
ontology-mediated
query answering
Harnessing Knowledge to Get More From Data

Meghyn Bienvenu (CNRS, University of Montpellier, Inria)

ontology-mediated query answering (omqa)

data

incomplete
database

(ground facts)

ontology
(logical theory)

???

user query
domain knowledge

2/32

ontology-mediated query answering (omqa)

data ???

patient data
“Melanie has listeriosis”
“Paul has Lyme disease”

medical knowledge
“Listeriosis & Lyme disease

are bacterial infections”

user query
“Find all patients with
bacterial infections”

expected answers: Melanie, Paul

2/32

what is an ontology?

In computer science:
a formal specification of the knowledge of a particular domain,
thereby making it amenable to machine processing

Such a specification consists of:
∙ terminology (or vocabulary) of the domain
∙ semantic relationships between terms
∙ relations of inclusion, equivalence, disjointness, ...

3/32

what are ontologies good for?

To standardize the terminology of an application domain
∙ meaning of terms is constrained, so fewer misunderstandings
∙ by adopting a common vocabulary, easy to share information

To present an intuitive and unified view of data sources
∙ ontology can be used to enrich the data vocabulary, making it
easier for users to formulate their queries

∙ especially useful when integrating multiple data sources

To support automated reasoning
∙ uncover implicit connections between terms, errors in modelling
∙ exploit knowledge in the ontology during query answering, to get
back a more complete set of answers to queries

4/32

applications of omqa: medicine

General medical ontologies: SNOMED CT (∼ 300,000 terms!), GALEN
Specialized ontologies: FMA (anatomy), NCI (cancer), ...

Querying & exchanging medical records (find patients for medical trials)
∙ myocardial infarction vs. MI vs. heart attack vs. 410.0

Supports tools for annotating and visualizing patient data (scans, x-rays) 5/32

applications of omqa: life sciences

Hundreds of ontologies at BioPortal (http://bioportal.bioontology.org/):
Gene Ontology (GO), Cell Ontology, Pathway Ontology, Plant Anatomy, ...

Help scientists share, query, & visualize experimental data

6/32

applications of omqa: entreprise information systems

Companies and organizations have lots of data
∙ need easy and flexible access to support decision-making

Example industrial projects:
∙ Public debt data: Sapienza Univ. & Italian Department of Treasury
∙ Energy sector: Optique EU project (several univ, StatOil, Siemens)

7/32

our focus: description logic ontologies

Description logics (DLs):
∙ popular means for specifying ontologies
∙ basis of the web ontology language OWL (W3C standard)

Formally: decidable fragments of first-order logic
∙ inherit well-defined semantics
∙ succinct, variable-free syntax

Computational properties well understood (decidability, complexity)

Many implemented reasoners and tools available for use

8/32

our focus: description logic ontologies

Description logics (DLs):
∙ popular means for specifying ontologies
∙ basis of the web ontology language OWL (W3C standard)

Formally: decidable fragments of first-order logic
∙ inherit well-defined semantics
∙ succinct, variable-free syntax

Computational properties well understood (decidability, complexity)

Many implemented reasoners and tools available for use

8/32

plan for this talk

Introduction to DLs & OMQA

Query Rewriting: Limits and Possibilities

Inconsistency Handling in OMQA

9/32

introduction to dls & omqa

description logic ontologies

Building blocks:
∙ concept names (unary predicates, classes) Prof Fellow Course

∙ role names (binary predicates, properties) Teaches HeadOf

Constructors to build complex descriptions ⊔,⊓,¬, ∀,∃, ...

Faculty ⊓ ¬Prof ∃Teaches.GradCourse Teaches−

Ontology = set of axioms
∙ concept inclusions

Prof ⊑ Faculty Prof ⊑ ¬Fellow ∃Teaches.GradCourse ⊑ Prof

∙ role inclusions

TaughtBy ⊑ Teaches− HeadOf ⊑ MemberOf

Note: allowed constructors and axioms depends on chosen DL

11/32

description logic ontologies

Building blocks:
∙ concept names (unary predicates, classes) Prof Fellow Course

∙ role names (binary predicates, properties) Teaches HeadOf

Constructors to build complex descriptions ⊔,⊓,¬, ∀,∃, ...

