′ |= 2(χi ∧ ¬ψ1 ∧ ... ∧ ¬ψm) and
2(χi ∧ ¬ψ1 ∧ ... ∧ ¬ψm) is not a tautology, it follows from Theorem 2 that λ′ is equivalent to
some formula 2ζ1 ∨ ...∨2ζp. Let λ′′ = γ1 ∨ ...∨γk ∨3ψ1 ∨ ...∨3ψm ∨2χ1 ∨ ...∨2χi−1 ∨ (2ζ1 ∨
... ∨ 2ζp) ∨ 2χi+1 ∨ ... ∨ 2χn. As φ ∧ ¬(λ \ {2χi}) |= 2ζ1 ∨ ... ∨ 2ζp, it must be the case that
φ |= λ′′. Also, we know that there can be no j such that χi |= ζj∨ψ1∨ ...∨ψm because otherwise
we would have 2(χi ∧ ¬ψ1 ∧ ... ∧ ¬ψm) |= 2ζ1 ∨ ... ∨2ζp. Similarly, there can be no k 6= i such
that 2χi |= 2(χk ∨ ψ1 ∨ ... ∨ ψm) because this would mean that λ ≡ λ \ {2χi}, contradicting
one of our assumptions. It follows then by Theorem 3 that λ 6|= λ′′. Thus, φ |= λ′′ |= λ 6|= λ′′,
which means λ 6∈ Π(φ).

Lemma 18.2 Let φ be a formula of K, and let λ = γ1∨...∨γk∨3ψ1∨...∨3ψm∨2χ1∨...∨2χn be
a non-tautologous clause. Suppose furthermore that there is no literal l in λ such that λ ≡ λ\{l}.
Then if λ 6∈ Π(φ), either γ1∨...∨γk 6∈ Π(φ∧¬(λ\{γ1, ..., γk})) or 3(ψ1∨...∨ψm) 6∈ Π(φ∧¬(γ1∨...∨
γk∨2(χ1∨ψ1∨...∨ψm)∨...∨2(χn∨ψ1∨...∨ψm))) or 2(χi∧¬ψ1∧...∧¬ψm) 6∈ Π(φ∧¬(λ\{2χi}))
for some i.

Proof. We will only consider the case where φ |= λ because if φ 6|= λ then we immediately get
the result. Suppose then that λ 6∈ Π(φ) and φ |= λ. By Definition 6, there must be some
λ′ = γ′1 ∨ ...γ′o ∨3ψ′1 ∨ ... ∨3ψ′p ∨2χ′1 ∨ ... ∨2χ′q such that φ |= λ′ |= λ 6|= λ′. Since λ 6|= λ′, by
Proposition 3 we know that either γ1 ∨ ... ∨ γk 6|= γ′1 ∨ ... ∨ γ′o or ψ1 ∨ ... ∨ ψm 6|= ψ′1 ∨ ... ∨ ψ′p or
there is some i for which χi 6|= χ′j ∨ ψ′1 ∨ ... ∨ ψ′p for all j.

We begin with the case where γ1 ∨ ... ∨ γk 6|= γ′1 ∨ ... ∨ γ′o. As λ′ |= λ, by Theorem 3,
ψ′1 ∨ ...∨ψ′p |= ψ1 ∨ ...∨ψm and for every i there is some j such that χ′i |= ψ1 ∨ ...∨ψm ∨ χj . It
follows then (also by Theorem 3) that λ′ |= γ′1 ∨ ... ∨ γ′o ∨3ψ1 ∨ ...3ψm ∨ 2χ1 ∨ ... ∨ 2χn, and
hence that φ ∧ ¬(λ \ {γ1, ..., γk}) |= γ′1 ∨ ... ∨ γ′o. As γ′1 ∨ ... ∨ γ′o |= γ1 ∨ ... ∨ γk 6|= γ′1 ∨ ... ∨ γ′o,
we have found an implicate of φ ∧ ¬(λ \ {γ1, ..., γk}) which is stronger than γ1 ∨ ... ∨ γk, so
γ1 ∨ ... ∨ γk 6∈ Π(φ ∧ ¬(λ \ {γ1, ..., γk})).
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Next suppose that ψ1 ∨ ... ∨ ψm 6|= ψ′1 ∨ ... ∨ ψ′p. As λ′ |= λ, it follows from Theorem 3 that
γ′1∨ ...∨γ′o |= γ1∨ ...∨γk and that for every i there is some j such that χ′i |= ψ1∨ ...∨ψm∨χj . We
thereby obtain φ |= λ′ |= γ1∨...∨γk∨3ψ′1∨...∨3ψ′p∨2(χ1∨ψ1∨...∨ψm)∨...∨2(χn∨ψ1∨...∨ψm).
From this, we can infer that φ∧¬(γ1∨ ...∨γk∨2(χ1∨ψ1∨ ...∨ψm)∨ ...∨2(χn∨ψ1∨ ...∨ψm)) |=
3ψ′1 ∨ ...∨3ψ′p |= 3ψ1 ∨ ...∨3ψm 6|= 3ψ′1 ∨ ...∨3ψ′p. As 3ψ1 ∨ ...∨3ψm ≡ 3(ψ1 ∨ ...∨ψm), it
follows that 3(ψ1∨...∨ψm) 6∈ Π(φ∧¬(γ1∨...∨γk∨2(χ1∨ψ1∨...∨ψm)∨...∨2(χn∨ψ1∨...∨ψm))).

