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ONTOLOGY-MEDIATED QUERY ANSWERING (OMQA)

E»_ ¢

patient data medical knowledge user query
“Melanie has listeriosis” “Listeriosis & Lyme disease “Find all patients with
“Paul has Lyme disease”  are bacterial infections”  bacterial infections”

expected answers: Melanie, Paul
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WHAT IS AN ONTOLOGY?

In computer science:
a formal specification of the knowledge of a particular domain,

thereby making it

Such a specification consists of:
- terminology (or vocabulary) of the domain
- semantic relationships between terms
- relations of inclusion, equivalence, disjointness, ...
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WHAT ARE ONTOLOGIES GOOD FOR?

To standardize the terminology of an application domain
- meaning of terms is constrained, so fewer misunderstandings

- by adopting a common vocabulary, easy to share information

To present an
- ontology can be used to , making it

- especially useful when

To support automated reasoning

- uncover implicit connections between terms, errors in modelling

- exploit knowledge in the ontology during query answering, to get
back a more complete set of answers to queries
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APPLICATIONS OF OMQA: MEDICINE

General medical ontologies: SNOMED CT (~ 300,000 terms!), GALEN
Specialized ontologies: FMA (anatomy), NCI (cancer), ...
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Querying & exchanging medical records (find patients for medical trials)
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APPLICATIONS OF OMQA: LIFE SCIENCES

Hundreds of ontologies at BioPortal ( ):
Gene Ontology (GO), Cell Ontology, Pathway Ontology, Plant Anatomy, ...

Help scientists share, query, & visualize experimental data

6/32



APPLICATIONS OF OMQA: ENTREPRISE INFORMATION SYSTEMS

Companies and organizations have lots of data
to support decision-making

Example industrial projects:
- Public debt data: Sapienza Univ. & Italian Department of Treasury
- Energy sector: Optique EU project (several univ, StatOil, Siemens)
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OUR FOCUS: DESCRIPTION LOGIC ONTOLOGIES

Description logics (DLs):
- popular means for specifying ontologies
- basis of the web ontology language OWL (W3C standard)

Formally: decidable fragments of first-order logic

- inherit well-defined semantics

- succinct, variable-free syntax
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OUR FOCUS: DESCRIPTION LOGIC ONTOLOGIES

Description logics (DLs):
- popular means for specifying ontologies
- basis of the web ontology language OWL (W3C standard)

Formally: decidable fragments of first-order logic

- inherit well-defined semantics

- succinct, variable-free syntax

Computational properties well understood (decidability, complexity)

Many available for use
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PLAN FOR THIS TALK

Introduction to DLs & OMQA
Query Rewriting: Limits and Possibilities

Inconsistency Handling in OMQA
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INTRODUCTION TO DLS & OMQA



DESCRIPTION LOGIC ONTOLOGIES

Building blocks:
- concept names (unary predicates, classes)  Prof Fellow Course
- role names (binary predicates, properties) Teaches HeadOf

Constructors to build complex descriptions L, r,-, v, 3, ...

Faculty m —Prof dTeaches.GradCourse Teaches™
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DESCRIPTION LOGIC ONTOLOGIES

Building blocks:
- concept names (unary predicates, classes)  Prof Fellow Course

- role names (binary predicates, properties) Teaches HeadOf
Constructors to build complex descriptions L, r,-, v, 3, ...
Faculty m —Prof dTeaches.GradCourse Teaches™

Ontology = set of axioms

Prof C Faculty Prof C —Fellow JTeaches.GradCourse C Prof
- role inclusions

TaughtBy C Teaches™ HeadOf C MemberOf

Note: allowed constructors and axioms depends on chosen DL
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QUERY LANGUAGES

Instance queries (1Qs): find instances of a given concept or role

Faculty(x) Teaches(x, )

12/32



QUERY LANGUAGES

Instance queries (1Qs): find instances of a given concept or role

Faculty(x) Teaches(x, )

Conjunctive queries (CQs) ~ SP) queries in SQL, BGPs in SPARQL
conjunctions of atoms, some variables can be existentially quantified

Jy. Faculty(x) A Teaches(x, y)

(find all faculty members that teach something)

12/32



QUERY LANGUAGES

Instance queries (1Qs): find instances of a given concept or role

Faculty(x) Teaches(x, )

Conjunctive queries (CQs) ~ SP) queries in SQL, BGPs in SPARQL
conjunctions of atoms, some variables can be existentially quantified

