
Prime Implicate Normal Form for ALC Concepts

Meghyn Bienvenu
IRIT-UPS, 118 route de Narbonne,

31062 Toulouse Cedex, France

IRIT Research Report IRIT/RR–2008-6–FR

April 2008

Abstract

In this paper, we present a normal form for concept expressions
in the description logic ALC which is based on a recently introduced
notion of prime implicate for the modal logic K. We show that con-
cepts in prime implicate normal form enjoy a number of interesting
properties. For one thing, they do not contain any unnecessary atomic
concepts or roles. Not only does this make the concept more readable
but it also helps us to identify the parts of a concept which are rele-
vant to a given subject matter. Another feature of concepts in prime
implicate normal form is that they can be easily approximated over a
sublanguage or up to a fixed depth. These operations may prove useful
when a concept description is too large to be fully understood or when
data needs to be exchanged between systems using different languages.
Perhaps the most remarkable property of prime implicate normal form
is that subsumption between ALC concepts in this form can be carried
out in quadratic time using a simple structural subsumption algorithm
reminiscent of those used for less expressive description logics. This
property makes prime implicate normal form interesting for the pur-
poses of knowledge compilation. Of course, in order to take advantage
of all of these nice properties, we need a way to transform concepts
into equivalent concepts in prime implicate normal form. We provide
a sound and complete algorithm for putting concepts into prime im-
plicate normal form, and we investigate the spatial complexity of this
transformation, showing there to be an at most doubly-exponential
blowup in concept size. At the end of the paper, we compare prime
implicate normal form to two other normal forms for ALC concepts
that have been proposed in the literature, discussing the relative mer-
its of the different approaches.

1

1 Introduction

It is well-known that standard reasoning tasks are intractable for proposi-
tional logic, and the complexity of reasoning increases as one moves up to
more expressive logics. Researchers have investigated a variety of strate-
gies for coping with the high computational complexity of reasoning. Some
have looked into restricted languages for which efficient reasoning is possible.
Others have focused their efforts on the development of reasoning algorithms
which perform well in practice, even if the worst-case complexity remains
high. Still others have advocated the use of knowledge compilation [8], in
which a knowledge base is put into a normal form which admits polytime
querying, the idea being that the cost of the initial preprocessing will be
offset by the computational savings made on later queries.

In the description logics community, the first two strategies have been
privileged, while the third strategy, knowledge compilation, has remained
largely unexplored. The likely explanation for this phenomenon is not a
lack of interest on the part of this community but the simple fact that there
have been no normal forms proposed in the literature which yield tractable
reasoning for any reasonably expressive description logic.

Our paper aims to help remedy this situation by showing how prime im-
plicate normal form, a well-studied normal form for propositional logic which
has been influential in AI, can be extended to concept expressions in the de-
scription logic ALC. The starting point for this paper is our recent study
[4, 5] of prime implicates for the modal logic K, a known notational variant
of ALC. While the definition of prime implicates proposed in [4, 5] does not
immediately yield a suitable notion of prime implicate normal form, it will
play a key role in the definition we propose later in this paper. Concepts
in our normal form can be shown to be much better behaved computation-
ally than arbitrary ALC concepts: we can test in constant time whether a
concept in prime implicate normal form is satisfiable or tautologous and in
quadratic time whether two concepts in prime implicate normal form are
equivalent or if one subsumes the other. It is also easy to approximate con-
cepts in prime implicate normal form over a sublanguage or up to a specified
depth. Finally, concepts in prime implicate normal form do not contain any
unnecessary atomic concepts or roles nor do they contain redundant or irrel-
evant subconcepts, properties which make them easier for humans to read
and understand.

Our paper is organized as follows. In the first two sections, we recall the
basics of the description logic ALC and the notion of prime implicates in
ALC. In the following section, we propose a definition of prime implicate

2

normal form for ALC concepts, and we show that concepts in this form
support a variety of polynomial-time queries and transformations. We then
introduce an algorithm for putting concepts into prime implicate normal
form and give some results concerning the spatial complexity of this trans-
formation. At the end of the paper, we provide a detailed comparison of
prime implicate normal form to two other normal forms for ALC concepts,
and then we conclude with a discussion of future work.

2 Preliminaries

In this section, we recall the syntax and semantics of the description logic
ALC as well as other useful notions and notations. We start off with the
syntax of concept expressions in ALC:

Definition 1 (Syntax of ALC). Concept expressions in ALC are defined as
follows:

C ::= > |⊥ |A | ¬C |C u C |C t C | ∀R.C | ∃R.C

where A ranges over atomic concept names, R ranges over atomic role names,
and C ranges over the set of ALC concepts.

In analogy with classical logic, we will say that C1 uC2 is a conjunction
(or intersection) of concepts, and we will call C1 and C2 conjuncts of C1uC2.
Likewise, we will say that D1tD2 is a disjunction (or union) of concepts and
that D1 and D2 are its disjuncts. Where convenient we will abuse notation
and treat conjunction and disjunction as n-ary connectives. A concept is
said to be in negation normal form (NNF) if negation only appears directly
before atomic concepts. The length of a concept C, written |C|, is defined to
be the total number of occurrences of atomic concept and role names in C.
The (role) depth of a concept C, noted δ(C), is defined to be the maximum
number of nested ∃R or ∀R appearing in C. For example, the depth of the
concept (A t ∀R.(A t ∀S.A)) u ∃R.∃S.∃S.A is 3. We will call a concept
propositional if it has depth 0. We define a signature to be any set of atomic
roles and concepts. We define the signature of a concept C, written sig(C),
to be the set of atomic concepts and roles which appear in C. For example,
the signature of the concept ∀R.A u ∃S.B is {R,S,A,B}.

The meaning of ALC concepts is defined via a model-theoretic semantics.
An interpretation (model) I is a pair 〈ΩI , ·I〉, where ΩI is a non-empty set
and ·I is a function mapping each atomic concept A to a set AI ⊆ ΩI and

3

each atomic role R to a relation RI ⊆ ΩI × ΩI . We extend ·I to complex
concepts as follows:

>I = ΩI

⊥I = ∅
(¬C)I = ΩI \ CI

(C uD)I = CI ∩DI

(C tD)I = CI ∪DI

(∀R.C)I = {a ∈ ΩI | ∀b. (a, b) ∈ RI ⇒ b ∈ CI}
(∃R.C)I = {a ∈ ΩI | ∃b. (a, b) ∈ RI and b ∈ CI}

A concept C is said to be satisfiable if there is some interpretation I
for which CI 6= ∅. If there is no such interpretation, then C is said to be
unsatisfiable, and we write |= C v ⊥. A concept C is said to be tautologous,
written |= > v C, just in the case that ¬C is unsatisfiable. We say that a
concept C is subsumed by D (or that D subsumes C), written |= C v D,
if for every model I we have CI ⊆ DI . Concepts C and D are said to be
equivalent, written |= C ≡ D if C subsumes D and D subsumes C.

We finish this section with the definition of L- and n-interpolants.

Definition 2 (L-interpolant). A concept C is said to be the uniform in-
terpolant of a concept D with respect to the signature L, or simply the
L-interpolant of D, if and only if Sig(C) ⊆ L, |= D v C, and |= C v E for
every concept E such that Sig(E) ⊆ L and |= D v E.

L-interpolants (cf. [18]) give us the finest approximation of a concept
over a given signature. This notion is closely related to the notion of forget-
ting which has been extensively studied in propositional setting (cf. [13]):
the result of forgetting a set S of atomic concepts and roles from a concept
C is precisely the Sig(C) \ S-interpolant of C.

Another type of approximation which makes sense for description logics
is approximation up to a specified depth. This notion has not been studied
in propositional logic for obvious reasons.

Definition 3 (n-interpolant). A concept C is the n-interpolant of a concept
D if and only if δ(C) ≤ n, |= D v C, and |= C v E for every concept E
such that δ(E) ≤ n and |= D v E.

It can be trivially shown that L- and n-interpolants are unique up to
equivalence, which is why we can say that a concept is the L- or n-interpolant
of another concept.

4

3 Prime Implicates of ALC Concepts

In this section, we define prime implicates for ALC concepts and point out
some of their key properties. All of the definitions and results in this section
first appeared in [4] for the modal logic K. We have adapted them to ALC
using the well-known correspondence [17] between formulae inK and concept
expressions in ALC. For more details and for proofs of the results in this
section, refer to [5].

Definition 4 (Literal/Clausal/Cubal Concepts). We define literal, clausal,
and cubal concepts as follows:

L ::= > |⊥ |A | ¬A | ∀R.D | ∃R.D
Cl ::= L |Cl t Cl
Cb ::= L |Cb u Cb
D ::= > |⊥ |A | ¬A |D uD |D tD | ∀R.D | ∃R.D

where A ranges over atomic concept names, R ranges over atomic role names,
and L, Cl, and Cb range respectively over the sets of literal concepts, clausal
concepts, and cubal concepts. We will use the term atomic literal concept to
refer to concepts of the form A or ¬A where A is an atomic concept name.

In order to aid the presentation, we introduce the notation Prop(Cl) to
refer to the set of propositional literal concepts which are disjuncts of the
clausal concept Cl, and we will use ∃R(Cl) (respectively ∀R(Cl)) to refer
to the set of concepts C such that ∃R.C (respectively ∀R.C) is a disjunct of
Cl. For example, if Cl = A t ∃R.A t ∃R.B t ∀S.B, then Prop(Cl) = {A},
∃R(Cl) = {A,B}, ∀S(Cl) = {B}, and ∃S(Cl) = ∀R(Cl) = ∅. Abusing
notation, we will also use Prop(Cb), ∃R(Cb), and ∀R(Cb) to refer respec-
tively to the propositional literal concepts which are conjuncts of the cubal
concept Cb, the concepts C such that ∃R(C) is a conjunct of Cb, and the
concepts C such that ∀R.C is a conjunct of Cb. If C is either a clausal or
cubal concept, then we will use Roles∃(C) (respectively Roles∀(C)) to refer
to the set of roles such that ∃R(C) 6= ∅ (respectively ∀R(C) 6= ∅).

Sometimes it will prove convenient to treat clausal concepts as sets of
literal concepts. We use the notation Cl \ {L1, ..., Ln} to refer to the clausal
concept obtained by removing the concepts L1, ..., Ln from the union of
concepts in Cl. Likewise, we write Cl ∪ {L1, ..., Ln} for the clausal concept
which is obtained from Cl by adding the literal concepts L1, ... , Ln to the
union.

We now recall some basic properties of clausal concepts.

5

Proposition 5. Every concept C is equivalent to an intersection of clausal
concepts Cl1 u ... u Cln such that δ(Cli) ≤ δ(C) and Sig(Cli) ⊆ Sig(C) for
all i.