Faculty ⊓ ¬Prof ∃Teaches.GradCourse Teaches−

Ontology = set of axioms
∙ concept inclusions

Prof ⊑ Faculty Prof ⊑ ¬Fellow ∃Teaches.GradCourse ⊑ Prof

∙ role inclusions

TaughtBy ⊑ Teaches− HeadOf ⊑ MemberOf

Note: allowed constructors and axioms depends on chosen DL
11/32

query languages

Instance queries (IQs): find instances of a given concept or role

Faculty(x) Teaches(x, y)

Conjunctive queries (CQs) ∼ SPJ queries in SQL, BGPs in SPARQL
conjunctions of atoms, some variables can be existentially quantified

∃y. Faculty(x) ∧ Teaches(x, y)
(find all faculty members that teach something)

Unions of conjunctive queries (UCQs): disjunction of CQs

12/32

query languages

Instance queries (IQs): find instances of a given concept or role

Faculty(x) Teaches(x, y)

Conjunctive queries (CQs) ∼ SPJ queries in SQL, BGPs in SPARQL
conjunctions of atoms, some variables can be existentially quantified

∃y. Faculty(x) ∧ Teaches(x, y)
(find all faculty members that teach something)

Unions of conjunctive queries (UCQs): disjunction of CQs

12/32

query languages

Instance queries (IQs): find instances of a given concept or role

Faculty(x) Teaches(x, y)

Conjunctive queries (CQs) ∼ SPJ queries in SQL, BGPs in SPARQL
conjunctions of atoms, some variables can be existentially quantified

∃y. Faculty(x) ∧ Teaches(x, y)
(find all faculty members that teach something)

Unions of conjunctive queries (UCQs): disjunction of CQs

12/32

ontology-mediated query answering

Answering CQs in database setting

TF T
F

T

query

P

D

D
dataset

map into

homomorphism a
x

TF T
F

T

query

P

D

D
completion(s)

map into

homomorphismx of dataset

TF

S

A
R

U

U

y

y

c

(apply ontology axioms)

Answering CQs in the presence of an ontology

TF T
F

T

query

P

D

D
dataset

map into

homomorphism a
x

TF T
F

T

query

P

D

D
completion(s)

map into

homomorphismx of dataset

TF

S

A
R

U

U

y

y

c

(apply ontology axioms)

13/32

ontology-mediated query answering

Answering CQs in database setting

TF T
F

T

query

P

D

D
dataset

map into

homomorphism a
x

TF T
F

T

query

P

D

D
completion(s)

map into

homomorphismx of dataset

TF

S

A
R

U

U

y

y

c

(apply ontology axioms)

Answering CQs in the presence of an ontology

TF T
F

T

query

P

D

D
dataset

map into

homomorphism a
x

TF T
F

T

query

P

D

D
completion(s)

map into

homomorphismx of dataset

TF

S

A
R

U

U

y

y

c

(apply ontology axioms)

13/32

example: omqa with dl-lite ontologies

Ontology, expressed in DL-Lite: (lightweight DL designed for OMQA)
∼ OWL 2 QL

Prof⊑ Faculty Fellow⊑ Faculty Prof⊑ ¬Fellow
Prof⊑ ∃Teaches ∃Teaches⊑ Faculty ∃Teaches− ⊑ Course

Dataset:

D1 = {Prof(anna), Fellow(tom), Teaches(tom, cs101)}

Query: q1(x) = ∃y.Faculty(x) ∧ Teaches(x, y)

Get the following answers:
∙ anna Prof(anna) + Prof ⊑ Faculty + Prof ⊑ ∃Teaches

∙ tom Fellow(tom) + Fellow ⊑ Faculty + Teaches(tom, cs101)

14/32

example: omqa with dl-lite ontologies

Ontology, expressed in DL-Lite: (lightweight DL designed for OMQA)
∼ OWL 2 QL

Prof⊑ Faculty Fellow⊑ Faculty Prof⊑ ¬Fellow
Prof⊑ ∃Teaches ∃Teaches⊑ Faculty ∃Teaches− ⊑ Course

Dataset:

D1 = {Prof(anna), Fellow(tom), Teaches(tom, cs101)}

Query: q1(x) = ∃y.Faculty(x) ∧ Teaches(x, y)

Get the following answers:
∙ anna Prof(anna) + Prof ⊑ Faculty + Prof ⊑ ∃Teaches

∙ tom Fellow(tom) + Fellow ⊑ Faculty + Teaches(tom, cs101)

14/32

query rewriting:
limits and possibilities

first-order query rewriting

Idea: reduce OMQA to database query evaluation

∙ rewriting step: ontology O + query q⇝ first-order (FO) query q′
FO queries ∼ SQL queries

∙ evaluation step: evaluate query q′ over dataset

Advantage: harness efficiency of relational database (DB) systems

FO-rewriting of q w.r.t. O: FO-query q′ such that for every dataset D:

evaluating q′ over D (viewed as DB) gives correct result

16/32

first-order query rewriting

Idea: reduce OMQA to database query evaluation

∙ rewriting step: ontology O + query q⇝ first-order (FO) query q′
FO queries ∼ SQL queries

∙ evaluation step: evaluate query q′ over dataset

Advantage: harness efficiency of relational database (DB) systems

FO-rewriting of q w.r.t. O: FO-query q′ such that for every dataset D:

evaluating q′ over D (viewed as DB) gives correct result

16/32

example: query rewriting

Same ontology, data, and query as earlier:

Prof⊑ Faculty Fellow⊑ Faculty Prof⊑ ¬Fellow
Prof⊑ ∃Teaches ∃Teaches⊑ Faculty ∃Teaches− ⊑ Course

D1 = {Prof(anna), Fellow(tom), Teaches(tom, cs101)}

q1(x) = ∃y.Faculty(x) ∧ Teaches(x, y)

FO-rewriting of q1(x) w.r.t. O: (disjuncts = different ways to satisfy q1)

(Faculty(x) ∧ ∃y.Teaches(x, y)) ∨ (Fellow(x) ∧ ∃y.Teaches(x, y)) ∨ Prof(x)

Evaluating the rewriting over D1 yields:

anna (matches 3rd disjunct) tom (matches 2nd disjunct)

17/32

example: query rewriting

Same ontology, data, and query as earlier:

Prof⊑ Faculty Fellow⊑ Faculty Prof⊑ ¬Fellow
Prof⊑ ∃Teaches ∃Teaches⊑ Faculty ∃Teaches− ⊑ Course

D1 = {Prof(anna), Fellow(tom), Teaches(tom, cs101)}

q1(x) = ∃y.Faculty(x) ∧ Teaches(x, y)

FO-rewriting of q1(x) w.r.t. O: (disjuncts = different ways to satisfy q1)

(Faculty(x) ∧ ∃y.Teaches(x, y)) ∨ (Fellow(x) ∧ ∃y.Teaches(x, y)) ∨ Prof(x)

Evaluating the rewriting over D1 yields:

anna (matches 3rd disjunct) tom (matches 2nd disjunct)

17/32

example: query rewriting

Same ontology, data, and query as earlier:

Prof⊑ Faculty Fellow⊑ Faculty Prof⊑ ¬Fellow
Prof⊑ ∃Teaches ∃Teaches⊑ Faculty ∃Teaches− ⊑ Course

D1 = {Prof(anna), Fellow(tom), Teaches(tom, cs101)}

q1(x) = ∃y.Faculty(x) ∧ Teaches(x, y)

FO-rewriting of q1(x) w.r.t. O: (disjuncts = different ways to satisfy q1)

(Faculty(x) ∧ ∃y.Teaches(x, y)) ∨ (Fellow(x) ∧ ∃y.Teaches(x, y)) ∨ Prof(x)

Evaluating the rewriting over D1 yields:

anna (matches 3rd disjunct) tom (matches 2nd disjunct)

17/32

query rewriting in dl-lite

For DL-Lite ontologies, we know FO-rewritings exist for all CQs.