Finally suppose that χi 6|= χ′j ∨ ψ′1 ∨ ... ∨ ψ′p for all j and furthermore that ψ1 ∨ ... ∨ ψm |=
ψ′1 ∨ ... ∨ ψ′p (we have already shown the result holds when ψ1 ∨ ... ∨ ψm 6|= ψ′1 ∨ ... ∨ ψ′p). Now
2(χi∧¬ψ1∧ ...∧¬ψm) is an implicate of φ∧¬(λ\{2χi})) so to show that 2(χi∧¬ψ1∧ ...∧¬ψm)
is not a prime implicate of φ ∧ ¬(λ \ {2χi})), we must find some stronger implicate. If φ |=
λ \ {2χi}, then φ ∧ ¬(λ \ {2χi})) |= ⊥ so any contradictory clause is a stronger implicate than
2(χi ∧ ¬ψ1 ∧ ... ∧ ¬ψm). If instead we have φ 6|= λ \ {2χi}, then consider the clause

∨
s∈S 2χ′s

where S = {s ∈ {1, ..., q} : χ′s |= χi∨ψ1∨ ...∨ψm and χ′s 6|= χk∨ψ1∨ ...∨ψm for k 6= i}. We note
that there must be at least one element in S as φ 6|= λ\{2χi}. Now since γ′1∨...∨γ′o |= γ1∨...∨γk,
ψ′1∨ ...∨ψ′p |= ψ1∨ ...∨ψm, for every s 6∈ S there is some r 6= i such that χ′s |= χr ∨ψ1∨ ...∨ψm,
and χ′s |= χ′s for s ∈ S, we get φ |= λ′ |= γ1∨ ...∨γk∨3ψ1∨ ...∨3ψm∨ (

∨
j 6=i 2χj)∨ (

∨
s∈S 2χ′s).

It follows that φ∧¬(λ \ {2χi}) |=
∨
s∈S 2(χ′s ∧¬ψ1 ∧ ...∧¬ψm), which means that

∨
s∈S 2(χ′s ∧

¬ψ1 ∧ ...∧¬ψm) is an implicate of φ∧¬(λ \ {2χi}). Moreover,
∨
s∈S 2(χ′s ∧¬ψ1 ∧ ...∧¬ψm) |=

2(χi ∧ ¬ψ1 ∧ ... ∧ ¬ψm) since by construction χ′s |= χi ∨ ψ1 ∨ ... ∨ ψm for every s ∈ S.
It remains to be shown that 2(χi∧¬ψ1∧ ...∧¬ψm) 6|=

∨
s∈S 2(χ′s∧¬ψ1∧ ...∧¬ψm). Suppose

for a contradiction that the contrary holds. Then 2(χi ∧¬ψ1 ∧ ...∧¬ψm) |=
∨
s∈S 2(χ′s ∧¬ψ1 ∧

...∧¬ψm), so by Theorem 1, there must be some s ∈ S for which χi∧¬ψ1∧...∧¬ψm |= χ′s∧¬ψ1∧

