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Abstract

In this paper, we investigate the problem of synthesizing
strategies for linear temporal logic (LTL) specifications that
are interpreted over finite traces – a problem that is central
to the automated construction of controllers, robot programs,
and business processes. We study a natural variant of the finite
LTL synthesis problem in which strategy guarantees are pred-
icated on specified environment behavior. We further explore
a quantitative extension of LTL that supports specification of
quality measures, utilizing it to synthesize high-quality strate-
gies. We propose new notions of optimality and associated al-
gorithms that yield strategies that best satisfy specified qual-
ity measures. Our algorithms utilize an automata-game ap-
proach, positioning them well for future implementation via
existing state-of-the-art techniques.

1 Introduction

The problem of automatically synthesizing digital circuits
from logical specifications was first proposed by Church
(1957). In 1989, Pnueli and Rosner examined the problem of
synthesizing strategies for reactive systems, proposing Lin-
ear Temporal Logic (LTL) (Pnueli 1977) as the specification
language. In a nutshell, LTL is used to express temporally ex-
tended properties of infinite state sequences (called traces),
and the aim of LTL synthesis is to produce a winning strat-
egy, i.e. a function that assigns values to the state variables
under the control of the system at every time step, in such
a way that the induced infinite trace is guaranteed to satisfy
the given LTL formula, no matter how the environment sets
the remaining state variables.

In 2015, De Giacomo and Vardi introduced the problem
of LT Lf synthesis in which the specification is described in
a variant of LTL interpreted over finite traces (De Giacomo
and Vardi 2013). Finite interpretations of LTL have long been
exploited to specify temporally extended goals and prefer-
ences in AI automated planning (e.g., (Bacchus and Kabanza
2000; Baier, Bacchus, and McIlraith 2009)). In contrast to
LTL synthesis, which produces programs that run in perpe-
tuity, LTLf synthesis is concerned with the generation of ter-
minating programs. Two natural and important application
domains are automated synthesis of business processes, in-
cluding web services; and automated synthesis of robot con-
trollers, in cases where program termination is desired.

Despite recent work on LTLf synthesis, there is little writ-
ten on the nature and form of the LTLf specifications and
how this relates to the successful and nontrivial realization
of strategies for such specifications. LTLf synthesis is con-
ceived as a game between the environment and an agent.
The logical specification that defines the problem must not
only define the desired behavior that execution of the strat-
egy should manifest – what we might loosely think of as
the objective of the strategy, but must also define the con-
text, including any assumptions about the environment’s be-
havior upon which realization of the objective is predicated.
As we show in this work, if assumptions about environment
behavior are not appropriately taken into account, specifica-
tions can either be impossible to realize or can be realized
trivially by allowing the agent to violate assumptions upon
which guaranteed realization of the objective is predicated.

We further examine the problem of how to construct spec-
ifications where the realization of an objective comes with
a quality measure, and where strategies provide guarantees
with respect to these measures. The addition of quality mea-
sures is practically motivated. In some instances we may
have an objective that can be realized in a variety of ways
of differing quality (e.g., my automated travel assistant may
find a myriad of ways for me to get to KR2018 – some more
preferable than others!). Similarly, we may have multiple
objectives that are mutually unachievable and we may wish
to associate a quality measure with their individual realiza-
tion (e.g., I’d like my home robot to do the laundry, wash
dishes, and cook dinner before its battery dies, but dinner is
most critical, followed by dishes).

In this paper we explore finite LTL synthesis with envi-
ronment assumptions and quality guarantees. In doing so,
we uncover important observations regarding the form and
nature of LTLf synthesis specifications, how resulting strate-
gies are computed, and the nature of the guarantees we can
provide regarding the resulting strategies. In Section 3 we
examine the problem of LTLf synthesis with environment as-
sumptions, introducing the notion of constrained LTLf syn-
thesis in Section 4. In Section 5, we propose algorithms for
constrained LTLf synthesis, including a reduction to Deter-
ministic Büchi Automata games for the fragment of envi-
ronment constraints that are conjunctions of safe and co-
safe LTL formulae. In Section 6, we examine the problem
of augmenting constrained LTLf synthesis with quality mea-



sures. We adopt a specification language, LTLf[F ], proposed
by (Almagor et al. 2017) and define a new notion of opti-
mal strategies. In Section 7, we provide algorithms for com-
puting high-quality strategies for constrained LTLf synthe-
sis. Section 8 summarizes our technical contributions. Some
proofs are deferred to the appendix. This paper (without the
appendix proofs) will appear in the Proceedings of the 16th
International Conference on Principles of Knowledge Rep-
resentation and Reasoning (KR 2018).

2 Preliminaries
We recall the syntax and semantics of linear temporal logic
for both infinite and finite traces, as well as the basics of
finite state automata and the link between LTL and automata.

2.1 Linear Temporal Logic (LTL)

Given a set P of propositional variables, LTL formulae are
defined as follows:

ϕ ! ⊤ | ⊥ | p | ¬ϕ | ϕ1 ∧ϕ2 | ϕ1 ∨ϕ2 | ϕ | ϕ1 Uϕ2 | ϕ1 Rϕ2

where p ∈ P. Here ¬, ∧, and ∨ are the usual Boolean con-
nectives, and (next), U (until), and R (release) are tem-
poral operators. The formula ϕ states that ϕ must hold in
the next timepoint, ϕ1 Uϕ2 stipulates that ϕ1 must hold until
ϕ2 becomes true, and ϕ1 Rϕ2 expresses that ϕ2 remain true
until and including the point in which ϕ1 is made true (or
forever if ϕ2 never becomes true). For concision, we do not
include logical implication (→), eventually (♦, ‘sometime in
the future’) and always (", ‘at every point in the future’)
in the core syntax, but instead view them as abbreviations:
α→ β ! ¬α ∨ β, ♦ϕ ! ⊤Uϕ and and "ϕ ! ⊥Rϕ.

LTL formulae are traditionally interpreted over infinite
traces π, i.e., infinite words over the alphabet 2P. Intu-
itively, an infinite trace π describes an infinite sequence of
(time)steps, with the i-th symbol in π, written π(i), speci-
fying the propositional symbols that hold at step i. We use
π ⊑ π′ to indicate that π is a prefix of π′. We define what it
means for an infinite trace π to satisfy an LTL formula ϕ at
step i, denoted π |=i ϕ:
• π |=i ⊤, π ̸|=i ⊥, and π |=i p iff p ∈ π(i), for each p ∈ P;
• π |=i ¬ϕ iff π ̸|=i ϕ;
• π |=i ϕ1 ∧ ϕ2 iff π |=i ϕ1 and π |=i ϕ2;
• π |=i ϕ1 ∨ ϕ2 iff π |=i ϕ1 or π |=i ϕ2;
• π |=i ϕ iff π |=i+1 ϕ;
• π |=i ϕ1 Uϕ2 iff there exists j ≥ i such that π |= j ϕ2, and

for each i ≤ k < j, π |=k ϕ1;
• π |=i ϕ1 Rϕ2 iff for all j ≥ i either π |= j ϕ2 or there exists

i ≤ k < j such that π |=k ϕ1.
A formula ϕ is satisfied in π, written π |= ϕ, if π |=1 ϕ.
Two formulas ϕ and ψ are equivalent if π |= ϕ iff π |=
ψ for all traces π. Observe that, in addition to the usual
Boolean equivalences, we have the following: ϕ1 Uϕ2 ≡
¬(¬ϕ1 R¬ϕ2) and ¬ ϕ ≡ ¬ϕ.

We consider two well-known syntactic fragments of LTL.
The safe fragment is defined as follows (Sistla 1994):

ϕ ! ⊤ | ⊥ | p | ¬p | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ | ϕ1 Rϕ2

The complementary co-safe fragment is similarly defined,
using U in place of R . It is known that if ϕ is a safe formula

and π ̸|= ϕ, then there is a finite bad prefix πb ⊑ π such that
π′ ̸|= ϕ for every infinite trace π′ with πb ⊑ π

′. Similarly, if
ϕ is a co-safe formula and π |= ϕ, then there exists a finite
good prefix πg ⊑ π such that π′ |= ϕ for every infinite trace π′

with πg ⊑ π
′. This means that violation of safe formulae and

satisfaction of co-safe formulae can be shown by exhibiting
a suitable finite prefix (Kupferman and Vardi 2001).

In this paper, our main focus will be on a more recently
studied finite version of LTL, denoted LTLf (De Giacomo and
Vardi 2013), in which formulae are interpreted over finite
traces (finite words over 2P). We will reuse the notation π(i)
(i-th symbol) and introduce the notation |π| for the length
of π. LTLf has precisely the same syntax as LTL and the same
semantics for the propositional constructs, but it differs in its
interpretation of the temporal operators:
• π |=i ϕ iff |π| > i and π |=i+1 ϕ;
• π |=i ϕ1 Uϕ2 iff there exists i ≤ j ≤ |π| such that π |= j ϕ2,

and π |=k ϕ1, for each i ≤ k < j;
• π |=i ϕ1 Rϕ2 iff for all i ≤ j ≤ |π| either π |= j ϕ2 or there

exists i ≤ k < j such that π |=k ϕ1

We introduce the weak next operator ( ) as an abbreviation:
ϕ ! ϕ ∨ ¬ ⊤. Thus, ϕ holds if ϕ holds in the next

time step or we have reached the end of the trace. Over finite
traces, ¬ ϕ " ¬ϕ, but we do have ¬ ϕ ≡ ¬ϕ.

As before, we say that ϕ is satisfied in π, written π |= ϕ,
if π |=1 ϕ. Note that we can unambiguously use the same
notation for LTL and LTLf so long as we specify whether the
considered trace is finite or infinite.

2.2 Finite State Automata

We recall that a non-deterministic finite-state automaton
(NFA) is a tuple A = ⟨Σ,Q, δ,Q0, F⟩, where Σ is a finite
alphabet of input symbols, Q is a finite set of states, Q0 ⊆ Q
is a set of initial states, F ⊆ Q is a set of accepting states,
and δ : Q × Σ → 2Q is the transition function. NFAs are
evaluated on finite words, i.e. elements of Σ∗. A run ofA on
a word w = θ1 · · · θn is a sequence q0 · · · qn of states, such
that q0 ∈ Q0, and qi+1 ∈ δ(qi, θi+1) for all 0 ≤ i < n. A run
q0 · · · qn is accepting if qn ∈ F , andA accepts w if some run
of A on w is accepting. The language of an automaton A,
denotedL(A), is the set of words accepted byA.

Deterministic finite-state automata (DFAs) are NFAs in
which |Q0| = 1 and |δ(q, θ)| = 1 for all (q,σ) ∈ Q × Σ. When
A is a DFA, we write δ : Q×Σ→ Q and q′ = δ(q, θ) in place
of q′ ∈ δ(q, θ), and when Q0 = {q0}, we will simply write q0

(without the set notation). For every NFA A, there exists a
DFA that accepts the same language as A and whose size
is at most single exponential in the size ofA. The powerset
construction is a well-known technique to determinize NFAs
(Rabin and Scott 1959).

Non-deterministic Büchi automata (NBA) are defined like
NFAs but evaluated on infinite words, that is, elements of Σω.
A run of A on an infinite word w = θ1θ2 · · · is a se-
quence ρ = q0q1q2 · · · of states, such that q0 ∈ Q0, and
qi+1 ∈ δ(qi, θi+1) for every i ≥ 0. A run ρ is accepting if
inf(ρ)∩F # ∅, where inf(ρ) is the set of states that appear in-
finitely often in ρ. We say that an NBAA accepts w if some
run of A on w is accepting. Analogous definitions apply to
deterministic Büchi automata (DBAs).



