QUERY REWRITING:
Limits and Possibilities

Meghyn Bienvenu (CNRS, University of Montpellier, Inria)

ONTOLOGY-MEDIATED QUERY ANSWERING (OMQA)

incomplete ontology user query
database

domain knowledge

2/50

ONTOLOGY-MEDIATED QUERY ANSWERING (OMQA)

ZE'_ ¢

patient data medical knowledge user query
“Melanie has listeriosis” “Listeriosis & Lyme disease “Find all patients with
“Paul has Lyme disease” are bacterial infections” bacterial infections”

expected answers: Melanie, Paul

2/50

ONTOLOGY-MEDIATED QUERY ANSWERING (OMQA)

patient data medical knowledge user query
“Melanie has listeriosis” “Listeriosis & Lyme disease “Find all patients with
“Paul has Lyme disease” are bacterial infections” bacterial infections”

expected answers: Melanie, Paul

Why use an ontology?

- extend the vocabulary (making queries easier to formulate)
- provide a unified view of multiple data sources
- obtain (by exploiting domain knowledge)

2/50

SETTING WE CONSIDER

Ontologies formulated using description logics (DLs):

- family of
- basis for OWL web ontology language (W3C)
- range from fairly simple to highly expressive

- complexity of query answering well understood

In this talk, mainly focus on three particular DLs:

- DL-Liteg, ££, ALC

Consider two types of queries:

- conjunctive queries (CQs) - aka select-project-join queries
- instance queries (1Qs)

3/50

BRIEF INTRO TO DLS & OMQA

DESCRIPTION LOGIC ALC

In ALC, we have the following concept constructors:
(acts as a “wildcard”, denotes set of all things)
(denotes empty set)
- conjunction (1), disjunction (L1), negation (—)

- restricted forms of existential and universal quantification (3, ¥)

5/50

DESCRIPTION LOGIC ALC

In ALC, we have the following concept constructors:
(acts as a “wildcard”, denotes set of all things)
(denotes empty set)

- conjunction (1), disjunction (L1), negation (—)

- restricted forms of existential and universal quantification (3, ¥)
An ALC TBox (ontology) is a set of concept inclusions C C D, where

C,D:=T|L|A|-C|CrD|CUD]|3r.C|VrC
where A is an atomic concept, r an atomic role.

Intuitively, C C D means “everything that is a C is also a D"

5/50

EXAMPLES OF TBOX AXIOMS

Professors and lecturers are disjoint classes of faculty

Prof C Faculty Lect C Faculty Prof C —Lect

Every grad student is supervised by a professor

GradSt C dsupervisedBy.Prof

Grad students are students, and they only take graduate courses
GradSt C Student m VtakesC.GradC

FO translation: Vx (GradSt(x) — (Student(x) A Vy takesC(x,y) — GradC(y))

6/50

DESCRIPTION LOGIC EL

In £L, complex concepts are constructed as follows:

C,D:=T|A|CND|3rC

EL TBox = set of inclusions C C D, with C, D as above

7/50

DESCRIPTION LOGIC EL

In £L, complex concepts are constructed as follows:

C,D=T|A|CMD|3rcC
EL TBox = set of inclusions C C D, with C, D as above

: reasoning much simpler ()

Despite lower expressivity, ££ very useful in practice
- used for many biomedical ontologies, including SNOMED

- importance witnessed by OWL 2 EL profile

Also consider LT = £L + inverse roles (r~)

7/50

DESCRIPTION LOGIC DL-LITE

We present the dialect DL-Liteg (which underlies OWL 2 QL profile).

DL-Liteg TBoxes contain

- concept inclusions By C By, B; C =B,

- role inclusions 5, C S;, S C =S,

where

8/50

DESCRIPTION LOGIC DL-LITE

We present the dialect DL-Liteg (which underlies OWL 2 QL profile).