...∧¬ψm. But then χi |= χ′s∨ψ1∨ ...∨ψm, and thus χi |= χ′s∨ψ′1∨ ...∨ψ′p since we have assumed
ψ1 ∨ ...∨ψm |= ψ′1 ∨ ...∨ψ′p. This contradicts our earlier assumption that χi 6|= χ′j ∨ψ′1 ∨ ...∨ψ′p
for all j. Thus, we have shown that 2(χi ∧ ¬ψ1 ∧ ... ∧ ¬ψm) 6|=

∨
s∈S 2(χ′s ∧ ¬ψ1 ∧ ... ∧ ¬ψm),

so 2(χi ∧ ¬ψ1 ∧ ... ∧ ¬ψm) 6∈ Π(φ ∧ ¬(λ \ {2χi})).

Theorem 18 Let φ be a formula of K, and let λ = γ1∨ ...∨γk∨3ψ1∨ ...∨3ψn∨2χ1∨ ...∨2χm
be a non-tautologous clause such that (a) χi ≡ χi ∨ ψ1 ∨ ... ∨ ψn for all i, and (b) there is no
literal l in λ such that λ ≡ λ \ {l}. Then λ ∈ Π(φ) if and only if the following conditions hold:

1. γ1 ∨ ... ∨ γk ∈ Π(φ ∧ ¬(λ \ {γ1, ..., γk}))

2. 2(χi ∧ ¬ψ1 ∧ ... ∧ ¬ψn) ∈ Π(φ ∧ ¬(λ \ {2χi})) for every i

3. 3(ψ1 ∨ ... ∨ ψn) ∈ Π(φ ∧ ¬(λ \ {3ψ1, ...,3ψn}))

Proof. The forward direction was shown in Lemma 18.1. The other direction follows from
Lemma 18.2 together with the hypothesis that χi ≡ χi∨ψ1∨ ...∨ψn for all i (which ensures that
φ∧¬(γ1∨...∨γk∨2(χ1∨ψ1∨...∨ψm)∨...∨2(χn∨ψ1∨...∨ψm)) ≡ φ∧¬(λ\{3ψ1, ...,3ψn})).

Theorem 19 Let φ be a formula of K, and let γ be a non-tautologous propositional clause such
that φ |= γ and such that there is no literal l in γ such that γ ≡ γ \ {l}. Then γ ∈ Π(φ) if and
only if φ 6|= γ \ {l} for all l in γ.

Proof. Consider a formula φ and a non-tautologous propositional clause λ such that φ |= λ and
such that there is no literal l in λ such that λ ≡ λ\{l}. Suppose that φ |= λ\{l} for some l in λ.
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As we know that λ 6≡ λ \ {l}, it follows that λ \ {l} is an implicate of φ which is strictly stronger
than λ, so λ is not a prime implicate of φ. For the other direction, suppose that λ 6∈ Π(φ). Then
it must be the case that there is some clause ρ such that φ |= ρ |= λ 6|= ρ. Since ρ |= λ, it follows
from Theorem 2 that each literal in ρ is a propositional literal of λ or is inconsistent. If all of
the literals in ρ are inconsistent, then both ρ and φ must be inconsistent, so clearly φ |= γ \ {l}
for every l in γ. Otherwise, ρ is equivalent to a propositional clause, and more specifically to a
propositional clause containing only those literals appearing in λ (since ρ |= λ). As ρ is strictly
stronger than λ, there must be some literal l in λ which does not appear in ρ. But that means
ρ |= λ \ {l} and so φ |= λ \ {l}, completing the proof.

Theorem 20 Let φ be a formula of K, and let λ = 2χ be a non-tautologous clause such that
φ |= λ. Then λ ∈ Π(φ) if and only if there exists some term T ∈Dnf-4(φ) such that χ |= βT ,
where βT is the conjunction of formulae ψ such that 2ψ is in T .

Proof. Let φ be some formula, and let λ = 2χ be a non-tautologous clause such that φ |= λ.
For the first direction, suppose that there is no term T ∈Dnf-4(φ) such that χ |= βT , where βT
is the conjunction of formulae ψ such that 2ψ is in T . There are two cases: either there are no
terms in Dnf-4(φ) because φ is unsatisfiable, or there are terms but none satisfy the condition.
In the first case, 2χ is not a prime implicate of φ, since any contradictory clause (e.g. 3(a∧¬a))
is stronger. In the second case, consider the clause λ′ =

∨
T 2βT , where βT is the conjunction

of formulae ψ such that 2ψ is in T . Now for every T we must have 2βT |= 2χ, otherwise we
would have T 6|= 2χ, and hence φ 6|= 2χ. Moreover, φ |=

∨
T 2βT since T |= 2βT for every T .

