ONTOLOGY-MEDIATED QUERY ANSWERING

Harnessing Knowledge to Get More From Data

Meghyn Bienvenu (CNRS, University of Montpellier, Inria)

ONTOLOGY-MEDIATED QUERY ANSWERING (OMQA)

ONTOLOGY-MEDIATED QUERY ANSWERING (OMQA)

In computer science:

a formal specification of the knowledge of a particular domain, thereby making it amenable to machine processing

Such a specification consists of:

- \cdot terminology (or vocabulary) of the domain
- · semantic relationships between terms
 - · relations of inclusion, equivalence, disjointness, ...

To standardize the terminology of an application domain

- · meaning of terms is constrained, so fewer misunderstandings
- · by adopting a common vocabulary, easy to share information

To present an intuitive and unified view of data sources

- ontology can be used to enrich the data vocabulary, making it easier for users to formulate their queries
- \cdot especially useful when integrating multiple data sources

To support automated reasoning

- · uncover implicit connections between terms, errors in modelling
- exploit knowledge in the ontology during query answering, to get back a more complete set of answers to queries

General medical ontologies: SNOMED CT (\sim 300,000 terms!), GALEN Specialized ontologies: FMA (anatomy), NCI (cancer), ...

Querying & exchanging medical records (find patients for medical trials)

· myocardial infarction vs. MI vs. heart attack vs. 410.0

Supports tools for annotating and visualizing patient data (scans, x-rays)

Hundreds of ontologies at BioPortal (http://bioportal.bioontology.org/): Gene Ontology (GO), Cell Ontology, Pathway Ontology, Plant Anatomy, ...

Help scientists share, query, & visualize experimental data

APPLICATIONS OF OMQA: ENTREPRISE INFORMATION SYSTEMS

Companies and organizations have lots of data

need easy and flexible access to support decision-making

Example industrial projects:

- · Public debt data: Sapienza Univ. & Italian Department of Treasury
- · Energy sector: Optique EU project (several univ, StatOil, Siemens)

Description logics (DLs):

- · popular means for specifying ontologies
- \cdot basis of the web ontology language OWL (W3C standard)

Formally: decidable fragments of first-order logic

- $\cdot\,$ inherit well-defined semantics
- \cdot succinct, variable-free syntax

Description logics (DLs):

- · popular means for specifying ontologies
- \cdot basis of the web ontology language OWL (W3C standard)

Formally: decidable fragments of first-order logic

- $\cdot\,$ inherit well-defined semantics
- \cdot succinct, variable-free syntax

Computational properties well understood (decidability, complexity)

Many implemented reasoners and tools available for use

Introduction to DLs & OMQA

Query Rewriting: Limits and Possibilities

Inconsistency Handling in OMQA

INTRODUCTION TO DLS & OMQA

Building blocks:

- concept names (unary predicates, classes)
- · role names (binary predicates, properties)

Faculty □ ¬Prof

∃Teaches.GradCourse

Prof Fellow Course Teaches HeadOf

Teaches⁻

Building blocks:

- **concept names** (unary predicates, classes)
- · role names (binary predicates, properties)

Constructors to build complex descriptions $\Box, \Box, \neg, \forall, \exists, ...$

Faculty □ ¬Prof ∃Tead

∃Teaches.GradCourse

Teaches[—]

Ontology = set of axioms

concept inclusions

 Prof ⊑ Faculty
 Prof ⊑ ¬Fellow
 ∃Teaches.GradCourse ⊑ Prof

 · role inclusions
 TaughtBy ⊑ Teaches[−]
 HeadOf ⊑ MemberOf

Note: allowed constructors and axioms depends on chosen DL

Instance queries (IQs): find instances of a given concept or role

Instance queries (IQs): find instances of a given concept or role

Faculty(x) Teaches(x, y)

Conjunctive queries (CQs) ~ SPJ queries in SQL, BGPs in SPARQL conjunctions of atoms, some variables can be existentially quantified