DL-Liteg TBoxes contain

- concept inclusions By C By, B; C =B,

- role inclusions 5, C S;, S C =S,

where

Example TBox inclusions:
- Every professor teaches something: Prof C Jteaches
- Everything that is taught is a course:

- Head of dept implies member of dept: headOf = memberOf

8/50

QUERY LANGUAGES

Instance queries (1Qs): find instances of a given concept or role

Faculty(x) teaches(x, y)

9/50

QUERY LANGUAGES

Instance queries (1Qs): find instances of a given concept or role

Faculty(x) teaches(x, y)

Conjunctive queries (CQs) ~ SP) queries in SQL, BGPs in SPARQL
conjunctions of atoms, some variables can be existentially quantified

Jy. Faculty(x) A teaches(x, y)

(find all faculty members that teach something)

9/50

ONTOLOGY-MEDIATED QUERY ANSWERING

Answering CQs in database setting

map into

T)
query F;—»,-/ homomorphism dataset

10/50

ONTOLOGY-MEDIATED QUERY ANSWERING

Answering CQs in database setting

map into
query F,L.q./ homomorphism dataset
Answering CQs in the
o _w;‘ i
query F_?_’; W A cong)?lAegg)Xn(S)
map into B (apply TBox axioms)

10/50

ONTOLOGY-MEDIATED QUERY ANSWERING

Answering CQs in database setting

map into
query F,L.q./ homomorphism dataset
Answering CQs in the
query F_?_’; W A cong)?lAegg)Xn(S)
map into B (apply TBox axioms)

Certain answers: tuples @ of individuals such that 7, A = q(d)

10/50

ONTOLOGY-MEDIATED QUERY ANSWERING

Answering CQs in database setting

map into
query F,L.q./ homomorphism dataset
Answering CQs in the
query F_?_’; W A cong)?lAegg)Xn(S)
map into B (apply TBox axioms)

Certain answers: tuples @ of individuals such that 7, A = q(d)

Ontology-mediated query (OMQ): pair (7, q) with 7 a TBox, g a query

10/50

QUERY REWRITING

QUERY REWRITING

Idea: reduce OMQA to database query evaluation

- rewriting step: OMQ (7",g) ~ first-order (SQL) query g’

- evaluation step: evaluate query g’ using relational DB system

Advantage: harness efficiency of relational database systems

12/50

QUERY REWRITING

Idea: reduce OMQA to database query evaluation

- rewriting step: OMQ (7",g) ~ first-order (SQL) query g’

- evaluation step: evaluate query g’ using relational DB system

Advantage: harness efficiency of relational database systems

Key notion:

- FO query @’ is an FO-rewriting of (T, q) iff for every ABox A:
&

Informally:

12/50

QUERY REWRITING

Idea: reduce OMQA to database query evaluation

- rewriting step: OMQ (7",g) ~ first-order (SQL) query g’

- evaluation step: evaluate query g’ using relational DB system

Advantage: harness efficiency of relational database systems

Key notion:

- FO query @’ is an FO-rewriting of (T, q) iff for every ABox A:
&

Informally:

Can also consider Datalog rewritings, defined analogously

12/50

QUERY REWRITING IN DL-LITE

Good news: every CQ and DL-Liteg ontology has FO-rewriting

13/50

QUERY REWRITING IN DL-LITE

Good news: every CQ and DL-Liteg ontology has FO-rewriting

Example:

Query qo = Prof(x) A involved(x,y) A IntroC(y)

13/50

QUERY REWRITING IN DL-LITE

Good news: every CQ and DL-Liteg ontology has FO-rewriting

Example:

Query go = Prof(x) A involved(x,y) A IntroC(y)

Get FO-rewriting by taking disjunction of go and following queries:

g1 = Jzsupervises(x,z) A involved(x,y) A IntroC(y)
g, = supervises(x,y) A IntroC(y)

gs = Prof(x) A involved(x,y) A 1005(y)

gs = 3zsupervises(x,z) A involved(x, y) A 100S(y)
Qe = Supervises(x,y) A 1005(y)

13/50

QUERY REWRITING IN DL-LITE

Good news: every CQ and DL-Liteg ontology has FO-rewriting

Example:

Query go = Prof(x) A involved(x,y) A IntroC(y)

Get FO-rewriting by taking disjunction of go and following queries:

g1 = Jzsupervises(x,z) A involved(x,y) A IntroC(y)
g, = supervises(x,y) A IntroC(y)

gs = Prof(x) A involved(x,y) A 1005(y)

gs = 3zsupervises(x,z) A involved(x, y) A 100S(y)
Qe = Supervises(x,y) A 1005(y)

Note: existence of FO-rewritings = very low data complexity (ACo)
13/50

WHAT ABOUT EL?