We will also consider deterministic finite-state transduc-
ers (also called Mealy machines, later abbreviated to ‘trans-
ducers’), given by tuples T = ⟨Σ,Ω,Q, δ,ω, q0⟩, where Σ
and Ω are respectively the input and output alphabets, Q is
the set of states, δ : Q × Σ → Q is the transition function,
ω : Q×Σ→ Ω is the output function, and q0 the initial state.
The run of T on w = θ1θ2 . . . ∈ Σ

ω is an infinite sequence of
states q0q1q2 . . . with qi+1 ∈ δ(qi, θi+1) for every i ≥ 0, and
the output sequence of T on w is ω(q0, θ1)ω(q1, θ2) . . ..

Given an LTLf formula ϕ, one can construct an NFA that
accepts precisely those finite traces π with π |= ϕ (e.g. (De
Giacomo and Vardi 2015)). For every safe formula ϕs (resp.
co-safe formula ϕc), one can construct an NFA that accepts
all bad prefixes of ϕs (resp. good prefixes of ϕc) (Kupfer-
man and Vardi 2001). In these constructions, the NFAs are
worst case single exponential in the size of the formula. By
determinizing these NFAs, we can obtain DFAs of double-
exponential size that recognize the same languages.

3 LTL and LTLf Synthesis
To set the stage for our work, we recall the definition of LTL
synthesis in the infinite and finite trace settings and the rela-
tionship between planning and synthesis.

3.1 LTL Synthesis

An LTL specification is a tuple ⟨X,Y, ϕ⟩ where ϕ is an LTL
formula over uncontrollable variables X and controllable
variables Y. A strategy is a function σ : (2X)∗ → 2Y. The
infinite trace induced by X = {Xi}i≥1 ∈ (2X)ω and σ is

π[σ,X] = (X1 ∪ σ(X1)) (X2 ∪ σ(X1X2)) . . .

The set of all infinite traces induced by σ is denoted
traces(σ) = {π[σ,X] | X ∈ (2X)ω}. The realizability prob-
lem ⟨X,Y, ϕ⟩ consists in determining whether there exists a
winning strategy, i.e., a strategy σ such that π |= ϕ for every
π ∈ traces(σ). The synthesis problem is to compute such a
winning strategy when one exists.

LTL synthesis can be viewed as a 2-player game between
the environment (X) and the agent (Y). In each turn, the en-
vironment makes a move by selecting Xi ⊆ X, and the agent
replies by selecting Yi ⊆ Y. The aim is to find a strategy σ
for the agent that guarantees the resulting trace satisfies ϕ.

3.2 Finite LTL Synthesis

We now recall LTLf realizability and synthesis, where the
specification formula is interpreted on finite traces. An LTLf

specification is a tuple ⟨X,Y, ϕ⟩, where ϕ is an LTLf for-
mula over uncontrollable variables X and controllable vari-
ables Y. A strategy is a function σ : (2X)∗ → 2Y∪{end}

such that for each infinite sequence X = {Xi}i≥1 ∈ (2X)ω

of subsets of X, there is exactly one integer nσ,X ≥ 1 with
end ∈ σ(X1 · · ·Xnσ,X ). The induced infinite trace π[σ,X] is
defined as before, and the finite trace induced by X and σ is

πf[σ,X] = (X1 ∪ σ(X1)) . . .
(

Xnσ,X ∪ σ(X1 · · · Xnσ,X )
)

but with end removed from σ(X1 · · ·Xnσ,X ). The set of all fi-

nite traces induced by σ is denoted tracesf(σ) = {πf[σ,X] |
X ∈ (2X)ω}. A finite trace π is compatible with σ if π ⊑ π′

for some π′ ∈ tracesf(σ), with ptraces(σ) (‘p’ for ‘par-
tial’) the set of all such traces. We call σ a winning strat-
egy for an LTLf specification ⟨X,Y, ϕ⟩ if π |= ϕ for every
π ∈ tracesf(σ). The realizability and synthesis problems for
LTLf are then defined in the same way as for LTL.

Comparison with prior formulations Prior work on LTLf

synthesis defined strategies as functions σ : (2X)∗ → 2Y

that do not explicitly indicate the end of the trace (De Gi-
acomo and Vardi 2015; Zhu et al. 2017; Camacho et al.
2018a). In these works, a strategy σ is winning iff for each
π ∈ traces(σ) there exists some finite prefix π′ ⊑ π such
that π′ |= ϕ. Note that in general, multiple prefixes π′ that
satisfy ϕ may exist. We believe that it is cleaner mathemati-
cally to be precise about which trace is produced, and it will
substantially simplify our technical developments. The two
definitions give rise to the same notion of realizability, and
existing results and algorithms for LTLf synthesis transfer to
our slightly different setting.

3.3 Planning as LTLf Synthesis

It has been observed that different forms of automated plan-
ning can be recast as LTLf synthesis (see e.g. (De Giacomo
and Vardi 2015; D’Ippolito, Rodrı́guez, and Sardiña 2018;
Camacho et al. 2018b)). We recall that planning problems
are specified in terms of a set of fluents (i.e., atomic facts
whose value may change over time), a set of actions which
can change the state of the world, an action theory whose
axioms give the preconditions and effects of the actions
(i.e., which fluents must hold for an action to be executable,
and how do the fluents change as a result of performing
an action), a description of the initial state, and a goal. In
classical planning, actions are deterministic (i.e. there is a
unique state resulting from performing an action in a given
state), and the aim is to produce a sequence of actions lead-
ing from the initial state to a goal state. In fully observ-
able non-deterministic (FOND) planning, actions have non-
deterministic effects, meaning that there may be multiple
possible states that result from performing a given action
in a given state (with the effect axioms determining which
states are possible results). Strong solutions are policies (i.e.,
functions that map states into actions) that guarantee even-
tual achievement of the goal.

We briefly describe how FOND planning can be reduced
to LTLf synthesis,1 as the reduction crucially relies on the
use of environment assumptions. We will use the set F of
fluents as the uncontrollable variables, and the set of actions
A for the controllable variables. The high-level structure
of the LTLf specification formula is: Φ = (Ψinit ∧ Ψeff ) →
(Ψpre ∧ Ψgoal) Intuitively, Φ states that under the assump-
tion that the environment sets the fluents in accordance with
the initial state and effect axioms (captured by Ψinit and
Ψeff ), the agent can choose a single action per turn (Ψone)
in such a way that the preconditions are obeyed (Ψpre) and
the goal is achieved (Ψgoal). We set Ψgoal = ♦(γ ∧ ¬ ⊤),

1Our high-level presentation combines elements of the reduc-
tions in (De Giacomo and Vardi 2015; Camacho et al. 2018a). Its
purpose is to illustrate the general form and components of an LTLf

encoding of planning (not to provide the most efficient encoding).



where γ is a propositional formula over F describing goal
states. The formula Ψone = "ψone with ψone = ( ⊤ ↔
∨

a∈A a)∧
∧

a,a′∈A,a#a′(¬a∨¬a′) enforces that a single action
is performed at each step. The formulaΨpre can be defined as
"
∧

a∈A(a → ρa), where ρa is a propositional formula over
F (typically, a conjunction of literals) that gives the precon-
ditions of a. The formulaΨinit will simply be the conjunction
of literals over F corresponding to the initial state. Finally,
Ψeff will be a conjunction of formulae of the form

" ((κ ∧ a ∧ ρa ∧ ψone)→ β) (1)

where a ∈ A, and κ and β are propositional formulas overF .
Intuitively, the latter formula states that if the current state
verifies κ and action a is correctly performed by the agent
(i.e. the preconditions are met and no other action is simul-
taneously performed) then the next state must satisfy β. We
discuss later why it is important to include ρa ∧ ψone.

3.4 Illustrative Example

We now give a concrete example of an LTLf synthesis prob-
lem, which illustrates the importance of environment as-
sumptions. Consider synthesizing a high-level control strat-
egy for your Roomba-style robot vacuum cleaner. You want
the robot to clean the living room (LR) and bedroom (BR)
when they are dirty, but you don’t want it to vacuum a room
while your cat is there (the robot scares her). We now de-
scribe how this problem can be formalized as LTLf synthesis.

Taking inspiration from the encoding of planning, we will
use {clean(z), catIn(z) | z ∈ {LR, BR}} (the fluents2 in our
scenario) as the set of uncontrollable variables, and take the
robot’s actions {vac(BR), vac(LR)} as the controllable vari-
ables. As was the case for planning, it is natural to conceive
of the specification as having the form of an implication
Ψcat

env → Ψ
cat
robot

, with Ψcat
env describing the rules governing the

environment’s behavior and Ψcat
robot

the desired behavior of
the robot. We define Ψcat

robot
as the conjunction of:

• for z ∈ {LR, BR}, the formula "(vac(z) → ρvac(z)), with
ρvac(z) = ¬clean(z) ∧ ¬catIn(z) the precondition of vac(z)
(we can only vacuum dirty cat-free rooms);
• "(¬vac(LR) ∨ ¬vac(BR)) (we cannot vacuum in two

places at once);
• ♦(clean(LR) ∧ clean(BR)) (our goal: both rooms clean).
We let ϕvac(z) = vac(z) ∧ ρvac(z) ∧ ¬vac(z′) (with z′ the other
room) encode a correct execution of vac(z), and let Ψcat

env be
a conjunction of the following:
• for z ∈ {LR, BR}: "

(

clean(z) ∨ ϕvac(z) → clean(z)
)

(if
room z is currently clean, or if the robot correctly per-
forms action vac(z), then room z is clean in the next state3)
• for z ∈ {LR, BR}: " (¬clean(z) ∧ ¬vac(z)→ ¬clean(z))

(a room can only become clean if it is vacuumed);
• "(¬catIn(LR) ∨ ¬catIn(BR)) and "(catIn(LR) ∨

catIn(BR)) (the cat is in exactly one of the rooms).
As the reader may have noticed, while the assumptions in
Ψcat

env are necessary, they are not sufficient to ensure real-
izability, as the cat may stay forever in a dirty room. If

2We use notation reminiscent of first-order logic to enhance
readability, but the variables (e.g. clean(LR)) are propositional.

3For simplicity, we assume once a room is clean, it stays clean.

we further assume that the cat eventually leaves each of
the rooms (ϕleaves = ♦¬catIn(BR) ∧ ♦¬catIn(LR)), there
is an obvious solution: vacuum a cat-free room, and then
simply wait until the other room is cat-free and then vac-
uum it. However, rather unexpectedly, adding ϕleaves to Ψcat

env

makes the specification Ψcat
env → Ψ

cat
robot

realizable in a triv-
ial and unintended way: by ending execution in the first
move, ¬Ψcat

env trivially holds in the resulting length-1 trace π.
Indeed, there are three possibilities: (i) π |= catIn(BR)
(so π ̸|= ♦¬catIn(BR)), (ii) π |= catIn(LR) (so π ̸|=
♦¬catIn(LR)), or (iii) π |= ¬catIn(LR)∧¬catIn(BR) (so π ̸|=
("(catIn(LR) ∨ catIn(BR)))). Clearly, this length-1 strategy
is not the strategy that we wanted to synthesize. In Section 4,
we propose a new framework for handling environment as-
sumptions which avoids the generation of such trivial strate-
gies and makes it possible to find the desired strategies.