Proposition 6. Let P1,..., Pk be atomic literal concepts, let E, F1, ..., Fn
be concept expressions in ALC, and let R be a role. Then

1. |= ∃R.F1 t ... t ∃R.Fn ≡ ∃R.(F1 t ... t Fn)

2. |= ∃R.Et∀R.F1t ...t∀R.Fn ≡ ∃R.Et∀R.(F1tE)t ...t∀R.(FntE)

3. |= > v P1 t ... t Pk t ∃R.E t ∀R.F1 t ... t ∀R.Fn ⇔
|= > v P1 t ... t Pk or |= > v E t Fi for some i

Proposition 7. Let C and D be clausal concepts. If 6|= > v D, then
|= C v D just in the case the following three conditions hold:

1. Prop(C) ⊆ Prop(D)

2. If R ∈ Roles∃(C), then |=
⊔
E∈∃R(C)E v

⊔
E∈∃R(D)E (or simply

|=
⊔
E∈∃R(C)E v ⊥ if R 6∈ Roles∃(D))

3. If F ∈ ∀R(C), then there is some G ∈ ∀R(D) such that |= F v
G t (

⊔
E∈∃R(D)E) (or simply |= F v G if R 6∈ Roles∃(D))

With a notion of clause in hand, we can define prime implicates just as
in propositional logic.

Definition 8 (Prime implicate). A clausal concept Cl is an implicate of
a concept C if and only if |= C v Cl. A clausal concept Cl is a prime
implicate of C if and only if:

1. Cl is an implicate of C

2. If Cl′ is an implicate of C such that |= Cl′ v Cl, then |= Cl v Cl′

This definition yields the standard notion of prime implicates when re-
stricted to the propositional fragment of ALC. It can also be shown to
satisfy a number of properties of the propositional definition, most notably
finiteness, covering, and equivalence:

Proposition 9 (Finiteness). The number of prime implicates of a concept
is finite modulo logical equivalence.

Proposition 10 (Covering). Every implicate of a concept subsumes some
prime implicate of the concept.

6

Proposition 11 (Equivalence). Every concept is equivalent to the intersec-
tion of its prime implicates.

Proposition 12 (Distribution). Every prime implicate of a disjunction of
concepts is equivalent to some disjunction of prime implicates of its dis-
juncts.

In Figure 1, we present the prime implicate generation algorithm Gen-Pi
from [4, 5] since it will prove useful later in the paper when we design a pro-
cedure for putting a concept into prime implicate normal form. We briefly
recall the functioning of Gen-Pi. In the first step, we check whether the in-
put concept C is unsatisfiable, outputting ⊥ if this is the case. For satisfiable
C, we set T equal to a set of satisfiable cubal concepts whose disjunction is
equivalent to C. We know from the distribution property (Proposition 12)
that every prime implicate of C is equivalent to some disjunction of prime
implicates of the cubal concepts in T . In Step (2) we construct a set ∆(T)
of clausal concepts for each T ∈ T in such a way that every prime implicate
of T is equivalent to some element in ∆(T). This means that in Step (3) we
are guaranteed that every prime implicate of the input concept is equivalent
to some candidate prime implicate in Candidates. During the comparison
phase in Step (4), non-prime candidates are eliminated, and exactly one
prime implicate for each equivalence class will be retained.

Proposition 13. The algorithm Gen-Pi always terminates, and it outputs
exactly the set of prime implicates of the input concept.

By examining the structure of the prime implicates generated by Gen-
Pi, it is possible to place upper bounds on the length of a concept’s prime
implicates and on the number of prime implicates a concept can possess:

Proposition 14. The length of the smallest representation of a prime im-
plicate of a concept C cannot exceed 2n |C| where n is the number of distinct
literal concepts which are subconcepts of C.

Proof. Let C be some concept, and let n be the number of distinct literal
concepts which are subconcepts of C. We remark that each of the cubal
concepts in Dnf(C) is a conjunction of distinct literal subconcepts of C. It
follows then that the number of elements in Dnf(C) cannot exceed 2n and
that each element in Dnf(C) has at most n conjuncts. Moreover, the literal
concepts which appear as conjuncts in the elements in Dnf(C) all appear in
C outside the scope of the role restrictions, which means that the elements
in Dnf(C) must all have length of at most |C|. But in that case, each of

7

the concepts in ∆(T) for some T must have length at most |C| (this follows
from the definition of ∆(T)), so each of the concepts in Candidates must
have length at most 2n |C|. As every prime implicate of C is equivalent to
some concept in Candidates, we can conclude that the length of the smallest
representation of a prime implicate of C is bounded above by 2n |C|.

Proposition 15. The number of non-equivalent prime implicates of a con-
cept C is bounded above by n2n

where n is the number of literal concepts
which are subconcepts of C.

Proof. We have seen in the proof of Proposition 14 that the number of
elements in Dnf(C) cannot exceed 2n and that each element in Dnf(C) has
at most n conjuncts, where n is the number of literal subconcepts of C. As
the number of elements in ∆(T) is bounded by the number of conjuncts of T ,
it follows that |∆(T)| ≤ n for all T ∈ Dnf(C). That means that there are at
most n2n

different concepts in Candidates, corresponding to the n choices of
an element in ∆(T) for each of the at most 2n elements in Dnf(C). As every
prime implicate of C is equivalent to one of the concepts in Candidates,
there can be no more than n2n

non-equivalent prime implicates of C.

We can also bound the signature and depth of the prime implicates
generated by Gen-Pi.

Proposition 16. The signatures of the concepts outputted by Gen-Pi are
contained in the signature of the inputted concept. The depths of the concepts
outputted by Gen-Pi are no greater than the depth of the inputted concept.
Every literal subconcept which appears behind the role restrictions in some
concept outputted by Gen-Pi is also a literal subconcept of C.

Proof. The cubal concepts in Dnf(C) are conjunctions of literal subconcepts
of C, so we must have Sig(T) ⊆ Sig(C) and δ(T) ≤ δ(C) for every T ∈
Dnf(C). Moreover, we know from the definition of ∆(T) that Sig(D) ⊆
Sig(T) ⊆ Sig(C) and δ(D) ≤ δ(T) ≤ δ(C) for every D ∈ ∆(T). It is also
easy to see from the definition that if E is such that ∃R.E or ∀R.E is a
conjunct of some element in ∆(T), then E is a conjunction of subconcepts
of C, so each of the literal subconcepts appearing in E must also appear in
C. As the concepts of Candidates are disjunctions of the elements in the
∆(T), it follows that the concepts in Candidates have signatures contained
in Sig(C) and depths at most δ(C) and that the literal subconcepts behind
their role restrictions also appear in C. This is enough to prove the result
since every concept outputted by Gen-Pi belongs to Candidates.

8

Function Gen-Pi(C): returns the set of prime implicates of C

(1) If C is unsatisfiable, return ⊥. Otherwise, set T = Dnf(C).
(2) For each T ∈ T : For each R ∈ Roles∀, set FR equal to the conjunction of

elements in ∀R(T). Set ∆(T) equal to the set

Prop(T) ∪ {∃R.(D u FR) |R ∈ Roles∃ ∩Roles∀ &D ∈ ∃R(T)}
∪ {∃R.D |R ∈ Roles∃ &R 6∈ Roles∀ &D ∈ ∃R(T)} ∪ {∀R.FR |R ∈ Roles∀}

(3) Set Candidates = {
⊔
T∈T GT |GT ∈ ∆(T)}.

(4) For each Clj ∈ Candidates: remove Clj from Candidates if Clk |= Clj for
some Clk ∈ Candidates with k < j, or if both Clj |= Clk and Clk 6|= Clj
for k > j.

(5) Return Candidates.

Function Dnf(C): returns a set of cubal concepts whose union is equivalent
to the input concept C

(1) Set Σ = {{Nnf(C)}}.
(2) Apply the following rules until no rule is applicable:
u-rule If S ∈ Σ and S = {D1uD2}∪S′, set Σ = Σ\S ∪{S′∪{D1}∪{D2}}
t-rule If S ∈ Σ and S = {D1tD2}∪S′, set Σ = Σ\S ∪{S′∪{D1}}∪{S′∪
{D2}}
(3) Return {

d
σ∈S σ |S ∈ Σ and S is consistent}

Figure 1: Algorithm Gen-Pi for prime implicate generation and helper func-
tion DNF which rewrites concepts as unions of satisfiable cubal concepts.
The function Nnf which is invoked by DNF is not defined here because it
is the standard procedure for putting ALC concepts into NNF.

4 Prime Implicate Normal Form

In this section, we introduce prime implicate normal form for ALC con-
cepts, show some of the nice properties it satisfies, and give an algorithm
for putting concepts into prime implicate normal form. We also give some
results concerning the size of concepts in prime implicate normal form.

4.1 Definition of Prime Implicate Normal Form

In propositional logic, a formula is said to be in prime implicate normal
form if it is the conjunction of its prime implicates. Formulae in prime

9

implicate normal form enjoy a number of interesting properties, which make
this normal form useful in variety of AI applications.

Unfortunately, if we extend the definition of prime implicate normal form
toALC concepts in the obvious way, we find that concepts in prime implicate
normal form fail to satisfy most of the nice properties of the propositional
case. For example, subsumption between two concepts in prime implicate
normal form is no easier than between arbitrary ALC concepts. To see why,
consider any pair of concepts C1 and C2 in negation normal form. The
concepts ∃R.C1 and ∃R.C2 are their own prime implicates and hence would
be in prime implicate normal form if we used the naive definition. As C1

subsumes C2 just in the case that ∃R.C1 subsumes ∃R.C2, we can reduce
subsumption between arbitrary concepts in NNF to subsumption between
concepts in prime implicate normal form. As the former problem is known to
be Pspace-complete (cf. [17]), it follows that the latter is Pspace-complete
as well.

We remark, however, that the problem appears to stem from the fact
that the concepts behind the role restrictions are left undecomposed. It
seems then that we should require not only that the original concept be
represented by its prime implicates but also that the sub-concepts appearing
in the prime implicates be themselves represented by their prime implicates.
This intuition is at the heart of our definition of prime implicate normal
form for ALC concepts:

Definition 17 (Prime Implicate Normal Form). A concept C is in prime
implicate normal form if and only if it satisfies one of the following condi-
tions:

1. C = ⊥

2. C = >

3. 6|= C v ⊥ and 6|= > v C and C = Cl1 u ... u Clp where

(a) 6|= Cli v Clj for i 6= j

(b) each prime implicate of C is equivalent to some conjunct Cli
(c) every Cli is a prime implicate of C such that

i. if D is a disjunct of Cli, then 6|= Cli ≡ Cli \ {D}
ii. |∃R(Cli)| ≤ 1 for every role R

iii. if E ∈ ∃R(Cli) ∪ ∀R(Cli) for some R, then E is in prime
implicate normal form

10

iv. if E ∈ ∃R(Cli) and F ∈ ∀R(Cli), then |= F ≡ F t E

Let us briefly go over the different points of the definition. The first two
items state that all unsatisfiable concepts must be represented as ⊥ and all
tautologous concepts must be represented as >. All other concepts are to be
represented by a conjunction of their prime implicates, but we place some
strong restrictions on how the prime implicates themselves are represented.
First, we require that they contain no unnecessary disjuncts (part (i) of
3c). We also stipulate that they contain at most one existential restriction
per role (part (ii)) and that the concepts appearing behind the existential
and universal restrictions be themselves in prime implicate normal form
(part (iii)). Finally, we demand that if a prime implicate contains disjuncts
∃R.E and ∀R.F then E and F are such that |= E v F (part (iv)). This
requirement may seem a little less intuitive than the others, but it ensures
that if a universal restriction is subsumed by a clausal concept, then it is
subsumed by some universal restriction appearing in the clausal concept1.
This property is crucial since it allows our subsumption algorithm to treat
universal restrictions separately from the existential restrictions.