In £L, FO-rewritings need not exist:
- no FO-rewriting of A(x) w.rt. {3rAC A}

T T T

14/50

WHAT ABOUT EL?

In £L, FO-rewritings need not exist:
- no FO-rewriting of A(x) w.rt. {3rAC A}

T T T

However, Datalog rewritings always exist:
- Datalog program IM: r(x,y) AA(X) = A(y) A(X) — goal(x)
- T, A EA(a) iff can derive goal(a) from A using N

Can pass on rewriting to Datalog engine

14/50

WHAT ABOUT EL?

In £L, FO-rewritings need not exist:
- no FO-rewriting of A(x) w.rt. {3rAC A}

T T T

However, Datalog rewritings always exist:
- Datalog program IM: r(x,y) AA(X) = A(y) A(X) — goal(x)
- T, A EA(a) iff can derive goal(a) from A using N

Can pass on rewriting to Datalog engine

Datalog rewriting =

14/50

WHAT ABOUT EL?

In £L, FO-rewritings need not exist:
- no FO-rewriting of A(x) w.rt. {3rAC A}

T T T

However, Datalog rewritings always exist:
- Datalog program IM: r(x,y) AA(X) = A(y) A(X) — goal(x)
- T, A EA(a) iff can derive goal(a) from A using N

Can pass on rewriting to Datalog engine
Datalog rewriting =

Note: also get Datalog rewritings for many extensions of ££
14/50

WHAT ABOUT ALC?

Neither FO nor Datalog rewritings need exist

Culprit: presence of disjunction

15/50

WHAT ABOUT ALC?

Neither FO nor Datalog rewritings need exist
Culprit: presence of disjunction

Encoding of non-3-colourability:

TBox axioms:

(same for R, G)

Graph is 3-colourable < Boolean query 3x.clash(x) not entailed

15/50

UNDERSTANDING QUERY REWRITING

To gain better understanding of query rewriting,
we consider the following natural questions:

1. Size of rewritings DL-Lite

- How large are the rewritten queries?

2. Optimality of rewritings DL-Lite

- Can we achieve optimal complexity via query rewriting?

16/50

SIZE OF REWRITINGS

QUERY REWRITING FOR DL-LITE ONTOLOGIES

Lots of rewriting algorithms for DL-Lite designed and tested

Most produce

18/50

QUERY REWRITING FOR DL-LITE ONTOLOGIES

Lots of rewriting algorithms for DL-Lite designed and tested
Most produce

Experiments showed that such rewritings can be huge!

- can be difficult / impossible to generate and evaluate

Not hard to see smallest UCQ-rewriting may be exponentially large:

18/50

QUERY REWRITING FOR DL-LITE ONTOLOGIES

Lots of rewriting algorithms for DL-Lite designed and tested
Most produce

Experiments showed that such rewritings can be huge!

- can be difficult / impossible to generate and evaluate

Not hard to see smallest UCQ-rewriting may be exponentially large:

- Query: Ad(x) A ... AA%(X)
- Ontology: AJC A AlCAY ... AlCA?

18/50

QUERY REWRITING FOR DL-LITE ONTOLOGIES

Lots of rewriting algorithms for DL-Lite designed and tested
Most produce

Experiments showed that such rewritings can be huge!

- can be difficult / impossible to generate and evaluate

Not hard to see smallest UCQ-rewriting may be exponentially large:
- Query: Ad(x) A ... AA%(X)

- Ontology: AJC A AlCAY ... AlCA?

