
query rewriting:
Limits and Possibilities
Meghyn Bienvenu (CNRS, University of Montpellier, Inria)

ontology-mediated query answering (omqa)

data

incomplete
database

(ground facts)

ontology
(logical theory)

???

user query
domain knowledge

Why use an ontology?
∙ extend the vocabulary (making queries easier to formulate)
∙ provide a unified view of multiple data sources
∙ obtain more answers to queries (by exploiting domain knowledge)

2/50

ontology-mediated query answering (omqa)

data ???

patient data
“Melanie has listeriosis”
“Paul has Lyme disease”

medical knowledge
“Listeriosis & Lyme disease

are bacterial infections”

user query
“Find all patients with
bacterial infections”

expected answers: Melanie, Paul

Why use an ontology?
∙ extend the vocabulary (making queries easier to formulate)
∙ provide a unified view of multiple data sources
∙ obtain more answers to queries (by exploiting domain knowledge)

2/50

ontology-mediated query answering (omqa)

data ???

patient data
“Melanie has listeriosis”
“Paul has Lyme disease”

medical knowledge
“Listeriosis & Lyme disease

are bacterial infections”

user query
“Find all patients with
bacterial infections”

expected answers: Melanie, Paul

Why use an ontology?
∙ extend the vocabulary (making queries easier to formulate)
∙ provide a unified view of multiple data sources
∙ obtain more answers to queries (by exploiting domain knowledge)

2/50

setting we consider

Ontologies formulated using description logics (DLs):

∙ family of decidable fragments of first-order logic
∙ basis for OWL web ontology language (W3C)
∙ range from fairly simple to highly expressive
∙ complexity of query answering well understood

In this talk, mainly focus on three particular DLs:

∙ DL-LiteR, EL, ALC

Consider two types of queries:

∙ conjunctive queries (CQs) - aka select-project-join queries
∙ instance queries (IQs)

3/50

brief intro to dls & omqa

description logic alc

In ALC, we have the following concept constructors:
∙ top concept ⊤ (acts as a “wildcard”, denotes set of all things)
∙ bottom concept ⊥ (denotes empty set)
∙ conjunction (⊓), disjunction (⊔), negation (¬)
∙ restricted forms of existential and universal quantification (∃, ∀)

An ALC TBox (ontology) is a set of concept inclusions C ⊑ D, where

C,D := ⊤ | ⊥ | A | ¬C | C ⊓ D | C ⊔ D | ∃r.C | ∀r.C

where A is an atomic concept, r an atomic role.

Intuitively, C ⊑ D means “everything that is a C is also a D”

5/50

description logic alc

In ALC, we have the following concept constructors:
∙ top concept ⊤ (acts as a “wildcard”, denotes set of all things)
∙ bottom concept ⊥ (denotes empty set)
∙ conjunction (⊓), disjunction (⊔), negation (¬)
∙ restricted forms of existential and universal quantification (∃, ∀)

An ALC TBox (ontology) is a set of concept inclusions C ⊑ D, where

C,D := ⊤ | ⊥ | A | ¬C | C ⊓ D | C ⊔ D | ∃r.C | ∀r.C

where A is an atomic concept, r an atomic role.

Intuitively, C ⊑ D means “everything that is a C is also a D”

5/50

examples of tbox axioms

Professors and lecturers are disjoint classes of faculty

Prof ⊑ Faculty Lect ⊑ Faculty Prof ⊑ ¬Lect

Every grad student is supervised by a professor

GradSt ⊑ ∃supervisedBy.Prof

Grad students are students, and they only take graduate courses

GradSt ⊑ Student ⊓ ∀takesC.GradC

FO translation: ∀x (GradSt(x) → (Student(x)∧ ∀y takesC(x, y) → GradC(y))

6/50

description logic el

In EL, complex concepts are constructed as follows:

C,D := ⊤ | A | C ⊓ D | ∃r.C

EL TBox = set of inclusions C ⊑ D, with C,D as above

Advantage w.r.t. ALC: reasoning much simpler (PTIME vs. EXPTIME)

Despite lower expressivity, EL very useful in practice
∙ used for many biomedical ontologies, including SNOMED
∙ importance witnessed by OWL 2 EL profile

Also consider ELI = EL + inverse roles (r−)

7/50

description logic el

In EL, complex concepts are constructed as follows:

C,D := ⊤ | A | C ⊓ D | ∃r.C

EL TBox = set of inclusions C ⊑ D, with C,D as above

Advantage w.r.t. ALC: reasoning much simpler (PTIME vs. EXPTIME)

Despite lower expressivity, EL very useful in practice
∙ used for many biomedical ontologies, including SNOMED
∙ importance witnessed by OWL 2 EL profile

Also consider ELI = EL + inverse roles (r−)

7/50

description logic dl-lite

We present the dialect DL-LiteR (which underlies OWL 2 QL profile).

DL-LiteR TBoxes contain

∙ concept inclusions B1 ⊑ B2, B1 ⊑ ¬B2
∙ role inclusions S1 ⊑ S2, S1 ⊑ ¬S2

where B := A | ∃S S := r | r−

Example TBox inclusions:
∙ Every professor teaches something: Prof ⊑ ∃teaches
∙ Everything that is taught is a course: ∃teaches− ⊑ Course
∙ Head of dept implies member of dept: headOf ⊑ memberOf

8/50

description logic dl-lite

We present the dialect DL-LiteR (which underlies OWL 2 QL profile).

DL-LiteR TBoxes contain

∙ concept inclusions B1 ⊑ B2, B1 ⊑ ¬B2
∙ role inclusions S1 ⊑ S2, S1 ⊑ ¬S2

where B := A | ∃S S := r | r−

Example TBox inclusions:
∙ Every professor teaches something: Prof ⊑ ∃teaches
∙ Everything that is taught is a course: ∃teaches− ⊑ Course
∙ Head of dept implies member of dept: headOf ⊑ memberOf

8/50

query languages

Instance queries (IQs): find instances of a given concept or role

Faculty(x) teaches(x, y)

Conjunctive queries (CQs) ∼ SPJ queries in SQL, BGPs in SPARQL
conjunctions of atoms, some variables can be existentially quantified

∃y. Faculty(x) ∧ teaches(x, y)
(find all faculty members that teach something)

9/50

query languages

Instance queries (IQs): find instances of a given concept or role

Faculty(x) teaches(x, y)

Conjunctive queries (CQs) ∼ SPJ queries in SQL, BGPs in SPARQL
conjunctions of atoms, some variables can be existentially quantified

∃y. Faculty(x) ∧ teaches(x, y)
(find all faculty members that teach something)

9/50

ontology-mediated query answering

Answering CQs in database setting

TF T
F

T

query

P

D

D
dataset

map into

homomorphism a
x

TF T
F

T

query

P

D

D
completion(s)

map into

homomorphismx of dataset

TF

S

A
R

U

U

y

y

c

(apply ontology axioms)

Answering CQs in the presence of a TBox (ontology)

TF T
F

T

query

P

D

D
ABox

map into

homomorphism a
x

TF T
F

T

query

P

D

D
completion(s)

map into

homomorphismx of ABox

TF

S

A
R

U

U

y

y

c

(apply TBox axioms)

Certain answers: tuples a⃗ of individuals such that T ,A |= q(a⃗)

Ontology-mediated query (OMQ): pair (T ,q) with T a TBox, q a query

10/50

ontology-mediated query answering

Answering CQs in database setting

TF T
F

T

query

P

D

D
dataset

map into

homomorphism a
x

TF T
F

T

query

P

D

D
completion(s)

map into

homomorphismx of dataset

TF

S

A
R

U

U

y

y

c

(apply ontology axioms)

Answering CQs in the presence of a TBox (ontology)

TF T
F

T

query

P

D

D
ABox

map into

homomorphism a
x

TF T
F

T

query

P

D

D
completion(s)

map into

homomorphismx of ABox

TF

S

A
R

U

U

y

y

c

(apply TBox axioms)

Certain answers: tuples a⃗ of individuals such that T ,A |= q(a⃗)

Ontology-mediated query (OMQ): pair (T ,q) with T a TBox, q a query

10/50

ontology-mediated query answering

Answering CQs in database setting

TF T
F

T

query

P

D

D
dataset

map into

homomorphism a
x

TF T
F

T

query

P

D

D
completion(s)

map into

homomorphismx of dataset

TF

S

A
R

U

U

y

y

c

(apply ontology axioms)

Answering CQs in the presence of a TBox (ontology)