But by Theorem 1, 2χ 6|=
∨
T 2βT since χ 6|= βT for all T . So we have φ |= λ′ |= λ 6|= λ′, which

means that λ is not a prime implicate of φ.
For the other direction, suppose that 2χ is not a prime implicate of φ and that φ 6|= ⊥.

Then Dnf-4(φ) is non-empty. As φ |= 2χ, we must have T |= 2χ for all T ∈Dnf-4(φ), so∨
T 2βT also implies 2χ. We now show that

∨
T 2βT is a prime implicate of T . We let κ be

some clause which implies
∨
T 2βT . Now since κ |=

∨
T 2βT it follows from Theorem 2 that

κ ≡ 2ζ1 ∨ ... ∨ 2ζn for some formulae ζi. As φ |= κ, we must have T |= 2ζ1 ∨ ... ∨ 2ζn for all
T ∈Dnf-4(φ). But that can only be the case if 2βT |= 2ζ1 ∨ ... ∨ 2ζn for all T , which means∨
T 2βT |= 2ζ1∨ ...∨2ζn. As

∨
T 2βT implies every implicate of φ that implies it,

∨
T 2βT must

be a prime implicate of φ. But this means that 2χ 6|=
∨
T 2βT , since we have assumed that 2χ

is not a prime implicate of φ. It follows from Theorem 1 that χ 6|= βT for all T ∈Dnf-4(φ).

In order to show Theorem 21 we will need the following lemmas:

Lemma 21.1 If 3ψ is not a prime implicate of φ with respect to D4, the algorithm Test3PI
returns no on input (3ψ, φ).

Proof. Suppose that 3ψ is not a prime implicate of φ. Then either 3ψ is not an implicate of
φ (in which case the algorithm immediately returns no), or there must be some clause λ such
that φ |= λ |= 3ψ but 3ψ 6|= λ. As λ |= 3ψ, it follows from Theorem 2 that λ is equivalent to
a disjunction of 3-formulae, and hence to some clause 3ψ′.

We know from Lemma A.2 that φ is equivalent to the disjunction of terms in Dnf-4(φ).
It must thus be the case that Ti |= 3ψ′ for all Ti ∈ Dnf-4(φ). Since each Ti is a satisfiable
conjunction of propositional literals and formulae of the forms 3σ and 2σ, it follows that there
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exists a set {3ηi,2µi,1, ...,2µi,k(i)} of conjuncts of Ti such that 3(ηi ∧ µi,1 ∧ ...∧ µi,k(i)) |= 3ψ′,
otherwise Ti would fail to imply 3ψ′. Moreover, all of the elements of {3ηi,2µi,1, ...,2µi,k(i)}
must appear in the NNF of φ outside modal operators so the formulae ηi, µi,1, ..., µi,k(i) must all
be elements of the set X . It is immediate that both

3
∨
i

(ηi ∧ µi,1 ∧ ... ∧ µi,k(i)) |= 3ψ′ |= 3ψ (1)

and
3ψ 6|= 3

∨
i

(ηi ∧ µi,1 ∧ ... ∧ µi,k(i)) (2)

The latter implies that the formula 3ψ ∧ ¬(3
∨
i(ηi ∧ µi,1 ∧ ... ∧ µi,k(i))) must be consistent,

which means that

ψ ∧ ¬(
∨
i

(ηi ∧ µi,1 ∧ ... ∧ µi,k(i)))

≡ ψ ∧
∧
i

(¬ηi ∨ ¬µi,1 ∨ ... ∨ ¬µi,k(i)))

must be consistent as well. But then it must be the case that we can select for each i some
σi ∈ {ηi, µi,1, ..., µi,k(i)} such that ψ ∧

∧
i ¬σi is consistent. Let S be the set of σi. The set S

satisfies the condition of the algorithm since:

• S ⊆ X

• ψ 6|=
∨
σ∈S σ (because we know ψ ∧

∧
i ¬σi to be consistent)

• for each Ti ∈ Dnf-4(φ), we have found a set {3ηi,2µi,1, ...,2µi,k(i)} ⊆ Ti such that:

– {ηi, µi,1, ..., µi,k(i)} ∩ S 6= ∅ (since S contains σi ∈ {ηi, µi,1, ..., µi,k(i)})
– 3(ηi ∧ µi,1 ∧ ... ∧ µi,k(i)) |= 3ψ (follows from (1) above)

Since there exists a set S ⊆ X satisfying these conditions, the algorithm returns no.