4 Constrained LTLf Synthesis

To the aim of properly handling environment assumptions,
we introduce a generalization of LTLf synthesis, in which the
assumptions are separated from the rest of the specification
formula and given a different interpretation. Essentially, the
idea is that the environment is allowed to satisfy the assump-
tion over the whole infinite trace, rather than on the finite
prefix chosen by the agent. This can be accomplished using
LTL semantics for the environment assumption, but keeping
LTLf semantics for the formula describing the objective.

Formally, a constrained LTLf specification is a tuple
⟨X,Y,α, ϕ⟩, whereX andY are the uncontrollable and con-
trollable variables, ϕ is an LTLf formula over X ∪ Y, and α
is an LTL formula over X ∪Y. Here ϕ describes the desired
agent behavior when the environment behaves so as to sat-
isfy α. We will henceforth call ϕ the objective, and will refer
to α as the (environment) assumption or constraint (as it acts
to constrain the allowed environment behaviors).

A strategy for ⟨X,Y,α, ϕ⟩ is a function σ : (2X)∗ →
2Y∪{end} such that for each infinite sequence X = {Xi}i≥1 ∈
(2X)ω of subsets of X, there is at most one integer nσ,X ≥ 1
with end ∈ σ(X1 · · · Xnσ,X ). If none exists, we write nσ,X =
∞. To account for traces that do not contain end, we redefine
tracesf(σ) as follows: {πf[σ,X] | X ∈ (2X)ω and nσ,X < ∞}.
A strategy σ is an α-strategy if for every X ∈ (2X)ω, ei-
ther nσ,X < ∞ or π[σ,X] ̸|= α, i.e. σ terminates on every
trace that satisfies α. A winning strategy (w.r.t. ⟨X,Y,α, ϕ⟩)
is an α-strategy such that π |= ϕ for every π ∈ tracesf(σ).
In other words, winning strategies are those that guaran-
tee the satisfaction of the objective ϕ under the assumption
that the environment behaves in a way that constraint α is
satisfied. The realizability and synthesis problems for con-
strained LTLf specifications are defined as before, using this
notion of winning strategy.

Because the constraints are interpreted using infinite LTL
semantics, we are now able to correctly handle liveness
constraints (♦ψ) and fairness constraints as studied in LTL
synthesis ("♦ψ) and FOND planning ("♦ψ1 → "♦ψ2)
(D’Ippolito, Rodrı́guez, and Sardiña 2018).

Example 1. Returning to our earlier example, consider the
constrained synthesis problem with assumption Ψcat

env (which



includes ϕleaves) and objective Ψcat
robot

. The obvious strategy
(vacuum dirty rooms as soon as they are cat-free) gives rise
to a winning strategy, in which we output end if we man-
age to clean both rooms, and otherwise, produce an infinite
trace without end in which Ψcat

env is not true. Trivial strategies
that terminate immediately will not be winning strategies,
as there will be infinite traces that satisfy the constraint but
where the length-1 finite trace falsifies the objective.

We remark that if we are not careful about how we write
the constraint α, we may unintentionally allow the agent to
block the environment from fulfilling α.

Remark 1. Suppose that instead of using Equation 1
to encode the effects of actions, we employ the simpler
" ((κ ∧ a)→ β). While intuitive, this alternative formula-
tion does not properly encode FOND planning, as the spec-
ification may be realized in an unintended way: by perform-
ing multiple actions with conflicting effects, or a single ac-
tion whose precondition is not satisfied, the agent can force
the environment to satisfy a contradictory set of formulae β
in the next state, causing the assumption to be violated.

Chatterjee, Henzinger, and Jobstmann (2008) discuss this
phenomenon in the context of LTL synthesis, and suggest
that a reasonable environment constraint is one which is re-
alizable for the environment. We note that the constraints we
considered in Section 3 all satisfy this property.

Correspondence with Finite LTL Synthesis We begin by
observing that (plain) LTLf synthesis is a special case of con-
strained LTLf synthesis in which one uses the trivial con-
straint ⊤ for the environment assumption:

Theorem 1. Every winning strategy σ for the LTLf speci-
fication ⟨X,Y, ϕ⟩ is a winning strategy for the constrained
LTLf specification ⟨X,Y,⊤, ϕ⟩, and vice-versa. In particu-
lar, ⟨X,Y, ϕ⟩ is realizable iff ⟨X,Y,⊤, ϕ⟩ is realizable.

A natural question is whether a reduction in the other di-
rection exists. Indeed, it is well-known that in the infinite set-
ting, assume-guarantee LTL synthesis4 with an assumption α
and objective ϕ corresponds to classical LTL synthesis w.r.t.
α → ϕ (that is, the two synthesis problems have precisely
the same winning strategies). The following negative result
shows that a simple reduction via implication does not work
in the finite trace setting:

Theorem 2. There exists an unrealizable constrained LTLf

specification S = ⟨X,Y,α, ϕ⟩ such that the LTLf specifica-
tion S→ = ⟨X,Y,α→ ϕ⟩ is realizable.

Proof. Consider the constrained LTLf specification S =
⟨{x, x′} , {y} ,α, ϕ⟩ with α = ¬x ∧ ♦x and ϕ = ♦(x′∧ y). We
claim that S is unrealizable. Indeed, take any X = X1X2 . . .
such that x $ X1, x ∈ X2, and x′ $ Xi for all i ≥ 1. Then
no matter which strategy σ is used, the infinite trace π[σ,X]

4Here we refer to assume-guarantee synthesis as considered in
(Chatterjee, Henzinger, and Jobstmann 2008; Almagor et al. 2017),
where given a pair (α, ϕ), the aim is to construct a strategy such that
every induced infinite trace either violates α or satisfies ϕ. This is
different from the assume-guarantee synthesis of (Chatterjee and
Henzinger 2007), in which N agents each have their own goals,
and the objective is for each agent to satisfy its own goals.

will satisfy α, and the induced finite trace πf[σ,X], if it ex-
ists, will falsify ϕ (as x′ never holds).

Next consider S→ = ⟨{x} , {y} ,α → ϕ⟩, and observe that
α→ ϕ ≡ x∨("¬x)∨♦(x′∧ y). A simple winning strategy ex-
ists: output end in the first time step. Indeed, every induced
trace has length 1 and hence trivially satisfies x ∨ "¬x. "

With the next theorem, we observe a more fundamental
difficulty in reducing constrained LTLf synthesis problems to
standard LTLf synthesis: winning strategies for constrained
problems may need an unbounded number of time steps to
realize the specification, a phenomenon that does not occur
in standard LTLf synthesis.

Theorem 3. An LTLf specification is realizable iff it admits
a bounded winning strategy, i.e. a strategy for which there
exists B > 0 such that every induced finite trace has length
at most B. There exist realizable constrained LTLf specifica-
tions that do not possess any bounded winning strategy.

Proof. A straightforward examination of the LTLf synthe-
sis algorithm5 in (De Giacomo and Vardi 2015) shows that
when ⟨X,Y, ϕ⟩ is realizable, the produced strategy guaran-
tees achievement of ϕ in a number of time steps bounded by
the number of states in a DFA for ϕ.

For the second point, consider the constrained LTLf spec-
ification S = ⟨{x} , {y} , ♦x,¬y U (x ∧ y)⟩. Observe that S is
realizable, as it suffices to output ¬y until the first x is read,
then output {y, end}. Assume for a contradiction that there
is a winning strategy σ for S and constant B > 0 such that
nσ,X ≤ B for every X ∈ Xω. Define XB = XB

1 XB
2 . . . as fol-

lows: XB
i = {x} if i = B + 1 and XB

i = ∅ otherwise. The

induced trace π = πf[σ,XB] has length at most B and hence
does not contain x. It follows that π ̸|= ϕ, contradicting our
assumption that σ is a winning strategy. "

While the implication-based approach does not work in
general, we show that it can be made to work for environ-
ment assumptions that belong to the safe fragment:

Theorem 4. When α is a safe formula, the constrained LTLf

specification S = ⟨X,Y,α, ϕ⟩ is realizable iff the LTLf spec-
ification S′ = ⟨X,Y,α′ → ϕ⟩ is realizable, where α′ is ob-
tained from α by replacing every occurrence of ψ by ψ.

Proof sketch. Let σ′ be a winning strategy for ⟨X,Y,α′ →
ϕ⟩, with α a safe formula. To define a winning strategy σ for
⟨X,Y,α, ϕ⟩, we set σ(X1 · · ·Xn) equal to
• σ(X1 · · · Xn) \ {end}, when end ∈ σ(X1 · · · Xn) and

(X1 ∪ σ(X1)) . . . (Xn ∪ σ(X1 · · · Xn)) ̸|= α′;
• σ(X1 · · · Xn), otherwise.
For the other direction, given a winning strategy σ for
⟨X,Y,α, ϕ⟩, we can define a winning strategy σ′ for
⟨X,Y,α′ → ϕ⟩ by setting σ′(X1 · · · Xn) equal to

• σ(X1 · · · Xn)∪{end}, if (X1∪σ(X1)) . . . (Xn∪σ(X1 · · · Xn))
is a bad prefix for α, and end $ σ′(X1 · · ·Xk) for k < n;

• σ(X1 · · · Xn)\{end}, if end ∈ σ′(X1 · · · Xk) for some k < n;

• σ′(X1 · · ·Xn) = σ(X1 · · · Xn), otherwise. "

5The algorithm can be easily modified to output end once ϕ has
been satisfied to match our definition of strategy.



The following example shows that it is essential in the
preceding theorem to use α′ → ϕ rather than α→ ϕ:

Example 2. If we let α = "(¬x ∨ x) and ϕ = ¬x ∧ y,
then the constrained specification ⟨X,Y,α, ϕ⟩ is not realiz-
able (as the environment can output x in the first step), but
the LTLf specification ⟨X,Y,α → ϕ⟩ is realizable with a
strategy that outputs {y, end} in the first step. Indeed, if the
environment outputs x, then ¬α ≡ ♦(x ∧ ¬ x) holds in the
induced length-1 trace; if we have ¬x instead, then ϕ holds.

Note however that the negative result in the general case
(Theorem 2) continues to hold if α′ → ϕ is used instead of
α→ ϕ, since the formulas in that proof do not involve .

Another interesting observation is the environment as-
sumptions Ψinit and Ψeff used to encode the initial state and
action effects in planning are safe formulas. This explains
why these constraints can be properly encoded in LTLf using
implication and rather than . We note that if we encode
planning using constrained LTLf synthesis, then we can use

in the effect axioms, which is arguably more natural.

Reduction to LTL Synthesis Every LTLf formula ϕ over
P can be polynomially transformed into an LTL formula ϕinf

over P ∪ {alive} such that π |= ϕinf iff π′ |= ϕ for some fi-
nite prefix π′ ⊑ π (De Giacomo and Vardi 2013). Intuitively,
alive holds for the duration of the (simulated) finite trace.
Formally, ϕinf ! τ(ϕ) ∧ alive ∧ (alive U ("¬alive)), where:

τ(p) = p τ(¬ϕ) = ¬τ(ϕ) τ(ϕ1 ∧ ϕ2) = τ(ϕ1) ∧ τ(ϕ2)
τ( ϕ) = (alive ∧ τ(ϕ))τ(ϕ1 Uϕ2) = τ(ϕ1) U (alive ∧ τ(ϕ2))

We extend this transformation as follows:

ψend ! "(end↔ alive ∧ ¬alive) ∧ "(end→ "¬end)

ψα,ϕ ! ψend ∧ ((α ∨ ♦end)→ ϕinf)

Here ψend forces the agent to trigger variable end when the
end of the trace is simulated and also ensures that end occurs
at most once. Formula ψα,ϕ ensures that ϕinf is satisfied – i.e.,
a finite trace that satisfies ϕ and ends is simulated – when
either the environment assumption α holds or end occurs.