TF T
F

T

query

P

D

D
ABox

map into

homomorphism a
x

TF T
F

T

query

P

D

D
completion(s)

map into

homomorphismx of ABox

TF

S

A
R

U

U

y

y

c

(apply TBox axioms)

Certain answers: tuples a⃗ of individuals such that T ,A |= q(a⃗)

Ontology-mediated query (OMQ): pair (T ,q) with T a TBox, q a query

10/50

ontology-mediated query answering

Answering CQs in database setting

TF T
F

T

query

P

D

D
dataset

map into

homomorphism a
x

TF T
F

T

query

P

D

D
completion(s)

map into

homomorphismx of dataset

TF

S

A
R

U

U

y

y

c

(apply ontology axioms)

Answering CQs in the presence of a TBox (ontology)

TF T
F

T

query

P

D

D
ABox

map into

homomorphism a
x

TF T
F

T

query

P

D

D
completion(s)

map into

homomorphismx of ABox

TF

S

A
R

U

U

y

y

c

(apply TBox axioms)

Certain answers: tuples a⃗ of individuals such that T ,A |= q(a⃗)

Ontology-mediated query (OMQ): pair (T ,q) with T a TBox, q a query

10/50

query rewriting

query rewriting

Idea: reduce OMQA to database query evaluation

∙ rewriting step: OMQ (T ,q)⇝ first-order (SQL) query q′

∙ evaluation step: evaluate query q′ using relational DB system

Advantage: harness efficiency of relational database systems

Key notion: first-order (FO) rewriting

∙ FO query q′ is an FO-rewriting of (T ,q) iff for every ABox A:

T ,A |= q(a⃗) ⇔ DBA |= q′(a⃗)

Informally: evaluating q′ over A (viewed as DB) gives correct result

Can also consider Datalog rewritings, defined analogously

12/50

query rewriting

Idea: reduce OMQA to database query evaluation

∙ rewriting step: OMQ (T ,q)⇝ first-order (SQL) query q′

∙ evaluation step: evaluate query q′ using relational DB system

Advantage: harness efficiency of relational database systems

Key notion: first-order (FO) rewriting

∙ FO query q′ is an FO-rewriting of (T ,q) iff for every ABox A:

T ,A |= q(a⃗) ⇔ DBA |= q′(a⃗)

Informally: evaluating q′ over A (viewed as DB) gives correct result

Can also consider Datalog rewritings, defined analogously

12/50

query rewriting

Idea: reduce OMQA to database query evaluation

∙ rewriting step: OMQ (T ,q)⇝ first-order (SQL) query q′

∙ evaluation step: evaluate query q′ using relational DB system

Advantage: harness efficiency of relational database systems

Key notion: first-order (FO) rewriting

∙ FO query q′ is an FO-rewriting of (T ,q) iff for every ABox A:

T ,A |= q(a⃗) ⇔ DBA |= q′(a⃗)

Informally: evaluating q′ over A (viewed as DB) gives correct result

Can also consider Datalog rewritings, defined analogously
12/50

query rewriting in dl-lite

Good news: every CQ and DL-LiteR ontology has FO-rewriting

Example:

TBox T = { ∃supervises ⊑ Prof supervises ⊑ involved 100S ⊑ IntroC}

Query q0 = Prof(x) ∧ involved(x, y) ∧ IntroC(y)

Get FO-rewriting by taking disjunction of q0 and following queries:

q1 = ∃z supervises(x, z) ∧ involved(x, y) ∧ IntroC(y)
q2 = supervises(x, y) ∧ IntroC(y)
q3 = Prof(x) ∧ involved(x, y) ∧ 100S(y)
q5 = ∃z supervises(x, z) ∧ involved(x, y) ∧ 100S(y)
q6 = supervises(x, y) ∧ 100S(y)

Note: existence of FO-rewritings⇒ very low data complexity (AC0)

13/50

query rewriting in dl-lite

Good news: every CQ and DL-LiteR ontology has FO-rewriting

Example:

TBox T = { ∃supervises ⊑ Prof supervises ⊑ involved 100S ⊑ IntroC}

Query q0 = Prof(x) ∧ involved(x, y) ∧ IntroC(y)

Get FO-rewriting by taking disjunction of q0 and following queries:

q1 = ∃z supervises(x, z) ∧ involved(x, y) ∧ IntroC(y)
q2 = supervises(x, y) ∧ IntroC(y)
q3 = Prof(x) ∧ involved(x, y) ∧ 100S(y)
q5 = ∃z supervises(x, z) ∧ involved(x, y) ∧ 100S(y)
q6 = supervises(x, y) ∧ 100S(y)

Note: existence of FO-rewritings⇒ very low data complexity (AC0)

13/50

query rewriting in dl-lite

Good news: every CQ and DL-LiteR ontology has FO-rewriting

Example:

TBox T = { ∃supervises ⊑ Prof supervises ⊑ involved 100S ⊑ IntroC}

Query q0 = Prof(x) ∧ involved(x, y) ∧ IntroC(y)

Get FO-rewriting by taking disjunction of q0 and following queries:

q1 = ∃z supervises(x, z) ∧ involved(x, y) ∧ IntroC(y)
q2 = supervises(x, y) ∧ IntroC(y)
q3 = Prof(x) ∧ involved(x, y) ∧ 100S(y)
q5 = ∃z supervises(x, z) ∧ involved(x, y) ∧ 100S(y)
q6 = supervises(x, y) ∧ 100S(y)

Note: existence of FO-rewritings⇒ very low data complexity (AC0)

13/50

query rewriting in dl-lite

Good news: every CQ and DL-LiteR ontology has FO-rewriting

Example:

TBox T = { ∃supervises ⊑ Prof supervises ⊑ involved 100S ⊑ IntroC}

Query q0 = Prof(x) ∧ involved(x, y) ∧ IntroC(y)

Get FO-rewriting by taking disjunction of q0 and following queries:

q1 = ∃z supervises(x, z) ∧ involved(x, y) ∧ IntroC(y)
q2 = supervises(x, y) ∧ IntroC(y)
q3 = Prof(x) ∧ involved(x, y) ∧ 100S(y)
q5 = ∃z supervises(x, z) ∧ involved(x, y) ∧ 100S(y)
q6 = supervises(x, y) ∧ 100S(y)

Note: existence of FO-rewritings⇒ very low data complexity (AC0)
13/50

what about el?

In EL, FO-rewritings need not exist:
∙ no FO-rewriting of A(x) w.r.t. {∃r.A ⊑ A}

Hardness

r r r a

Looks harmless? Cancelation is main source of complexity:

On these steps, one can simulate a Turing machine

, 9r.> v A

A(x) _ 9y r(x, y)

TBox: 9r.A v A Query: A(x)

FO-rewriting exists since 9r.> v A cancels non-locality:

finding cycles in TBox is trivial (pure syntax)

cycle cancelations can still occur after exponentially many steps

A

However, Datalog rewritings always exist:
∙ Datalog program Π: r(x, y) ∧ A(x)→ A(y) A(x)→ goal(x)
∙ T ,A |= A(a) iff can derive goal(a) from A using Π

Can pass on rewriting to Datalog engine

Datalog rewriting⇒ PTIME data complexity for CQ answering

Note: also get Datalog rewritings for many extensions of EL

14/50

what about el?

In EL, FO-rewritings need not exist:
∙ no FO-rewriting of A(x) w.r.t. {∃r.A ⊑ A}

Hardness

r r r a

Looks harmless? Cancelation is main source of complexity:

On these steps, one can simulate a Turing machine

, 9r.> v A

A(x) _ 9y r(x, y)

TBox: 9r.A v A Query: A(x)

FO-rewriting exists since 9r.> v A cancels non-locality:

finding cycles in TBox is trivial (pure syntax)

cycle cancelations can still occur after exponentially many steps

A

However, Datalog rewritings always exist:
∙ Datalog program Π: r(x, y) ∧ A(x)→ A(y) A(x)→ goal(x)
∙ T ,A |= A(a) iff can derive goal(a) from A using Π

Can pass on rewriting to Datalog engine

Datalog rewriting⇒ PTIME data complexity for CQ answering

Note: also get Datalog rewritings for many extensions of EL

14/50

what about el?