We will show later in the paper that this definition is well-founded by
proving that every concept can be rewritten as an equivalent concept in
prime implicate normal form. We first motivate the interest of doing so by
exhibiting some of the desirable properties of concepts in prime implicate
normal form.

4.2 Properties of Prime Implicate Normal Form

In this section, we show that prime implicate normal form has some nice
properties which make it an interesting target language for knowledge com-
pilation.

4.2.1 Tractable subsumption

The most important criterion when choosing a normal form for compilation
is the set of polynomial time queries that the normal form supports. In [8],
the authors enumerate a set of queries which they then use to compare differ-
ent normal forms for propositional logic. Of the eight queries they consider,
only four are well-defined for ALC2: satisfiability-testing, tautology-testing,

1This does not hold in general: |= ∀R.A v ∃R.A t ∀R.B but 6|= ∀R.A v ∀R.B.
2For example, clausal entailment is ill-defined since there are many possible definitions

of clauses in ALC, and model counting makes little sense since every concept has infinitely
many distinct models.

11

subsumption, and equivalence-testing. We show that for concepts in prime
implicate normal form, all four queries are computable in polynomial time.

For satisfiability and tautology-testing, there is really nothing to prove
since by definition a concept C in prime implicate normal form is unsatis-
fiable just in the case that C = ⊥ and is tautologous just in the case that
C = >. It follows that these tasks can be carried out in constant-time.

For subsumption and equivalence, we provide in Figure 2 a structural
subsumption algorithm Π-Subsume which decides subsumption between
concepts in prime implicate normal form. Let us explain briefly the func-
tioning of Π-Subsume. The first two steps treat limit cases where one or
both of the concepts is unsatisfiable or tautologous. For all other pairs of
concepts, we proceed to Step 3, in which we perform a structural comparison
of the two concepts. We know from the equivalence property (Proposition
11) that a concept C1 is subsumed by a concept C2 just in the case that C1

is subsumed by each of the prime implicates of C2. Moreover, it follows from
the covering property (Proposition 10) that C1 is subsumed by a prime im-
plicate D of C2 if and only if some prime implicate of C1 is subsumed by D.
As concepts in prime implicate normal form are conjunctions of their prime
implicates, testing whether C2 subsumes C1 comes down to testing whether
each conjunct of C2 subsumes some conjunct of C1. If we hadn’t placed any
requirements on the form of the conjuncts, then this problem would be as
hard as subsumption in general. But since C1 and C2 are in prime implicate
normal form, their conjuncts have a particular structure which makes sub-
sumption easy to test. We first check that the propositional literals in the
first conjunct all appear in the second conjunct. We then call Π-Subsume
on sub-concepts appearing in the two conjuncts in order to ensure that each
of the existential and universal restrictions appearing in the first conjunct is
subsumed by an existential or universal restriction in the second. The algo-
rithm performs these checks on each possible pair of conjuncts and returns
no if it finds some conjunct of C2 which does not subsume any conjunct
of C1. If no such conjunct is found, the algorithm returns yes since every
conjunct of C2 has been shown to subsume a conjunct of C1, which means
that C2 subsumes C1.

Lemma 18. If C1 and C2 are both in prime implicate normal form, then
the algorithm Π-Subsume outputs yes on input (C1, C2) if |= C1 v C2.

Proof. The proof is by induction on min(δ(C1), δ(C2)). We begin with the
base case where |= C1 v C2 and min(δ(C1), δ(C2)) = 0, i.e. where one
or both of C1 and C2 is propositional. There are three possibilities: either
|= C1 v ⊥, or |= > v C2, or neither |= C1 v ⊥ nor |= > v C2. In the first

12

Function Π-Subsume(C1, C2): decides whether |= C1 v C2

1. If C1 = ⊥ or C2 = >, return yes.
2. If C1 = > and C2 6= > or C2 = ⊥ and C1 6= ⊥, return no.
3. For each conjunct G of C2

Set MatchFound = no
For each conjunct H of C1

Set MatchFound = yes if the following three conditions hold:
(a) Prop(H) ⊆ Prop(G)
(b) if E ∈ ∃R(H), then there is E′ ∈ ∃R(G) such that

Π-Subsume(E, E′)=yes
(c) for each F ∈ ∀R(H) there is some F ′ ∈ ∀R(G) such that

Π-Subsume(F , F ′)=yes
If MatchFound = no, return no.

Return yes.

Figure 2: Algorithm for deciding subsumption between concepts in prime
implicate normal form.

case, C1 must be ⊥ (otherwise C1 would not be in prime implicate normal
form), so the algorithm will return yes in Step 1. Similarly, in the second
case, we must have C2 = >, so the algorithm returns yes in the first step.

Let us then concentrate on the third case in which 6|= C1 v ⊥ and 6|=
> v C2. Since |= C1 v C2, it follows that we must also have 6|= C2 v ⊥ and
6|= > v C1. This means that the conditions for Steps 1 and 2 of Π-Subsume
are not satisfied, so we will proceed to Step 3. Now since |= C1 v C2, it must
be the case that C1 is subsumed by every conjunct of C2. As the conjuncts
of C2 are all clausal concepts (since C2 is in prime implicate normal form), it
follows from Proposition 10 that every conjunct in C2 subsumes some prime
implicate of C1. But since C1 is in prime implicate normal form, every
prime implicate of C1 is equivalent to some conjunct of C1. This means
that for every conjunct G of C2 there must be some conjunct H of C1 such
that |= H v G. If C1 is propositional, then so are all its conjuncts, so
|= H v G just in the case that Prop(H) ⊆ Prop(G) (by Proposition 7). It
follows that when the algorithm considers the conjuncts G and H, it will
set MatchFound = yes. If instead it is C2 which is propositional, then G
is also propositional, so every disjunct of H must be either a propositional
literal which belongs to G or a literal concept of the form ∃R.D where D is
unsatisfiable (otherwise we would not have |= H v G). But since H is in
prime implicate normal form it cannot have any unsatisfiable disjuncts, so

13

H must be composed only of propositional literals which appear in G. This
means that the algorithm will mark MatchFound = yes when considering
the pair of concepts G and H. Thus, in either case, we have that for each
conjunct G of C2, there is some conjunct H of C1 for which we will mark
MatchFound = yes, so Π-Subsume will return yes.

We have just shown that Π-Subsume returns yes whenever the input
concepts C1 and C2 are such that |= C1 v C2 and min(δ(C1), δ(C2)) = 0.
Now let us suppose that the result holds whenever we min(δ(C1), δ(C2)) ≤ k
and then show that the result still holds when the minimum depth is k+ 1.

Let C1 and C2 be concepts in prime implicate normal form such that
|= C1 v C2 and min(δ(C1), δ(C2)) = k+1. As C1 and C2 both have positive
depth, it follows that they can be neither unsatisfiable nor tautologous (since
in that case they would be equal to either ⊥ or >, both of which have depth
zero). That means that the algorithm will proceed directly to Step 3. Let
G be some conjunct of C2. Now since |= C1 v C2, we must have |= C1 v G.
But since C2 is in prime implicate normal form, G must be a clausal concept,
and so Proposition 10 tells us that there is some prime implicate P of C1

such that |= P v G. The concept C1 is also in prime implicate normal
form, so there must be some conjunct H of C1 such that |= P ≡ H and
hence such that |= H v G. As G and H are both clausal concepts, and G
is non-tautologous, by Proposition 7 we must have:

(a) Prop(H) ⊆ Prop(G)

(b) If R ∈ Roles∃(H), then |=
⊔
E∈∃R(H)E v

⊔
F∈∃R(G) F (or just |=⊔

E∈∃R(H)E v ⊥ if R 6∈ Roles∃(G))

(c) If E ∈ ∀R(H), then there is some F ∈ ∀R(G) such that |= E v
F t (

⊔
J∈∃R(G) J) (or |= E v F if R 6∈ Roles∃(G))

Statement (a) means that the first condition of the algorithm is satisfied for
the pair G and H. As for the second condition, let us suppose that R ∈
Roles∃(H). As C1 is in prime implicate normal form, there must be exactly
one element in ∃R(H) and this element must be satisfiable (otherwise H
would contain an unnecessary disjunct). Let E be this concept. Now because
of (b) and the fact E is satisfiable, ∃R(G) must be non-empty and E must
be subsumed by the disjunction of the elements in ∃R(G). But C2 is also in
prime implicate normal form, so there must be a single element in ∃R(G),
call it E′. We thus have |= E v E′. Because C1 and C2 are concepts in prime
implicate normal form with min(δ(C1), δ(C2)) = k+1, it follows that E and
E′ are also in prime implicate normal form and min(δ(E), δ(E′)) ≤ k. This

14

means the induction hypothesis applies, so Π-Subsume(E,E′)=yes, and
hence the second condition of the algorithm is satisfied for the pair G and
H. Finally, we remark that because of (c) and conditions 3(b)ii and 3(b)iv
of Definition 17 (which apply to G and H since we have assumed C1 and C2

are in prime implicate normal form) it follows that for each disjunct ∀R.F of
H there is some disjunct ∀R.F ′ of G such that |= F v F ′. Now F and F ′ are
concepts in prime implicate normal form (by 3(b)iii of Definition 17) such
that min(δ(E), δ(E′)) ≤ k and |= F v F ′, so according to the induction
hypothesis, it must be the case that Π-Subsume(F, F ′)=yes. This means
that G and H satisfy the third and final condition of the algorithm. We
have thus shown that for every conjunct G of C2 there is some conjunct H
of C1 such that the three conditions of Step 3 are satisfied, so the algorithm
will return yes on input (C1, C2).

Lemma 19. If C1 and C2 are both in prime implicate normal form, then
the algorithm Π-Subsume outputs no on input (C1, C2) if 6|= C1 v C2.

Proof. The proof is by induction on min(δ(C1), δ(C2)). We begin with the
base case where 6|= C1 v C2 and min(δ(C1), δ(C2)) = 0, i.e. where one or
both of C1 and C2 is propositional. If |= > v C1 and 6|= > v C2, then
C1 = > and C2 6= > since C1 and C2 are assumed to be in prime implicate
normal form), so the algorithm will return no in the second step. Likewise,
if |= C2 v ⊥ and 6|= C1 v ⊥, then we must have C1 6= ⊥ and C2 = ⊥, so the
algorithm returns no in Step 2. If neither of these cases holds, then C1 and
C2 must both be satisfiable and non-tautologous, so the algorithm proceeds
to Step 3. As 6|= C1 v C2, it must be the case that there is some conjunct
G of C2 such that 6|= H v G for every conjunct H of C1. If it is C1 that is
propositional, then it follows from Proposition 7 that Prop(H) 6⊆ Prop(G)
for every conjunct H of C1. If it is C2 that is propositional, then for each
conjunct H of C1 either Prop(H) 6⊆ Prop(G) or H contains universal or
existential restrictions. In either case, we find that each conjunct H of C1

violates at least one of the conditions in Step 3. This means that algorithm
does not set MatchFound = yes when examining the conjunct G and hence
returns no.

We have thus shown that Π-Subsume returns no whenever C1 and C2

are concepts in prime implicate normal form such that 6|= C1 v C2 and
min(δ(C1), δ(C2)) = 0. We will now suppose that the same statement holds
whenever min(δ(C1), δ(C2)) ≤ k and will show that the result remains true
when the minimal depth is k + 1.