Theorem 5. The constrained LTLf specification S =

⟨X,Y,α, ϕ⟩ is realizable iff LTL specification S∞ = ⟨X,Y ∪
{alive, end} ,ψα,ϕ⟩ is realizable. Moreover, for every winning
strategy σ for S∞, the strategy σ′ defined by σ′(X1 · · ·Xn) !
σ(X1 · · · Xn) \ {alive} is a winning strategy for S.

5 Algorithms for Constrained LTLf Synthesis
LTL and LTLf realizability are both 2EXP-complete (Pnueli
and Rosner 1989; De Giacomo and Vardi 2015), and we can
show the same holds for constrained LTLf problems. The up-
per bound exploits the reduction to LTL (Theorem 5), and the
lower bound is inherited from (plain) LTLf synthesis, which
is a special case of constrained LTLf synthesis (Theorem 1).

Theorem 6. Constrained LTLf realizability (resp. synthesis)
is 2EXP-complete (resp. in 2EXP).

It follows from Theorem 6 that the reduction to infi-
nite LTL realizability and synthesis yields worst-case opti-
mal algorithms. However, we argue that the reduction to
LTL does not provide a practical approach. Indeed, while

LTL and LTLf synthesis share the same worst-case complex-
ity, recent experiments have shown that LTLf is much eas-
ier to handle in practice (Zhu et al. 2017). Indeed, state-of-
the-art approaches to LTL synthesis rely on first translating
the LTL formula into a suitable infinite-word automata, then
solving a two-player game on the resulting automaton. The
computational bottleneck is the complex transformations of
infinite-word automata, for which no efficient implementa-
tions exist. Recent approaches to LTLf synthesis also adopt
an automata-game approach, but LTLf formulae require only
finite-word automata (NFAs and DFAs), which can be ma-
nipulated more efficiently.

The preceding considerations motivate us to explore an
alternative approach to constrained LTLf synthesis, which
involves a reduction to DBA games. Importantly, the DBA
can be straightforwardly constructed from DFAs for the con-
straint and objective formulae, allowing us to sidestep the
difficulties of manipulating infinite-word automata.

5.1 DBA for Constrained Specifications

For the rest of this section, we assume α = αs ∧ αc, where
αs is a safe formula and αc is a co-safe formula6, both de-
fined overX∪Y. Safe and co-safe formulae are well-known
LTL fragments (Kupferman and Vardi 2001) of proven util-
ity. Safe formulas are prevalent in LTL specifications and a
key part of the encoding of planning as LTLf synthesis (see
Section 3.3); the usefulness of co-safe formulas can be seen
from our example (Section 3.4) and their adoption in work
on robot planning (see e.g. (Lahijanian et al. 2015)).

Our aim is to construct a DBA that accepts infinite traces
π over 2X∪Y∪{end} such that either (i) π contains a single
occurrence of end which induces a finite prefix π′ with
π′ |= ϕ, or (ii) π doesn’t contain end and π ̸|= αs ∧ αc. Such
a DBA Aαs ,αc

ϕ can be defined by combining three DFAs:

As = ⟨2
P,Qs, δs, (q0)s, Fs⟩ accepts the bad prefixes of αs;

Ac = ⟨2
P,Qc, δc, (q0)c, Fc⟩ accepts the good prefixes of αc;

andAg = ⟨2
P,Qg, δg, (q0)g, Fg⟩ accepts models of ϕ. Recall

that these DFAs can be built in double-exponential time.
Formally, we let Aαs ,αc

ϕ = ⟨2P∪{end},Q, δ, q0, F⟩, where Q,
q0, and F are defined as follows:

• Q !
(

(Qs ∪ {qbad}) × (Qc ∪ {qgood}) × Qg)
)

∪ {q⊤, q⊥}

• q0 ! ((q0)s, (q0)c, (q0)g)
• F ! {(qs, qc, qg) ∈ Q | qs = qbad or qc # qgood} ∪ {q⊤}

For ‘regular’ symbols θ ∈ 2P (i.e., end $ θ), we set
δ((qs, qc, qg), θ) = (δ∗s(qs, θ), δ

∗
c(qc, θ), δg(qg, θ)) where:

δ∗s(qs, θ) =

{

qbad, if qs = qbad or δs(qs, θ) ∈ Fs

δs(qs, θ), otherwise

δ∗c(qc, θ) =

{

qgood , if qc = qgood or δc(qc, θ) ∈ Fc

δc(qc, θ), otherwise

For θ with end ∈ θ, we set δ((qs, qc, qg), θ) = q⊤ if
δg(qg, θ) ∈ Fg, and δ((qs, qc, qg), θ) = q⊥ in all other cases.
Accepting state q⊤ is quasi-absorbing: δ(q⊤, θ) = q⊤ when
end $ θ, and δ(q⊤, θ) = q⊥ otherwise. This forces winning

6If we want to have only a safe (resp. co-safe) constraint, it suf-
fices to use a trivial constraint αc = ⊤ (resp. αs = ⊥R (p ∨ ¬p)).



strategies to output variable end at most once. Finally, q⊥ is
an absorbing state: δ(q⊥, θ) = q⊥ for every θ ∈ 2P∪{end}.

Theorem 7. The DBA Aαs ,αc
ϕ accepts infinite traces π such

that either: (i) π(1) · · ·π(n) |= ϕ and end occurs only in π(n),
or (ii) π ̸|= αs ∧ αc and end does not occur in π. Aαs ,αc

ϕ can
be constructed in double-exponential time in |αs|+ |αc|+ |ϕ|.

5.2 DBA Games

Once a specification has been converted into a DBA, real-
izability and synthesis can be reduced to DBA games. We
briefly recall next the definition of such games and how win-
ning strategies can be computed.

A DBA (or Büchi) game (see e.g. (Chatterjee, Henzinger,
and Piterman 2006)) is a two-player game given by a tuple
⟨X,Y,A⟩, whereX andY are disjoint finite sets of variables
and A is a DBA with alphabet 2X∪Y. A play is an infinite
sequence of rounds, where in each round, Player I selects
Xi ⊆ X, then Player II selects Yi ⊆ Y. A play is winning if
it yields a word (X1 ∪ Y1)(X2 ∪ Y2) . . . that belongs to L(A).
A game is winning if there exists a strategy σ : (2X)∗ →
2Y such that for every infinite sequence X1X2 . . . ∈ X

ω, the
word (X1∪σ(X1))(X2∪σ(X1X2)) . . . obtained by followingσ
belongs to L(A). In this case, we call σ a winning strategy.

Existence of a winning strategy for a DBA game G =
⟨X,Y,A⟩ based uponA = ⟨2X∪Y,Q, δ, q0, F⟩ can be deter-
mined by computing the winning region of G. This is done
in two steps. First, we compute the set RA(G) of recurring
accepting states, i.e. those q ∈ F such that Player II has
a strategy from state q to revisit F infinitely often. Next,
we define the winning region Win(G) of G as those states
in q ∈ Q for which Player II has a strategy for reaching a
state in RA(G). The sets RA(G) and Win(G) can be com-
puted in polynomial time by utilizing the controllable pre-
decessor operator: CPre(S ) = {q ∈ Q | ∀X ⊆ X∃Y ⊆ Y :
δ(q, X∪Y) ∈ S }. We set Reach0(S ) = S and Reachi+1(S ) =
Reachi(S ) ∪ CPre(Reachi(S )). Intuitively, Reachi(S ) con-
tains those states from which Player II has a strategy for
reaching (or returning to) S in at most i rounds. The limit
limi Reachi(S ) exists because Reachi(S ) ⊆ Reachi+1(S ),
and convergence is achieved in a finite number of iterations
bounded by |Q|. To compute RA(G), we set S1 = F and let
Sk+1 = Sk ∩ limi Reachi(S k). The set Sk contains those ac-
cepting states from which Player II has a strategy for visit-
ing Sk no less than k times. The limit limk S k exists because
Sk ⊆ Sk+1, and convergence is achieved in a finite number of
iterations bounded by |F |. RA(G) is the finite limit of Sk, and
the set Win(G) is then the finite limit of Reachi(RA(G)). It is
easy to see that Win(G) can be computed in polynomial time
w.r.t. the size of the DBA A. The following well-known re-
sult shows how we can use Win(G) to decide ifG is winning.

Theorem 8. G is winning iff q0 ∈ Win(G).

We sketch the proof of the right-to-left implication here,
since it will be needed for later results. We suppose that
q0 ∈ Win(G) and show how to construct a transducer TG
that implements a winning strategy. Intuitively, the trans-
ducer’s output function ensures that the transducer stays
within Win(G), always reducing the ‘distance’ to RA(G).
More precisely, we can define TG as ⟨2X, 2Y,Q, δ′,ω, q0⟩,

where: the set of states Q and initial state q0 are the same
as for the DBAA, and the transition function δ′ mirrors the
transition function δ of A: δ′(q, X) = δ(q, X ∪ ω(q, X)). We
define the output function ω as follows:
• Case 1: there exists Y∗ such that δ(q, X ∪ Y∗) ∈ Win(G).

In this case, we let ω(q, X) be any7 Y ∈ 2Y such that (a)
δ(q, X∪Y) ∈ Reachi+1(RA(G)), and (b) there is no Y′ with
δ(q, X ∪ Y′) ∈ Reachi(RA(G)).
• Case 2: no such Y∗ exists. We let ω(q, X) be any Y ∈ 2Y.
According to this definition, after reading X, the transducer
TG chooses an output symbol Y that allows the underlying
automaton A to transition from the current state via X ∪ Y
to a state in Win(G) (if some such symbol exists). Moreover,
among the immediately reachable winning states, preference
is given to those that are closest to RA(G), i.e. those belong-
ing to Reachi(RA(G)) for the minimal value i.

5.3 Constrained LTLf Synthesis via DBA Games

Given a constrained LTLf synthesis specification ⟨X,Y,α, ϕ⟩
with α = αs ∧ αc, we proceed as follows:

1. Construct the DBA game Gαs ,αc
ϕ = ⟨X,Y ∪ {end},Aαs ,αc

ϕ ⟩.
2. Determine whether Gαs ,αc

ϕ is winning: build Win(Gαs ,αc
ϕ )

and check whether ((q0)s, (q0)c, (q0)g) ∈ Win(Gαs,αc
ϕ ).

3. If Gαs ,αc
ϕ is not winning, return ‘unrealizable’.

4. Otherwise, compute a winning strategy for Gαs ,αc
ϕ using

the transducer from Section 5.2.
Using Theorems 7 and 8, we can show that this method is
correct and yields optimal complexity:

Theorem 9. Consider a constrained LTLf specification
S =⟨X,Y,αs ∧ αc, ϕ⟩ where αs (resp. αc) is a safe (resp.
co-safe) formula. Then:
• S is realizable iff the DBA game Gαs ,αc

ϕ is winning;

• Every winning strategy for Gαs ,αc
ϕ is a winning strategy for

S, and vice-versa;
• Deciding whether Gαs ,αc

ϕ is winning, and constructing a
winning strategy when one exists, can be done in 2EXP.