In EL, FO-rewritings need not exist:
∙ no FO-rewriting of A(x) w.r.t. {∃r.A ⊑ A}

Hardness

r r r a

Looks harmless? Cancelation is main source of complexity:

On these steps, one can simulate a Turing machine

, 9r.> v A

A(x) _ 9y r(x, y)

TBox: 9r.A v A Query: A(x)

FO-rewriting exists since 9r.> v A cancels non-locality:

finding cycles in TBox is trivial (pure syntax)

cycle cancelations can still occur after exponentially many steps

A

However, Datalog rewritings always exist:
∙ Datalog program Π: r(x, y) ∧ A(x)→ A(y) A(x)→ goal(x)
∙ T ,A |= A(a) iff can derive goal(a) from A using Π

Can pass on rewriting to Datalog engine

Datalog rewriting⇒ PTIME data complexity for CQ answering

Note: also get Datalog rewritings for many extensions of EL

14/50

what about el?

In EL, FO-rewritings need not exist:
∙ no FO-rewriting of A(x) w.r.t. {∃r.A ⊑ A}

Hardness

r r r a

Looks harmless? Cancelation is main source of complexity:

On these steps, one can simulate a Turing machine

, 9r.> v A

A(x) _ 9y r(x, y)

TBox: 9r.A v A Query: A(x)

FO-rewriting exists since 9r.> v A cancels non-locality:

finding cycles in TBox is trivial (pure syntax)

cycle cancelations can still occur after exponentially many steps

A

However, Datalog rewritings always exist:
∙ Datalog program Π: r(x, y) ∧ A(x)→ A(y) A(x)→ goal(x)
∙ T ,A |= A(a) iff can derive goal(a) from A using Π

Can pass on rewriting to Datalog engine

Datalog rewriting⇒ PTIME data complexity for CQ answering

Note: also get Datalog rewritings for many extensions of EL
14/50

what about alc?

Neither FO nor Datalog rewritings need exist

Culprit: presence of disjunction

Encoding of non-3-colourability:

TBox axioms:
∙ ⊤ ⊑ R ⊔ G ⊔ B
∙ B ⊓ ∃edge.B ⊑ clash (same for R,G)

Graph is 3-colourable⇔ Boolean query ∃x.clash(x) not entailed

15/50

what about alc?

Neither FO nor Datalog rewritings need exist

Culprit: presence of disjunction

Encoding of non-3-colourability:

TBox axioms:
∙ ⊤ ⊑ R ⊔ G ⊔ B
∙ B ⊓ ∃edge.B ⊑ clash (same for R,G)

Graph is 3-colourable⇔ Boolean query ∃x.clash(x) not entailed

15/50

understanding query rewriting

To gain better understanding of query rewriting,
we consider the following natural questions:

1. Size of rewritings DL-Lite
∙ How large are the rewritten queries?

2. Optimality of rewritings DL-Lite
∙ Can we achieve optimal complexity via query rewriting?

3. Existence of rewritings beyond DL-Lite
∙ When is query rewriting applicable?

16/50

size of rewritings

query rewriting for dl-lite ontologies

Lots of rewriting algorithms for DL-Lite designed and tested

Most produce unions of conjunctive queries (UCQs)

Experiments showed that such rewritings can be huge!

∙ can be difficult / impossible to generate and evaluate

Not hard to see smallest UCQ-rewriting may be exponentially large:

∙ Query: A01 (x) ∧ . . . ∧ A0n(x)
∙ Ontology: A11 ⊑ A01 A12 ⊑ A02 . . . A1n ⊑ A0n
∙ Rewriting:

∨
(i1,...,in)∈{0,1} A

i1
1 (x) ∧ A

i1
1 (x) ∧ . . . ∧ Ai11 (x)

But: simple polysize FO-rewriting does exist!
∧n
i=1(A0i (x) ∨ A

1
i (x))

18/50

query rewriting for dl-lite ontologies

Lots of rewriting algorithms for DL-Lite designed and tested

Most produce unions of conjunctive queries (UCQs)

Experiments showed that such rewritings can be huge!

∙ can be difficult / impossible to generate and evaluate

Not hard to see smallest UCQ-rewriting may be exponentially large:

∙ Query: A01 (x) ∧ . . . ∧ A0n(x)
∙ Ontology: A11 ⊑ A01 A12 ⊑ A02 . . . A1n ⊑ A0n
∙ Rewriting:

∨
(i1,...,in)∈{0,1} A

i1
1 (x) ∧ A

i1
1 (x) ∧ . . . ∧ Ai11 (x)

But: simple polysize FO-rewriting does exist!
∧n
i=1(A0i (x) ∨ A

1
i (x))

18/50

query rewriting for dl-lite ontologies

Lots of rewriting algorithms for DL-Lite designed and tested

Most produce unions of conjunctive queries (UCQs)

Experiments showed that such rewritings can be huge!

∙ can be difficult / impossible to generate and evaluate

Not hard to see smallest UCQ-rewriting may be exponentially large:

∙ Query: A01 (x) ∧ . . . ∧ A0n(x)
∙ Ontology: A11 ⊑ A01 A12 ⊑ A02 . . . A1n ⊑ A0n
∙ Rewriting:

∨
(i1,...,in)∈{0,1} A

i1
1 (x) ∧ A

i1
1 (x) ∧ . . . ∧ Ai11 (x)

But: simple polysize FO-rewriting does exist!
∧n
i=1(A0i (x) ∨ A

1
i (x))

18/50

query rewriting for dl-lite ontologies

Lots of rewriting algorithms for DL-Lite designed and tested

Most produce unions of conjunctive queries (UCQs)

Experiments showed that such rewritings can be huge!

∙ can be difficult / impossible to generate and evaluate

Not hard to see smallest UCQ-rewriting may be exponentially large:

∙ Query: A01 (x) ∧ . . . ∧ A0n(x)
∙ Ontology: A11 ⊑ A01 A12 ⊑ A02 . . . A1n ⊑ A0n
∙ Rewriting:

∨
(i1,...,in)∈{0,1} A

i1
1 (x) ∧ A

i1
1 (x) ∧ . . . ∧ Ai11 (x)

But: simple polysize FO-rewriting does exist!
∧n
i=1(A0i (x) ∨ A

1
i (x))

18/50

different forms of rewritings

PE-rewritings: positive existential queries (only ∃, ∧, ∨)

(r(x, y)∨ s(y, x))∧ (A(x)∨ (B(x)∧∃z p(x, z)))∧ (A(y)∨ (B(y)∧∃z p(y, z)))

NDL-rewritings: non-recursive Datalog queries

goal(x, y)← q1(x, y),q2(x),q2(y)
q1(x, y)← r(x, y) q2(x)← A(x)
q1(x, y)← s(y, x) q2(x)← B(x),p(x, z)

FO-rewritings: first-order queries (can also use ∀, ¬)

What if we replace UCQs by PE / NDL / FO?
Do we get polysize rewritings?

(Note: focus on so-called pure rewritings - no special constants)

19/50

different forms of rewritings

PE-rewritings: positive existential queries (only ∃, ∧, ∨)

(r(x, y)∨ s(y, x))∧ (A(x)∨ (B(x)∧∃z p(x, z)))∧ (A(y)∨ (B(y)∧∃z p(y, z)))

NDL-rewritings: non-recursive Datalog queries

goal(x, y)← q1(x, y),q2(x),q2(y)
q1(x, y)← r(x, y) q2(x)← A(x)
q1(x, y)← s(y, x) q2(x)← B(x),p(x, z)

FO-rewritings: first-order queries (can also use ∀, ¬)

What if we replace UCQs by PE / NDL / FO?
Do we get polysize rewritings?

(Note: focus on so-called pure rewritings - no special constants)

19/50

different forms of rewritings

PE-rewritings: positive existential queries (only ∃, ∧, ∨)

(r(x, y)∨ s(y, x))∧ (A(x)∨ (B(x)∧∃z p(x, z)))∧ (A(y)∨ (B(y)∧∃z p(y, z)))

NDL-rewritings: non-recursive Datalog queries

goal(x, y)← q1(x, y),q2(x),q2(y)
q1(x, y)← r(x, y) q2(x)← A(x)
q1(x, y)← s(y, x) q2(x)← B(x),p(x, z)

FO-rewritings: first-order queries (can also use ∀, ¬)

What if we replace UCQs by PE / NDL / FO?
Do we get polysize rewritings?