Lots of implemented rewriting algorithms for DL-Lite
∙ many produce rewritings in the form of UCQs (like in our example)

Experiments showed that such rewritings can be huge!
∙ can be difficult / impossible to generate and evaluate

Easy to show smallest UCQ-rewriting may be exponentially large:

Query: A01 (x) ∧ . . . ∧ A0n(x) Ontology: A1i ⊑ A0i (i = 1, . . . ,n)

Rewriting:
∨

(i1,...,in)∈{0,1} A
i1
1 (x) ∧ A

i1
1 (x) ∧ . . . ∧ Ai11 (x)

But equivalent to polysize query
∧n
i=1(A0i (x) ∨ A1i (x)) (DNF vs CNF)

18/32

query rewriting in dl-lite

For DL-Lite ontologies, we know FO-rewritings exist for all CQs.

Lots of implemented rewriting algorithms for DL-Lite
∙ many produce rewritings in the form of UCQs (like in our example)

Experiments showed that such rewritings can be huge!
∙ can be difficult / impossible to generate and evaluate

Easy to show smallest UCQ-rewriting may be exponentially large:

Query: A01 (x) ∧ . . . ∧ A0n(x) Ontology: A1i ⊑ A0i (i = 1, . . . ,n)

Rewriting:
∨

(i1,...,in)∈{0,1} A
i1
1 (x) ∧ A

i1
1 (x) ∧ . . . ∧ Ai11 (x)

But equivalent to polysize query
∧n
i=1(A0i (x) ∨ A1i (x)) (DNF vs CNF)

18/32

query rewriting in dl-lite

For DL-Lite ontologies, we know FO-rewritings exist for all CQs.

Lots of implemented rewriting algorithms for DL-Lite
∙ many produce rewritings in the form of UCQs (like in our example)

Experiments showed that such rewritings can be huge!
∙ can be difficult / impossible to generate and evaluate

Easy to show smallest UCQ-rewriting may be exponentially large:

Query: A01 (x) ∧ . . . ∧ A0n(x) Ontology: A1i ⊑ A0i (i = 1, . . . ,n)

Rewriting:
∨

(i1,...,in)∈{0,1} A
i1
1 (x) ∧ A

i1
1 (x) ∧ . . . ∧ Ai11 (x)

But equivalent to polysize query
∧n
i=1(A0i (x) ∨ A1i (x)) (DNF vs CNF)

18/32

query rewriting in dl-lite

For DL-Lite ontologies, we know FO-rewritings exist for all CQs.

Lots of implemented rewriting algorithms for DL-Lite
∙ many produce rewritings in the form of UCQs (like in our example)

Experiments showed that such rewritings can be huge!
∙ can be difficult / impossible to generate and evaluate

Easy to show smallest UCQ-rewriting may be exponentially large:

Query: A01 (x) ∧ . . . ∧ A0n(x) Ontology: A1i ⊑ A0i (i = 1, . . . ,n)

Rewriting:
∨

(i1,...,in)∈{0,1} A
i1
1 (x) ∧ A

i1
1 (x) ∧ . . . ∧ Ai11 (x)

But equivalent to polysize query
∧n
i=1(A0i (x) ∨ A1i (x)) (DNF vs CNF)

18/32

query rewriting in dl-lite

For DL-Lite ontologies, we know FO-rewritings exist for all CQs.

Lots of implemented rewriting algorithms for DL-Lite
∙ many produce rewritings in the form of UCQs (like in our example)

Experiments showed that such rewritings can be huge!
∙ can be difficult / impossible to generate and evaluate

Easy to show smallest UCQ-rewriting may be exponentially large:

Query: A01 (x) ∧ . . . ∧ A0n(x) Ontology: A1i ⊑ A0i (i = 1, . . . ,n)

Rewriting:
∨

(i1,...,in)∈{0,1} A
i1
1 (x) ∧ A

i1
1 (x) ∧ . . . ∧ Ai11 (x)

But equivalent to polysize query
∧n
i=1(A0i (x) ∨ A1i (x)) (DNF vs CNF)

18/32

size of rewritings in dl-lite

Different shapes of rewritings:
∙ UCQs disjunction of conjunctions

∙ positive existential (PE) queries can mix ∨ and ∧

∙ non-recursive datalog (NDL) queries allows structure sharing

∙ first-order (FO) queries can also use ¬, ∀

Question: Do we always have polysize (PE / NDL / FO) rewriting?

When are polysize (PE/ NDL / FO) rewritings possible?