But: simple polysize FO-rewriting does exist! Ai1 (A2 (x) v Al(x))

18/50

DIFFERENT FORMS OF REWRITINGS

PE-rewritings: positive existential queries (only 3, A, V)

(r(y) v s(y, X)) A(A(X) V (B(x) A3z p(x,2))) A (A(Y) v (B(Y) ATz p(y, 2)))

19/50

DIFFERENT FORMS OF REWRITINGS

PE-rewritings: positive existential queries (only 3, A, V)
(r(x,¥) vs(¥, X)) A (A(X) v (B(X) A3z p(x, 2))) A (A(Y) V (B(y) A3z p(y, 2)))
NDL-rewritings: non-recursive Datalog queries

goal(x,y) + qi(x,¥), G2(x), G2(y)
qi(x,y) < r(x,y) q2(x) « A(x)
q1(X,y) < s(v:X) q2(X) = B(x), p(x,2)

19/50

DIFFERENT FORMS OF REWRITINGS

PE-rewritings: positive existential queries (only 3, A, V)
(r(x,¥) vs(¥, X)) A (A(X) v (B(X) A3z p(x, 2))) A (A(Y) V (B(y) A3z p(y, 2)))
NDL-rewritings: non-recursive Datalog queries

goal(x,y) + qi(x,¥), G2(x), G2(y)
qi(x,y) < r(x,y) q2(x) « A(x)
q1(X,y) < s(v:X) q2(X) = B(x), p(x,2)

FO-rewritings: first-order queries (can also use V,)

19/50

DIFFERENT FORMS OF REWRITINGS

PE-rewritings: positive existential queries (only 3, A, V)
(r(x,¥) vs(¥, X)) A (A(X) v (B(X) A3z p(x, 2))) A (A(Y) V (B(y) A3z p(y, 2)))
NDL-rewritings: non-recursive Datalog queries

goal(x,y) + qi(x,¥), G2(x), G2(y)
qi(x,y) < r(x,y) q2(x) « A(x)
q1(X,y) < s(v:X) q2(X) = B(x), p(x,2)

FO-rewritings: first-order queries (can also use V,)

What if we replace UCQs by PE / NDL / FO?

(Note: focus on so-called pure rewritings - no special constants)
19/50

FIRST NEGATIVE RESULTS [kkPz12]

Exponential blowup unavoidable for PE / NDL-rewritings

Formally: sequence of CQs g, and DL-Liteg TBoxes T, such that

- PE- and NDL-rewritings of (g, and 7, are exponential in |q,| + |7x|

of g, and 7, are unless
NP/poly C NC'

20/50

FIRST NEGATIVE RESULTS [kkPz12]

Exponential blowup unavoidable for PE / NDL-rewritings

Formally: sequence of CQs g, and DL-Liteg TBoxes T, such that

- PE- and NDL-rewritings of (g, and 7, are exponential in |q,| + |7x|

of g, and 7, are unless
NP/poly C NC'

Key proof step: reduce CNF satisfiability to CQ answering in DL-Liteg
- TBox generates full binary tree, leaves represent prop. valuations
- depth of tree = number of variables

- tree-shaped query selects valuation, checks clauses are satisfied
- number of leaves / branches in query = number of clauses

20/50

RESTRICTING DEPTH OF THE TBOX [KKPZ14]

Depth of TBox =
maximum depth of generated trees in canonical model / chase

- T has finite depth « chase terminates for every KB (7, .A)

21/50

RESTRICTING DEPTH OF THE TBOX [KKPZ14]

Depth of TBox =
maximum depth of generated trees in canonical model / chase

- T has finite depth « chase terminates for every KB (7, .A)

Does restricting the depth of TBoxes suffice for polysize rewritings?

21/50

RESTRICTING DEPTH OF THE TBOX [KKPZ14]

Depth of TBox =
maximum depth of generated trees in canonical model / chase

- T has finite depth « chase terminates for every KB (7, .A)

Does restricting the depth of TBoxes suffice for polysize rewritings?
Unfortunately not...

21/50

RESTRICTING DEPTH OF THE TBOX [KKPZ14]

Depth of TBox =
maximum depth of generated trees in canonical model / chase

- T has finite depth « chase terminates for every KB (7, .A)

Does restricting the depth of TBoxes suffice for polysize rewritings?
Unfortunately not...