(Note: focus on so-called pure rewritings - no special constants)

19/50

different forms of rewritings

PE-rewritings: positive existential queries (only ∃, ∧, ∨)

(r(x, y)∨ s(y, x))∧ (A(x)∨ (B(x)∧∃z p(x, z)))∧ (A(y)∨ (B(y)∧∃z p(y, z)))

NDL-rewritings: non-recursive Datalog queries

goal(x, y)← q1(x, y),q2(x),q2(y)
q1(x, y)← r(x, y) q2(x)← A(x)
q1(x, y)← s(y, x) q2(x)← B(x),p(x, z)

FO-rewritings: first-order queries (can also use ∀, ¬)

What if we replace UCQs by PE / NDL / FO?
Do we get polysize rewritings?

(Note: focus on so-called pure rewritings - no special constants)
19/50

first negative results [kkpz12]

Exponential blowup unavoidable for PE / NDL-rewritings

Formally: sequence of CQs qn and DL-LiteR TBoxes Tn such that

∙ PE- and NDL-rewritings of (qn and Tn are exponential in |qn|+ |Tn|
∙ FO-rewritings of qn and Tn are superpolynomial unless
NP/poly ⊆ NC1

Key proof step: reduce CNF satisfiability to CQ answering in DL-LiteR

∙ TBox generates full binary tree, leaves represent prop. valuations
∙ depth of tree = number of variables

∙ tree-shaped query selects valuation, checks clauses are satisfied
∙ number of leaves / branches in query = number of clauses

20/50

first negative results [kkpz12]

Exponential blowup unavoidable for PE / NDL-rewritings

Formally: sequence of CQs qn and DL-LiteR TBoxes Tn such that

∙ PE- and NDL-rewritings of (qn and Tn are exponential in |qn|+ |Tn|
∙ FO-rewritings of qn and Tn are superpolynomial unless
NP/poly ⊆ NC1

Key proof step: reduce CNF satisfiability to CQ answering in DL-LiteR

∙ TBox generates full binary tree, leaves represent prop. valuations
∙ depth of tree = number of variables

∙ tree-shaped query selects valuation, checks clauses are satisfied
∙ number of leaves / branches in query = number of clauses

20/50

restricting depth of the tbox [kkpz14]

Depth of TBox =
maximum depth of generated trees in canonical model / chase

∙ T has finite depth↔ chase terminates for every KB (T ,A)

Does restricting the depth of TBoxes suffice for polysize rewritings?
Unfortunately not...

Depth 2 TBoxes:
∙ no polysize PE- or NDL-rewritings
∙ no polysize FO-rewritings unless NP/poly⊆ NC1

Depth 1 TBoxes:
∙ no polysize PE- or NDL-rewritings
∙ no polysize FO-rewritings unless NL/poly⊆ NC1

∙ but: polysize PE-rewritings for tree-shaped queries

21/50

restricting depth of the tbox [kkpz14]

Depth of TBox =
maximum depth of generated trees in canonical model / chase

∙ T has finite depth↔ chase terminates for every KB (T ,A)

Does restricting the depth of TBoxes suffice for polysize rewritings?

Unfortunately not...

Depth 2 TBoxes:
∙ no polysize PE- or NDL-rewritings
∙ no polysize FO-rewritings unless NP/poly⊆ NC1

Depth 1 TBoxes:
∙ no polysize PE- or NDL-rewritings
∙ no polysize FO-rewritings unless NL/poly⊆ NC1

∙ but: polysize PE-rewritings for tree-shaped queries

21/50

restricting depth of the tbox [kkpz14]

Depth of TBox =
maximum depth of generated trees in canonical model / chase

∙ T has finite depth↔ chase terminates for every KB (T ,A)

Does restricting the depth of TBoxes suffice for polysize rewritings?
Unfortunately not...

Depth 2 TBoxes:
∙ no polysize PE- or NDL-rewritings
∙ no polysize FO-rewritings unless NP/poly⊆ NC1

Depth 1 TBoxes:
∙ no polysize PE- or NDL-rewritings
∙ no polysize FO-rewritings unless NL/poly⊆ NC1

∙ but: polysize PE-rewritings for tree-shaped queries

21/50

restricting depth of the tbox [kkpz14]

Depth of TBox =
maximum depth of generated trees in canonical model / chase

∙ T has finite depth↔ chase terminates for every KB (T ,A)

Does restricting the depth of TBoxes suffice for polysize rewritings?
Unfortunately not...

Depth 2 TBoxes:
∙ no polysize PE- or NDL-rewritings
∙ no polysize FO-rewritings unless NP/poly⊆ NC1

Depth 1 TBoxes:
∙ no polysize PE- or NDL-rewritings
∙ no polysize FO-rewritings unless NL/poly⊆ NC1

∙ but: polysize PE-rewritings for tree-shaped queries

21/50

restricting depth of the tbox [kkpz14]

Depth of TBox =
maximum depth of generated trees in canonical model / chase

∙ T has finite depth↔ chase terminates for every KB (T ,A)

Does restricting the depth of TBoxes suffice for polysize rewritings?
Unfortunately not...

Depth 2 TBoxes:
∙ no polysize PE- or NDL-rewritings
∙ no polysize FO-rewritings unless NP/poly⊆ NC1

Depth 1 TBoxes:
∙ no polysize PE- or NDL-rewritings
∙ no polysize FO-rewritings unless NL/poly⊆ NC1

∙ but: polysize PE-rewritings for tree-shaped queries

21/50

restricting depth of the tbox [kkpz14]

Depth of TBox =
maximum depth of generated trees in canonical model / chase

∙ T has finite depth↔ chase terminates for every KB (T ,A)

Does restricting the depth of TBoxes suffice for polysize rewritings?
Unfortunately not...

Depth 2 TBoxes:
∙ no polysize PE- or NDL-rewritings
∙ no polysize FO-rewritings unless NP/poly⊆ NC1

Depth 1 TBoxes:
∙ no polysize PE- or NDL-rewritings
∙ no polysize FO-rewritings unless NL/poly⊆ NC1

∙ but: polysize PE-rewritings for tree-shaped queries
21/50

map of results so far

1 2 3 . . . d arb

2

. . .

ℓ

trees

tw 2

. . .

btw

arb

TBox depth

Nu
m
be
ro
fl
ea
ve
s

Tr
ee
w
id
th

(n
o
po
ly
FO

un
le
ss

NP
/

p
ol

y
⊆

NC
1)

no polysize PE or NDL

poly
PE,
NDL,
& FO

no poly PE but poly NDL
no poly FO unless NL/poly ⊆ NC1

?

22/50

gaps in the landscape

Two dimensions:
∙ type of TBox depth 1, depth 2, …, arbitrary
∙ type of query tree-shaped / arbitrary

What about tree-shaped queries & depth k TBoxes (k > 1) ?

What about bounded treewidth queries?

What about restricted classes of tree-shaped queries?
∙ linear queries
∙ tree-shaped queries with fixed number of leaves

23/50

gaps in the landscape

Two dimensions:
∙ type of TBox depth 1, depth 2, …, arbitrary
∙ type of query tree-shaped / arbitrary

What about tree-shaped queries & depth k TBoxes (k > 1) ?

What about bounded treewidth queries?

What about restricted classes of tree-shaped queries?
∙ linear queries
∙ tree-shaped queries with fixed number of leaves

23/50

gaps in the landscape

Two dimensions:
∙ type of TBox depth 1, depth 2, …, arbitrary
∙ type of query tree-shaped / arbitrary

What about tree-shaped queries & depth k TBoxes (k > 1) ?

What about bounded treewidth queries?

What about restricted classes of tree-shaped queries?
∙ linear queries
∙ tree-shaped queries with fixed number of leaves

23/50

gaps in the landscape

Two dimensions:
∙ type of TBox depth 1, depth 2, …, arbitrary
∙ type of query tree-shaped / arbitrary

What about tree-shaped queries & depth k TBoxes (k > 1) ?

What about bounded treewidth queries?

What about restricted classes of tree-shaped queries?
∙ linear queries
∙ tree-shaped queries with fixed number of leaves

23/50

completing the landscape [bkp15]

1 2 3 . . . d arb

2

. . .