Natural restrictions:
∙ ontology: bound existential depth
∙ query: bound treewidth / number of leaves (tree-shaped queries)

19/32

size of rewritings in dl-lite

Different shapes of rewritings:
∙ UCQs disjunction of conjunctions

∙ positive existential (PE) queries can mix ∨ and ∧

∙ non-recursive datalog (NDL) queries allows structure sharing

∙ first-order (FO) queries can also use ¬, ∀

Question: Do we always have polysize (PE / NDL / FO) rewriting?

Do
we always have polysize (PE / NDL / FO) rewriting?

When are polysize (PE/ NDL / FO) rewritings possible?

Natural restrictions:
∙ ontology: bound existential depth
∙ query: bound treewidth / number of leaves (tree-shaped queries)

19/32

size of rewritings in dl-lite

Different shapes of rewritings:
∙ UCQs disjunction of conjunctions

∙ positive existential (PE) queries can mix ∨ and ∧

∙ non-recursive datalog (NDL) queries allows structure sharing

∙ first-order (FO) queries can also use ¬, ∀

Question: Do we always have polysize (PE / NDL / FO) rewriting? no

When are polysize (PE/ NDL / FO) rewritings possible?

Natural restrictions:
∙ ontology: bound existential depth
∙ query: bound treewidth / number of leaves (tree-shaped queries)

19/32

succinctness landscape
Succinctness landscape for query rewriting in DL-LiteR

1 2 3 . . .
d arb

2

. . .

`

trees

tw 2

. . .

btw

arb

Depth of ontology

N
um

b
er

of
le

a
ve

s
Tr

ee
w

id
th

no poly PE but poly NDL
(no poly FO unless NL/poly✓ NC1)

no poly PE but poly NDL
(no poly FO unless SAC1 ✓ NC1)

(n
o

p
o

ly
FO

u
n

le
ss

N
P
/
p
o
l
y
✓

N
C
1

)

no polysize PE or NDL

poly
PE,

NDL,
& FO

no poly PE but poly NDL
no poly PE but poly NDL

no poly FO unless NL/poly✓ NC1

14Key technique: link rewriting size to circuit complexity

Bad news:

Good news:

almost never
have polysize
PE-rewritings

polysize
NDL-rewritings
for many cases

Even better:
NDL-rewritings
with optimal
complexity

(NL or LOGCFL)

20/32

beyond dl-lite: existence of fo-rewritings

For most other ontology languages: FO-rewritings may not exist!

Take for example the lightweight DL EL basis for OWL 2 EL

no FO-rewriting of A(x) w.r.t. O = {∃R.A ⊑ A}

Hope: FO-rewritings do exist for typical queries and ontologies

Question: how to identify these good cases? (extend applicability)

∙ does query q have an FO-rewriting w.r.t. ontology O?

Tackled in series of recent papers (incl: IJCAI’16 paper)

∙ decision procedures for variety of DLs, query languages
∙ practical methods for building rewritings promising first results

21/32

beyond dl-lite: existence of fo-rewritings

For most other ontology languages: FO-rewritings may not exist!

Take for example the lightweight DL EL basis for OWL 2 EL

no FO-rewriting of A(x) w.r.t. O = {∃R.A ⊑ A}

Hope: FO-rewritings do exist for typical queries and ontologies

Question: how to identify these good cases? (extend applicability)

∙ does query q have an FO-rewriting w.r.t. ontology O?

Tackled in series of recent papers (incl: IJCAI’16 paper)

∙ decision procedures for variety of DLs, query languages
∙ practical methods for building rewritings promising first results

21/32

beyond dl-lite: existence of fo-rewritings

For most other ontology languages: FO-rewritings may not exist!

Take for example the lightweight DL EL basis for OWL 2 EL

no FO-rewriting of A(x) w.r.t. O = {∃R.A ⊑ A}

Hope: FO-rewritings do exist for typical queries and ontologies

Question: how to identify these good cases? (extend applicability)

∙ does query q have an FO-rewriting w.r.t. ontology O?

Tackled in series of recent papers (incl: IJCAI’16 paper)

∙ decision procedures for variety of DLs, query languages
∙ practical methods for building rewritings promising first results

21/32

inconsistency handling in omqa

handling data inconsistencies

In realistic settings, can expect some errors in the data
∙ data likely to be inconsistent with the ontology

Standard semantics: everything is implied - not informative!