6 Synthesis of High-Quality Strategies

This section explores the use of a quantitative specification
language to compare strategies based upon how well they
satisfy the specification. We adopt the LTLf[F ] language
from (Almagor, Boker, and Kupferman 2016) and propose
a new more refined way of defining optimal strategies.

6.1 The Temporal Logic LTLf[F ]

We recall here the language LTLf[F ] proposed by Almagor,
Boker, and Kupferman (2016). The basic idea is that instead
of a formula being either totally satisfied or totally violated
by a trace, a value between 0 and 1 will indicate its degree
of satisfaction. In order to allow for different ways of aggre-
gating formulae, the basic LTL syntax is augmented with a
set F ⊆ { f : [0, 1]k → [0, 1] | k ∈ N} of functions, with the

7Several Y may satisfy the conditions, and choosing any such
Y yields a suitable transducer. Alternatively, one can use nonde-
terministic transducers (called strategy generators in (De Giacomo
and Vardi 2015)) to encode a family of deterministic transducers.



choice of which functions to include in F being determined
by the application at hand.

Formally, the set of LTLf[F ] formulae is obtained by
adding f (ϕ1, . . . , ϕk) to the grammar for ϕ, for every f ∈ F .
We assign a satisfaction value to every LTLf[F ] formula, fi-
nite trace π, and time step 1 ≤ i ≤ |π|, as follows8:

⟦π,⊤⟧i = 1 ⟦π,⊥⟧i = 0 ⟦π, p⟧i =

{

1 if p ∈ π(i)

0 otherwise

⟦π,¬ϕ⟧i = 1 − ⟦π,ϕ⟧i

⟦π,ϕ1 ∧ ϕ2⟧i = min{⟦π,ϕ1⟧i, ⟦π,ϕ2⟧i}

⟦π, ϕ⟧i = ⟦π,ϕ⟧i+1

⟦π, f (ϕ1, . . . ,ϕk)⟧i = f (⟦π,ϕ1⟧i, . . . , ⟦π,ϕk⟧i)

⟦π,ϕ1 Uϕ2⟧i = max
i≤i′≤|π|

{

min

{

⟦π,ϕ2⟧i′ , min
i≤ j<i′
{⟦π,ϕ1⟧ j}

}}

The (satisfaction) value of ϕ on π, written ⟦π, ϕ⟧, is ⟦π, ϕ⟧1.
We define V(ϕ) ⊆ [0, 1] as the set of values ⟦π, ϕ⟧i, rang-

ing over all traces π and steps 1 ≤ i ≤ |π|. The follow-
ing proposition, proven by (Almagor, Boker, and Kupferman
2016), shows that an LTLf[F ] formula can take on only ex-
ponentially many different values.

Proposition 1. For every LTLf[F ] formula ϕ, |V(ϕ)| ≤ 2|ϕ|.

The functions f allow us to capture a diversity of meth-
ods for combining a set of potentially competing objec-
tives (including classical preference aggregation methods
like weighted sums and lexicographic ordering).

Example 3. For illustration purposes, consider two variants
of our robot vacuum example, with specifications ϕ1 and
ϕ2, in which the goal ♦(clean(LR) ∧ clean(BR)) is replaced
by ♦(clean(LR)) and ♦(clean(BR)), respectively. We can in-
clude in F a binary weighted sum operator sum0.3,0.7, where
the satisfaction value of sum0.3,0.7(ϕ1, ϕ2) on trace π is 0.3 if
π |= ϕ1∧¬ϕ2, 0.7 if π |= ¬ϕ1∧ϕ2, 1 if π |= ϕ1∧ϕ2, and zero
otherwise. We can thus express that we’d like to clean both
rooms, but give priority to the bedroom.

6.2 Defining Optimal Strategies

Henceforth, we consider a constrained synthesis LTLf[F ]
problem ⟨X,Y,α, ϕ⟩, defined as before except that now ϕ is
an LTLf[F ] formula. Such formulae assign satisfaction val-
ues to traces, allowing us to rank traces according to the ex-
tent to which they satisfy the expressed preferences. It re-
mains to lift this preference order to strategies.

Perhaps the most obvious way to rank strategies is to
consider the minimum value of any trace induced by the
strategy, preferring strategies that can guarantee the highest
worst-case value. This is the approach adopted by (Almagor,
Boker, and Kupferman 2016) for LTL[F ] synthesis. We for-
malize it for constrained LTLf[F ] synthesis as follows:

Definition 1. The best guaranteed value of strategy σ, de-
noted bgv(σ), is the minimum value of ⟦π, ϕ⟧ over all π ∈
tracesf(σ) (or 0 if tracesf(σ) = ∅). A strategy σ is bgv-
optimal w.r.t. (α, ϕ) if it is a α-strategy and no α-strategy σ′

exists with bgv(σ′) > bgv(σ).

8We omit ∨ and R , as they can be defined using ¬, ∧, and U .

Optimizing for the best guaranteed value seems natural,
but can be insufficiently discriminative. Consider a simple
scenario with X = {x} andY = {y}. If the environment plays
x, then we get value 0 no matter what, and if ¬x is played,
a value of 1 is achieved by playing y, and 0 if ¬y is played.
Clearly, we should prefer to play y after ¬x, yet the strat-
egy that plays ¬y following ¬x is bgv-optimal, since like
every strategy, its bgv is 0. This motivates us to introduce a
stronger, context-aware, notion of optimality:

Definition 2. Given a strategy σ, trace π ∈ ptraces(σ) that
does not contain end, and X ∈ 2X, the best guaranteed value
of σ starting from π·X, written bgvπ,X(σ), is the minimum of

⟦π′, ϕ⟧ over all traces π′ ∈ tracesf(σ) such that π · (X ∪Y) ⊑
π′ for some Y ∈ Y (or 0 if no such trace exists). A strategy σ
is a strongly bgv-optimal w.r.t. (α, ϕ) if it is an α-strategy, and
there is no α-strategy σ′, trace π ∈ ptraces(σ)∩ptraces(σ′)
without end, and X ∈ 2X such that bgvπ,X(σ′) > bgvπ,X(σ).

Strongly bgv-optimal strategies take advantage of any fa-
vorable situation during execution to improve the best worst-
case value. In the preceding example, they allow us to say
that the first strategy is better than the second.

7 Algorithms: High-Quality LTLf Synthesis

In this section, we present novel techniques to compute
bgv-optimal and strongly bgv-optimal strategies for a con-
strained LTLf[F ] synthesis problem ⟨X,Y,α, ϕ⟩. As in Sec-
tion 5.1, we focus on the case where α is a conjunction
αs ∧ αc of safe and co-safe formulae.

7.1 Automaton for LTLf[F ]

It has been shown in (Almagor, Boker, and Kupferman
2016) how to construct, for a given LTLf[F ] formula ϕ and
set of values V ⊆ [0, 1], an NFA Aϕ,V = ⟨2

P,Q, δ,Q0, F⟩
that accepts finite traces π with ⟦π, ϕ⟧ ∈ V. We briefly
recall the construction here. We denote by sub(ϕ) the set
of subformulas of ϕ, and let Cϕ be the set of functions
g : sub(ϕ)→ [0, 1] such that g(ψ) ∈ V(ψ) for all ψ ∈ sub(ϕ).
Q contains all consistent functions in Cϕ, where a function
g is consistent if, for every ψ ∈ sub(ϕ), the following hold:
• if ψ = ⊤, then g(ψ) = 1, and if ψ = ⊥, then g(ψ) = 0
• if ψ ∈ P then g(ψ) ∈ {0, 1}
• if ψ = f (ψ1, . . . ,ψk)), then g(ψ) = f (g(ψ1), . . . , g(ψk))
The transition function δ is such that g′ ∈ δ(g,σ) whenever:
• σ = {p ∈ P | g(p) = 1}
• g( ψ1) = g′(ψ1) for every ψ1 ∈ sub(ϕ))
• g(ψ1 Uψ2) = max {g(ψ2),min {g(ψ1), g′(ψ1 Uψ2)}} for ev-

ery ψ1 Uψ2 ∈ sub(ϕ)
Finally, the set of initial states is Q0 = {q ∈ Q | g(ϕ) ∈ V},
and F = {g | g(ψ2) = g(ψ1 Uψ2) for all ψ1 Uψ2 ∈ sub(ϕ)} ∩
{g | g( ψ) = 0 for all ψ ∈ sub(ϕ)}.

The NFA Aϕ,V can be constructed in single-exponential
time, andL(Aϕ,V) = {π | ⟦π, ϕ⟧ ∈ V} (Almagor, Boker, and
Kupferman 2016). By determinizingAϕ,V, we obtain a DFA

Âϕ,V that accepts the same language and can be constructed
in double-exponential time. In what follows,V will always
take the form [b, 1], so we’ll use Âϕ≥b in place of Âϕ,[b,1].



7.2 Synthesis of bgv-optimal strategies

We describe how to construct a bgv-optimal strategy. First
note that given b ∈ [0, 1], we can construct a DBA Aα

ϕ≥b

that recognizes traces such that either (i) α = αs ∧ αc is
violated and end does not occur, or (ii) end occurs exactly
once and the induced finite trace π is such that ⟦π, ϕ⟧ ≥ b.
Indeed, we simply reuse the construction from Section 5.1,
replacing the DFA Ag with the DFA Âϕ≥b. We next ob-
serve that an α-strategy σ with bgv(σ) ≥ b exists iff the
DBA game ⟨X,Y ∪ {end},Aα

ϕ≥b
⟩ is winning. Thus, by iter-

ating over the values in V(ϕ) in descending order, we can
determine the maximal b∗ for which an α-strategy σ with
bgv(σ) ≥ b∗ exists. A bgv-optimal strategy can be com-
puted by constructing a winning strategy for the DBA game
⟨X,Y∪ {end},Aα

ϕ≥b∗
⟩, using the approach in Section 5.2. As

there are only exponentially many values in V(ϕ) (Prop. 1),
the overall construction takes double-exponential time.

Theorem 10. A bgv-optimal strategy can be constructed in
double-exponential time.

7.3 Synthesis of strongly bgv-optimal strategies

To compute a strongly bgv-optimal stategy, we build a trans-
ducer that runs in parallel DBAs Aα

≥b
for different val-

ues b, and selects outputs symbols so as to advance within
the ‘best’ applicable winning region. This idea can be for-
malized as follows. As in Section 7.2, we first determine
the maximal b∗ ∈ V(ϕ) for which a α-strategy σ with
bgv(σ) ≥ b∗ exists, and set B = V(ϕ) ∩ [b∗, 1]. In the pro-
cess, we will compute, for each b ∈ B, the sets Win(Gb)
and RA(Gb) for the DBA game Gb = ⟨X,Y,A

α
≥b
⟩ based on

the DBA Aα
≥b
= ⟨2P∪{end},Qb, δb, q

b
0, Fb⟩. In the sequel, we

will assume that the elements of B are ordered as follows:
b1 < b2 . . . < bm, with b∗ = b1 and bm = 1.