ℓ

trees

tw 2

. . .

btw

arb

TBox depth

Nu
m
be
ro
fl
ea
ve
s

Tr
ee
w
id
th

no poly PE but poly NDL
(poly FO⇔ NL/poly ⊆ NC1)

no poly PE but poly NDL
(poly FO⇔ SAC1 ⊆ NC1)

(n
o
po
ly
FO

un
le
ss

NP
/

p
ol

y
⊆

NC
1)

no polysize PE or NDL

poly
PE,
NDL,
& FO

no poly PE but poly NDL
no poly PE but poly NDL
no poly FO unless NL/poly ⊆ NC1

24/50

completing the landscape [bkp15]

Bounded depth TBox + bounded treewidth CQs
∙ no polysize PE-rewritings
∙ polysize NDL-rewritings do exist
∙ no polysize FO-rewritings (unless SAC1⊆ NC1)

Tree-shaped CQs with bounded number of leaves
∙ no polysize PE-rewritings
∙ polysize NDL-rewritings do exist
∙ no polysize FO-rewritings (unless NL/poly⊆ NC1)

Negative results hold already for: depth 2 + linear queries

25/50

brief glimpse at proof techniques (1)

Standard computational complexity not the right tool
∙ can be used to show no polytime-computable rewriting
∙ ... but not that no polysize rewriting exists

Instead: establish tight connections to circuit complexity
∙ branch of complexity that classifies Boolean functions wrt. size /
depth of Boolean circuits / formulas that compute them

∙ recall k-ary Boolean function maps tuples from {0, 1}k to {0, 1}

Example: function Reachn
∙ input: a Boolean vector representing the adjacency matrix of a
directed graph G with n vertices including special vertices s and t

∙ output: 1 iff encoded graph G contains a directed path from s to t
No family of polysize mon. Boolean formulas computing Reachn

26/50

brief glimpse at proof techniques (1)

Standard computational complexity not the right tool
∙ can be used to show no polytime-computable rewriting
∙ ... but not that no polysize rewriting exists

Instead: establish tight connections to circuit complexity
∙ branch of complexity that classifies Boolean functions wrt. size /
depth of Boolean circuits / formulas that compute them

∙ recall k-ary Boolean function maps tuples from {0, 1}k to {0, 1}

Example: function Reachn
∙ input: a Boolean vector representing the adjacency matrix of a
directed graph G with n vertices including special vertices s and t

∙ output: 1 iff encoded graph G contains a directed path from s to t
No family of polysize mon. Boolean formulas computing Reachn

26/50

brief glimpse at proof techniques (1)

Standard computational complexity not the right tool
∙ can be used to show no polytime-computable rewriting
∙ ... but not that no polysize rewriting exists

Instead: establish tight connections to circuit complexity
∙ branch of complexity that classifies Boolean functions wrt. size /
depth of Boolean circuits / formulas that compute them

∙ recall k-ary Boolean function maps tuples from {0, 1}k to {0, 1}

Example: function Reachn
∙ input: a Boolean vector representing the adjacency matrix of a
directed graph G with n vertices including special vertices s and t

∙ output: 1 iff encoded graph G contains a directed path from s to t

No family of polysize mon. Boolean formulas computing Reachn

26/50

brief glimpse at proof techniques (1)

Standard computational complexity not the right tool
∙ can be used to show no polytime-computable rewriting
∙ ... but not that no polysize rewriting exists

Instead: establish tight connections to circuit complexity
∙ branch of complexity that classifies Boolean functions wrt. size /
depth of Boolean circuits / formulas that compute them

∙ recall k-ary Boolean function maps tuples from {0, 1}k to {0, 1}

Example: function Reachn
∙ input: a Boolean vector representing the adjacency matrix of a
directed graph G with n vertices including special vertices s and t

∙ output: 1 iff encoded graph G contains a directed path from s to t
No family of polysize mon. Boolean formulas computing Reachn

26/50

brief glimpse at proof techniques (2)

Associate Boolean functions with query-TBox pair (q, T)

Primitive evaluation function f primq,T
∙ input vector u⃗ ∼ single-individual ABox Au⃗ ind a
∙ pA means concept A is present, pr means r self-loop

∙ f primq,T (u⃗) = 1 if (T ,Au⃗) |= q(a, . . . ,a)

Tree-witness hypergraph function f twq,T :
∙ input vector u⃗ ∼ abstract description of how query mapped into
canonical model
∙ pα means atom α mapped into ABox
∙ pt means tree-witness (subquery) t mapped to existential part

∙ f twq,T (u⃗) = 1 if u⃗ describes a partition of the atoms in q

27/50

brief glimpse at proof techniques (2)

Associate Boolean functions with query-TBox pair (q, T)

Primitive evaluation function f primq,T
∙ input vector u⃗ ∼ single-individual ABox Au⃗ ind a
∙ pA means concept A is present, pr means r self-loop

∙ f primq,T (u⃗) = 1 if (T ,Au⃗) |= q(a, . . . ,a)

Tree-witness hypergraph function f twq,T :
∙ input vector u⃗ ∼ abstract description of how query mapped into
canonical model
∙ pα means atom α mapped into ABox
∙ pt means tree-witness (subquery) t mapped to existential part

∙ f twq,T (u⃗) = 1 if u⃗ describes a partition of the atoms in q

27/50

brief glimpse at proof techniques (2)

Associate Boolean functions with query-TBox pair (q, T)

Primitive evaluation function f primq,T
∙ input vector u⃗ ∼ single-individual ABox Au⃗ ind a
∙ pA means concept A is present, pr means r self-loop

∙ f primq,T (u⃗) = 1 if (T ,Au⃗) |= q(a, . . . ,a)

Tree-witness hypergraph function f twq,T :
∙ input vector u⃗ ∼ abstract description of how query mapped into
canonical model
∙ pα means atom α mapped into ABox
∙ pt means tree-witness (subquery) t mapped to existential part

∙ f twq,T (u⃗) = 1 if u⃗ describes a partition of the atoms in q

27/50

brief glimpse at proof techniques (3)

Types of rewritings⇝ ways of representing Boolean functions

PE-rewritings monotone Boolean formulas

NDL-rewritings monotone Boolean circuits

FO-rewritings Boolean formulas

Primitive evaluation function⇒ lower bounds on rewriting size
∙ transform rewriting of q, T into formula / circuit that computes f primq,T

Tree-witness hypergraph func. ⇒ upper bounds on rewriting size
∙ transform formula / circuit that computes f homq,T into rewriting of q, T

Exploit circuit complexity results about (in)existence of small
formulas / circuits computing different classes of Boolean functions

28/50

brief glimpse at proof techniques (3)

Types of rewritings⇝ ways of representing Boolean functions

PE-rewritings monotone Boolean formulas

NDL-rewritings monotone Boolean circuits

FO-rewritings Boolean formulas

Primitive evaluation function⇒ lower bounds on rewriting size
∙ transform rewriting of q, T into formula / circuit that computes f primq,T

Tree-witness hypergraph func. ⇒ upper bounds on rewriting size
∙ transform formula / circuit that computes f homq,T into rewriting of q, T

Exploit circuit complexity results about (in)existence of small
formulas / circuits computing different classes of Boolean functions

28/50

brief glimpse at proof techniques (3)

Types of rewritings⇝ ways of representing Boolean functions

PE-rewritings monotone Boolean formulas

NDL-rewritings monotone Boolean circuits

FO-rewritings Boolean formulas

Primitive evaluation function⇒ lower bounds on rewriting size
∙ transform rewriting of q, T into formula / circuit that computes f primq,T

Tree-witness hypergraph func. ⇒ upper bounds on rewriting size
∙ transform formula / circuit that computes f homq,T into rewriting of q, T

Exploit circuit complexity results about (in)existence of small
formulas / circuits computing different classes of Boolean functions

28/50

optimality of rewritings

what does all this mean for complexity of query answering?

Actually, not much!

Small rewritings do not guarantee low complexity

∙ need to consider cost of producing and evaluating the rewriting

Large rewritings do not guarantee high complexity

∙ maybe query rewriting is not the most efficient approach

Motivated the study of the complexity landscape of query answering

Consider combined complexity (data complexity is same in all cases)

30/50

what does all this mean for complexity of query answering?

Actually, not much!

Small rewritings do not guarantee low complexity

∙ need to consider cost of producing and evaluating the rewriting

Large rewritings do not guarantee high complexity

∙ maybe query rewriting is not the most efficient approach

Motivated the study of the complexity landscape of query answering

Consider combined complexity (data complexity is same in all cases)

30/50

what does all this mean for complexity of query answering?

Actually, not much!

Small rewritings do not guarantee low complexity

∙ need to consider cost of producing and evaluating the rewriting

Large rewritings do not guarantee high complexity

∙ maybe query rewriting is not the most efficient approach

Motivated the study of the complexity landscape of query answering

Consider combined complexity (data complexity is same in all cases)

30/50

what does all this mean for complexity of query answering?

Actually, not much!