 $\exists y. Faculty(x) \land Teaches(x, y)$

(find all faculty members that teach something)

Instance queries (IQs): find instances of a given concept or role

Faculty(x) Teaches(x, y)

Conjunctive queries (CQs) ~ SPJ queries in SQL, BGPs in SPARQL conjunctions of atoms, some variables can be existentially quantified

 $\exists y. Faculty(x) \land Teaches(x, y)$

(find all faculty members that teach something)

Unions of conjunctive queries (UCQs): disjunction of CQs

ONTOLOGY-MEDIATED QUERY ANSWERING

Answering CQs in database setting

ONTOLOGY-MEDIATED QUERY ANSWERING

Answering CQs in database setting

Answering CQs in the presence of an ontology

Ontology, expressed in DL-Lite: (lightweight DL designed for OMQA) $$\sim$ OWL 2 QL$$

Prof ⊑ FacultyFellow ⊑ FacultyProf ⊑ ¬FellowProf ⊑ ∃Teaches∃Teaches ⊑ Faculty∃Teaches ⊑ Course

Dataset:

 $\mathcal{D}_1 = \{ \mathsf{Prof}(\mathsf{anna}), \mathsf{Fellow}(\mathsf{tom}), \mathsf{Teaches}(\mathsf{tom}, \mathsf{cs101}) \}$

Query: $q_1(x) = \exists y. Faculty(x) \land Teaches(x, y)$

Ontology, expressed in DL-Lite: (lightweight DL designed for OMQA) $$\sim$ OWL 2 QL$$

Prof \sqsubseteq FacultyFellow \sqsubseteq FacultyProf \sqsubseteq ¬FellowProf \sqsubseteq 3Teaches \sqsubseteq Faculty3Teaches \neg Course

Dataset:

 $\mathcal{D}_1 = \{ \mathsf{Prof}(\mathsf{anna}), \mathsf{Fellow}(\mathsf{tom}), \mathsf{Teaches}(\mathsf{tom}, \mathsf{cs101}) \}$

Query: $q_1(x) = \exists y. Faculty(x) \land Teaches(x, y)$

Get the following answers:

anna Prof(anna) + Prof ⊑ Faculty + Prof ⊑ ∃Teaches
 tom Fellow(tom) + Fellow ⊑ Faculty + Teaches(tom, cs101)

QUERY REWRITING: LIMITS AND POSSIBILITIES

Idea: reduce OMQA to database query evaluation

· rewriting step: ontology \mathcal{O} + query $q \rightsquigarrow$ first-order (FO) query q'

FO queries \sim SQL queries

· evaluation step: evaluate query q' over dataset

Advantage: harness efficiency of relational database (DB) systems

Idea: reduce OMQA to database query evaluation

· rewriting step: ontology \mathcal{O} + query $q \rightsquigarrow$ first-order (FO) query q'

FO queries \sim SQL queries

· evaluation step: evaluate query q' over dataset

Advantage: harness efficiency of relational database (DB) systems

FO-rewriting of *q* w.r.t. \mathcal{O} : **FO-query** *q'* such that **for every dataset** \mathcal{D} :

evaluating q' over \mathcal{D} (viewed as DB) gives correct result

Same ontology, data, and query as earlier:

Prof \sqsubseteq FacultyFellow \sqsubseteq FacultyProf \sqsubseteq ¬FellowProf \sqsubseteq 3Teaches \sqsubseteq Faculty3Teaches \neg Course

 $\mathcal{D}_1 = \{ \mathsf{Prof}(\mathsf{anna}), \mathsf{Fellow}(\mathsf{tom}), \mathsf{Teaches}(\mathsf{tom}, \mathsf{cs101}) \}$

 $q_1(x) = \exists y. Faculty(x) \land Teaches(x, y)$

Same ontology, data, and query as earlier:

Prof \sqsubseteq FacultyFellow \sqsubseteq FacultyProf \sqsubseteq ¬FellowProf \sqsubseteq 3Teaches \sqsubseteq Faculty3Teaches \neg Course