We now proceed to the definition of the desired transducer
T str = ⟨2X, 2Y∪{end},Qstr, δstr,ωstr, q

str
0 ⟩, obtained by taking

the cross product of the set of DBAs Aα
≥b

with b ∈ B, in
order to keep track of the current states in these automata:

• qstr
0 = (qb1

0 , q
b2

0 , . . . , q
bm

0 ) and Qstr = Qb1
× . . . × Qbm

• δstr((q1, . . . , qm), X) = (δb1
(q1, X∪Y), . . . , δbm

(qm, X∪Y)),
where Y = ωstr((q1, q2, . . . , qm), X)

After reading X, the output function identifies the maximal
value b ∈ B such that current state qb ofAα

≥b
can transition,

via some symbol X∪Y, into a state in Win(Gb), and it returns
the same output as the transducer TGb

in state qb:
• ωstr((q1, . . . , qm), X) = ωb(qb, X), where b = max({v ∈ B |
∃Y δv(qv, X ∪ Y) ∈ Win(Gv)})

We note that the transducer TGb
can be defined as in Section

5.2 even when qb
0 $ Win(Gb), but it only returns ‘sensible’

outputs when it transitions to Win(Gb).

Theorem 11. T str implements a strongly bgv-optimal strat-
egy and can be constructed in double-exponential time.

8 Discussion and Concluding Remarks
It has been widely remarked in the (infinite) LTL synthe-
sis literature that environment assumptions are ubiquitous:
the existence of winning strategies is almost always pred-
icated on some kind of environment assumption. This was

observed in the work of (Chatterjee, Henzinger, and Jobst-
mann 2008), motivating the introduction of the influential
assume-guarantee synthesis model, and in work on rational
synthesis (Fisman, Kupferman, and Lustig 2010), where the
environment is assumed to act as a rational agent, and syn-
thesis necessitates finding a Nash equilibrium. Interesting
reflections on the role of assumptions in LTL synthesis, to-
gether with a survey of the relevant literature, can be found
in (Bloem et al. 2014).

In this paper, we explored the issue of handling environ-
ment assumptions in LTLf synthesis (De Giacomo and Vardi
2013), the counterpart of LTL synthesis for programs that ter-
minate. Our starting point was the observation that the stan-
dard approach to handling assumptions in LTL synthesis (via
logical implication) fails in the finite-trace setting. This led
us to propose an extension of LTLf synthesis that explicitly
accounts for environment assumptions. The key insight un-
derlying the new model of constrained LTLf synthesis is that
while the synthesized program must realize the objective in
a finite number of steps, the environment continues to exist
after the program terminates, so environment assumptions
should be interpreted under infinite LTL semantics.

We studied the relationships holding between constrained
LTLf synthesis and (standard) LTLf and LTL synthesis. In par-
ticular, we identified a fundamental difficulty in reducing
constrained LTLf synthesis to LTLf synthesis – the former
problem can require unbounded strategies, while bounded
strategies suffice for the latter. Nevertheless, when the con-
straints were restricted to the safe LTL fragment, a reduction
from constrained LTLf synthesis to LTLf synthesis is possi-
ble. Interestingly, this explains why planning – more natu-
rally conceived as a constrained LTLf synthesis problem –
can also be encoded as LTLf synthesis. The connection be-
tween synthesis and planning has been remarked in several
works (see e.g., (De Giacomo and Vardi 2015; D’Ippolito,
Rodrı́guez, and Sardiña 2018; Camacho et al. 2018a; 2018b;
2018c)). We also showed how to reduce constrained LTLf

synthesis to (infinite) LTL synthesis, which provides a worst-
case optimal means of solving constrained LTLf synthesis
problems, in the general case, using (infinite) LTL synthesis
tools. In the case where our constraint is comprised of a con-
junction of safe and co-safe formulae, we showed that the
constrained LTLf synthesis problem can be reduced to DBA
games and the winning strategy determined from the win-
ning region. What makes our approach interesting is that the
DBA is constructed via manipulation of DFAs, much easier
to handle in practice than infinite-word automata.

We next turned our attention to the problem of augment-
ing constrained LTLf synthesis with quality measures. We
were motivated by practical concerns surrounding the abil-
ity to differentiate and synthesize high-quality strategies in
settings where we may have a collection of mutually un-
realizable objective formulae and alternative strategies of
differing quality. Our work builds on results for the in-
finite case, e.g., (Almagor, Boker, and Kupferman 2016;
Almagor et al. 2017; Kupferman 2016) with and without
environment assumptions. We adopted LTLf[F ] as our lan-
guage for specifying quality measures. While the syntax
of LTLf[F ] is utilitarian, many more compelling preference



languages are reducible to this core language. We defined
two different notions of optimal strategies – bgv-optimal and
strongly bgv-optimal. The former adapts a similar definition
in (Almagor, Boker, and Kupferman 2016) and the latter
originates with us. We focused again on assumptions that
can be expressed as conjunctions of safe and co-safe formu-
lae and provided algorithms to compute bgv- and strongly
bgv-optimal strategies with optimal (2EXP) complexity.

Proper handling of environment assumptions and quality
measures, together with the design of efficient algorithms for
such richer specifications, is essential to putting LTLf syn-
thesis into practice. The present paper makes several impor-
tant advances in this direction and also suggests a number
of interesting topics for future work including: the study of
other types of assumptions in the finite-trace setting (e.g. ra-
tional synthesis), the exploitation of more compelling KR
languages for specifying preferences, and the exploration of
further ways of comparing and ranking strategies (perhaps
incorporating notions of cost or trace length).

Relation to Conference Version

This paper appears in the Proceedings of the 16th Interna-
tional Conference on Knowledge Representation and Rea-
soning (KR 2018) without the appendix proofs. The body of
this paper is the same as the KR 2018 paper, except that a
minor typographic error in the translation of LTL into LTLf

(the definition of τ(ϕ1 Uϕ2) on page 6), which originally ap-
peared in (De Giacomo and Vardi 2013) and was repeated in
the KR 2018 paper, has been corrected.
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Proofs

Theorem 4. When α is a safe formula, the constrained LTLf

specification S = ⟨X,Y,α, ϕ⟩ is realizable iff the LTLf spec-
ification S′ = ⟨X,Y,α′ → ϕ⟩ is realizable, where α′ is ob-
tained from α by replacing every occurrence of ψ by ψ.

Proof. Let σ′ be a winning strategy for S′ = ⟨X,Y,α′ →
ϕ⟩, with α a safe formula. We define a strategy σ for S =
⟨X,Y,α, ϕ⟩ by setting σ(X1 · · · Xn) equal to

• σ′(X1 · · · Xn) \ {end}, when end ∈ σ′(X1 · · ·Xn) and
(X1 ∪ σ

′(X1)) . . . (Xn ∪ σ
′(X1 · · · Xn)) ̸|= α′;

• σ′(X1 · · · Xn), otherwise.

To show that σ is a winning strategy, take some X ∈ (2X)ω.
Then nσ′ ,X < ∞, and the finite trace π′ = πf[σ′,X] is such
that (i) π′ |= ¬α′, or (ii) π′ |= ϕ If (i) holds, then nσ,X = ∞
(since we will remove end), and π = π[σ,X] contains π′ as
a prefix. We can then use the LTLf equivalence ¬ ϕ ≡ ¬ϕ
and the fact that α is safe to derive π |= ¬α. If (ii) holds (and
(i) does not), then it follows from the definition of σ that
nσ,X = nσ′ ,X and π = πf[σ,X] = πf[σ′,X], so π |= ϕ.

For the other direction, let σ be a winning strategy for S.
Define a strategy σ′ for S′ by setting σ′(X1 · · ·Xn) equal to

• σ(X1 · · · Xn)∪{end}, if (X1∪σ(X1)) . . . (Xn∪σ(X1 · · · Xn))
is a bad prefix for α, and end $ σ′(X1 · · · Xk) for k < n;

• σ(X1 · · · Xn)\{end}, if end ∈ σ′(X1 · · ·Xk) for some k < n;

• σ′(X1 · · · Xn) = σ(X1 · · · Xn), otherwise

Basically, σ′ mimics σ and outputs end as soon as a bad
prefix is reached or σ terminates the execution due to satis-
faction of ϕ, whichever situation occurs first. The construc-
tion of σ′ is such that executions always terminate – which
is not necessarily true for σ – and induce finite traces that
satisfy the LTLf formula α′ → ϕ.

To show that σ′ is a winning strategy for S′, take some
X ∈ (2X)ω. Consider the infinite induced trace π = π[σ,X],
and let kX be the minimum k such that π(1) . . .π(k) is a bad
prefix for α (kX = ∞ if π has no bad prefix). We examine
these three cases separately: (i) nσ,X < ∞ and kX ≤ nσ,X, (ii)
nσ,X < ∞ and kX > nσ,X, and (iii) nσ,X = ∞.

If (i) holds, then nσ′,X = kX, and π′ = πf[σ′,X] =
π(1) . . .π(kX). From the fact that π(1) . . .π(kX) is a bad prefix
for the safe formula α and the LTLf equivalence¬ ϕ ≡ ¬ϕ,
we obtain π′ |= ¬α′.

If (ii) holds, then it follows from the definition of σ′ that
nσ′ ,X = nσ,X and πf[σ′,X] = π(1) . . .π(nσ,X). Since σ is
a winning strategy for S with nσ,X < ∞, we must have
π(1) . . .π(nσ,X) |= ϕ, hence πf[σ′,X] |= ϕ.

If (iii) holds, then it must be the case that π ̸|= α (becauseϕ
is a winning strategy). As α is a safe formula, πmust contain
a bad prefix for α, so kX < ∞. Using a similar argument as
in case (i), we can show that π′ |= ¬α′. "

Theorem 5 The constrained LTLf specification S =

⟨X,Y,α, ϕ⟩ is realizable iff LTL specification S∞ = ⟨X,Y ∪
{alive, end} ,ψα,ϕ⟩ is realizable. Moreover, for every winning
strategyσ forS∞, the strategyσ′ defined byσ′(X1 · · ·Xn) !
σ(X1 · · · Xn) \ {alive} is a winning strategy for S.

Proof. For the first direction, suppose that S = ⟨X,Y,α, ϕ⟩
is realizable, and let σ be a winning strategy for S. By def-
inition, for every X ∈ (2X)ω, the trace π[σ,X] satisfies one
of the following: (i) it has a finite prefix of length nσ,X < ∞
that satisfies ϕ, or (ii) nσ,X = ∞ and π[σ,X] ̸|= α. We de-
fine a strategy σ∞ for S∞ = ⟨X,Y ∪ {alive, end} ,ψα,ϕ⟩ as
follows:

• σ∞(X1 · · · Xn) = σ(X1 · · · Xn)∪ {alive}, if there is no k < n
such that end ∈ σ(X1 · · · Xk)

• σ∞(X1 · · · Xn) = σ(X1 · · · Xn), otherwise

We claim that σ∞ is a winning strategy for S∞. Take some
X = X1X2 . . ., let π = π[σ,X] and π∞ = π[σ∞,X]. We
first show that π∞ |= ψend. First note that if end ∈ π∞(i),
then end ∈ π(i), which means end $ π(i + 1) (since π
contains at most one end). It follows that alive ∈ π∞(i)
and alive $ π∞(i + 1). Next suppose that alive ∈ π∞(i)
but alive $ π∞(i + 1). This can only occur if end ∈ π(i),
which implies that end ∈ π∞(i). We have thus shown
that π∞ |= "(end↔ alive ∧ ¬alive). We also have π∞ |=
"(end→ "¬end), since end ∈ π∞(i) iff end ∈ π(i), and π
contains at most one occurrence of end.