Small rewritings do not guarantee low complexity

∙ need to consider cost of producing and evaluating the rewriting

Large rewritings do not guarantee high complexity

∙ maybe query rewriting is not the most efficient approach

Motivated the study of the complexity landscape of query answering

Consider combined complexity (data complexity is same in all cases)
30/50

combined complexity landscape for dl-lite [bkp15]

1 2 3 . . . d arb

2

. . .

ℓ

trees

tw 2

. . .

btw

arb

TBox depth

Nu
m
be
ro
fl
ea
ve
s

Tr
ee
w
id
th

NL-complete

LOGCFL-complete

NP
-c
om

pl
et
e

NP-complete

LO
GC
FL
-c

31/50

comparing the landscapes

1 2 3 . . . d arb

2

. . .

ℓ

trees

tw 2

. . .

btw

arb

TBox depth

Nu
m
be
ro
fl
ea
ve
s

Tr
ee
w
id
th

no poly PE but poly NDL
(poly FO⇔ NL/poly ⊆ NC1)

no poly PE but poly NDL
(poly FO⇔ SAC1 ⊆ NC1)

(n
o
po
ly
FO

un
le
ss

NP
/

p
ol

y
⊆

NC
1)

no polysize PE or NDL

poly
PE,
NDL,
& FO

no poly PE but poly NDL
no poly PE but poly NDL
no poly FO unless NL/poly ⊆ NC1

1 2 3 . . . d arb

2

. . .

ℓ

trees

tw 2

. . .

btw

arb

TBox depth
Nu
m
be
ro
fl
ea
ve
s

Tr
ee
w
id
th

NL-complete

LOGCFL-complete

NP
-c
om

pl
et
e

NP-complete

LO
GC
FL
-c

polysize NDL-rewritings ∼ polynomial (LOGCFL / NL) complexity

Can we marry the positive succinctness & complexity results?

32/50

comparing the landscapes

1 2 3 . . . d arb

2

. . .

ℓ

trees

tw 2

. . .

btw

arb

TBox depth

Nu
m
be
ro
fl
ea
ve
s

Tr
ee
w
id
th

no poly PE but poly NDL
(poly FO⇔ NL/poly ⊆ NC1)

no poly PE but poly NDL
(poly FO⇔ SAC1 ⊆ NC1)

(n
o
po
ly
FO

un
le
ss

NP
/

p
ol

y
⊆

NC
1)

no polysize PE or NDL

poly
PE,
NDL,
& FO

no poly PE but poly NDL
no poly PE but poly NDL
no poly FO unless NL/poly ⊆ NC1

1 2 3 . . . d arb

2

. . .

ℓ

trees

tw 2

. . .

btw

arb

TBox depth
Nu
m
be
ro
fl
ea
ve
s

Tr
ee
w
id
th

NL-complete

LOGCFL-complete

NP
-c
om

pl
et
e

NP-complete

LO
GC
FL
-c

polysize NDL-rewritings ∼ polynomial (LOGCFL / NL) complexity

Can we marry the positive succinctness & complexity results?

32/50

optimal ndl-rewritings [bkkpz16a]

For the three well-behaved classes of OMQs, define
NDL-rewritings of optimal complexity:
∙ rewriting can be constructed by LC transducer
∙ evaluating the rewriting can be done in C
with C ∈ {NL, LOGCFL} the complexity of the OMQ class

Key step: identify classes of NDL programs with right complexity
∙ NL: linear NDL-programs of bounded width (# vars per rule)

Preliminary experiments with simple OMQs (depth 1, linear CQs):
∙ compared with other NDL-rewritings (Clipper, Rapid, Presto)
∙ our rewritings grow linearly with increasing query size
∙ other systems produce rewritings that grow exponentially
∙ our rewritings usually evaluated faster

33/50

optimal ndl-rewritings [bkkpz16a]

For the three well-behaved classes of OMQs, define
NDL-rewritings of optimal complexity:
∙ rewriting can be constructed by LC transducer
∙ evaluating the rewriting can be done in C
with C ∈ {NL, LOGCFL} the complexity of the OMQ class

Key step: identify classes of NDL programs with right complexity
∙ NL: linear NDL-programs of bounded width (# vars per rule)

Preliminary experiments with simple OMQs (depth 1, linear CQs):
∙ compared with other NDL-rewritings (Clipper, Rapid, Presto)
∙ our rewritings grow linearly with increasing query size
∙ other systems produce rewritings that grow exponentially
∙ our rewritings usually evaluated faster

33/50

optimal ndl-rewritings [bkkpz16a]

For the three well-behaved classes of OMQs, define
NDL-rewritings of optimal complexity:
∙ rewriting can be constructed by LC transducer
∙ evaluating the rewriting can be done in C
with C ∈ {NL, LOGCFL} the complexity of the OMQ class

Key step: identify classes of NDL programs with right complexity
∙ NL: linear NDL-programs of bounded width (# vars per rule)

Preliminary experiments with simple OMQs (depth 1, linear CQs):
∙ compared with other NDL-rewritings (Clipper, Rapid, Presto)
∙ our rewritings grow linearly with increasing query size
∙ other systems produce rewritings that grow exponentially
∙ our rewritings usually evaluated faster

33/50

parameterized complexity [bkkprz16]

Upper bound on time needed to evaluate our NDL-rewritings:
∙ depth d / number of leaves ℓ occur in the exponent

Is it possible to do better?
∙ formally: fixed-parameter tractable (FPT)? f(d, ℓ) · p(|q|, |T |, |A|)

Parameterized complexity of answering tree-shaped OMQs (T ,q):
∙ parameters: depth d of T , number ℓ of leaves in CQs
∙ not FPT if depth d taken as parameter W[2]-hard
∙ not FPT if number of leaves ℓ taken as parameter W[1]-hard

Message: for good performance, want d and ℓ small

34/50

parameterized complexity [bkkprz16]

Upper bound on time needed to evaluate our NDL-rewritings:
∙ depth d / number of leaves ℓ occur in the exponent

Is it possible to do better?
∙ formally: fixed-parameter tractable (FPT)? f(d, ℓ) · p(|q|, |T |, |A|)

Parameterized complexity of answering tree-shaped OMQs (T ,q):
∙ parameters: depth d of T , number ℓ of leaves in CQs
∙ not FPT if depth d taken as parameter W[2]-hard
∙ not FPT if number of leaves ℓ taken as parameter W[1]-hard

Message: for good performance, want d and ℓ small

34/50

parameterized complexity [bkkprz16]

Upper bound on time needed to evaluate our NDL-rewritings:
∙ depth d / number of leaves ℓ occur in the exponent

Is it possible to do better?
∙ formally: fixed-parameter tractable (FPT)? f(d, ℓ) · p(|q|, |T |, |A|)

Parameterized complexity of answering tree-shaped OMQs (T ,q):
∙ parameters: depth d of T , number ℓ of leaves in CQs

∙ not FPT if depth d taken as parameter W[2]-hard
∙ not FPT if number of leaves ℓ taken as parameter W[1]-hard

Message: for good performance, want d and ℓ small

34/50

parameterized complexity [bkkprz16]

Upper bound on time needed to evaluate our NDL-rewritings:
∙ depth d / number of leaves ℓ occur in the exponent

Is it possible to do better?
∙ formally: fixed-parameter tractable (FPT)? f(d, ℓ) · p(|q|, |T |, |A|)

Parameterized complexity of answering tree-shaped OMQs (T ,q):
∙ parameters: depth d of T , number ℓ of leaves in CQs
∙ not FPT if depth d taken as parameter W[2]-hard
∙ not FPT if number of leaves ℓ taken as parameter W[1]-hard

Message: for good performance, want d and ℓ small

34/50

existence of rewritings

query rewriting beyond dl-lite

We have seen that:
∙ for EL ontologies, FO-rewritings need not exist
∙ for ALC ontologies, FO- and Datalog rewritings may not exist

But these are worst-case results
∙ only say that some OMQ that does not have a rewriting
∙ possible that rewritings exist for many ontologies and queries
encountered in practice

To extend the applicability of query rewriting beyond DL-Lite:
∙ devise ways of identifying ‘good cases’
∙ construct rewritings when they exist

36/50

deciding existence of rewritings

Use (L,Q) to denote set of OMQs (T ,q) where:
∙ T is an L-TBox
∙ q is a query from Q Q ∈ {IQ, CQ}

For example: (EL, CQ), (ALC, IQ)

FO-rewritability in (L,Q)
∙ Input: OMQ (T ,q) from (L,Q)
∙ Problem: decide whether (T ,q) has an FO-rewriting

Datalog-rewritability decision problem can be defined analogously

37/50

fo-rewritability in el [blw13] [bclw16]

We have the following results:
∙ FO-rewritability is Exp-complete in (EL, IQ) and (ELI, IQ)
∙ FO-rewritability is Exp-complete in (EL, CQ)
∙ FO-rewritability is 2Exp-complete in (ELI, CQ)

What makes FO-rewritability so difficult?