Two approaches to inconsistency handling:
∙ resolve the inconsistencies
∙ preferable, but not always applicable!

∙ live with the inconsistencies - adopt alternative semantics
∙ meaningful answers to queries despite inconsistencies

23/32

handling data inconsistencies

In realistic settings, can expect some errors in the data
∙ data likely to be inconsistent with the ontology

Standard semantics: everything is implied - not informative!

Two approaches to inconsistency handling:
∙ resolve the inconsistencies
∙ preferable, but not always applicable!

∙ live with the inconsistencies - adopt alternative semantics
∙ meaningful answers to queries despite inconsistencies

23/32

plausible answers: ar semantics

Repair: ⊆-maximal subset of the data consistent with the ontology
∙ ways to achieve consistency, keeping as much information as possible

Plausible answers: hold no matter which repair is chosen

AR semantics: query each repair separately, intersect results

Repair: maximal subset of the data consistent with the ontology

CQA semantics
“Standard” inconsistency-tolerant semantics:

consistent query answering (CQA) semantics

✓-

Consistent query answering: intersect answers over all repairs

⇒ . . .

For Boolean queries (no free variables),
Consistent query entailment: query entailed from every repair

R1
R2

Rn

✔ ✔ ✔✔ ✘✘

q(~a)? q(~a)?q(~a)?q(~a)?

D

Bad news: query answering under AR semantics is intractable
(coNP-hard in the size of the data)

Worse: intractable even in very restricted settings (O = {A ⊑ ¬B})

24/32

plausible answers: ar semantics

Repair: ⊆-maximal subset of the data consistent with the ontology
∙ ways to achieve consistency, keeping as much information as possible

Plausible answers: hold no matter which repair is chosen

AR semantics: query each repair separately, intersect results

Repair: maximal subset of the data consistent with the ontology

CQA semantics
“Standard” inconsistency-tolerant semantics:

consistent query answering (CQA) semantics

✓-

Consistent query answering: intersect answers over all repairs

⇒ . . .

For Boolean queries (no free variables),
Consistent query entailment: query entailed from every repair

R1
R2

Rn

✔ ✔ ✔✔ ✘✘

q(~a)? q(~a)?q(~a)?q(~a)?

D

Bad news: query answering under AR semantics is intractable
(coNP-hard in the size of the data)

Worse: intractable even in very restricted settings (O = {A ⊑ ¬B})

24/32

plausible answers: ar semantics

Repair: ⊆-maximal subset of the data consistent with the ontology
∙ ways to achieve consistency, keeping as much information as possible

Plausible answers: hold no matter which repair is chosen

AR semantics: query each repair separately, intersect results

Repair: maximal subset of the data consistent with the ontology

CQA semantics
“Standard” inconsistency-tolerant semantics:

consistent query answering (CQA) semantics

✓-

Consistent query answering: intersect answers over all repairs

⇒ . . .

For Boolean queries (no free variables),
Consistent query entailment: query entailed from every repair

R1
R2

Rn

✔ ✔ ✔✔ ✘✘

q(~a)? q(~a)?q(~a)?q(~a)?

D

Bad news: query answering under AR semantics is intractable
(coNP-hard in the size of the data)

Worse: intractable even in very restricted settings (O = {A ⊑ ¬B})

24/32

example: ar semantics

Same ontology and query as before, add Prof(tom) to dataset:

Prof⊑ Faculty Fellow⊑ Faculty Prof⊑ ¬Fellow
Prof⊑ ∃Teaches ∃Teaches⊑ Faculty ∃Teaches− ⊑ Course

D2 = {Prof(anna), Fellow(tom), Teaches(tom, cs101),Prof(tom)}

q1(x) = ∃y.Faculty(x) ∧ Teaches(x, y)

Two repairs of D2 w.r.t. O:

R1 = {Prof(anna), Fellow(tom), Teaches(tom, cs101)} drop Prof(tom)

R2 = {Prof(anna),Prof(tom), Teaches(tom, cs101)} drop Fellow(tom)