Lemma 21.2 If the algorithm Test3PI returns no on input (3ψ, φ), then 3ψ is not a prime
implicate of φ with respect to D4.

Proof. There are two cases in which the algorithm returns no: either φ 6|= 3ψ, or there is some
S ⊆ X which satisfies both conditions (a) and (b). In the first case, 3ψ is clearly not a prime
implicate. We now examine the second case in more detail.

Suppose that there is some S ⊆ X satisfying:
(a) ψ 6|=

∨
λ∈S λ

(b) for each Ti ∈ Dnf-4(φ), there exists {3ηi,2µi,1, ...,2µi,k(i)} ⊆ Ti
such that:
(i) {ηi, µi,1, ..., µi,k(i)} ∩ S 6= ∅
(ii) 3(ηi ∧ µi,1 ∧ ... ∧ µi,k(i)) |= 3ψ

Let α be the clause
∨
i 3(ηi ∧ µi,1 ∧ ... ∧ µi,k(i)). We remark that for each Ti, we have Ti |=
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3(ηi ∧ µi,1 ∧ ... ∧ µi,k(i)), and hence
∨
i Ti |=

∨
i 3(ηi ∧ µi,1 ∧ ... ∧ µi,k(i)). From the definition of

Dnf-4(φ), we also have φ ≡
∨
i Ti. It immediately follows that φ |=

∨
i 3(ηi ∧ µi,1 ∧ ... ∧ µi,k(i))

and hence φ |= α. From 2 (b) (ii), we have that 3(ηi ∧ µi,1 ∧ ... ∧ µi,k(i)) |= 3ψ for every
i, and hence

∨
i 3(ηi ∧ µi,1 ∧ ... ∧ µi,k(i)) |= 3ψ which yields α |= 3ψ. From 2 (b) (i), we

have that {ηi, µi,1, ..., µi,k(i)} ∩ S 6= ∅ and hence that for every i there is some λ ∈ S such that
ηi ∧ µi,1 ∧ ... ∧ µi,k(i) |= λ. From this we can infer that

∨
i 3(ηi ∧ µi,1 ∧ ... ∧ µi,k(i)) |=

∨
λ∈S 3λ,

and hence α |= 3
∨
λ∈S λ. But we know from 2 (a) and Theorem 1 that 3ψ 6|= 3

∨
λ∈S λ. It

follows then that 3ψ 6|= α. Putting all this together, we see that there exists a clause α such
that φ |= α |= 3ψ but 3ψ 6|= α, and hence that 3ψ is not a prime implicate of φ.

Theorem 21 Let φ be a formula, and let 3ψ be an implicate of φ. Then the algorithm Test3PI
returns yes on input (3ψ, φ) if and only if 3ψ is a prime implicate of φ.

Proof. It is clear that Test3PI terminates since unsatisfiability testing and the NNF transfor-
mation always terminate, and there are only finitely many S and Ti. Lemmas 21.1 and 21.2
show us that the algorithm always gives the correct response.

Theorem 22 The algorithm Test3PI runs in polynomial space.