Consider TBox T = {∃r.A ⊑ A, ∃r.⊤ ⊑ A} IQ A(x)

Hardness

r r r a

Looks harmless? Cancelation is main source of complexity:

On these steps, one can simulate a Turing machine

, 9r.> v A

A(x) _ 9y r(x, y)

TBox: 9r.A v A Query: A(x)

FO-rewriting exists since 9r.> v A cancels non-locality:

finding cycles in TBox is trivial (pure syntax)

cycle cancelations can still occur after exponentially many steps

A

FO-rewriting exists: A(x) ∨ ∃y r(x, y)

Reason: ∃r.⊤ ⊑ A cancels effect of recursive ∃r.A ⊑ A
∙ such cancellations can be quite complicated and difficult to detect

38/50

proof idea for upper bounds

Characterization of non-existence of FO-rewriting:
OMQ (T ,A(x)) is not FO-rewritable iff there exist tree-shaped ABoxes

Theorem [BienvenuL_WolterIJCAI13]

Characterizing Non-Rewritability

A1 A2 A3 A4

· · ·
, but T ,A0

i 6|= A(a0)

1 2 3 4A0
4

A0
3

A0
2A0

1

such that for all i � 1:

T ,Ai |= A(a0)

Unraveling tolerance enables characterization of FO-rewritability

there are ⌃-ABoxes

OMQ (T ,⌃, A(x)) in (ELI,AQ) is not FO-rewritable iff

a0 a0 a0 a0

such that for all i ≥ 1: T ,Ai |= A(a0) and T ,A′
i ̸|= A(a0)

Pumping argument: enough to find ABox of particular finite size k0

∙ desired ABox Ak0 exists⇒ can construct full sequence of ABoxes

Use tree automata to check whether such a witness ABox exists

Can generalize this technique to handle CQs as well

39/50

proof idea for upper bounds

Characterization of non-existence of FO-rewriting:
OMQ (T ,A(x)) is not FO-rewritable iff there exist tree-shaped ABoxes

Theorem [BienvenuL_WolterIJCAI13]

Characterizing Non-Rewritability

A1 A2 A3 A4

· · ·
, but T ,A0

i 6|= A(a0)

1 2 3 4A0
4

A0
3

A0
2A0

1

such that for all i � 1:

T ,Ai |= A(a0)

Unraveling tolerance enables characterization of FO-rewritability

there are ⌃-ABoxes

OMQ (T ,⌃, A(x)) in (ELI,AQ) is not FO-rewritable iff

a0 a0 a0 a0

such that for all i ≥ 1: T ,Ai |= A(a0) and T ,A′
i ̸|= A(a0)

Pumping argument: enough to find ABox of particular finite size k0

∙ desired ABox Ak0 exists⇒ can construct full sequence of ABoxes

Use tree automata to check whether such a witness ABox exists

Can generalize this technique to handle CQs as well

39/50

proof idea for upper bounds

Characterization of non-existence of FO-rewriting:
OMQ (T ,A(x)) is not FO-rewritable iff there exist tree-shaped ABoxes

Theorem [BienvenuL_WolterIJCAI13]

Characterizing Non-Rewritability

A1 A2 A3 A4

· · ·
, but T ,A0

i 6|= A(a0)

1 2 3 4A0
4

A0
3

A0
2A0

1

such that for all i � 1:

T ,Ai |= A(a0)

Unraveling tolerance enables characterization of FO-rewritability

there are ⌃-ABoxes

OMQ (T ,⌃, A(x)) in (ELI,AQ) is not FO-rewritable iff

a0 a0 a0 a0

such that for all i ≥ 1: T ,Ai |= A(a0) and T ,A′
i ̸|= A(a0)

Pumping argument: enough to find ABox of particular finite size k0

∙ desired ABox Ak0 exists⇒ can construct full sequence of ABoxes

Use tree automata to check whether such a witness ABox exists

Can generalize this technique to handle CQs as well

39/50

proof idea for upper bounds

Characterization of non-existence of FO-rewriting:
OMQ (T ,A(x)) is not FO-rewritable iff there exist tree-shaped ABoxes

Theorem [BienvenuL_WolterIJCAI13]

Characterizing Non-Rewritability

A1 A2 A3 A4

· · ·
, but T ,A0

i 6|= A(a0)

1 2 3 4A0
4

A0
3

A0
2A0

1

such that for all i � 1:

T ,Ai |= A(a0)

Unraveling tolerance enables characterization of FO-rewritability

there are ⌃-ABoxes

OMQ (T ,⌃, A(x)) in (ELI,AQ) is not FO-rewritable iff

a0 a0 a0 a0

such that for all i ≥ 1: T ,Ai |= A(a0) and T ,A′
i ̸|= A(a0)

Pumping argument: enough to find ABox of particular finite size k0

∙ desired ABox Ak0 exists⇒ can construct full sequence of ABoxes

Use tree automata to check whether such a witness ABox exists

Can generalize this technique to handle CQs as well
39/50

computing fo-rewritings of iqs in el [hlsw15]

Use existing backwards-chaining rewriting procedure
∙ if FO-rewriting does exist, terminates and outputs UCQ-rewriting
∙ to ensure termination in general: use characterization result

To make practical: decomposed algorithm
∙ allows for structure sharing
∙ produces (succinct) NDL-rewriting instead of UCQ-rewriting

Experimental results are very encouraging:
∙ terminates quickly, produced rewritings are typically small
∙ suggests that in practice FO-rewritings do exist for majority of IQs

40/50

computing fo-rewritings of iqs in el [hlsw15]

Use existing backwards-chaining rewriting procedure
∙ if FO-rewriting does exist, terminates and outputs UCQ-rewriting
∙ to ensure termination in general: use characterization result

To make practical: decomposed algorithm
∙ allows for structure sharing
∙ produces (succinct) NDL-rewriting instead of UCQ-rewriting

Experimental results are very encouraging:
∙ terminates quickly, produced rewritings are typically small
∙ suggests that in practice FO-rewritings do exist for majority of IQs

40/50

computing fo-rewritings of iqs in el [hlsw15]

Use existing backwards-chaining rewriting procedure
∙ if FO-rewriting does exist, terminates and outputs UCQ-rewriting
∙ to ensure termination in general: use characterization result

To make practical: decomposed algorithm
∙ allows for structure sharing
∙ produces (succinct) NDL-rewriting instead of UCQ-rewriting

Experimental results are very encouraging:
∙ terminates quickly, produced rewritings are typically small
∙ suggests that in practice FO-rewritings do exist for majority of IQs

40/50

rewritability for (alc, iq) [bclw13] [bclw14]

FO-rewritability and Datalog-rewritability of (ALC, IQ) are both
NEXPTIME-complete.

Lower bound: reduction from exponential grid tiling problem

Upper bound: connection to constraint satisfaction problems (CSPs)

∙ CSP(B): decide if homomorphism from input structure D into B

∙ (Boolean) OMQs in (ALC, IQ) ∼ (complement of) CSPs
∙ exponential reduction to problem of deciding whether a CSP is
definable in FO / Datalog

∙ use NP upper bounds for latter problems [LLT07] [FKKMMW09]

41/50

rewritability for (alc, iq) [bclw13] [bclw14]

FO-rewritability and Datalog-rewritability of (ALC, IQ) are both
NEXPTIME-complete.

Lower bound: reduction from exponential grid tiling problem

Upper bound: connection to constraint satisfaction problems (CSPs)

∙ CSP(B): decide if homomorphism from input structure D into B

∙ (Boolean) OMQs in (ALC, IQ) ∼ (complement of) CSPs
∙ exponential reduction to problem of deciding whether a CSP is
definable in FO / Datalog

∙ use NP upper bounds for latter problems [LLT07] [FKKMMW09]

41/50

rewritability for (alc, iq) [bclw13] [bclw14]

FO-rewritability and Datalog-rewritability of (ALC, IQ) are both
NEXPTIME-complete.