We next show that π∞ |= ((α ∨ ♦end)→ ϕinf). First con-
sider the case (i) where π has a finite prefix of length nσ,X <
∞ that satisfies ϕ. Then end ∈ π∞(nσ,X), so alive ∈ π∞(i)
for 1 ≤ i ≤ nσ,X and alive $ π∞(i) for i > nσ,X. It follows
that π∞ |= ϕinf. Next suppose that (ii) holds, i.e. nσ,X = ∞
and π ̸|= α. Since α only involves variables from X ∪ Y,
and π∞ coincides with π on X ∪ Y, it follows that π∞ ̸|= α.
As nσ,X = ∞, we know that end does not occur in π. The
same must hold for π∞, hence π∞ ̸|= ♦end. We thus obtain
π∞ |= ¬(α ∨ ♦end), hence π∞ |= ((α ∨ ♦end)→ ϕinf).

For the other direction, suppose S∞ is realizable, and
let σ∞ be a winning strategy for S. We define σ as fol-
lows: σ(X1 . . .Xn) = σ∞(X1 . . . Xn) \ {alive}. Our aim is to
show that σ is a winning strategy for S. Consider some
X = X1X2 . . ., and let π∞ = π[σ∞,X] and π = π[σ,X].
First note that since π∞ |= "(end→ "¬end), π∞ con-
tains at most one occurrence for end, and the same holds
for σ. It follows that σ is a valid strategy. Next suppose
that end ∈ π∞(n). Then πf[σ,X] = π(1) . . .π(n). As π∞ |=
((α ∨ ♦end)→ ϕinf) and π∞ |= ♦end, we have π∞ |= ϕinf.
When combined with π∞ |= "(end↔ alive ∧ ¬alive), we
get that alive ∈ π∞(i) for i ≤ n and alive $ π∞(i) for
i > n. This, together with the definition of ϕinf, implies that
the induced finite trace π(1) . . .π(n) satisfies ϕ. Finally, con-
sider the case where end does not occur in π∞. We know
that π∞ |= ((α ∨ ♦end)→ ϕinf). Note that we cannot have
π∞ |= ϕinf since it implies, when combined with π∞ |=
"(end↔ alive ∧ ¬alive), that end occurs in π∞. It follows
that π∞ |= ¬(α ∨ ♦end), or equivalently, π∞ |= ¬α ∧ "¬end.
From this, we can derive that π ̸|= α and π does not con-
tain end. We have thus established that σ is a winning strat-
egy. "

Theorem 7 The DBA Aαs ,αc
ϕ accepts infinite traces π such

that either: (i) π(1) · · ·π(n) |= ϕ and end occurs only in π(n),



or (ii) π ̸|= αs ∧ αc and end does not occur in π. Aαs ,αc
ϕ can

be constructed in double-exponential time in |αs|+ |αc|+ |ϕ|.

Proof. First, we prove that the language of Aαs ,αc
ϕ contains

the set of traces that satisfy one of the conditions (i) and (ii).
Then, we prove that the language of Aαs ,αc

ϕ is contained in
the set of traces that satisfy one of the conditions (i) and (ii).
The construction of Aαs ,αc

ϕ is polynomial in the size of As,
Ac, andAg, which can be constructed in double-exponential
time in |αs|, |αc|, and |αg|, respectively.

(⊇) (i) If π(1) · · ·π(n) |= ϕ and end occurs only in π(n),
then the run of Ag on π(1) · · ·π(n) is accepting, i.e. its last
state belongs to Fg. It then follows from the definition of
Aαs ,αc

ϕ that the run of Aαs ,αc
ϕ on π will transition to q⊤ after

reading π(n) and, because end occurs only in π(n), it will
then loop at q⊤. As q⊤ is an accepting state of Aαs ,αc

ϕ , this
shows thatAαs ,αc

ϕ accepts π. (ii) If π ̸|= αs ∧αc and end does
not occur in π, then either π ̸|= αs or π ̸|= αc. In the first case
(π ̸|= αs), the trace π contains a bad prefix π(1) · · ·π(n), and
w.l.o.g. we can suppose that this is the shortest such prefix. It
follows that the run ofAs on π(1) · · ·π(n) is accepting. From
the definition of Aαs ,αc

ϕ , the run of Aαs ,αc
ϕ on π transitions

to a state (qs, qc, qg) where qs = qbad. Because end does
not occur in π, after having read π(n), the run of Aαs ,αc

ϕ on
π will remain among the states whose third component is
qbad. By construction, these states are accepting, so Aαs ,αc

ϕ

accepts π. In the second case (π ̸|= αg), the run of Ac on
finite prefix π(1) · · ·π(n) is not accepting for any n < ∞. It
follows that the run of Aαs ,αc

ϕ on π will not visit any state
(qs, qc, qg) with qc = qgood, and since π does not contain
end, it also cannot contain the state q⊥. Thus, the run of π
will only visit accepting states, so Aαs ,αc

ϕ accepts π.

(⊆) Let π be an infinite trace that is accepted by Aαs ,αc
ϕ .

We distinguish three cases: (a) end does not occur in π; (b)
end occurs exactly one time in π; (c) end occurs more than
one time in π. Case (a): if end does not occur in π, then q⊤
does not occur in the run of Aαs ,αc

ϕ on π. As this run is ac-
cepting but does not contain q⊤, it must either hit infinitely
often states with qbad, or hit infinitely often states without
qgood. In the first case, let π(1) · · ·π(n) be the smallest pre-
fix of π such that after reading π(1) · · ·π(n), the DBA Aαs ,αc

ϕ

enters a state (qs, qc, qg) with qs = qbad. By construction
of Aαs ,αc

ϕ , it must be that the run of As on π(1) · · ·π(n) is
accepting. Thus, π(1) · · ·π(n) is a bad prefix of αs, which
means π ̸|= αs. In the second case, we observe that if a run
enters a state (qs, qc, qg) with qc = qgood, then it remains in
a state with good in the second component unless a symbol
with end is read. As the considered trace π does not con-
tain end, it follows that the run of Aαs ,αc

ϕ on π does not hit
any state (qs, qc, qg) with qc = qgood. Hence, Ac must not
accept any finite prefix of π, so π does not contain any good
prefixes for αc, i.e. π ̸|= αc. This concludes that case (a)
implies case (ii). Case (b): suppose that end occurs exactly
one time in π, say in the nth symbol π(n). Immediately af-
ter reading π(n), the DBA Aαs ,αc

ϕ will transition to either q⊤
or q⊥. However, since the run of Aαs ,αc

ϕ on π is accepting,
it cannot contain q⊥. We thus have a transition of the form
δ((qs, qc, qg), π(n)) = q⊤ with δg(qg, π(n)) ∈ Fg. It follows
that the finite prefix π(1) · · ·π(n) is accepted by the DFAAg,

i.e., π(1) · · ·π(n) |= ϕ. We have thus shown that case (b) im-
plies case (i). To conclude the proof, observe that Case (c)
is not possible. Indeed, the first symbol with end forces an
automaton transition to either q⊤ or q⊥, and the second sym-
bol with end forces an automaton transition to q⊥. Because
state q⊥ is absorbing and not accepting, Aαs ,αc

ϕ does not ac-
cept traces where end occurs more than one time. "

Theorem 9 Consider a constrained LTLf specification
S =⟨X,Y,αs ∧ αc, ϕ⟩ where αs (resp. αc) is a safe (resp.
co-safe) formula. Then:

• S is realizable iff the DBA game Gαs ,αc
ϕ is winning;

• Every winning strategy forGαs ,αc
ϕ is a winning strategy for

S, and vice-versa;

• Deciding whether Gαs ,αc
ϕ is winning, and constructing a

winning strategy when one exists, can be done in 2EXP.

Proof. By Theorem 7, the language of the DBAAαs ,αc
ϕ con-

tains all, and only, the infinite traces π such that either:
(i) π(1) · · ·π(n) |= ϕ and end occurs only in π(n), or (ii)
π ̸|= αs ∧ αc and end does not occur in π. By definition,
a strategy σ is a winning strategy forGαs ,αc

ϕ iff every induced
infinite trace π[σ,X] is accepted by Aαs ,αc

ϕ . It follows that
winning strategies for Gαs ,αc

ϕ are winning strategies for S,
and vice versa. By Theorem 7, we can construct the DBA
Aαs ,αc

ϕ in double-exponential time. We can then construct,
in polynomial time in |Aαs ,αc

ϕ | the set Win(Gαs,αc
ϕ ) and check

whether ((q0)s, (q0)c, (q0)g) ∈ Win(Gαs ,αc
ϕ ). If the latter holds,

then we construct a winning strategy in the form of a trans-
ducer. This step is also polynomial w.r.t. |Aαs,αc

ϕ |, and thus
the entire procedure can be performed in double-exponential
time. "

Theorem 10 A bgv-optimal strategy can be constructed in
double-exponential time.

Proof. We first argue that the described construction yields
an bgv-optimal strategy. We know from (Almagor, Boker,
and Kupferman 2016) that the Âϕ,V accepts finite traces π
such that ⟦π, ϕ⟧ ≥ b. By reusing the arguments from the
proof of Theorem 7, we can show thatAα

ϕ≥b
recognizes infi-

nite traces such that either (i) α = αs ∧ αc is violated and
end does not occur, or (ii) end occurs exactly once and
the induced finite trace π is such that ⟦π, ϕ⟧ ≥ b. It fol-
lows that an α-strategy σ with bgv(σ) ≥ b exists iff the
DBA game ⟨X,Y ∪ {end},Aα

ϕ≥b
⟩ is winning. We can use

the techniques described in Section 5.2 to decide whether
such a DBA is winning. By considering the values in V(ϕ)
in descending order, we can determine the maximal b∗ for
which an α-strategy σ with bgv(σ) ≥ b∗ exists. We can
then compute such a strategy, for the identified best value
b∗, by constructing a winning strategy for the DBA game
⟨X,Y∪ {end},Aα

ϕ≥b∗
⟩, again using the techniques from Sec-

tion 5.2.
For each value b, we can construct the DFA Âϕ,V in

double-exponential time, and the DFAs for safe and co-safe
constraints can also be constructed in double-exponential



time. It follows thatAα
ϕ≥b

can also be constructed in double-

exponential time. Determining whether the DBA game
⟨X,Y ∪ {end},Aα

ϕ≥b
⟩ is winning, and constructing a win-

ning strategy for the game, is also in double-exponential
time. Finally, we note that all of the preceding double-
exponentional time operations are performed at most once
per value b ∈ V(ϕ), so the overall procedure runs in double-
exponential time. "

The next two lemmas will be used to prove Theorem 11.
In what follows, it will be convenient to slightly abuse no-
tation and use δ(q, π), with π a finite trace, to indicate the
automata state resulting from reading π starting from state q
(and similarly for the output function ω of transducers on a
finite string X1 . . . Xn).

Lemma 1. For every π = (X1 ∪ Y1) . . . (Xn ∪ Yn) ∈ 2X∪Y,
Xn+1 ∈ 2X, and b ∈ [0, 1], the following are equivalent:

1. there exists an α-strategy σ such that π ∈ ptraces(σ) and
bgvπ,Xn+1

(σ) ≥ b

2. δb(qb
0, π·(Xn+1∪Yn+1))∈ Win(Gb) for some Yn+1 ∈ 2Y∪{end}.