Let C1 and C2 be concepts in prime implicate normal form such that
6|= C1 v C2 and min(δ(C1), δ(C2)) = k + 1. Since C1 and C2 are in prime

15

implicate normal form and have positive depth, C1 and C2 can be neither
unsatisfiable nor tautologous, so the algorithm proceeds directly to Step 3.
As 6|= C1 v C2, there must be some conjunct G of C2 such that 6|= H v G
for every conjunct H of C1. According to Proposition 7, this means that for
every conjunct H of C1 we have one of the following:

(a) Prop(H) 6⊆ Prop(G)

(b) R ∈ Roles∃(H) and either R 6∈ Roles∃(G) and 6|=
⊔
E∈∃R(H)E v ⊥ or

R ∈ Roles∃(G) and 6|=
⊔
E∈∃R(H)E v

⊔
E∈∃R(G)E

(c) For some E ∈ ∀R(H), there is no F ∈ ∀R(G) such that |= E v
F t (

⊔
J∈∃R(G) J) (or |= E v F if R 6∈ Roles∃(G))

If (a) holds, then the first condition of Step 3 is violated. If (b) holds,
then either ∃R(G) = ∅ or 6|= E v E′, where E ∈ ∃R(H) and E′ ∈ ∃R(G)
(remember that since C1 and C2 are in prime implicate normal form, the
clausal concepts G and H can have at most one existential restriction per
role). In the first case, the second condition of Step 3 is violated since
∃R(G) is empty. In the second case, the condition is also violated since E
and E′ are concepts in prime implicate normal form such that 6|= E v E′

and min(δ(E), δ(E′)) = k, so according to the induction hypothesis Π-
Subsume(E,E′)=no. Finally, if (c) holds, then for some disjunct ∀R.F of
H and every disjunct ∀R.F ′ of G we have 6|= F v F ′ t J where J ∈ ∃R(G)
(or simply 6|= F v F ′ if ∃R(G) is empty). But since G is in prime implicate
normal form, if J ∈ ∃R(G) then |= F ≡ FtJ . So we get that 6|= F v F ′, and
hence by the induction hypothesis (which applies since F and F ′ are in prime
implicate normal form and min(δ(F), δ(F ′)) = k) that Π-Subsume(F ,F ′)
returns no. We have thus shown that for every conjunct H of C1 at least
one of the three conditions of Step 3 will not be satisfied for the pair G and
H. This means that when the algorithm has finished its examination of the
conjunct G, the variable MatchFound will still be set to no, so Π-Subsume
will return no.

Lemma 20. The algorithm Π-Subsume terminates in linear time in |C1| |C2|
(hence at most quadratic time in |C1| + |C2|) when given concepts C1 and
C2 as input.

Proof. The algorithm Π-Subsume compares at most once each pair of sym-
bols from C1 and C2, and the comparison takes constant time, yielding an
overall complexity which is linear in |C1| |C2|.

16

Proposition 21. Subsumption of concepts in prime implicate normal form
can be decided in quadratic time in the size of the input.

Proof. Direct consequence of Lemmas 18, 19, and 20.

Corollary 22. Equivalence of concepts in prime implicate normal form can
be decided in quadratic time in the size of the input.

Our subsumption algorithm requires that both concepts be in prime
implicate normal form. However, it is not always necessary for the second
concept to be in prime implicate normal form to obtain polynomial time
subsumption, as the following proposition demonstrates:

Proposition 23. Let C be a concept in prime implicate normal form, and
let D be a disjunction of atomic literal concepts and concepts of the form
∃R.Cl or ∀R.Cl where Cl is a propositional clausal concept. Then it can be
decided in linear time in |C| whether |= C v D.

Proof. Consider the following procedure:

Step 1 Apply the following modifications to D:

(a) For each R: if ∃R(D) = {E1, ..., Em} where m > 1, replace D by
D \{∃R.E1, ...,∃R.Em}∪{∃R.>} if E1t ...tEm is a tautologous
propositional clause and by D \ {∃R.E1, ...,∃R.Em} ∪ {∃R.(E1 t
... t Em)} otherwise.

(b) For each R: if ∃R(D) = {E} and ∀R(P) = {F1, ..., Fn}, replace
D by D \ {∀R.F1, ...,∀R.Fn} ∪ {∀R.(F1 t E), ...,∀R.(Fn t E)}.

(c) If Prop(D) contains two complementary atomic literal concepts,
or if there is some disjunct ∀R.Cl where Cl is a tautologous propo-
sitional clause, replace D by >.

(d) Remove any unnecessary disjuncts from D and from the clausal
concepts appearing in the role restrictions of D.

Step 2 Return Π-Subsume(C, D)

We claim that if C and D are as described in the statement of the propo-
sition, then |= C v D if and only if the above procedure returns yes. We
first consider the case where |= > v D. There are two ways this can hap-
pen: either the propositional part of D is tautologous, in which case the
propositional part contains two opposing atomic literal concepts, or there is
some universal role restriction ∀R.E and existential restrictions ∃R.F1, ...,

17

∃R.Fn such that |= > v E t F1 t ... t Fn. In the first case, we find that
Prop(D) contains two opposing atomic literal concepts, so we will change D
to > in Step 1 and return yes in Step 2 because Π-Subsume always returns
yes when the second concept is >. In the second case, there is either a pair
∀R.E and ∃R.F or a pair ∃R.E and ∃R.F of disjuncts of D such that EtF
contains either > or a pair of atomic literal concepts. But in that case,
we will have transformed D into > in Step 1, either in part (a) if the pair
consists of two existential restrictions or in part (c) if a universal restriction
is involved. This means that the algorithm will return yes in Step 2. Now
consider the case where D is not a tautology. It can be easily verified that
at the end of Step 1 the concept D is in prime implicate normal form: D has
no redundant literals, there is at most one existential restriction per role,
the concepts behind the role restrictions are also in prime implicate normal
form (since they are propositional clauses with no repeated literals), and the
concepts behind the existential restrictions have been added to the concepts
behind the universal restrictions. Note that all the modifications in Step 1
are equivalence-preserving so C is subsumed by the original D just in the
case it is subsumed by the modified D. In Step 2, we call Π-Subsume to
decide whether C is subsumed by D. Because of Proposition 21 we know
that Π-Subsume(C, D) returns yes just in the case that D subsumes C, so
the answer returned in Step 2 will be correct.

The only step of the procedure which concerns C is Step 2 in which
we call Π-Subsume to test whether the modified concept D subsumes C.
We know from Lemma 20 that the Π-Subsume terminates in time which is
linear in |C|.

If we are only concerned by the complexity with respect to the size of
the first input concept, then we could extend the algorithm in the previous
proof in order to treat the entire class of ALC concepts in NNF which do
not contain conjunction. Unfortunately, we find that the complexity in the
second argument is no longer polynomial. The reason for this is the problem
of deciding whether an arbitrary ALC concept in NNF without disjunction is
unsatisfiable is an NP-complete task [9], which means that the dual problem
of deciding whether an arbitrary ALC concept in NNF without conjunction
is a tautology must also be NP-complete. Whereas it seems rather natural to
measure the complexity in just the first argument when the second “query”
argument is assumed to have significantly smaller size, this no longer makes
sense when the complexity in the second argument is so much higher than
the complexity in the first argument.

We also point out that the above category of concepts is just one example

18

of a tractable class of query concepts. There are a variety of other syntactic
conditions which could be placed on query concepts in order to guarantee
polynomial subsumption.

4.2.2 Polynomial Transformations

As we noted earlier, the notions of L- and n-interpolants correspond to the
finest approximations of concepts over a given signature or up to a specified
depth. L- and n-interpolants allow us to focus in on just part of a concept,
which may prove useful when a concept description is too large to be fully
understood or when data needs to be exchanged between systems using
different signatures. We show in this subsection that it is easy to transform
concepts in prime implicate normal form into their L- and n-interpolants.

In Figure 3, we present an algorithm for computing the L-interpolant of
a concept in prime implicate normal form.

Function LangInt(C, L) : returns the L-interpolant of C

1. Set L̄ = Sig(C) \ L and set Π = ∅.
2. For each conjunct Cl of C

If Sig(Prop(Cl)) ∩ L̄ = ∅ and (Roles∀(Cl) ∪Roles∃(Cl)) ∩ L̄ = ∅, then
(i) Let Cl′ be the concept obtained from Cl by replacing each disjunct
∃R.E by ∃R.(LangInt(E,L)) and each disjunct ∀R.E by
∀R.(LangInt(E,L))

(ii) Add Cl′ to Π
3. Return the intersection of the concepts in Π if Π 6= ∅, otherwise return >.

Figure 3: Algorithm for generating the L-interpolants of concepts in prime
implicate normal form.

Lemma 24. If C is a concept in prime implicate normal form, then the
output of LangInt(C, L) is an L-interpolant of C.

Proof. The proof is by induction on the depth of the input concept C. The
base case is when δ(C) = 0, i.e. when C is a propositional concept. In this
case, the algorithm simply returns the intersection of the conjuncts of C
whose signatures are contained in L, or > if there are no such concepts. Let
D be some concept such that Sig(D) ⊆ L and |= C v D. Because of Propo-
sition 5 we can suppose without loss of generality that D is a conjunction of
clausal concepts. We know from Proposition 10 that if a clausal concept Cl
subsumes C, then there is some prime implicate of C, hence some conjunct

19

of C (since C is in prime implicate normal form), which is subsumed by
Cl. It follows that every conjunct of D subsumes some conjunct of C. We
remark that C is a conjunction of propositional clausal concepts and that a
propositional clausal concept containing atomic concepts outside L cannot
be subsumed by a non-tautologous concept with signature contained in L.
This means that if there are no conjuncts of C with signature contained in
L, then D must be a tautological concept, and if such conjuncts exist, then
each of the conjuncts in D subsumes at least one such conjunct. In the first
case, we find that D subsumes >, and in the second case, D subsumes the
intersection of the conjuncts of C whose signatures are contained in L. In
both cases, we find that the output of LangInt(C, L) is a concept with
signature in L which subsumes C and is subsumed by every concept D in L
which subsumes C, so it must be the L-interpolant of C.

Let us next assume that the result holds for every concept in prime
implicate normal form with depth at most k and show that the result still
holds for concepts with depth k + 1. Our first step will be to show that the
following statements hold for every clausal concept Cl in prime implicate
normal form with depth at most k + 1:

1. If Cl does not satisfy the conditions in Step 2 of LangInt, then the
L-interpolant of Cl is >

2. If Cl does satisfy the conditions in Step 2 of LangInt, then the
concept obtained from Cl by replacing disjuncts of the form ∃R.E
and ∀R.E by ∃R.(LangInt(E,L)) and ∀R.(LangInt(E,L)) is the
L-interpolant of Cl

We begin with statement (1). Let Cl be a clausal concept in prime implicate
normal form which does not satisfy the conditions in Step 2. There are two
possibilities: either Sig(Prop(Cl)) ∩ L̄ 6= ∅ or (Roles∀(Cl) ∪ Roles∃(Cl)) ∩
L̄ 6= ∅. If Sig(Prop(Cl)) ∩ L̄ = ∅, then there is some atomic concept
A 6∈ L such that A or ¬A is a disjunct of Cl. But we know that the
only concepts with signature in L which subsume (¬)A are tautologous con-
cepts, so Cl cannot be subsumed by any non-tautologous concepts with
signature contained in L, i.e. > is the L-interpolant of Cl. If instead we
have (Roles∀(Cl) ∪ Roles∃(Cl)) ∩ L̄ = ∅, then there is some satisfiable dis-
junct ∃R.E or ∀R.E of Cl with R 6∈ L. But a satisfiable concept ∃R.E or
∀R.E cannot imply any non-tautological concepts which do not contain R
by Proposition 7. It follows that every concept which subsumes Cl and has
signature contained in L is tautologous, so > is the L-interpolant of Cl.