 $\mathcal{D}_1 = \{ \mathsf{Prof}(\mathsf{anna}), \mathsf{Fellow}(\mathsf{tom}), \mathsf{Teaches}(\mathsf{tom}, \mathsf{cs101}) \}$

 $q_1(x) = \exists y. Faculty(x) \land Teaches(x, y)$

FO-rewriting of $q_1(x)$ w.r.t. \mathcal{O} : (disjuncts = different ways to satisfy q_1) (Faculty(x) $\land \exists y$.Teaches(x, y)) \lor (Fellow(x) $\land \exists y$.Teaches(x, y)) \lor Prof(x) Same ontology, data, and guery as earlier:

Prof \Box Faculty Fellow \Box Faculty Prof \Box \neg Fellow $Prof \Box \exists Teaches \exists Teaches \Box Faculty \exists Teaches^{-} \Box Course$

 $\mathcal{D}_1 = \{ \mathsf{Prof}(\mathsf{anna}), \mathsf{Fellow}(\mathsf{tom}), \mathsf{Teaches}(\mathsf{tom}, \mathsf{cs101}) \}$

 $q_1(x) = \exists y. Faculty(x) \land Teaches(x, y)$

FO-rewriting of $q_1(x)$ w.r.t. \mathcal{O} : (disjuncts = different ways to satisfy q_1) $(Faculty(x) \land \exists y.Teaches(x, y)) \lor (Fellow(x) \land \exists y.Teaches(x, y)) \lor Prof(x)$

Evaluating the rewriting over \mathcal{D}_1 yields:

anna (matches 3rd disjunct) tom (matches 2nd disjunct)

Lots of **implemented rewriting algorithms** for DL-Lite

• many produce rewritings in the form of UCQs (like in our example)

Lots of implemented rewriting algorithms for DL-Lite

• many produce rewritings in the form of UCQs (like in our example)

Experiments showed that such rewritings can be huge!

 $\cdot\,$ can be difficult / impossible to generate and evaluate

Lots of implemented rewriting algorithms for DL-Lite

• many produce rewritings in the form of UCQs (like in our example)

Experiments showed that such rewritings can be huge!

 \cdot can be difficult / impossible to generate and evaluate

Easy to show smallest UCQ-rewriting may be exponentially large:

Lots of implemented rewriting algorithms for DL-Lite

• many produce rewritings in the form of UCQs (like in our example)

Experiments showed that such rewritings can be huge!

· can be difficult / impossible to generate and evaluate

Easy to show smallest UCQ-rewriting may be exponentially large: Query: $A_1^0(x) \land \ldots \land A_n^0(x)$ Ontology: $A_i^1 \sqsubseteq A_i^0$ $(i = 1, \ldots, n)$ Rewriting: $\bigvee_{(i_1, \ldots, i_n) \in \{0, 1\}} A_1^{i_1}(x) \land A_1^{i_1}(x) \land \ldots \land A_1^{i_1}(x)$

Lots of implemented rewriting algorithms for DL-Lite

• many produce rewritings in the form of UCQs (like in our example)

Experiments showed that such rewritings can be huge!

· can be difficult / impossible to generate and evaluate

Easy to show smallest UCQ-rewriting may be exponentially large: Query: $A_1^0(x) \land \ldots \land A_n^0(x)$ Ontology: $A_i^1 \sqsubseteq A_i^0$ $(i = 1, \ldots, n)$ Rewriting: $\bigvee_{(i_1, \ldots, i_n) \in \{0, 1\}} A_1^{i_1}(x) \land A_1^{i_1}(x) \land \ldots \land A_1^{i_1}(x)$

But equivalent to polysize query $\bigwedge_{i=1}^{n} (A_{i}^{0}(x) \lor A_{i}^{1}(x))$ (DNF vs CNF)

Different shapes of rewritings:

- · UCQs
- · positive existential (PE) queries
- non-recursive datalog (NDL) queries
- · first-order (FO) queries

disjunction of conjunctions can mix \lor and \land allows structure sharing can also use \neg, \forall Different shapes of rewritings:

- · UCQs
- · positive existential (PE) queries
- non-recursive datalog (NDL) queries
- first-order (FO) queries

sjunction of conjunctions can mix ∨ and ∧ allows structure sharing can also use ¬, ∀

Question: Do we always have polysize (PE / NDL / FO) rewriting?