Proof. Checking whether φ |= 3ψ can obviously be done in polynomial space in the length of
|φ| and |ψ| using standard unsatisfiability algorithms. We next remark that the sum of the
lengths of the elements in X is bounded by the length of the formula Nnf(φ), and hence by
Lemma A.3 the sum of the lengths of the elements of a particular S ⊆ X cannot exceed 2|φ|.
Testing whether ψ 6|=

∨
λ∈S λ can thus be accomplished in polynomial space in the length of φ

and ψ as it involves testing the satisfiability of the formula ψ ∧
∧
λ∈S ¬λ whose length is clearly

polynomial in φ and ψ.
Now let us turn to Step 2 (b). We notice that it is not necessary to keep all of the Ti in memory

at once, since we can generate and test the Ti one at a time. By Lemma A.3, the length of any
Ti in Dnf-4(φ) can be at most 2|φ|. It follows that checking whether {ηi, µi,1, ..., µi,k(i)}∩S 6= ∅,
or whether 3(ηi ∧ µi,1 ∧ ...∧ µi,k(i)) |= 3ψ can both be accomplished in polynomial space in the
length of φ and ψ. We conclude that the algorithm Test3PI runs in polynomial space.

In order to show Theorem 25, we use the following lemmas:

Lemma 25.1 If λ is a clause that is not a prime implicate of φ, then TestPI outputs no on
this input.

Proof. Let us begin by considering a formula λ which is a clause but that is not a prime implicate
of φ. There are two possible reasons for this: either λ is not an implicate of φ, or it is an
implicate but there exists some stronger implicate. In the first case, TestPI returns no in Step
1, as desired. We will now focus on the case where λ is an implicate but not a prime implicate.
We begin by treating the limit cases where one or both of φ and λ is a tautology or contradiction.
Given that we know λ to be a non-prime implicate of φ, there are only two possible scenarios:
either 6|= φ and |= λ, or φ |= ⊥ and λ 6|= ⊥. In both cases, the algorithm returns no in Step 2.

If λ is an implicate of φ, and neither φ nor λ is a tautology or contradiction, then the
algorithm will continue on to Step 3. In this step, any redundant literals will be deleted from
λ, and if λ contains 3-literals, we add an extra disjunct to the 2-literals so that λ satisfies the
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syntactic requirements of Theorem 18. Let γ1 ∨ ...γk ∨3ψ1 ∨ ...∨3ψm ∨2χ1 ∨ ...∨2χn be the
clause λ at the end of Step 3 once all modifications have been made. As the transformations in
Step 3 are equivalence-preserving (Theorem 1), the modified λ is equivalent to the original, so
λ is still a non-tautologous non-prime implicate of φ. This means φ and λ now satisfy all of the
conditions of Theorem 18. It follows then that one of the following holds:

(a) γ1 ∨ ... ∨ γk 6∈ Π(φ ∧ ¬(λ \ {γ1, ..., γk})

(b) 2(χi ∧ ¬ψ1 ∧ ... ∧ ¬ψn) 6∈ Π(φ ∧ ¬(λ \ {2χi})) for some i

(c) 3(ψ1 ∨ ... ∨ ψn) 6∈ Π(φ ∧ ¬(λ \ {3ψ1, ...,3ψn}))

Suppose that (a) holds. Now γ1 ∨ ... ∨ γk is a non-tautologous propositional clause implied by
φ∧¬(λ\{γ1, ..., γk}) which contains no redundant literals. This means that φ∧¬(λ\{γ1, ..., γk})
and γ1 ∨ ... ∨ γk satisfy the conditions of Theorem 19. According to this theorem, as γ1 ∨ ... ∨
γk 6∈ Π(φ ∧ ¬(λ \ {γ1, ..., γk}), then there must be some γj such that φ ∧ ¬(λ \ {γ1, ..., γk}) |=
γ1 ∨ ... ∨ γj−1 ∨ γj+1 ∨ ... ∨ γk. This means that φ |= λ \ {γj}, so the algorithm returns no in
Step 4.

Suppose next that (b) holds, and let i be such that 2(χi∧¬ψ1∧...∧¬ψn) 6∈ Π(φ∧¬(λ\{2χi})).
By Theorem 20, this means that there is no T ∈Dnf-4(φ) such that χi ∧¬ψ1 ∧ ...∧¬ψn |= βT ,
so the algorithm returns no in Step 5.

Finally consider the case where neither (a) nor (b) holds but (c) does. Then in Step 6, we will
call Test3PI(3(

∨m
i=1 ψi), φ∧¬(λ\{3ψ1, ...,3ψm})). As 3(

∨m
i=1 ψi) is not a prime implicate of

φ∧¬(λ \ {3ψ1, ...,3ψm})) and we have shown Test3PI to be correct (Theorem 21), Test3PI
will return no, so the TestPI will return no as well. As we have covered each of the possible
cases, we can conclude that if λ is a clause that is not a prime implicate of φ with respect to
D4, then TestPI outputs no.