20

We now show (2). Let Cl be a clausal concept in prime implicate nor-
mal form of depth at most k + 1 such that Sig(Prop(Cl)) ∩ L̄ = ∅ and
(Roles∀(Cl) ∪ Roles∃(Cl)) ∩ L̄ = ∅, and let Cl′ be the concept obtained
from Cl by replacing disjuncts of the form ∃R.E and ∀R.E respectively by
∃R.(LangInt(E,L)) and ∀R.(LangInt(E,L)). We remark that Cl′ has
the same propositional disjuncts as Cl, and its existential and universal
disjuncts have the same roles as those in Cl. We also note that the con-
cepts appearing behind the universal and existential role restrictions have
the form LangInt(E,L) where E is a concept in prime implicate normal
form with depth at most k. Applying the induction hypothesis, we find
that for each such concept E, LangInt(E,L) is the L-interpolant of E. In
particular, that means that LangInt(E,L) has signature contained in L.
It follows that Cl′ also has signature contained in L. It also means that
each E is subsumed by LangInt(E,L), from which can deduce that Cl′

subsumes Cl. We now need to show that Cl′ is subsumed by every con-
cept which subsumes Cl and has signature in L. Let D be such a concept.
Clearly every propositional disjunct in Cl′ must be subsumed by D since
Cl and Cl′ have the same propositional disjuncts and |= Cl v D. Every
existential disjunct of Cl′ is equal to ∃R.(LangInt(E,L)) for some disjunct
∃R.E of Cl. As ∃R.(LangInt(E,L)) is the L-interpolant of ∃R.E, it follows
that ∃R.(LangInt(E,L)) must be subsumed by D since D subsumes ∃R.E
and Sig(D) ⊆ L. It follows that every existential disjunct of Cl′ must be
subsumed by D. Likewise, we remark that ∀R.(LangInt(E,L)) is the L-
interpolant of ∀R.E, so every universal restriction which is a disjunct of Cl′

must be subsumed by D. As every disjunct of Cl′ is subsumed by D, it fol-
lows that Cl′ must subsumed by D as well, so Cl′ is the L-interpolant of Cl.
This together with statement (1) tells us that the output of LangInt(C,
k+ 1) is equivalent to the intersection of the L-interpolants of the conjuncts
of C.

Now let G be a concept such that Sig(G) ⊆ L and |= C v G. We can
assume without loss of generality that G is a conjunction of clausal concepts
since any concept is equivalent to some concept of this form and with the
same or smaller signature (Proposition 5). Then since C is subsumed by
G, it follows that C is subsumed by each of the clausal concepts which are
conjuncts of G. By the Covering Property (Proposition 10), we know that
every clausal concept which subsumes C subsumes some prime implicate of
C. As we have assumed C to be in prime implicate normal form, this means
that every conjunct of G subsumes some conjunct of C. This together with
the fact that the conjuncts of G have signature contained in L means that
each of the conjuncts of G subsumes the L-interpolant of some conjunct of

21

C. It follows then that the concept G subsumes the intersection of the L-
interpolants of the conjuncts of C. But then G must subsume the output of
LangInt(C, L) since we have shown above that the output of LangInt(C,
L) is precisely the intersection of the L-interpolants of the conjuncts of C.
We have thus demonstrated that the output of LangInt(C, L) is a concept
with signature in L which subsumes C and is subsumed by every concept
with signature in L which subsumes C, i.e. the output of LangInt(C, L)
is the L-interpolant of C.

Lemma 25. The algorithm LangInt runs in linear time in the size of the
input concept.

Proof. LangInt terminates in linear time with respect to the size of the
input concept because all the algorithm does is scan the input concept a
single time in order to remove those disjunctive sub-concepts which violate
the syntactic requirements set forth in Step 2.

Proposition 26. The L-interpolant of a concept C in prime implicate nor-
mal form can be generated in linear time in the size of C.

Proof. Follows directly from Lemmas 24 and 25.

In Figure 4, we introduce an algorithm DepthInt for generating the
n-interpolant of a concept in prime implicate normal form.

Function DepthInt(C, n) : returns the n-interpolant of C

1. If n = 0, return the intersection of the propositional conjuncts of C if
such conjuncts exist, and > otherwise. If n > 0, set Π = ∅.

2. For each conjunct Cl of C, add to Π the concept obtained from Cl by replacing
each disjunct ∃R.E by ∃R.(DepthInt(E,n− 1)) and each disjunct ∀R.E by
∀R.(DepthInt(E,n− 1)).

3. Return the intersection of concepts in Π.

Figure 4: Algorithm for generating the n-interpolants of concepts in prime
implicate normal form.

Lemma 27. If C is a concept in prime implicate normal form, then the
output of DepthInt(C, n) is the n-interpolant of C.

22

Proof. The proof is by induction on the value of n. The base case is when
n = 0. In this case, the algorithm returns the conjunction of the proposi-
tional concepts which are conjuncts of C, or > if there are no such concepts.
As C is assumed to be in prime implicate normal form, we know that the
clausal concepts which are conjuncts of C do not contain any unsatisfiable
∃R disjuncts. This means that every propositional prime implicate of C
is equivalent to some propositional conjunct of C. It follows that if there
are no propositional conjuncts, then there are no propositional prime im-
plicates, so the only concepts of depth 0 which subsume C are tautologous
concepts. In this case, the result holds since > is a concept of depth 0 which
is subsumed by all tautologous concepts, i.e. > is the 0-interpolant of C.
Let us next consider the case where C contains at least one propositional
conjunct. We know from Proposition 10 that if a propositional clausal con-
cept Cl subsumes C, then there is some prime implicate Cl′ of C which is
subsumed by Cl. Moreover, we can assume that Cl′ is propositional, since
any clausal concept which is subsumed by a propositional clausal concept
is itself equivalent to a propositional clausal concept. But we have shown
above that every propositional prime implicate of C is equivalent to some
propositional conjunct of C, so every propositional implicate Cl of C must
be subsumed by some propositional conjunct of C. As every concept of
depth 0 is equivalent to a conjunction of propositional clausal concepts, it
follows that for every concept D of depth 0, if |= C v D, then D subsumes
the conjunction of the propositional conjuncts in C. We have thus shown
that the conjunction of propositional conjuncts of C is a concept of depth
0 which subsumes C and is subsumed by every concept of depth 0 which
subsumes C, so it is the 0-interpolant of C.

Let us now assume that the result holds whenever n ≤ k. We will
begin by proving the following: if Cl is a clausal concept in prime implicate
normal form, then the concept obtained from Cl by replacing disjuncts of
the form ∃R.E and ∀R.E by ∃R.DepthInt(E, k) and ∀R.DepthInt(E, k)
is the k+1-interpolant of Cl. Let Cl be a clausal concept in prime implicate
normal form, let Cl′ be the clausal concept obtained from Cl by replacing
disjuncts ∃R.E and ∀R.E by ∃R.DepthInt(E, k) and ∀R.DepthInt(E, k),
and letD be some clausal concept of depth at most k+1 such that |= Cl v D.
Now every propositional disjunct in Cl′ must be subsumed by D since Cl and
Cl′ have the same propositional disjuncts and |= Cl v D. Every existential
disjunct of Cl′ is equal to ∃R.DepthInt(E, k) for some disjunct ∃R.E of
Cl. It follows from the induction hypothesis that ∃R.DepthInt(E, k) is
the k+ 1-interpolant of ∃R.E, which means that ∃R.DepthInt(E, k) must
be subsumed by D since D subsumes ∃R.E and δ(D) ≤ k + 1. It follows

23

that every existential disjunct of Cl′ must be subsumed by D. Similarly, we
can see that ∀R.DepthInt(E, k) is the k+ 1-interpolant of ∀R.E, so every
universal restriction in Cl′ must be subsumed by D. As every disjunct of Cl′

is subsumed by D, it follows that Cl′ is subsumed by D too. We have thus
shown that modifying a clausal concept Cl in prime implicate normal form
so that disjuncts ∃R.E and ∀R.E are replaced by ∃R.DepthInt(E, k) and
∀R.DepthInt(E, k) yields the k + 1-interpolant of Cl. As the conjuncts of
C are clausal concepts in prime implicate normal form, it follows that the set
of concepts in Π at the end of Step 2 is precisely the set of k+1-interpolants
of the conjuncts of C.

Now let G be a concept of depth at most k + 1 such that |= C v G.
We can assume without loss of generality that G is a conjunction of clausal
concepts since any concept is equivalent to some concept of this form and
with less or equal depth (Proposition 5). It follows that C is subsumed
by each of the clausal concepts which are conjuncts of G. By Proposition
10 we know that every clausal concept which subsumes C subsumes some
prime implicate of C, and hence subsumes some conjunct of C (because C is
assumed to be in prime implicate normal form). But since all the conjuncts
of G have depth at most k + 1, it follows that each of them subsumes the
k + 1-interpolant of some conjunct of C. This means that the concept G
subsumes the intersection of the k + 1-interpolants of the conjuncts of C.
As we have shown above that the output of DepthInt(C, k+ 1) is exactly
the intersection of the k + 1-interpolants of the conjuncts of C, it follows
that G subsumes the output of DepthInt(C, k + 1). We have thus shown
that the output of DepthInt(C, k + 1) is is a concept with depth at most
k+1 which subsumes C and which is subsumed by every concept of depth at
most k+ 1 which subsumes C. In other words, the output of DepthInt(C,
k + 1) is the k + 1-interpolant of C.

Lemma 28. The algorithm DepthInt runs in linear time in the size of
the input concept.

Proof. DepthInt scans through the input concept C to locate those con-
cepts appearing at depth n in C and to remove their non-propositional
conjuncts. As the algorithm makes a single pass through C, it terminates
in linear time in the length of C.

Proposition 29. The n-interpolant of a concept C in prime implicate nor-
mal form can be generated in linear time in |C|.

Proof. Follows directly from Lemmas 27 and 28.

24

4.2.3 Other Properties

Another interesting property of concepts in prime implicate normal form
is that they do not contain any unnecessary concept or roles names. This
is an important property if we are going to be presenting information to a
user, since the presence of irrelevant atomic concepts and roles can make a
concept difficult to understand.

Proposition 30. If C is a concept in prime implicate normal form, then
for every concept D such that |= C ≡ D we have Sig(C) ⊆ Sig(D).