Under AR semantics:
∙ anna and tom are both answers to q1
∙ cs101 is not an answer

25/32

example: ar semantics

Same ontology and query as before, add Prof(tom) to dataset:

Prof⊑ Faculty Fellow⊑ Faculty Prof⊑ ¬Fellow
Prof⊑ ∃Teaches ∃Teaches⊑ Faculty ∃Teaches− ⊑ Course

D2 = {Prof(anna), Fellow(tom), Teaches(tom, cs101),Prof(tom)}

q1(x) = ∃y.Faculty(x) ∧ Teaches(x, y)

Two repairs of D2 w.r.t. O:

R1 = {Prof(anna), Fellow(tom), Teaches(tom, cs101)} drop Prof(tom)

R2 = {Prof(anna),Prof(tom), Teaches(tom, cs101)} drop Fellow(tom)

Under AR semantics:
∙ anna and tom are both answers to q1
∙ cs101 is not an answer

25/32

example: ar semantics

Same ontology and query as before, add Prof(tom) to dataset:

Prof⊑ Faculty Fellow⊑ Faculty Prof⊑ ¬Fellow
Prof⊑ ∃Teaches ∃Teaches⊑ Faculty ∃Teaches− ⊑ Course

D2 = {Prof(anna), Fellow(tom), Teaches(tom, cs101),Prof(tom)}

q1(x) = ∃y.Faculty(x) ∧ Teaches(x, y)

Two repairs of D2 w.r.t. O:

R1 = {Prof(anna), Fellow(tom), Teaches(tom, cs101)} drop Prof(tom)

R2 = {Prof(anna),Prof(tom), Teaches(tom, cs101)} drop Fellow(tom)

Under AR semantics:
∙ anna and tom are both answers to q1
∙ cs101 is not an answer

25/32

plausible answers: ar semantics

Repair: ⊆-maximal subset of the data consistent with the ontology
∙ ways to achieve consistency, keeping as much information as possible

Plausible answers: hold no matter which repair is chosen

AR semantics: query each repair separately, intersect results

Repair: maximal subset of the data consistent with the ontology

CQA semantics
“Standard” inconsistency-tolerant semantics:

consistent query answering (CQA) semantics

✓-

Consistent query answering: intersect answers over all repairs

⇒ . . .

For Boolean queries (no free variables),
Consistent query entailment: query entailed from every repair

R1
R2

Rn

✔ ✔ ✔✔ ✘✘

q(~a)? q(~a)?q(~a)?q(~a)?

D

Bad news: query answering under AR semantics is intractable
(coNP-hard in the size of the data)

Worse: intractable even in very restricted settings (O = {A ⊑ ¬B})
26/32

tractability through approximation

Idea: approximate AR semantics from above and below

Brave semantics possible answers
∙ answer required to hold w.r.t. at least one repair

IAR semantics surest answers
∙ query the intersection of all repairs (surest facts)

Relationship between the semantics:

IAR answers ⊆ AR answers ⊆ brave answers

Good news: these semantics are tractable for DL-Lite ontologies

27/32

tractability through approximation

Idea: approximate AR semantics from above and below

Brave semantics possible answers
∙ answer required to hold w.r.t. at least one repair

IAR semantics surest answers
∙ query the intersection of all repairs (surest facts)

Relationship between the semantics:

IAR answers ⊆ AR answers ⊆ brave answers

Good news: these semantics are tractable for DL-Lite ontologies

27/32

tractability through approximation

Idea: approximate AR semantics from above and below

Brave semantics possible answers
∙ answer required to hold w.r.t. at least one repair

IAR semantics surest answers
∙ query the intersection of all repairs (surest facts)

Relationship between the semantics:

IAR answers ⊆ AR answers ⊆ brave answers

Good news: these semantics are tractable for DL-Lite ontologies

27/32

tractability through approximation

Idea: approximate AR semantics from above and below

Brave semantics possible answers
∙ answer required to hold w.r.t. at least one repair

IAR semantics surest answers
∙ query the intersection of all repairs (surest facts)

Relationship between the semantics:

IAR answers ⊆ AR answers ⊆ brave answers

Good news: these semantics are tractable for DL-Lite ontologies

27/32

tractability through approximation

Idea: approximate AR semantics from above and below

Brave semantics possible answers
∙ answer required to hold w.r.t. at least one repair