Proof. (⇒) Suppose that σ is an α-strategy such that
π ∈ ptraces(σ) and bgvπ,Xn+1

(σ) ≥ b. Set Yn+1 =

σ(X1 . . . XnXn+1), and let q∗ = δb(qb
0, π (Xn+1 ∪ Yn+1)). Con-

sider the DBA Aα
≥b,q∗

= ⟨2X∪Y∪{end},Qb, δb, q
∗, Fb⟩, which

is the same as Aα
≥b

but with q∗ for the initial state. Define a
strategy σ∗ for the DBA game G∗b = ⟨X,Y ∪ {end},Aα

≥b,q∗
⟩

as follows:

σ∗(X′1 . . . X
′
h) = σ(X1 . . . Xn+1X′1 . . .X

′
h)

We claim that σ∗ is a winning strategy for G∗
b
. To see why,

take any X ∈ (2X)∗, and let π∗X = π[σ∗,X]. We need to
show that π∗X is accepted by Aα

≥b,q∗
. Let us consider πX =

π[σ, X1 . . . Xn+1X], and let s0 s1 s2 . . . be the infinite run of
Aα
≥b

on πX. Note that since π ∈ ptraces(σ), we know that
π ⊑ πX, hence either (i) πX does not contain end and πX ̸|= α,
or (ii) πX contains exactly one occurrence of end (at some
position k ≤ n + 1, since π does not contain end) and the
induced finite trace πf

X = πf[σ, X1 . . . Xn+1X] is such that

⟦πf
X
, ϕ⟧ ≥ b. It follows that πX is accepted by Aα

≥b
, and

thus the infinite run s0 s1s2 . . . of Aα
≥b

on πX contains in-
finitely many s j ∈ Fb. We then observe that sn+1 = q∗.
Since Aα

≥b,q∗
has the same transitions as Aα

≥b
, it follows

that sn+1 sn+2 sn+3 . . . is the run of Aα
≥b,q∗

on π∗X. Note that

sn+1 sn+2sn+3 . . . must also contain infinitely many s j ∈ Fb,
so it is an accepting run. We have thus shown that σ∗ is a
winning strategy for G∗

b
.

As the game G∗
b

is winning, we must have q∗ ∈ Win(G∗
b
).

We then remark that since G∗
b

and Gb only differ in their
initial states, the two games have precisely the same win-
ning regions. We thus obtain q∗ = δb(qb

0, π (Xn+1 ∪ Yn+1)) ∈
Win(Gb).

(⇐) Suppose that q∗ = δb(qb
0, π · (Xn+1∪Yn+1))∈ Win(Gb).

By following the strategy of the transducer TGb
from this

point on, we are guaranteed to produce a trace that is ac-
cepted by the automaton Aα

≥b
. More precisely, consider the

strategy σ defined as follows:

• σ(X′1 . . . X
′
k
) = Yk, if X′1 . . . X

′
k
= X1 . . .Xk (1 ≤ k ≤ n + 1)

• σ(X′1 . . . X
′
n+1 . . . X

′
h
) = ωb(δ′

b
(q∗, X′n+1 . . .X

′
h−1), X′

h
), if

X′1 . . . X
′
n+1 = X1 . . . Xn+1

• σ(X′1) = end, if X′1 # X1

• σ(X′1 . . . X
′
k
X′

k+1) = end, if X′i = Xi for 1 ≤ k < n + 1 and
X′

k+1 # Xk+1

• σ(X′1 . . . X
′
h
) = ∅, in all other cases

where δ′
b

and ωb are respectively the transition and output
functions of the transducer TGb

. The first bullet concerns
prefixes of X1 . . . Xn+1 and ensures that (X1 ∪ Y1) . . . (Xn+1 ∪
Yn+1) ∈ ptraces(σ)). The second bullet states that once
X1 . . . Xn+1 has been read, we start following the transducer
TGb

. The remaining points ensure that all infinite traces
π′ ∈ traces(σ) such that π (Xn+1∪Yn+1) ' π′ contain a single
occurrence of end.

We claim that σ is an α-strategy such that (X1 ∪
Y1) . . . (Xn+1 ∪ Yn+1) ∈ ptraces(σ) and bgvπ,Xn+1

(σ) ≥ b.
As noted above, the first bullet of the definition ensures
that (X1 ∪ Y1) . . . (Xn+1 ∪ Yn+1) ∈ ptraces(σ). The last
three bullets make sure that every π′ ∈ traces(σ) with
(X1 ∪ Y1) . . . (Xn+1 ∪ Yn+1) ' π′ contains exactly one oc-
currence of end. It remains to consider the infinite traces
that begin with (X1 ∪ Y1) . . . (Xn+1 ∪ Yn+1). Consider some
such trace π′ = (X1 ∪ Y1)(X2 ∪ Y2) . . . ∈ traces(σ), and
let s0 s1s2 . . . be the infinite run of Aα

≥b
on π′. Because

(X1∪Y1) . . . (Xn+1∪Yn+1) ⊑ π′, we know that sn+1 = q∗. The
latter can be combined with the second bullet to show that
for every i ≥ n+1, Yi+1 = ωb(si, Xi+1) and si+1 = δ

′
b
(si, Xi+1).

As sn+1 = q∗ ∈ Win(Gb), and ωb is defined so as to always
remain within Win(Gb), we have si ∈ Win(Gb) for every
i ≥ n + 1. Furthermore, since ωb always reduces the dis-
tance to RA(G), there are infinitely many i ≥ n + 1 such that
si ∈ Fb. This establishes that s0 s1s2 . . . is an accepting run,
and thus, π′ must either be such that π′ ̸|= α, or it contains a
single occurrence of end such that the finite induced trace π′′

is such that ⟦π′′, ϕ⟧ ≥ b. We have thus shown that every in-
finite trace produced by σ either violates α or contains end,
i.e. σ is an α-strategy. Moreover, for every π′′ ∈ tracesf(σ)
with (X1 ∪ Y1) . . . (Xn+1 ∪ Yn+1) ⊑ π′′, we have ⟦π′′, ϕ⟧ ≥ b,
as desired. "

In the following lemma, we use σstr to denote the strategy
implemented by the transducer T str. To simplify the formu-
lation, we extend the notation bgvπ,X(σ) to all finite traces
that can be produced by strategy σ (recall that Definition 2
only defines this notation for compatible traces that do not
contain end). Formally, given a trace π = (X1 ∪ Y1) . . . (Xn ∪
Yn) that is a prefix of some infinite trace in π[σ,X] and con-
tains end at position k ≤ n, we set bgvπ,X(σ) = ⟦π′, ϕ⟧,
where π′ = (X1 ∪ Y1) . . . (Xk ∪ Yk \ {end}).

Lemma 2. For every X1 . . . Xn ∈ (2X)∗, Xn+1 ⊆ X, and v ∈
[0, 1]: if π = (X1∪ωstr(q

str
0 , X1)) . . . (Xn∪ωstr(q

str
0 , X1 . . . Xn)),

(q1, q2, . . . , qm) = δstr(q
str
0 , X1 . . .Xn), and u is such that



ωstr((q1, q2, . . . , qm), Xn+1) was set equal to ωu(qu, Xn+1),
then bgvπ,Xn+1

(σstr) ≥ u.

Proof. Fix X1 . . . Xn ∈ (2X)∗ and Xn+1 ⊆ X. Consider
some X ∈ (2X)ω such that X = X1 . . . XnXn+1Xn+2 . . .. Let
π′ = π[σstr,X] = (X1 ∪ Y1)(X2 ∪ Y2) . . ., and for all i ≥ 0
let (q1

i+1, . . . , q
m
i+1) = δstr(q

str
0
, X1 . . . Xi+1). Define a function

ζ : N → {b1, . . . , bm} by letting ζ(i) be the unique value
b in {b1, . . . , bm} such that ωstr((q

1
i , . . . , q

m
i ), X1 . . .Xi), Xi+1)

was set equal to ωb(qb
i , Xi+1). Basically, ζ(i) = b means that

we used transducer TGb
to generate Yi+1 after reading Xi+1

from state (q1
i , . . . , q

m
i ). Note that the value u from the lemma

statement is equal to ζ(n).

Claim: For all i ≥ 0, ζ(i + 1) ≥ ζ(i).
Proof of claim: Suppose that ζ(i) = b, which means that b =
max({v ∈ B | ∃Y δv(qv

i , Xi+1∪Y) ∈ Win(Gv)}). Then we have

Yi+1 = ωb(qb
i , Xi+1). From the definition of ωb, and the fact

that there exists some Y with δb(qb
i , Xi+1∪Y) ∈ Win(Gb), we

know that δb(qb
i , Xi+1∪Yi+1) ∈ Win(Gb). It follows that there

must exist Y′ such that δb(qb
i+1, Xi+2 ∪ Y′) ∈ Win(Gb), and

hence max({v ∈ B | ∃Y′ δv(qv
i+1
, Xi+2 ∪ Y′) ∈ Win(Gv)}) ≥ b.

Thus, ζ(i + 1) ≥ b = ζ(i). (end proof of claim)

Due to the preceding claim, and the finiteness of B, there
exists h ≥ 0 such that ζ(i) = ζ(h) for all i ≥ h, and ζ(i) < ζ(h)

for i < h. Let bX = ζ(h). Observe that qbX

0 qbX

1 qbX

3 . . . is the run

ofAα
≥bX

on π′ and that qbX

h+1
∈ Win(GbX

). From the definition

of ωbX
, we can infer that qbX

i ∈ Win(GbX
) for all i > h, and

further that there are infinitely many qbX

i
∈ FbX

. This means

that qbX

0 qbX

1 qbX

3 . . . is an accepting run of Aα
≥bX

on π′. Thus,

either π′ does not contain end and violates α, or π′ contains
end and the induced finite trace πf[σstr,X] has value at least
bX = ζ(h) ≥ ζ(n) = u. We have shown that every trace
π′′ ∈ tracesf(σstr) is such that ⟦π′′, ϕ⟧ ≥ ζ(n) = u, and
hence that bgvπ,Xn+1

(σstr) ≥ u. "

We now proceed to the proof of Theorem 11.

Theorem 11 T str implements a strongly bgv-optimal strat-
egy and can be constructed in double-exponential time.

Proof. We first show that T str implements a strongly bgv-
optimal strategy. Suppose for a contradiction that this is
not the case. Then there exists a finite trace π = (X1 ∪
Y1) . . . (Xn ∪ Yn) ∈ ptraces(σ) that does not contain end,
X ∈ X, and an α-strategy such that π ∈ ptraces(σ′)
and bgvπ,X(σ′) > bgvπ,X(σ). Suppose that bgvπ,X(σ) =
b and bgvπ,X(σ′) = b′. From Lemma 1, we know that

δb′(q
b′

0 , π (Xn+1 ∪ Yn+1))∈ Win(Gb′ ) for some Yn+1 ∈ 2Y∪{end}.

It follows that ωstr(δstr(q
str
0 , X1 . . .Xn), Xn+1) = ωv(qv, Xn+1)

for some v ≥ b′. From Lemma 2, bgvπ,Xn+1
(σstr) ≥ v ≥ b′, a

contradiction.
We know from Section 7.2 and Theorem 10 that for each

v ∈ V(ϕ), the DBA Aα
≥v, winning region Win(Gv), and

transducer TGv
can be constructed in double-exponential

time. As there are only single exponentially many values
in V (hence B), the transducer T str can also be constructed
double-exponential time. "