Lower bound: reduction from exponential grid tiling problem

Upper bound: connection to constraint satisfaction problems (CSPs)

∙ CSP(B): decide if homomorphism from input structure D into B

∙ (Boolean) OMQs in (ALC, IQ) ∼ (complement of) CSPs
∙ exponential reduction to problem of deciding whether a CSP is
definable in FO / Datalog

∙ use NP upper bounds for latter problems [LLT07] [FKKMMW09]

41/50

fo-rewritability for (alc, ucq) [bl16] [fkl16]

FO-rewritability of (ALC,UCQ) is 2NExptime-complete

Instead of CSP, uses MMSNP (monotone monadic strict NP):
fragment of monadic second-order logic that generalizes CSP

OMQs from (ALC,UCQ) ∼ complement of MMSNP formulas
∼ monadic disjunctive Datalog

FO-expressibility of (co)MMSNP not studied in CSP literature

Recently: shown to be decidable and 2NExptime-complete

42/50

fo-rewritability for (alc, ucq) [bl16] [fkl16]

FO-rewritability of (ALC,UCQ) is 2NExptime-complete

Instead of CSP, uses MMSNP (monotone monadic strict NP):
fragment of monadic second-order logic that generalizes CSP

OMQs from (ALC,UCQ) ∼ complement of MMSNP formulas
∼ monadic disjunctive Datalog

FO-expressibility of (co)MMSNP not studied in CSP literature

Recently: shown to be decidable and 2NExptime-complete

42/50

fo-rewritability for (alc, ucq) [bl16] [fkl16]

FO-rewritability of (ALC,UCQ) is 2NExptime-complete

Instead of CSP, uses MMSNP (monotone monadic strict NP):
fragment of monadic second-order logic that generalizes CSP

OMQs from (ALC,UCQ) ∼ complement of MMSNP formulas
∼ monadic disjunctive Datalog

FO-expressibility of (co)MMSNP not studied in CSP literature

Recently: shown to be decidable and 2NExptime-complete

42/50

fo-rewritability for (alc, ucq) [bl16] [fkl16]

FO-rewritability of (ALC,UCQ) is 2NExptime-complete

Instead of CSP, uses MMSNP (monotone monadic strict NP):
fragment of monadic second-order logic that generalizes CSP

OMQs from (ALC,UCQ) ∼ complement of MMSNP formulas
∼ monadic disjunctive Datalog

FO-expressibility of (co)MMSNP not studied in CSP literature

Recently: shown to be decidable and 2NExptime-complete

42/50

fo-rewritability for (alc, ucq) [bl16] [fkl16]

FO-rewritability of (ALC,UCQ) is 2NExptime-complete

Instead of CSP, uses MMSNP (monotone monadic strict NP):
fragment of monadic second-order logic that generalizes CSP

OMQs from (ALC,UCQ) ∼ complement of MMSNP formulas
∼ monadic disjunctive Datalog

FO-expressibility of (co)MMSNP not studied in CSP literature

Recently: shown to be decidable and 2NExptime-complete

42/50

concluding remarks

conclusion

Ontology-mediated query answering:
∙ new paradigm for intelligent information systems
∙ offers many advantages, but also computational challenges

Query rewriting promising algorithmic approach

Many interesting problems related to OMQA and query rewriting:
∙ succinctness of rewritings (Boolean functions, circuit complexity)
∙ optimality of rewritings (Datalog fragments, param. complexity)
∙ existence of FO and Datalog rewritings (automata, CSP / MMSNP)

Lots left to do!
∙ experiment + optimize NDL-rewritings, evaluation strategies
∙ develop practical algorithms going beyond EL and IQs

44/50

Questions ?

45/50

references: succinctness & optimality of rewritings

[KKPZ12] S. Kikot, R. Kontchakov, V. Podolskii, and M. Zakharyaschev: Exponential Lower
Bounds and Separation for Query Rewriting. 39th International Colloquium on
Automata, Languages, and Programming (ICALP’12), 2012.

[GS12] G. Gottlob and T. Schwentick: Rewriting Ontological Queries into Small
Nonrecursive Datalog Programs. 13th International Conference on the Principles of
Knowledge Representation and Reasoning (KR’12), 2012.

[GKKPSZ14] G. Gottlob, S. Kikot, R. Kontchakov, V. Podolskii, T. Schwentick, and M.
Zakharyaschev: The Price of Query Rewriting in Ontology-based Data Access. Artificial
Intelligence (AIJ), 2014.

[KKPZ14] S. Kikot, R. Kontchakov, V. Podolskii, and M. Zakharyaschev: On the
Succinctness of Query Rewriting over Shallow Ontologies. 29th Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS’14), 2014.

46/50

references: succinctness & optimality of rewritings

[BKP15] M. Bienvenu, S. Kikot, V. Podolskii: Tree-like Queries in OWL 2 QL: Succinctness
and Complexity Results. 30th Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS’15), 2015.

[BKKPZ16a] M. Bienvenu, S. Kikot, R. Kontchakov, V. Podolskii, and M. Zakharyaschev:
Theoretically Optimal Datalog Rewritings for OWL 2 QL Ontology-Mediated Queries.
29th International Workshop on Description Logics (DL’16), 2016.

[BKKPZ16b] M. Bienvenu, S. Kikot, R. Kontchakov, V. Podolskii, and M. Zakharyaschev:
Ontology-Mediated Queries: Combined Complexity and Succinctness of Rewritings via
Circuit Complexity. Under review, CoRR abs/1605.01207, 2016.

[BKKPRZ16] M. Bienvenu, S. Kikot, R. Kontchakov, V. Podolskii, V. Ryzhikov and M.
Zakharyaschev: The Complexity of Ontology-Based Data Access with OWL 2 QL and
Bounded Treewidth Queries. Under review, 2016.

47/50

references: existence of rewritings

[BCLW13] M. Bienvenu, B. ten Cate, C. Lutz, and F. Wolter: Ontology-based Data Access:
A Study through Disjunctive Datalog, CSP, and MMSNP. 32nd International Conference
on the Principles of Database Systems (PODS’13), 2013.

[BLW13] M. Bienvenu, C. Lutz, and F. Wolter: First Order-Rewritability of Atomic Queries
in Horn Description Logics. 23rd International Joint Conference on Artificial
Intelligence (IJCAI’13), 2013.

[BCLW14] M. Bienvenu, B. ten Cate, C. Lutz, and F. Wolter: Ontology-based Data Access:
A Study through Disjunctive Datalog, CSP, and MMSNP. Transactions on Database
Systems (TODS), 2014.

[KNG14] M. Kaminski, Y. Nenov, and B. Cuenca Grau: Datalog Rewritability of Disjunctive
Datalog Programs and its Applications to Ontology Reasoning. 28th AAAI Conference
on Artificial Intelligence (AAAI’14), 2014.

48/50

references: existence of rewritings

[HLSW15] P. Hansen, C. Lutz, I. Seylan, and F. Wolter: Efficient Query Rewriting in the
Description Logic EL and Beyond. 24th International Joint Conference on Artificial
Intelligence (IJCAI’15), 2015.

[BL16] P. Bourhis and C. Lutz: Containment in Monadic Disjunctive Datalog, MMSNP, and
Expressive Description Logics. 15th International Conference on the Principles of
Knowledge Representation and Reasoning (KR’16), 2016.

[FKL16] C. Feier, A. Kuusisto, and C. Lutz: FO-Rewritability of Expressive
Ontology-Mediated Queries. 29th International Workshop on Description Logics
(DL’16), 2016.

[BCLW16] M. Bienvenu, P. Hansen, C. Lutz, and F. Wolter: First Order-Rewritability and
Containment of Conjunctive Queries in Horn Description Logics. 25th International
Joint Conference on Artificial Intelligence (IJCAI’16), 2016.

49/50

references: definability of csps

[LLT07] B. Larose, C. Loten, and C. Tardif. A characterisation of first-order constraint
satisfaction problems. Logical Methods in Computer Science (LMCS), 2007.

[FKKMMW09] R. Freese, M. Kozik, A. Krokhin, M. Maroti, R. Mckenzie, and R. Willard. On
maltsev conditions associated with omitting certain types of local structures.
Available at: http://www.math.hawaii.
edu/∼ralph/Classes/619/OmittingTypesMaltsev.pdf, 2009.

50/50

	Brief Intro to DLs & OMQA
	Query Rewriting
	Size of Rewritings
	Optimality of Rewritings
	Existence of Rewritings
	Concluding Remarks