IAR semantics surest answers
∙ query the intersection of all repairs (surest facts)

Relationship between the semantics:

IAR answers ⊆ AR answers ⊆ brave answers

Good news: these semantics are tractable for DL-Lite ontologies
27/32

back to the example

Prof⊑ Faculty Fellow⊑ Faculty Prof⊑ ¬Fellow
Prof⊑ ∃Teaches ∃Teaches⊑ Faculty ∃Teaches− ⊑ Course

D2 = {Prof(anna), Fellow(tom), Teaches(tom, cs101),Prof(tom)}

q1(x) = ∃y.Faculty(x) ∧ Teaches(x, y)

Repairs of D2 w.r.t. O:

R1 = {Prof(anna), Fellow(tom), Teaches(tom, cs101)}

R2 = {Prof(anna),Prof(tom), Teaches(tom, cs101)}

Intersection of repairs: {Prof(anna), Teaches(tom, cs101)}

Brave answers: anna tom IAR answers: anna

28/32

back to the example

Prof⊑ Faculty Fellow⊑ Faculty Prof⊑ ¬Fellow
Prof⊑ ∃Teaches ∃Teaches⊑ Faculty ∃Teaches− ⊑ Course

D2 = {Prof(anna), Fellow(tom), Teaches(tom, cs101),Prof(tom)}

q1(x) = ∃y.Faculty(x) ∧ Teaches(x, y)

Repairs of D2 w.r.t. O:

R1 = {Prof(anna), Fellow(tom), Teaches(tom, cs101)}

R2 = {Prof(anna),Prof(tom), Teaches(tom, cs101)}

Intersection of repairs: {Prof(anna), Teaches(tom, cs101)}

Brave answers: anna tom

IAR answers: anna

28/32

back to the example

Prof⊑ Faculty Fellow⊑ Faculty Prof⊑ ¬Fellow
Prof⊑ ∃Teaches ∃Teaches⊑ Faculty ∃Teaches− ⊑ Course

D2 = {Prof(anna), Fellow(tom), Teaches(tom, cs101),Prof(tom)}

q1(x) = ∃y.Faculty(x) ∧ Teaches(x, y)

Repairs of D2 w.r.t. O:

R1 = {Prof(anna), Fellow(tom), Teaches(tom, cs101)}

R2 = {Prof(anna),Prof(tom), Teaches(tom, cs101)}

Intersection of repairs: {Prof(anna), Teaches(tom, cs101)}

Brave answers: anna tom IAR answers: anna
28/32

towards practical systems for inconsistency handling

CQAPri first system for AR query answering in DL-Lite

Implements hybrid approach:

∙ compute IAR and brave answers polytime
∙ gives upper and lower bounds on AR answers

∙ use SAT solvers to identify remaining AR answers
∙ three categories of answers : possible, likely, (almost) sure

Interaction with user:

∙ explaining query results
∙ why a possible answer? why not a sure answer?

∙ query-driven repairing (IJCAI’16)
∙ exploit user feedback to improve data quality

29/32

conclusion & outlook

omqa: harnessing knowledge to get more from data

Promising approach, important applications

Significant recent advances, but still lots left to do!
∙ efficiency: more expressive ontology and query languages
∙ robustness: inconsistencies, uncertainty, vagueness, exceptions
∙ usability: ontology construction, explanation, query formulation, ...

Connections to other disciplines: databases, Semantic Web, theory

Collaboration with other AI areas?
∙ natural language processing
∙ machine learning

31/32

Questions ?

See paper for references & pointers to the literature

Based on joint work with:
Camille Bourgaux, Balder ten Cate, François Goasdoué, Peter Hansen,
Carsten Lutz, Stanislav Kikot, Roman Kontchakov, Magdalena Ortiz,
Vladimir Podolskii, Riccardo Rosati, Mantas Šimkus, Frank Wolter,
Guohui Xiao, Michael Zakharyschev

32/32

	Introduction to DLs & OMQA
	Query Rewriting: Limits and Possibilities
	Inconsistency Handling in OMQA
	Conclusion & Outlook