Jy. Faculty(x) A Teaches(x, y)

(find all faculty members that teach something)

Unions of conjunctive queries (UCQs): disjunction of CQs
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ONTOLOGY-MEDIATED QUERY ANSWERING

Answering CQs in database setting

map into

dataset
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ONTOLOGY-MEDIATED QUERY ANSWERING

Answering CQs in database setting

map into
T " )
query FT .. phism dataset
query Fe—T—ss homomorphism completion(s)
Y /‘S of dataset
. apply ontology axioms,
map into f o (apply 9y )
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EXAMPLE: OMQA WITH DL-LITE ONTOLOGIES

Ontology, expressed in DL-Lite: (lightweight DL designed for OMQA)
~ OWL 2 QL
Prof C Faculty Fellow C Faculty Prof C —Fellow

Prof C dTeaches dTeachesC Faculty dTeaches™ C Course

Dataset:

D; = {Prof(anna), Fellow(tom), Teaches(tom, cs101)}

Query: @gi(x) = Jy.Faculty(x) A Teaches(x, )
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EXAMPLE: OMQA WITH DL-LITE ONTOLOGIES

Ontology, expressed in DL-Lite: (lightweight DL designed for OMQA)
~ OWL 2 QL
Prof C Faculty Fellow C Faculty Prof C —Fellow

Prof C dTeaches dTeachesC Faculty dTeaches™ C Course

Dataset:

D; = {Prof(anna), Fellow(tom), Teaches(tom, cs101)}

Query: @gi(x) = Jy.Faculty(x) A Teaches(x, )

Get the following answers:
anna Prof(anna) + Prof C Faculty + Prof C 3Teaches

tom Fellow(tom) + Fellow C Faculty + Teaches(tom, cs107)
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QUERY REWRITING:
LIMITS AND POSSIBILITIES




FIRST-ORDER QUERY REWRITING

Idea: reduce OMQA to database query evaluation

- rewriting step: ontology O + query g ~ first-order (FO) query g’
FO queries ~ SQL queries

- evaluation step: evaluate query g’ over dataset

Advantage: harness efficiency of relational database (DB) systems
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FIRST-ORDER QUERY REWRITING

Idea: reduce OMQA to database query evaluation

- rewriting step: ontology O + query g ~ first-order (FO) query g’
FO queries ~ SQL queries

- evaluation step: evaluate query g’ over dataset
Advantage: harness efficiency of relational database (DB) systems

of gw.rt. O: such that

evaluating g’ over D (viewed as DB) gives correct result
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EXAMPLE: QUERY REWRITING

Same ontology, data, and query as earlier:

Prof C Faculty Fellow C Faculty Prof C —Fellow
Prof C dTeaches dTeachesC Faculty dTeaches™ C Course

D, = {Prof(anna), Fellow(tom), Teaches(tom, cs101) }

g1(x) = Jy.Faculty(x) A Teaches(x,y)
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EXAMPLE: QUERY REWRITING

Same ontology, data, and query as earlier:

Prof C Faculty Fellow C Faculty Prof C —Fellow
Prof C dTeaches dTeachesC Faculty dTeaches™ C Course

D, = {Prof(anna), Fellow(tom), Teaches(tom, cs101) }

g1(x) = Jy.Faculty(x) A Teaches(x,y)

FO-rewriting of g;(x) w.rt. O: (disjuncts = different ways to satisfy g1)

(Faculty(x) A Jy.Teaches(x,y)) Vv (Fellow(x) A Jy.Teaches(x,y)) Vv Prof(x)

Evaluating the rewriting over D, yields:

anna (matches 3rd disjunct) tom (matches 2nd disjunct)
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QUERY REWRITING IN DL-LITE

For DL-Lite ontologies, we know FO-rewritings exist for all CQs.

Lots of for DL-Lite
in the form of (like in our example)
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Lots of for DL-Lite
in the form of (like in our example)

Experiments showed that such rewritings can be huge!
- can be difficult / impossible to generate and evaluate

Easy to show smallest UCQ-rewriting may be exponentially large:

Query: AJ(X)A...AAN(x) Ontology: ATCA? (i=1,...,n)
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QUERY REWRITING IN DL-LITE

For DL-Lite ontologies, we know FO-rewritings exist for all CQs.