Proof. The proof is by induction on the depth of C. For the base case, let
C be a concept in prime implicate normal form such that δ(C) = 0, and
suppose for a contradiction that there is some D such that |= C ≡ D and
Sig(C) 6⊆ Sig(D). We can assume without loss of generality that D is in
prime implicate normal form since we show in Proposition 33 of the following
section that every concept can be rewritten as an equivalent concept in
prime implicate normal form, and this transformation does not add any
new symbols. Now since Sig(C) 6⊆ Sig(D) and δ(C) = 0, there must be
some atomic concept A which appears in C but not in D. This means that
there is some propositional clause Cl which is a conjunct of C and which
mentions A. Because D is in prime implicate normal form and |= C ≡ D, it
follows that there is some conjunct Cl′ of D such that |= Cl ≡ Cl′. Now as
the signature of C is non-empty and C is in prime implicate normal form, C
must be non-tautologous, so D and Cl′ must also be non-tautologous. But
as either A or ¬A appears as a disjunct in Cl, and both |= Cl v Cl′ and
6|= > v Cl′, it follows by Proposition 7 that either A or ¬A is a literal in Cl′

as well, contradicting the fact that A is not part of the signature of D. We
can thereby conclude that the result holds whenever δ(C) = 0.

Next suppose that the result holds whenever the concept has depth at
most k, and let C be some concept in prime implicate normal form of depth
k+ 1. Suppose for a contradiction that there is some D such that |= C ≡ D
and Sig(C) 6⊆ Sig(D). Again because of Proposition 33 we can assume
without loss of generality that D is in prime implicate normal form. Now
since Sig(C) 6⊆ Sig(D), there is some atomic concept or role which appears
in C but not D. Let Cl be a conjunct of C which contains this symbol. As
C and D are in prime implicate normal form and |= C ≡ D, it follows that
there is some conjunct Cl′ of D such that |= Cl ≡ Cl′. We remark that
since C is in prime implicate normal form and its signature is non-empty,
C, D, and Cl′ must all non-tautologous. Now we know that there is either
an atomic concept or role which is in Cl but not in D, hence not in Cl′.

25

We consider first the case where there is some atomic concept A which is in
Sig(Cl)\Sig(Cl′). There are three possibilities: either (¬)A is a disjunct in
Cl, or (¬)A appears in E for some disjunct ∃R.E of Cl, or (¬)A appears in
E for some disjunct ∀R.E of Cl. In the first case, we have a contradiction
since (¬)A cannot be a disjunct of Cl′ (otherwise A ∈ Sig(D)), which means
that 6|= Cl v Cl′ (by Proposition 7). If (¬)A appears in a disjunct ∃R.E
of Cl, then since |= Cl ≡ Cl′, it follows by Proposition 7 and Definition
17 that there is some disjunct ∃R.E′ in Cl′ such that |= E ≡ E′. But E
is a concept in prime implicate normal form of depth at most k, so by the
induction hypothesis we can conclude that Sig(E) ⊆ Sig(E′), contradicting
the fact that A does not appear in D. Consider then the third case in which
A appears in ∀R.E. Then because Cl and Cl′ are both in prime implicate
normal form and |= Cl ≡ Cl′, it follows from Proposition 7 and Definition 17
that there is some disjunct ∀R.E′ of Cl′ such that |= E ≡ E′. Applying the
induction hypothesis (which applies since E is a concept in prime implicate
normal form of depth at most k), we find that Sig(E) ⊆ Sig(E′), and hence
that Sig(E) ⊆ Sig(D), which contradicts the assumption that A is not in
the signature of D.

Finally, let us consider the case where there is a role S which belongs to
the signature of Cl but not to the signature of Cl′. Now if there is a disjunct
∃S.E in Cl, we have a contradiction since by Proposition 7 we must have
6|= Cl ≡ Cl′ because 6|= > v Cl′, ∃S.E is satisfiable, and there is no disjunct
∃S.E′ in Cl′. Similarly we can show that there can be no disjunct of the form
∀S.E in Cl. It must then be the case that there is a disjunct ∃R.E or ∀R.E
such that R 6= S and E mentions S. In either case, we find (using precisely
the same arguments as used in the previous paragraph) that there is a sub-
concept E in prime implicate normal form appearing in Cl with depth at
most k, and a sub-concept E′ of Cl′ such that |= E ≡ E′. By applying
the induction hypothesis, we find that Sig(E) ⊆ Sig(E′), so S must appear
in D, contradicting our earlier assumption. We have thus shown that for
every concept C in prime implicate normal form and for every D such that
|= C ≡ D there can be no symbol which appears in C but not in D.

In [3], we introduced a restricted form of prime implicates, in which con-
cepts are required to mention non-trivially the symbols of a given signature.
This type of prime implicate is useful when one wants to characterize the
information that a concept contains about a certain topic of interest. Here
is the formal definition:

Definition 31 (About-L-prime implicate). Let L be a signature. A clausal
concept Cl is an about-L-prime implicate of a concept C if and only if Cl

26

is a prime implicate of C and for every concept E such that |= E ≡ Cl we
have L ⊆ Sig(E).

One of the consequences of Proposition 30 is that calculating the about-
L-prime implicates of a concept C in prime implicate normal form is as
simple as selecting those conjuncts of C which mention every symbol in the
signature L. This means that for concepts in prime implicate normal form
we can easily pick out the information which is relevant to a given subject
matter.

Proposition 32. The about-L-prime implicates of a concept C in prime
implicate normal form can be generated in linear time in |C|.

Proof. Consider the algorithm which examines each of the conjuncts of C
and returns only those conjuncts which contain all the atomic concepts and
roles belonging to L. This algorithm can clearly be implemented so as to
run in linear time in the size of C. We claim that every outputted concept
is an about-L-prime implicate and that every about-L-prime implicate is
equivalent to one of the outputted concepts. The proof of the first claim is
straightforward: every outputted concept D is a conjunct of C and hence
a prime implicate of C and in prime implicate normal form, from which it
follows by Lemma 30 that there is no concept E equivalent to D and such
that L6⊆ Sig(E). For the second claim, suppose for a contradiction that
there is some about-L-prime implicate Cl which is not equivalent to any of
the outputted concepts. As Cl is also a prime implicate of C (by definition),
it follows that there is some conjunct Cl′ of C such that |= Cl ≡ Cl′. But
we also know that Cl′ must not contain all of the symbols in L (otherwise
it would be one of the outputted concepts), contradicting the fact that Cl
is an about-L-prime implicate of C.

4.3 Computing Prime Implicate Normal Form

We have seen in the last subsection that concepts in prime implicate normal
form enjoy some nice properties, but in order to take advantage of them, we
need a method for putting concepts into prime implicate normal form.

We present in Figure 5 the algorithm Pinf which transforms a given
concept as an equivalent concept in prime implicate normal form. The first
step of our algorithm is to check whether the inputted concept is unsatisfiable
or tautologous, in which case we return respectively ⊥ or >. For all other
concepts, we continue on to Step 2, where we use Gen-Pi to generate the
set of prime implicates of the inputted concept, which we then modify in

27

Step 3 so that they satisfy all the conditions of Definition 17. We first
check to see whether there are multiple existential restrictions for a single
role, in which case we group them together as a single existential restriction.
Next we make sure that the concepts behind the universal restrictions are in
the proper form by unioning them with the concept behind the existential
restriction (if there is one). We then check if each of the concepts in the
clausal concept is necessary, and we remove all literal concepts which are
found to be redundant. After that, we consider the concepts appearing
behind a universal or existential restriction, and we put each of them into
prime implicate normal form. Finally, in Step 4, we return the intersection
of these modified prime implicates.

Function Pinf(C) : returns a concept which is in prime implicate normal form
and is equivalent to C

1. If |= C v ⊥, return ⊥. If |= > v C, return >.
2. Set Σ = Gen-Pi(C).
3. For each P in Σ

(i) For each role R: if ∃R(P) = {D1, ..., Dm} where m > 1, replace P by
P \ {∃R.D1, ...,∃R.Dm} ∪ {∃R.(D1 t ... tDm)}.

(ii) For each role R: if ∃R(P) = {D} and ∀R(P) = {E1, ...En}, replace P
by P \ {∀R.E1, ...,∀R.En} ∪ {∀R.(E1 tD), ...,∀R.(En tD)}.

(iii) For each disjunct D in P : if |= P ≡ P \ {D}, replace P by P \ {D}.
(iv) For each D ∈ ∪R(∃R(P) ∪ ∀R(P)), replace D by Pinf(D).

4. Return
d
P∈Σ P .

Figure 5: Algorithm for putting a concept into prime implicate normal form.

Proposition 33. The algorithm Pinf always terminates, and the concept
it returns is a concept in prime implicate normal form which is equivalent
to the inputted concept, has a signature contained in the signature of the
inputted concept, and has depth at most that of the inputted concept.

Proof. The proof is by induction on the depth of the inputted concept C.
If C has depth 0, then either |= C v ⊥ or |= > v C, or C is neither
unsatisfiable nor tautologous. In the first case, the result trivially holds.
In the latter case, we will continue on to Step 2 where we set Σ equal to
the output of Gen-Pi(C). Because of Proposition 13 we know that every
element in Σ is a prime implicate of C and that all prime implicates of C are
equivalent to some element in Σ. It follows then from Proposition 11 that C

28

is equivalent to conjunction of the elements in Σ. Moreover, we know from
Proposition 16 that the signatures of the concepts in Σ are all contained in
the signature of C and that the depths of the elements in Σ are bounded
above by δ(C). As C is assumed to be propositional, the only modification
we may make to Σ in Step 3 is to eliminate repeated literals appearing in the
prime implicates. It follows then that the algorithm terminates and returns
a concept in prime implicate normal form which is equivalent to C, has a
signature contained in Sig(C), and has depth at most δ(C).

Suppose next that the result holds whenever the inputted concept has
depth at most k, and let C be a concept of depth k + 1. Clearly the result
holds if |= C v ⊥ or |= > v C. Suppose then that C is neither unsatisfiable
nor tautologous. In Step 2, we set Σ equal to the output of Gen-Pi(C).
By Proposition 13, we know that the elements of Σ are precisely the prime
implicates of C, so C must be equivalent to the conjunction of elements in
Σ by Proposition 11. We also know from Proposition 16 that the signa-
tures of the concepts in Σ are all contained in the signature of C and that
the depths of the elements in Σ cannot exceed δ(C). Thus all we need to
show is that the operations performed on the concepts in Σ in Step 3 are
equivalence-, signature-, and depth-preserving. For (i) and (ii), this follows
directly from Proposition 6, and for (iii), this is obvious. For (iv), this
follows from the induction hypothesis since we apply the function Pinf to
concepts with depth at most k. We have thus shown that the concept out-
putted by Pinf(C) is equivalent to C, has signature contained in Sig(C),
and depth at most δ(C). We now verify that Pinf(C) is in prime implicate
normal form. Clearly, Pinf(C) is a conjunction of clausal concepts, since
the elements in Σ are originally clausal concepts, and the modifications in
Step 3 do not change this. As we have shown the operations in Step 3 to
be equivalence-preserving, it follows that the conjuncts of Pinf(C) are all
prime implicates of C and that each prime implicate of C is equivalent to
some conjunct of Pinf(C). Moreover, the conjuncts all satisfy the other
conditions of Definition 5. We have |∃R(C)| ≤ 1 for every role R because of
(i) of Step 3. Because of Step 3 (ii), we know that for if there are disjuncts
∃R.D and ∀R.E, then |= D v E. We also know that there is no redundant
disjuncts since all unnecessary disjuncts were eliminated in Step 3 (iii). Fi-
nally, we can be sure that all of the concepts appearing behind an existential
or universal role restriction are in prime implicate normal form because of
part (iv) of Step 3. We have thus shown that Pinf(C) is in prime implicate
normal form, completing the proof.