Different shapes of rewritings:

- · UCQs
- · positive existential (PE) queries
- non-recursive datalog (NDL) queries
- · first-order (FO) queries

disjunction of conjunctions can mix \lor and \land allows structure sharing can also use \neg , \forall

Question: Do we always have polysize (PE / NDL / FO) rewriting? no When are polysize (PE / NDL / FO) rewritings possible?

Natural restrictions:

- · ontology: bound existential depth
- query: bound treewidth / number of leaves (tree-shaped queries)

SUCCINCTNESS LANDSCAPE

Key technique: link rewriting size to circuit complexity

For most other ontology languages: FO-rewritings may not exist!

Take for example the lightweight DL *EL* basis for OWL 2 EL

no FO-rewriting of A(x) w.r.t. $\mathcal{O} = \{\exists R.A \sqsubseteq A\}$

For most other ontology languages: FO-rewritings may not exist!

Take for example the **lightweight DL** \mathcal{EL} basis for OWL 2 EL no FO-rewriting of A(x) w.r.t. $\mathcal{O} = \{\exists R.A \sqsubseteq A\}$

Hope: FO-rewritings do exist for typical queries and ontologies

Question: how to identify these good cases?(extend applicability)• does query q have an FO-rewriting w.r.t. ontology O?

For most other ontology languages: FO-rewritings may not exist!

Take for example the **lightweight DL** \mathcal{EL} basis for OWL 2 EL no FO-rewriting of A(x) w.r.t. $\mathcal{O} = \{\exists R.A \sqsubseteq A\}$

Hope: FO-rewritings do exist for typical queries and ontologies

Question: how to **identify these good cases**? (extend applicability) • does query *q* have an FO-rewriting w.r.t. ontology *O*?

Tackled in series of recent papers

(incl: IJCAI'16 paper)

- $\cdot\,$ decision procedures for variety of DLs, query languages
- · practical methods for building rewritings promising first results

INCONSISTENCY HANDLING IN OMQA

In realistic settings, can expect some errors in the data

 \cdot data likely to be **inconsistent** with the ontology

Standard semantics: everything is implied - not informative!

In realistic settings, can expect some errors in the data

 \cdot data likely to be **inconsistent** with the ontology

Standard semantics: everything is implied - not informative!

Two approaches to inconsistency handling:

- resolve the inconsistencies
 - · preferable, but not always applicable!
- $\cdot\,$ live with the inconsistencies adopt alternative semantics
 - meaningful answers to queries despite inconsistencies

Repair: \subseteq -maximal subset of the data consistent with the ontology

 \cdot ways to achieve consistency, keeping as much information as possible

Repair: ⊆-maximal subset of the data consistent with the ontology

 \cdot ways to achieve consistency, keeping as much information as possible

Plausible answers: hold no matter which repair is chosen

Repair: ⊆-maximal subset of the data consistent with the ontology

 \cdot ways to achieve consistency, keeping as much information as possible

Plausible answers: hold no matter which repair is chosen

AR semantics: query each repair separately, intersect results

Same ontology and query as before, add Prof(tom) to dataset:

Prof⊑ Faculty	Fellow ⊑ Faculty	Prof⊑ ¬Fellow
Prof ⊑ ∃Teaches	$\exists Teaches \sqsubseteq Faculty$	$\exists Teaches^- \sqsubseteq Course$