- no polysize FO-rewritings unless NP/poly C NC'

21/50

RESTRICTING DEPTH OF THE TBOX [kkPz14]

Depth of TBox =
maximum depth of generated trees in canonical model / chase

- T has finite depth « chase terminates for every KB (7, .A)

Does restricting the depth of TBoxes suffice for polysize rewritings?
Unfortunately not...

- no polysize FO-rewritings unless NP/poly C NC'

Depth 1 TBoxes:
- no polysize PE- or NDL-rewritings
- no polysize FO-rewritings unless NL/poly C NC'

21/50

RESTRICTING DEPTH OF THE TBOX [kkPz14]

Depth of TBox =
maximum depth of generated trees in canonical model / chase

- T has finite depth « chase terminates for every KB (7, .A)

Does restricting the depth of TBoxes suffice for polysize rewritings?
Unfortunately not...

- no polysize FO-rewritings unless NP/poly C NC'

Depth 1 TBoxes:

- no polysize PE- or NDL-rewritings

- no polysize FO-rewritings unless NL/poly C NC'

- but: polysize PE-rewritings for tree-shaped queries

21/50

MAP OF RESULTS SO FAR

no poly PE but poly NDL

no poly FO unless NL/poly C NC!

\ T T T T T
arb 7\5] [no polysize PE or NDL] -
= —
5 btwf L2 |
5 < ul
[L) .
F %
28
tw2 - ‘g“zL _
., trees —
(<]
=
< s |
=
o
= L |
o
£
zZ 2f -
| | | | | |
1 2 3 d arb

TBox depth
22/50

GAPS IN THE LANDSCAPE

Two dimensions:
- type of TBox depth 1, depth 2, ..., arbitrary
- type of query tree-shaped / arbitrary

23/50

GAPS IN THE LANDSCAPE

Two dimensions:
- type of TBox depth 1, depth 2, ..., arbitrary
- type of query tree-shaped / arbitrary

What about tree-shaped queries & depth k TBoxes (k > 1) ?

23/50

GAPS IN THE LANDSCAPE

Two dimensions:
- type of TBox depth 1, depth 2, ..., arbitrary
- type of query tree-shaped / arbitrary

What about tree-shaped queries & depth k TBoxes (k > 1) ?

What about ?

23/50

GAPS IN THE LANDSCAPE

Two dimensions:
- type of TBox depth 1, depth 2, ..., arbitrary
- type of query tree-shaped / arbitrary

What about tree-shaped queries & depth k TBoxes (k > 1) ?
What about ?
What about restricted classes of tree-shaped queries?

- linear queries

- tree-shaped queries with fixed number of leaves

23/50

COMPLETING THE LANDSCAPE [BKP1

T T T T T
arb [] [no polysize PE or NDL] —
= —
5 btwl [) 22 |
z Z Ul
= no poly PE but poly NDL sz |
(poly FO < sac! € NCT) %§
tw 2 sz |
poly £
trees PE, —
o NDL,
>
3 ’ & FO |
Hf no poly PE but poly NDL
1 (poly FO < NL/poly C NC') b
€
Z 2 |
N J
| | | | |
1 2 3 d arb

TBox depth

24/50

COMPLETING THE LANDSCAPE [BkP15]

Bounded depth TBox + bounded treewidth CQs

- polysize NDL-rewritings do exist

- no polysize FO-rewritings (unless SAC' € NC')
Tree-shaped CQs with bounded number of leaves

- polysize NDL-rewritings do exist
- no polysize FO-rewritings (unless NL/poly C NC')

Negative results hold already for: depth 2 + linear queries

25/50

BRIEF GLIMPSE AT PROOF TECHNIQUES (1)

Standard computational complexity not the right tool
- can be used to show no polytime-computable rewriting
- ... but not that no polysize rewriting exists

26/50

BRIEF GLIMPSE AT PROOF TECHNIQUES (1)

Standard computational complexity not the right tool
- can be used to show no polytime-computable rewriting
- ... but not that no polysize rewriting exists

Instead: establish tight connections to circuit complexity

- branch of complexity that classifies Boolean functions wrt. size /
depth of Boolean circuits / formulas that compute them

- recall k-ary Boolean function maps tuples from {0,1}* to {0, 1}

26/50

BRIEF GLIMPSE AT PROOF TECHNIQUES (1)