29

4.4 Spatial Complexity of Prime Implicate Normal Form

In the current subsection, we investigate the spatial complexity of prime
implicate normal form in order to determine how much more space is needed
to represent a concept in prime implicate normal form.

It is well-known that in propositional logic the transformation to prime
implicate normal form can result in an exponential blowup in the size of the
formula (cf. [7]). The blowup can be never be more than singly-exponential
since there are at most 3n distinct clauses on n variables.

Proposition 34. Every propositional concept built from n atomic concepts
is equivalent to a concept in prime implicate normal form whose length is
singly-exponential in n.

We now prove that for arbitrary concepts the transformation to prime
implicate normal form involves an at most doubly-exponential blowup in
concept length.

Proposition 35. Every concept C is equivalent to a concept in prime im-
plicate normal form whose length is at most doubly-exponential in |C|.

Proof. We will use fn(k) to denote the maximal length of the output of Pinf
when the input concept has depth k and n distinct literal subconcepts. We
know from Proposition 34 that there exists some polynomial q such that
every propositional concept built using at most m atomic concepts is equiv-
alent to some propositional concept in prime implicate normal form with
length at most 2q(m). As the number of atomic concepts appearing in a con-
cept can never exceed the number of distinct literal subconcepts appearing
in the concept, it follows that there exists some polynomial function p such
that fn(0) ≤ 2p(n).

Now that we have obtained an upper bound on fn(0), we try to obtain
an upper bound on fn(k + 1) in terms of fn(k). Consider some concept C
with depth k + 1 and having at most n distinct literal subconcepts. The
output of Pinf(C) is a conjunction of clausal concepts, one for each prime
implicate of C. We know by Proposition 15 that there can be no more than
n2n

distinct prime implicates of C, so there can be at most n2n
conjuncts

in the output of Pinf(C). We also know that each of the prime implicates
outputted by Gen-Pi(C) has at most 2n disjuncts (cf. proof of Proposition
14). In Step 3, equivalence-preserving modifications are made to the prime
implicates outputted by Gen-Pi(C), but none of these modifications may
increase the number of disjuncts. It follows then that the conjuncts of the
output of Pinf(C) all have at most 2n disjuncts.

30

We now want to place a bound on the size of the disjuncts appearing in
the conjuncts of Pinf(C). Consider some conjunct P of Pinf(C), and let Q
be the element of Gen-Pi(C) which was turned into P via the modifications
in Step 3 of Pinf. Besides the propositional disjuncts which have length at
most 1, there are two types of disjuncts which may appear in P : existential
restrictions of the form ∃R.Pinf(D1t ...tDr) where ∃R(Q) = {D1, ..., Dr},
and universal restrictions of the form ∀R.Pinf(E tD1t ...tDr) where E ∈
∀R(Q) and ∃R(Q) = {D1, ..., Dr}. Now since the elements in ∃R(Q)∪∀R(Q)
are all subconcepts of C, every literal subconcept of one of the concepts
in ∃R(Q) ∪ ∀R(Q) is also a literal subconcept of C. That means that if
E ∈ ∀R(Q) and ∃R(Q) = {D1, ..., Dr}, then all the literal subconcepts
appearing in D1 t ... t Dr or E t D1 t ... t Dr also appear in C. As we
have assumed there to be at most n distinct literal subconcepts in C, it
follows that there can be no more than n distinct literal subconcepts in
D1 t ... t Dr or E t D1 t ... t Dr. We also know that the disjuncts of Q
have depth at most k+1 (Proposition 16), which means that any concept of
the form D1 t ... tDn or E tD1 t ... tDr where E ∈ ∀R(P) and ∃R(P) =
{D1, ..., Dr} must have depth no greater than k. We can thus conclude that
|Pinf(D1 t ... tDn)| ≤ fn(k) and |Pinf(E tD1 t ... tDr)| ≤ fn(k) where
E ∈ ∀R(P) and ∃R(P) = {D1, ..., Dr}, which means that any disjunct in Q
must have length at most fn(k) + 1 (the extra 1 is for the role in the role
restriction).

Putting all of this together, we find the following relationship between
fn(k + 1) and fn(k):

fn(k + 1) ≤ n2n
(2n(fn(k) + 1))

Here the n2n
gives the maximal number of conjuncts, 2n gives the maximal

number of disjuncts per conjunct, and fn(k)+1 gives the maximal size of the
disjuncts. Using standard techniques for solving first-order linear recurrence
relations, we arrive at the following:

fn(k) ∈ O((n2n
2n)kfn(0))

It is not hard to see that this expression is no more than doubly-exponential
in n. Now suppose that C is a concept with n literal subconcepts and depth
k. We know that the size of Pinf(C) is bounded above by fn(k). As the
number of literal subconcepts in a concept C can never exceed |C|, we must
have n ≤ |C|. We also know that the depth of C is bounded by the length
of C, i.e. k = δ(C) ≤ |C|. This means that the above expression is at
most doubly-exponential in |C|, so |Pinf(C)| must also be at most than
doubly-exponential in |C|.

31

We now prove that this upper bound is optimal by showing that in
some cases the transformation to prime implicate normal form may involve
a doubly-exponential blowup in concept length.

Proposition 36. There exist concepts C such that the smallest equiva-
lent concept in prime implicate normal form has length which is doubly-
exponential in the length of C.

Proof. In [5], it has been shown that there exists a concept C such that
the number of non-equivalent prime implicates of C is doubly-exponential
in |C|. Any concept in prime implicate normal form which is equivalent to
C must have a doubly-exponential number of conjuncts, and hence length
which is doubly-exponential in |C|.

5 Related Work

Most of the subsumption algorithms that have been proposed for subpropo-
sitional description logics involve a normalization step in which concepts are
put into some type of normal form. This is the case for instance for the de-
scription logics FL0 [14], CLASSIC [6], ALN [15], ALE [1], and EL++ [2].
There has been relatively little work however on normal forms for more ex-
pressive description logics like ALC which support full disjunction. Two
notable exceptions are the disjunctive form introduced for the mu-calculus
in [12] and adapted to ALC in [18] and the linkless normal form recently
proposed in [10]. In this section, we examine some of the properties of these
normal forms and compare them to our own.

5.1 Disjunctive Form

Disjunctive form was first introduced in [12] as a normal form for mu-calculus
formulae. In more recent work [18], B. ten Cate and colleagues ḩave used
disjunctive form as a normal form for concepts in ALC:

Definition 37 (Disjunctive Form). If R is a role and Φ a set of ALC con-
cepts, then ∇R.Φ stands for the following concept:

l

C∈Φ

∃R.C u ∀R.
⊔
C∈Φ

C

The set of ALC concepts in disjunctive form is generated by the following
recursive definition:

C ::= > |⊥ |π u∇R1.Φ1 u ... u∇Rn.Φn |C t C

32

where π is a consistent conjunction of atomic literal concepts, R1, ..., Rn are
distinct roles, and Φ1, ..., Φn are finite sets of concepts in disjunctive form.

Disjunctive form can be seen as a description of a concept’s models.
Each of the disjuncts πu∇R1.Φ1u ...u∇Rn.Φn represents a possible model
in which the root of model satisfies π, there is at least one Ri-successor
satisfying each of the concepts in Φi, and all Ri-successors satisfy at least
of the concepts in Φi.

In [18], the authors prove that it is possible to generate the L-interpolants
of concepts in disjunctive form in linear time and that the transformation to
disjunctive form involves an only singly-exponential blowup in concept size.
These properties together mean that disjunctive form can be used to produce
singly-exponential size L-interpolants. Indeed, the authors use disjunctive
form to provide a tight upper bound on the length of L-interpolants.

We can also show that the n-interpolants of concepts in disjunctive form
can be produced in linear time, which means that disjunctive form can be
used to generate singly-exponential-sized n-interpolants.

Proposition 38. The n-interpolant of a concept C in disjunctive form can
be generated in linear time in the size of C.

Proof. Define f(C, n) as follows:

f(>, n) = >
f(⊥, n) = ⊥

f(D1 tD2, n) = f(D1, n) t f(D2, n)

f(π u
l

i

∇Ri.Φi, n) =

⊥ if |=

d
i∇Ri.Φi v ⊥

π if n = 0
π u

d
i∇Ri.{f(G,n− 1) |G ∈ Φi} if n > 1

Satisfiability of concepts in disjunctive form can be computed in linear
time [12]. This means that f(C, n) can be generated in linear time from
C. We now show that if C is in disjunctive form then f(C, n) is indeed the
n-interpolant of C. The proof is by induction on n. The base case is n = 0.
The result trivially holds for propositional C, since they are left unchanged
by f . Suppose then that C is of the form πu∇R.Φ, and let D = P1t ...tPj
be a propositional clausal concept such that |= C v D. Then we must have
|= > v ¬C tD, which gives us

|= > v ¬π t ¬(∇R.Φ) t P1 t ... t Pj

It follows from Proposition 6 that either |= > v ¬π t P1 t ... t Pj or |=
> v ¬(∇R.Φ). In the first case, we have |= π v P1 t ... t Pj , and in the

33

second case, we have |= ∇R.Φ v ⊥. In either case, we find that f(C, 0)
is subsumed by D, and hence by every concept of depth 0 which subsumes
C. Using similar reasoning, we can show the same result holds for arbitrary
concepts of depth 0 in disjunctive form. As f(C, 0) clearly has depth 0 and
subsumes C, it follows that f(C, 0) must be the 0-interpolant of C.

Next suppose that the result holds whenever n ≤ k, and consider the case
where n = k + 1. Now as before, the result trivially holds for propositional
concepts. We consider the case where C is of the form∇R.Φ. In this case, we
get either f(C, k+ 1) = ⊥ if ∇R.Φ is unsatisfiable (which is correct since ⊥
is the k+ 1-interpolant of any unsatisfiable concept), and otherwise we have
f(C, k+ 1) = ∇R.{f(G,n) |G ∈ Φ} = uG∈Φ∃R.f(G, k)u ∀R.tG∈Φ f(G, k).
Now suppose that D = P1 t ... t Pj t ∃R.E t ∀R.F1 t ... t ∀R.Fm is some
clausal concept with depth at most k+ 1 which subsumes C. Then we must
have |= > v ¬C tD, and thus

|= > v
⊔
G∈Φ

∀R.¬Gt∃R.
l

G∈Φ

¬GtP1t ...tPj t∃R.E t∀R.F1t ...t∀R.Fm

It follows from Proposition 6 that one of the following holds: |= > v P1t...t
Pj , |= > v (

d
G∈Φ ¬G)tE tFi for some i, or |= > v (

d
G∈Φ ¬G)tE t¬H

for some H ∈ Φ. In the first case, D is tautologous, in the second case,
∀R. tG∈Φ G v ∃R.E t ∀R.Fi for some i, and in the third case, |= ∃R.H v
∃R.E for some H ∈ Φ. We thus find that either ∃R.H is subsumed by
D for some H ∈ Φ or ∀R. tG∈Φ G is subsumed by D. But since D has
depth at most k + 1, it must be the case that the k + 1-interpolant of some
∃R.H or the k + 1-interpolant of ∀R. tG∈Φ G is subsumed by D. Because
of the induction hypothesis, we know that the the k-interpolant of H is
f(H, k) for H ∈ Φ, and the k-interpolant of tG∈ΦG is tG∈Φf(G, k) (since
interpolation distributes over t). It follows that the k + 1-interpolant of
∃R.H is ∃R.f(H, k) and the k + 1-interpolant of ∀R. tG∈Φ G is ∀R. tG∈Φ

f(G, k). We thus find that f(C, k + 1) is subsumed by D for every clausal
concept D of depth at most k+1 which subsumes C. This implies f(C, k+1)
is the k + 1-interpolant of C since every concept can be rewritten as a
conjunction of clausal concepts of lesser or equal depth (Proposition 5).
Using similar reasoning, it can be shown that f(C, k + 1) is the k + 1-
interpolant of C for concepts C of the form πu

d
i∇Ri.Φi. This is enough to

show the result for arbitrary C in disjunctive form with depth k+1 since (a)
every such concept is a disjunction of concepts of the form πu

d
i∇Ri.Φi of

depth at most k+1, and (b) the k+1-interpolant of a disjunction of concepts
is equivalent to the disjunction of the k+1-interpolants of the disjuncts. We

34

have thus shown that the above procedure can be used to generate the n-
interpolants of concepts in disjunctive form in linear time.