 $D_2 = \{ Prof(anna), Fellow(tom), Teaches(tom, cs101), Prof(tom) \}$

 $q_1(x) = \exists y. Faculty(x) \land Teaches(x, y)$

Same ontology and query as before, add Prof(tom) to dataset:

Prof⊑ Faculty	Fellow ⊑ Faculty	Prof⊑ ¬Fellow
Prof⊑∃Teaches	$\exists Teaches \sqsubseteq Faculty$	∃Teaches [–] ⊑ Course

 $\mathcal{D}_2 = \{ \mathsf{Prof}(\mathsf{anna}), \mathsf{Fellow}(\mathsf{tom}), \mathsf{Teaches}(\mathsf{tom}, \mathsf{cs101}), \mathsf{Prof}(\mathsf{tom}) \}$

 $q_1(x) = \exists y. Faculty(x) \land Teaches(x, y)$

Two repairs of \mathcal{D}_2 w.r.t. \mathcal{O} :

 $\mathcal{R}_1 = \{ Prof(anna), Fellow(tom), Teaches(tom, cs101) \} \}$

drop Prof(tom)

 $\mathcal{R}_2 = \{ Prof(anna), Prof(tom), Teaches(tom, cs101) \}$

drop Fellow(tom)

Same ontology and query as before, **add** Prof(tom) to dataset:

Prof \sqsubseteq FacultyFellow \sqsubseteq FacultyProf \sqsubseteq ¬FellowProf \sqsubseteq 3Teaches \sqsubseteq Faculty3Teaches \neg Course

 $\mathcal{D}_2 = \{ \mathsf{Prof}(\mathsf{anna}), \mathsf{Fellow}(\mathsf{tom}), \mathsf{Teaches}(\mathsf{tom}, \mathsf{cs101}), \mathsf{Prof}(\mathsf{tom}) \}$

 $q_1(x) = \exists y. Faculty(x) \land Teaches(x, y)$

Two repairs of \mathcal{D}_2 w.r.t. \mathcal{O} :

 $\mathcal{R}_1 = \{ Prof(anna), Fellow(tom), Teaches(tom, cs101) \} \}$

drop Prof(tom)

 $\mathcal{R}_2 = \{ Prof(anna), Prof(tom), Teaches(tom, cs101) \}$

drop Fellow(tom)

Under AR semantics:

- · anna and tom are both answers to q_1
- · cs101 is not an answer

Repair: ⊆-maximal subset of the data consistent with the ontology

 \cdot ways to achieve consistency, keeping as much information as possible

Plausible answers: hold no matter which repair is chosen

AR semantics: query each repair separately, intersect results

Bad news: query answering under AR semantics is intractable (coNP-hard in the size of the data)

Worse: intractable even in very restricted settings ($\mathcal{O} = \{A \sqsubseteq \neg B\}$)

Brave semantics

possible answers

· answer required to hold w.r.t. at least one repair

Brave semantics

possible answers

· answer required to hold w.r.t. at least one repair

IAR semantics

surest answers

• query the intersection of all repairs (surest facts)

Brave semantics

· answer required to hold w.r.t. at least one repair

IAR semantics

surest answers

possible answers

· query the intersection of all repairs (surest facts)

Relationship between the semantics:

IAR answers \subseteq AR answers \subseteq brave answers

Brave semantics

· answer required to hold w.r.t. at least one repair

IAR semantics

· query the intersection of all repairs (surest facts)

Relationship between the semantics:

IAR answers \subseteq AR answers \subseteq brave answers

Good news: these semantics are tractable for DL-Lite ontologies

possible answers

surest answers

Prof \sqsubseteq FacultyFellow \sqsubseteq FacultyProf \sqsubseteq ¬FellowProf \sqsubseteq 3Teaches \sqsubseteq Faculty3Teaches \neg Course

 $\mathcal{D}_2 = \{ \mathsf{Prof}(\mathsf{anna}), \mathsf{Fellow}(\mathsf{tom}), \mathsf{Teaches}(\mathsf{tom}, \mathsf{cs101}), \mathsf{Prof}(\mathsf{tom}) \}$