Standard computational complexity not the right tool
- can be used to show no polytime-computable rewriting
- ... but not that no polysize rewriting exists

Instead: establish tight connections to circuit complexity

- branch of complexity that classifies Boolean functions wrt. size /
depth of Boolean circuits / formulas that compute them

- recall k-ary Boolean function maps tuples from {0,1}* to {0, 1}

Example: function REACH,

- input: a Boolean vector representing the adjacency matrix of a
directed graph G with n vertices including special vertices s and t

- output: 1iff encoded graph G contains a directed path from s to t

26/50

BRIEF GLIMPSE AT PROOF TECHNIQUES (1)

Standard computational complexity not the right tool
- can be used to show no polytime-computable rewriting
- ... but not that no polysize rewriting exists

Instead: establish tight connections to circuit complexity

- branch of complexity that classifies Boolean functions wrt. size /
depth of Boolean circuits / formulas that compute them

- recall k-ary Boolean function maps tuples from {0,1}* to {0, 1}

Example: function REACH,

- input: a Boolean vector representing the adjacency matrix of a
directed graph G with n vertices including special vertices s and t

- output: 1iff encoded graph G contains a directed path from s to t
No family of polysize mon. Boolean formulas computing REACH,,

26/50

BRIEF GLIMPSE AT PROOF TECHNIQUES (2)

Associate Boolean functions with query-TBox pair (g, T)

27/50

BRIEF GLIMPSE AT PROOF TECHNIQUES (2)

Associate Boolean functions with query-TBox pair (g, T)

Primitive evaluation function f,’7"

- input vector i ~ single-individual ABox A; ind a
- pa Mmeans concept A is present, pr means r self-loop

PIM () = 1if (T, Ay) k= a(a, ...,)

27/50

BRIEF GLIMPSE AT PROOF TECHNIQUES (2)

Associate Boolean functions with query-TBox pair (g, T)

Primitive evaluation function q‘ﬂm

- input vector i ~ single-individual ABox A; ind a
- pa means concept A is present, p, means r self-loop

PIN@) =1if (T, A7) = q(a,...,a)

Tree-witness hypergraph function qEVVT:

- input vector i ~ abstract description of how query mapped into
canonical model

- P Means atom a mapped into ABox
- py means tree-witness (subquery) t mapped to existential part

o r(U) = 1if U describes a partition of the atoms in g

27/50

BRIEF GLIMPSE AT PROOF TECHNIQUES (3)

EVSY
PE-rewritings monotone Boolean formulas
NDL-rewritings monotone Boolean circuits
FO-rewritings Boolean formulas

28/50

BRIEF GLIMPSE AT PROOF TECHNIQUES (3)

EVSY
PE-rewritings monotone Boolean formulas
NDL-rewritings monotone Boolean circuits
FO-rewritings Boolean formulas

Primitive evaluation function = lower bounds on rewriting size

prim

- transform rewriting of g, 7 into formula / circuit that computes for

Tree-witness hypergraph func. = upper bounds on rewriting size

- transform formula / circuit that computes fqh,on into rewriting of q, T

28/50

BRIEF GLIMPSE AT PROOF TECHNIQUES (3)

EVSY
PE-rewritings monotone Boolean formulas
NDL-rewritings monotone Boolean circuits
FO-rewritings Boolean formulas

Primitive evaluation function = lower bounds on rewriting size
- transform rewriting of g, 7" into formula / circuit that computes qugm
Tree-witness hypergraph func. = upper bounds on rewriting size
- transform formula / circuit that computes fq“f’Tm into rewriting of q, T

Exploit circuit complexity results about (in)existence of small
formulas / circuits computing different classes of Boolean functions /
28/50

OPTIMALITY OF REWRITINGS

WHAT DOES ALL THIS MEAN FOR COMPLEXITY OF QUERY ANSWERING?

30/50

WHAT DOES ALL THIS MEAN FOR COMPLEXITY OF QUERY ANSWERING?

Actually, not much!

Small rewritings do not guarantee low complexity

- need to consider cost of producing and evaluating the rewriting

30/50

WHAT DOES ALL THIS MEAN FOR COMPLEXITY OF QUERY ANSWERING?