Most of the other nice properties of prime implicate normal form can be
shown not to hold for disjunctive form. Concepts in disjunctive form may
contain unnecessary atomic concepts. Consider for instance the concept
A t ¬A which is in disjunctive form but is equivalent to > which does not
mention A. Moreover, while satisfiability-testing of concepts in disjunctive
form is easy (it is shown in [12] to be decidable in linear time), we can
show that tautology-testing, subsumption, and equivalence-testing cannot
be carried out efficiently (unless P=NP):

Proposition 39. Deciding whether a concept in disjunctive form is a tau-
tology is co-NP-hard.

Proof. Any propositional formula φ in DNF can be transformed in linear
time into an equivalent concept Cφ in disjunctive form by simply removing
any unsatisfiable disjuncts from φ. This means that if we were able to test
in polynomial time whether a concept in disjunctive form is a tautology,
then we could do the same for propositional DNF formulae. As the DNF
tautology problem is known to be co-NP-complete (cf. [11]), it follows that
testing whether a concept in disjunctive form is a tautology is a co-NP-hard
problem.

As both subsumption and equivalence-testing can be used to identify
tautologies, these tasks must also be co-NP-hard:

Corollary 40. Subsumption between concepts in disjunctive form is co-NP-
hard.

Corollary 41. Deciding equivalence of concepts in disjunctive form is co-
NP-hard.

5.2 Linkless Normal Form

In [10], Furbach and Obermaier extend linkless normal form (cf. [16]) from
propositional logic to ALC concepts. Unlike disjunctive form which was
never intended to be used for compilation, linkless normal form was specif-
ically introduced for the purpose of compiling description logic knowledge
bases. For completeness, we recall their definition of linkless normal form:

Definition 42 (C-path). The set of c-paths of a concept in NNF is defined
as follows:

35

c-paths(C) = {{C}}, if C is a literal concept

c-paths(C1 u C2) = {X ∪ Y |X ∈ c-paths(C1), Y ∈ c-paths(C2)}

c-paths(C1 t C2) = c-paths(C1) ∪ c-paths(C2)

Definition 43 (Link). A link is either a concept link or a role link:

• A concept link of C is a set of complementary atomic literal concepts
appearing in a c-path of C

• A role link of C is a set {∃R.D,∀R.E1, ...,∀R.En} occurring in a c-path
of C and where all c-paths in D uE1 u ...uEn contain ⊥ or a concept
link or role link and no proper subset of {∃R.D,∀R.E1, ...,∀R.En} is
a role link

Definition 44 (Linkless normal form). A concept C is linkless (or in linkless
normal form) if it is in NNF and there is no c-path in C which contains a
link and if for each occurrence of QR.E in C with Q ∈ {∃, ∀} the concept
E is linkless as well.

Deciding whether a concept in linkless normal form is unsatisfiable can
be done in polynomial time [10]. The same cannot be said for tautology-
testing:

Proposition 45. Deciding whether a concept in linkless normal form is a
tautology is co-NP-hard.

Proof. The proof is almost identical to that of Proposition 39. We can
transform any propositional formula φ in DNF into an equivalent concept
Cφ in linkless normal form in linear time by removing any unsatisfiable
disjuncts from φ, which means that tautology-testing for linkless concepts
can be reduced to the co-NP-complete DNF tautology problem, making the
former problem co-NP-hard.

It follows that subsumption and equivalence-testing cannot be efficiently
tested either:

Corollary 46. Subsumption between concepts in linkless normal form is
co-NP-hard.

Corollary 47. Deciding equivalence of concepts in linkless normal form is
co-NP-hard.

36

In [10], it is shown that for a certain class of queries subsumption can be
carried out in linear time. The class of queries is rather restricted, consisting
of clauses composed of atomic literal concepts and existential and universal
restrictions followed by a single atomic literal concept. It is unclear whether
their results can be extended larger classes of queries, like the class of queries
that we proposed in Proposition 23.

The authors of [10] conjecture that L-interpolants of concepts in linkless
form can be generated efficiently, but this remains an open question. The
complexity of n-interpolant generation is also unknown.

Finally, concepts in linkless form can contain unnecessary atomic con-
cepts or roles. For example, the concepts (AuB)t(Au¬B) and Au∀R.(At
¬A) are both in linkless normal form but are equivalent to the concept A
which contains neither B nor R.

5.3 Discussion

The results in this section suggest that prime implicate normal form is better
suited than both disjunctive form and linkless normal form for the purposes
of knowledge compilation, as prime implicate normal form supports the same
class of polynomial transformations and a wider range of polynomial time
queries. In particular, the fact that subsumption is polynomial between
concepts in prime implicate normal form means that we can test whether an
arbitrary query concept subsumes a concept in prime implicate normal form
by first putting the (presumaby small) query concept into prime implicate
normal form and then using structural subsumption. For the other two
normal forms, there is currently no procedure for posing arbitrary queries
to a compiled concept.

On the other hand, disjunctive form and linkless normal form have the
advantage of a lower spatial complexity. This means that if one is using a
normal form for the sole purpose of generating L- and n-interpolants, then
disjunctive form is more appropriate since it produces singly-exponential-
sized interpolants, whereas those obtained using prime implicate normal
form may have doubly-exponential size.

6 Conclusion and Future Work

The main contribution of this paper is the introduction of prime implicate
normal form as a new normal form for concepts in the description logic ALC.
We showed that prime implicate normal form has a number of interesting

37

properties which make it suitable for the purposes of knowledge compila-
tion, some of which are not satisfied by other normal forms proposed in the
literature. We also provided an algorithm for transforming concepts into
equivalent concepts in prime implicate normal form and proved that the
transformation involves an at most doubly-exponential blowup in concept
size.

In future work we would like to implement our prime implicate normal
form transformation and our structural subsumption algorithm to see what
kind of performance they give in practice. This should help us to identify
the type of situations in which the benefits gained by a concept being in
prime implicate normal form outweigh the cost of putting it in this form.

Another interesting question for future research is how our normal form
can be extended to handle even more expressive description logics. We
expect that the extension to languages with nominals should be straightfor-
ward, but that number restrictions and inverse roles will prove more chal-
lenging.

We also want to address what is probably the most important limitation
of our work, namely the fact that our normal form treats concept expres-
sions rather than sets of axioms (commonly known as TBoxes). We expect
that the extension of prime implicates and prime implicate normal form to
TBoxes will be highly non-trivial. In spite of this, we feel that this ques-
tion is worth pursuing since it could potentially provide description logic
practitioners with a new tool for dealing with the high complexity of TBox
reasoning.

References

[1] F. Baader, R. Kusters, and R. Molitor. Computing least common sub-
sumers in description logics with existential restrictions. In Proceedings
of the Sixteenth International Joint Conference on Artificial Intelligence
(IJCAI’99), pages 96–103, 1999.

[2] Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the el
envelope. In Proceedings of IJCAI’05, pages 364–369, 2005.

[3] M. Bienvenu. Consequence finding in ALC. In Proceedings of the Twen-
tieth International Workshop on Description Logics (DL2007), volume
250 of CEUR Workshop Proceedings, 2007.

38

[4] M. Bienvenu. Prime implicates and prime implicants in modal logic. In
Proceedings of the Twenty-Second Conference on Artificial Intelligence
(AAAI-07), pages 397–384, 2007.

[5] M. Bienvenu. Prime implicates and prime implicants in modal logic:
Extended and revised version. Research report IRIT/RR–2007-17–FR,
IRIT, Université Paul Sabatier, Toulouse, 2007.

[6] A. Borgida and P. Patel-Schneider. A semantics and complete algorithm
for subsumption in the CLASSIC description logic. Journal of Artificial
Intelligence Research, 1:277–308, 1994.

[7] A. Chandra and G. Markowsky. On the number of prime implicants.
Discrete Mathematics, 24:7–11, 1978.

[8] A. Darwiche and P. Marquis. A knowledge compilation map. Journal
of Artificial Intelligence Research, 17:229–264, 2002.

[9] F. M. Donini, B. Hollunder, M. Lenzerini, A. Marchetti Spaccamela,
D. Nardi, and W. Nutt. The complexity of existential qualification in
concept languages. Artificial Intelligence, 53:309–327, 1992.

[10] Ulrich Furbach and Claudia Obermaier. Knowledge compilation for
description logics. In Proceedings of the 3rd Workshop on Knowledge
Engineering and Software Engineering (KESE), 2007.

[11] M. Garey and D. Johnson. Computers and intractability. A guide to
the theory of NP-completeness. W. H. Freeman, 1979.

[12] D. Janin and I. Walukeiwicz. Automata for the modal mu-calculus
and related results. In Proceedings of the Twentieth International
Symposium on the Mathematical Foundations of Computer Science
(MFCS’95), volume 969 of Lecture Notes in Computer Science, pages
552–562. Springer, 1995.

[13] J. Lang, P. Liberatore, and P. Marquis. Propositional independence:
Formula-variable independence and forgetting. Journal of Artificial
Intelligence Research, 18:391–443, 2003.

[14] H. Levesque and R. Brachman. Expressiveness and tractability in
knowledge representation and reasoning. Computational Intelligence,
3(78-93), 1987.

39

[15] R. Molitor. Structural subsumption for ALN. LTCS-Report 98-03,
RWTH Aachen, 1998.

[16] N. Murray and E. Rosenthal. Dissolution: Making paths vanish. Jour-
nal of the ACM, 40(3):504–535, 1993.

[17] Klaus Schild. A correspondence theory for terminological logics: pre-
liminary report. In Proceedings of IJCAI-91, 12th International Joint
Conference on Artificial Intelligence, pages 466–471, 1991.

[18] B. ten Cate, W. Conradie, M. Marx, and Y. Venema. Definitorially
complete description logics. In Proceedings of the Tenth International
Conference on Principles of Knowledge Representation and Reasoning
(KR06), pages 79–89, 2006.

40