Lemma 25.2 If TestPI outputs no with input (λ, φ) and λ is a clause, then λ is not a prime
implicate of φ.

Proof. There are 5 different ways to return no (these occur in Steps 1, 2, 4, 5, and 6). Let
us consider each of these in turn. The first way that the algorithm can return no is in Step
1 if we find that φ 6|= λ. This is correct since λ cannot be a prime implicate if it is not a
consequence of φ. In Step 2, we return no if φ is unsatisfiable but λ is not, or if λ is a tautology
but φ is not. This is also correct since in both cases λ cannot be a prime implicate since
there exist stronger implicates (any contradictory clause if φ ≡ ⊥, and any non-tautologous
implicate of φ if λ ≡ >). In Step 3, we may modify λ, but the resulting formula is equivalent
to the original, and so it is a prime implicate just in the case that the original clause was. Let
γ1∨ ...γk∨3ψ1∨ ...∨3ψm∨2χ1∨ ...∨2χn be the clause at the end of Step 3. Now in Step 4, we
return no if we find some propositional literal l in λ for which φ |= λ \ {l}. Now since in Step 3,
we have removed redundant literals from λ, we can be sure that λ \ {l} is strictly stronger than
λ. So we have φ |= λ \ {l} |= λ and λ 6|= λ \ {l}, which means that λ is not a prime implicate of
φ. We now consider Step 5 of TestPI. In this step, we return no if for some literal 2χi there
is no term Ti in Dnf-4(φ ∧ ¬(λ \ {2χi})) for which 2(χi ∧ ¬ψ1 ∧ ... ∧ ¬ψk) is equivalent to the
conjunction of 2-literals in Ti. According to Theorem 20, this means that 2(χi∧¬ψ1∧ ...∧¬ψk)
is not a prime implicate of φ∧¬(λ\{2χi}), which means that λ is not a prime implicate of φ by
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Theorem 18. Finally let us consider Step 6. In this step, we return no if Test3PI returns no
on input (3(

∨k
i=1 ψi), φ ∧ ¬(λ \ {3ψ1, ...,3ψm})). By Theorem 21, we know that this happens

just in the case that 3(
∨k
i=1 ψi) is not a prime implicate of φ∧¬(λ\{3ψ1, ...,3ψm}). It follows

from Theorem 18 that λ is not a prime implicate of φ.

Theorem 25 The algorithm TestPI always terminates, and it returns yes on input (λ, φ) if
and only if λ is a prime implicate of φ.

Proof. The algorithm TestPI clearly terminates because Steps 1 to 5 involve a finite number
of syntactic operations on λ and a finite number of entailment checks. Moreover, the call to
Test3PI in Step 6 is known to terminate (Theorem 21). Correctness and completeness have
already been shown in Lemmas 25.1 and 25.2.

We make use of the following lemma in the proof of Theorem 27:

Lemma 27.1 The algorithm TestPI provided in Figure 4 runs in polynomial space in the length
of the input.

Proof. It is clear that steps (1) through (5) can be carried out in polynomial space in the length
of the input, since they simply involve testing the satisfiability of formulae whose lengths are
polynomial in |λ|+ |φ|. Step (6) can also be carried out in polynomial space since by Theorem
22 deciding whether the formula 3(

∨k
i=1 ψi) is a prime implicate of φ∧¬(λ\{ψ1, ..., ψk})) takes

only polynomial space in |3(
∨k
i=1 ψi)| + |φ ∧ ¬(λ \ {3ψ1, ...,3ψk}))|, and hence in |λ| + |φ|.

We can thus conclude that the algorithm TestPI runs in polynomial space in the length of the
input.

Theorem 27 Prime implicate recognition is in Pspace.

Proof. We have show in Theorem 25 that TestPI always terminates and returns yes whenever
the clause is a prime implicate and no otherwise. This means that TestPI is a decision procedure
for prime implicate recognition. Since the algorithm has been shown to run in polynomial space
(Lemma 27.1), we can conclude that prime implicate recognition is in Pspace.

Corollary 28 Prime implicate recognition is Pspace-complete.

Proof. Follows directly from Theorems 16 and 27.
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