Lots of for DL-Lite
in the form of (like in our example)

Experiments showed that such rewritings can be huge!
- can be difficult / impossible to generate and evaluate

Easy to show smallest UCQ-rewriting may be exponentially large:

Query: AJ(X)A...AAN(x) Ontology: ATCA? (i=1,...,n)
ReWriting: V(iq,..~7in)€{071} AI1W (X) A A!l1 (X) AR /\AT (X)

But equivalent to polysize query AL;(A%(x) v Al(x)) (DNF vs CNF)
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SIZE OF REWRITINGS IN DL-LITE

Different shapes of rewritings:

- positive existential (PE) queries can mix V and A
- non-recursive datalog (NDL) queries allows structure sharing
- first-order (FO) queries can also use =,V
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SIZE OF REWRITINGS IN DL-LITE

Different shapes of rewritings:

- positive existential (PE) queries can mix V and A
- non-recursive datalog (NDL) queries allows structure sharing
- first-order (FO) queries can also use =,V

Question: Do-we-always-have-polysize (PE-/NDL/FO)rewriting? -

?

Natural restrictions:
- ontology: bound existential depth
- query: bound treewidth / number of leaves (tree-shaped queries)
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SUCCINCTNESS LANDSCAPE

Treewidth

Number of leaves

arb - [ ] [ no polysize PE or NDL ]
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2 -
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1 2 3 d arb
Depth of ontology

Bad news:

Good news:
polysize
NDL-rewritings
for many cases

Even better:
NDL-rewritings
with optimal
complexity

(NL or LOGCFL)

Key technique: link rewriting size to circuit complexity
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BEYOND DL-LITE: EXISTENCE OF FO-REWRITINGS

For most other ontology languages: FO-rewritings may not exist!

Take for example the lightweight DL ££ basis for OWL 2 EL

no FO-rewriting of A(x) w.rt. O = {JRA C A}
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BEYOND DL-LITE: EXISTENCE OF FO-REWRITINGS

For most other ontology languages: FO-rewritings may not exist!

Take for example the lightweight DL ££ basis for OWL 2 EL

no FO-rewriting of A(x) w.rt. O = {JRA C A}
Hope: FO-rewritings do exist for typical queries and ontologies

Question: how to ? (extend applicability)

Tackled in series of recent papers (incl: 1JCAI16 paper)
- decision procedures for variety of DLs, query languages
- practical methods for building rewritings promising first results
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INCONSISTENCY HANDLING IN OMQA




HANDLING DATA INCONSISTENCIES

In realistic settings, can expect some errors in the data
- data likely to be inconsistent with the ontology

Standard semantics: everything is implied - not informative!
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HANDLING DATA INCONSISTENCIES

In realistic settings, can expect some errors in the data
- data likely to be inconsistent with the ontology

Standard semantics: everything is implied - not informative!

Two approaches to inconsistency handling:
- resolve the inconsistencies
- preferable, but not always applicable!
- live with the inconsistencies -
to queries despite inconsistencies
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PLAUSIBLE ANSWERS: AR SEMANTICS

Repair: C-maximal subset of the data consistent with the ontology
- ways to achieve consistency, keeping as much information as possible
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PLAUSIBLE ANSWERS: AR SEMANTICS

Repair: C-maximal subset of the data consistent with the ontology
- ways to achieve consistency, keeping as much information as possible

Plausible answers: hold no matter which repair is chosen

AR semantics: query each repair separately, intersect results

b, | = = =
= =

q(@)? q(a)? q(a)? q(a)?
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EXAMPLE: AR SEMANTICS

Same ontology and query as before, add Prof(tom) to dataset:

Prof C Faculty Fellow C Faculty Prof C —Fellow
Prof C dTeaches dTeachesC Faculty dTeaches™ C Course

D, = {Prof(anna), Fellow(tom), Teaches(tom, cs101), Prof(tom)}

g1(x) = Jy.Faculty(x) A Teaches(x, y)
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EXAMPLE: AR SEMANTICS

Same ontology and query as before, add Prof(tom) to dataset:

Prof C Faculty Fellow C Faculty Prof C —Fellow
Prof C dTeaches dTeachesC Faculty dTeaches™ C Course

D, = {Prof(anna), Fellow(tom), Teaches(tom, cs101), Prof(tom)}

g1(x) = Jy.Faculty(x) A Teaches(x, y)

Two repairs of D, w.r.t. O:
R, = {Prof(anna), Fellow(tom), Teaches(tom, cs101)} drop Prof(tom)
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EXAMPLE: AR SEMANTICS

Same ontology and query as before, add Prof(tom) to dataset:

Prof C Faculty Fellow C Faculty Prof C —Fellow
Prof C dTeaches dTeachesC Faculty dTeaches™ C Course

D, = {Prof(anna), Fellow(tom), Teaches(tom, cs101), Prof(tom)}

g1(x) = Jy.Faculty(x) A Teaches(x, y)

Two repairs of D, w.r.t. O:
R, = {Prof(anna), Fellow(tom), Teaches(tom, cs101)} drop Prof(tom)
R, = {Prof(anna), Prof(tom), Teaches(tom, cs101)} drop Fellow(tom)

Under AR semantics:
anna and tom are both to g,

cs101 is
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PLAUSIBLE ANSWERS: AR SEMANTICS

Repair: C-maximal subset of the data consistent with the ontology
- ways to achieve consistency, keeping as much information as possible

Plausible answers: hold no matter which repair is chosen

AR semantics: query each repair separately, intersect results

» | = = =
= =

q(@)? q(a)? q(a)? q(a)?

Bad news: query answering under AR semantics is intractable
(coNP-hard in the size of the data)

- intractable (O={AC -B})
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TRACTABILITY THROUGH APPROXIMATION

Idea: approximate AR semantics from above and below
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TRACTABILITY THROUGH APPROXIMATION

Idea: approximate AR semantics from above and below

Brave semantics possible answers
- answer required to hold w.r.t. at least one repair

- query the (surest facts)

Relationship between the semantics:

IAR answers C AR answers C brave answers

Good news: these semantics are tractable for DL-Lite ontologies
27/32



BACK TO THE EXAMPLE

Prof C Faculty Fellow C Faculty Prof C —Fellow
Prof C JdTeaches dTeachesC Faculty dTeaches™ C Course

D, = {Prof(anna), Fellow(tom), Teaches(tom, cs101), Prof(tom)}

g1(x) = Jy.Faculty(x) A Teaches(x, y)
Repairs of D, w.rt. O:

R+ = {Prof(anna), Fellow(tom), Teaches(tom, cs101)}
R, = {Prof(anna), Prof(tom), Teaches(tom, cs101)}

Intersection of repairs: {Prof(anna), Teaches(tom, cs101)}
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BACK TO THE EXAMPLE

Prof C Faculty Fellow C Faculty Prof C —Fellow
Prof C JdTeaches dTeachesC Faculty dTeaches™ C Course

D, = {Prof(anna), Fellow(tom), Teaches(tom, cs101), Prof(tom)}
g1(x) = Jy.Faculty(x) A Teaches(x, y)
Repairs of D, w.rt. O:

R+ = {Prof(anna), Fellow(tom), Teaches(tom, cs101)}
R, = {Prof(anna), Prof(tom), Teaches(tom, cs101)}

Intersection of repairs: {Prof(anna), Teaches(tom, cs101)}

Brave answers: anna tom IAR answers: anna
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TOWARDS PRACTICAL SYSTEMS FOR INCONSISTENCY HANDLING

CQOAPri first system for AR query answering in DL-Lite

Implements hybrid approach:

compute IAR and brave answers polytime
- gives upper and lower bounds on AR answers

- use SAT solvers to identify remaining AR answers

- three categories of answers : possible, likely, (almost) sure

explaining query results

- why a possible answer? why not a sure answer?

query-driven repairing (I)CAI"6)
- exploit user feedback to improve data quality
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CONCLUSION & OUTLOOK




OMQA: HARNESSING KNOWLEDGE TO GET MORE FROM DATA

Promising approach, important applications

Significant recent advances, but
: more expressive ontology and query languages
: inconsistencies, uncertainty, vagueness, exceptions

: ontology construction, explanation, query formulation, ...

Connections to other disciplines: databases, Semantic Web, theory

Collaboration with other Al areas?
- natural language processing

- machine learning
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QUESTIONS ?

SEE PAPER FOR REFERENCES & POINTERS TO THE LITERATURE

BASED ON JOINT WORK WITH:

CAMILLE BOURGAUX, BALDER TEN CATE, FRANGOIS GOASDOUE, PETER HANSEN,
CARSTEN LUTZ, STANISLAV KIKOT, ROMAN KONTCHAKOV, MAGDALENA ORTIZ,
VLADIMIR PODOLSKII, RICCARDO ROSATI, MANTAS SIMKUS, FRANK WOLTER,
GUOHUI XIAO, MICHAEL ZAKHARYSCHEV
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