Actually, not much!

Small rewritings do not guarantee low complexity

- need to consider cost of producing and evaluating the rewriting

Large rewritings do not guarantee high complexity

- maybe query rewriting is not the most efficient approach

30/50

WHAT DOES ALL THIS MEAN FOR COMPLEXITY OF QUERY ANSWERING?

Actually, not much!

Small rewritings do not guarantee low complexity

- need to consider cost of producing and evaluating the rewriting

Large rewritings do not guarantee high complexity

- maybe query rewriting is not the most efficient approach

Motivated the study of the

Consider combined complexity (data complexity is same in all cases)

30/50

COMBINED COMPLEXITY LANDSCAPE FOR DL-LITE [BKP15]

T T T T
arb - [NP-complete] -
£ b
o tw i
— (V]
2 g
8 L o |
= LOGCFL-complete E
o
w2 a |
=2
., trees -
[}
S
R 7
Y
© (&)
= - NL-complete i a
£ 5
G}
Z 2F S | A
| | | | | |
1 2 3 Y d arb
TBox depth

31/50

COMPARING THE LANDSCAPES

Treewidth

Number of leaves

arb

btw

tw 2

trees

no polysize PE or NDL j

') =
L o2
<ul
r no poly PE but poly NDL s%
(poly FO < sac! € NC1) 2L
L se
poly &
L PE,
NDL,
| |&Fo0
no poly PE but poly NDL
[(poly FO > NL/poly C Nc')
| —
| | | | |
1 2 3 o d arb
TBox depth

Treewidth

Number of leaves

NP-complete

LOGCFL-complete

2
2
=4
=
I=}
S
- a
=
I~ | —
o)
L NL-complete hA
fr
(=}
@
L <]
S
N
| | | |
3 e d arb
TBox depth

polysize NDL-rewritings ~ polynomial (LOGCFL / NL) complexity

32/50

COMPARING THE LANDSCAPES

T T T T T T T T T T
o)
arb = C] [no polysize PE or NDL] N arb = [NP-complete j i
= = =
& bl 2 | 4 B bwp o |
2 p s .
8 <ul H 2
o ... sl 8 | 5 | |
= no poly PE but poly NDL (“i il 2 NP g
(poly FO < sac! € NC1) 2L s
w2 5= | 4 w2 z |
poly 2 d
trees - | you — trees |- i
4 NDL, 2
g] o)
§ ,L|&F0 15 L |
g ly PE but poly NDL ‘s
no poly ut poly o
g 5 NL- let
2 [(poly FO > NL/poly C Nc') 1 3 - complete 3z |
£ 2 g
2 or 4 2 20 s | 4
-
| | | | I I | | | I | |
1 2 3 o d arb 1 2 3 565 P 2
fBexdept TBox depth

polysize NDL-rewritings ~ polynomial (LOGCFL / NL) complexity

Can we marry the positive succinctness & complexity results?

32/50

OPTIMAL NDL-REWRITINGS [BKKPZ16A]

For the three well-behaved classes of OMQs, define
NDL-rewritings of optimal complexity:

- rewriting can be constructed by L¢ transducer

- evaluating the rewriting can be done in C

with C € {NL, LOGCFL} the complexity of the OMQ class

33/50

OPTIMAL NDL-REWRITINGS [BKKPZ16A]

For the three well-behaved classes of OMQs, define
NDL-rewritings of optimal complexity:

- rewriting can be constructed by L¢ transducer

- evaluating the rewriting can be done in C

with C € {NL, LOGCFL} the complexity of the OMQ class

Key step: identify classes of NDL programs with right complexity
- NL: linear NDL-programs of bounded width (# vars per rule)

33/50

OPTIMAL NDL-REWRITINGS [BKKPZ16A]

For the three well-behaved classes of OMQs, define
NDL-rewritings of optimal complexity:

- rewriting can be constructed by L¢ transducer

- evaluating the rewriting can be done in C

with C € {NL, LOGCFL} the complexity of the OMQ class

Key step: identify classes of NDL programs with right complexity
- NL: linear NDL-programs of bounded width (# vars per rule)