 $q_1(x) = \exists y. Faculty(x) \land Teaches(x, y)$

Repairs of \mathcal{D}_2 w.r.t. \mathcal{O} :

 $\mathcal{R}_1 = \{ Prof(anna), Fellow(tom), Teaches(tom, cs101) \} \}$

 $\mathcal{R}_2 = \{ Prof(anna), Prof(tom), Teaches(tom, cs101) \}$

Intersection of repairs: {Prof(anna), Teaches(tom, cs101)}

Prof \sqsubseteq FacultyFellow \sqsubseteq FacultyProf \sqsubseteq ¬FellowProf \sqsubseteq 3Teaches \sqsubseteq Faculty3Teaches \neg Course

 $\mathcal{D}_2 = \{ \mathsf{Prof}(\mathsf{anna}), \mathsf{Fellow}(\mathsf{tom}), \mathsf{Teaches}(\mathsf{tom}, \mathsf{cs101}), \mathsf{Prof}(\mathsf{tom}) \}$

 $q_1(x) = \exists y. Faculty(x) \land Teaches(x, y)$

Repairs of \mathcal{D}_2 w.r.t. \mathcal{O} :

 $\mathcal{R}_1 = \{ Prof(anna), Fellow(tom), Teaches(tom, cs101) \} \}$

 $\mathcal{R}_2 = \{ Prof(anna), Prof(tom), Teaches(tom, cs101) \}$

Intersection of repairs: {Prof(anna), Teaches(tom, cs101)}

Brave answers: anna tom

Prof \sqsubseteq FacultyFellow \sqsubseteq FacultyProf \sqsubseteq ¬FellowProf \sqsubseteq 3Teaches \sqsubseteq Faculty3Teaches \neg Course

 $\mathcal{D}_2 = \{ \mathsf{Prof}(\mathsf{anna}), \mathsf{Fellow}(\mathsf{tom}), \mathsf{Teaches}(\mathsf{tom}, \mathsf{cs101}), \mathsf{Prof}(\mathsf{tom}) \}$

 $q_1(x) = \exists y. Faculty(x) \land Teaches(x, y)$

Repairs of \mathcal{D}_2 w.r.t. \mathcal{O} :

 $\mathcal{R}_1 = \{ Prof(anna), Fellow(tom), Teaches(tom, cs101) \} \}$

 $\mathcal{R}_2 = \{ Prof(anna), Prof(tom), Teaches(tom, cs101) \}$

Intersection of repairs: {Prof(anna), Teaches(tom, cs101)}

Brave answers: anna tom IAR answers: anna

CQAPri first system for AR query answering in DL-Lite

Implements hybrid approach:

- compute IAR and brave answers
 - · gives upper and lower **bounds on AR answers**
- · use SAT solvers to identify remaining AR answers
- three categories of answers : possible, likely, (almost) sure

Interaction with user

- explaining query results
 - why a possible answer? why not a sure answer?
- · query-driven repairing
 - · exploit user feedback to improve data quality

(IJCAI'16)

polytime

CONCLUSION & OUTLOOK

Promising approach, important applications

Significant recent advances, but still lots left to do!

- efficiency: more expressive ontology and query languages
- · robustness: inconsistencies, uncertainty, vagueness, exceptions
- usability: ontology construction, explanation, query formulation, ...

Connections to other disciplines: databases, Semantic Web, theory

Collaboration with other AI areas?

- natural language processing
- \cdot machine learning

QUESTIONS ?

SEE PAPER FOR REFERENCES & POINTERS TO THE LITERATURE

BASED ON JOINT WORK WITH:

Camille Bourgaux, Balder ten Cate, François Goasdoué, Peter Hansen, Carsten Lutz, Stanislav Kikot, Roman Kontchakov, Magdalena Ortiz, Vladimir Podolskii, Riccardo Rosati, Mantas Šimkus, Frank Wolter, Guohui Xiao, Michael Zakharyschev