Preliminary experiments with simple OMQs (depth 1, linear CQs):
- compared with other NDL-rewritings (Clipper, Rapid, Presto)

- our rewritings grow linearly with increasing query size

- other systems produce rewritings that grow exponentially

- our rewritings usually evaluated faster

33/50

PARAMETERIZED COMPLEXITY [BKKPRZ16]

Upper bound on
/ number of

34/50

PARAMETERIZED COMPLEXITY [BKKPRZ16]

Upper bound on
/ number of

Is it possible to do better?
- formally: fixed-parameter tractable (FPT)? f(d, ¢) - p(lql, |T1,].A])

34/50

PARAMETERIZED COMPLEXITY [BKKPRZ16]

Upper bound on
/ number of

Is it possible to do better?
- formally: fixed-parameter tractable (FPT)? f(d, ¢) - p(lql, |T1,].A])

Parameterized complexity of answering tree-shaped OMQs (7, q):
- parameters: depth d of 7, number ¢ of leaves in CQs

34/50

PARAMETERIZED COMPLEXITY [BKKPRZ16]

Upper bound on
/ number of

Is it possible to do better?
- formally: fixed-parameter tractable (FPT)? f(d, ¢) - p(lql, |T1,].A])

Parameterized complexity of answering tree-shaped OMQs (7, q):
- parameters: depth d of 7, number ¢ of leaves in CQs
- not FPT if depth d taken as parameter W[2]-hard

- not FPT if number of leaves /¢ taken as parameter W[1]-hard

Message: for good performance, want d and ¢ small

34/50

EXISTENCE OF REWRITINGS

QUERY REWRITING BEYOND DL-LITE

We have seen that:
- for ££ ontologies, FO-rewritings need not exist

- for ontologies,

But these are worst-case results
- only say that some OMQ that does not have a rewriting

- possible that rewritings exist for many ontologies and queries
encountered in practice

To extend the applicability of query rewriting beyond DL-Lite:
- devise ways of identifying ‘good cases’

- construct rewritings when they exist

36/50

DECIDING EXISTENCE OF REWRITINGS

Use (£, Q) to denote set of OMQs (7, q) where:
- T is an L-TBox

- gisaquery from Q Q € {1Q,CQ}
For example: (££,CQ), (ALC,1Q)
FO-rewritability in (£, Q)

- Input: OMQ (7, g) from (£, Q)

- Problem: decide whether (7, q) has an FO-rewriting

Datalog-rewritability decision problem can be defined analogously

37/50

FO-REWRITABILITY IN EL [BLW13] [BCLW16]

We have the following results:

- FO-rewritability is Exp-complete in (££,1Q) and (E£Z, 1Q)
- FO-rewritability is Exp-complete in (££,CQ)

- FO-rewritability is 2Exp-complete in (££Z,CQ)

What makes FO-rewritability so difficult?

Consider TBox T ={3rAC A, 3r. T C A} 1Q A(x)

T T T

FO-rewriting exists: A(x) VvV Iy r(x,y)

Reason: dr.TC A drACA
- such cancellations can be

38/50

PROOF IDEA FOR UPPER BOUNDS

Characterization of non-existence of FO-rewriting:
OMQ (T,A(x)) Is iff there exist tree-shaped ABoxes

Al .AQ .A3 A4

ag ag ag

AA AL AL

such that forall i >1: 7, A; = A(ag) and

39/50

PROOF IDEA FOR UPPER BOUNDS

Characterization of non-existence of FO-rewriting:
oMQ (T, A(x)) is iff there exist tree-shaped ABoxes

Al .AQ .A3 A4

ag ag ag

AA AL AL

such that forall i >1: 7, A; = A(ag) and

Pumping argument: enough to find ABox of particular finite size kg

- desired ABox Ay, exists = can construct full sequence of ABoxes

39/50

PROOF IDEA FOR UPPER BOUNDS

Characterization of non-existence of FO-rewriting:
oMQ (T, A(x)) is iff there exist tree-shaped ABoxes

Al .AQ .A3 A4

,4'1/AM AIZ lS ‘4

such that forall i >1: 7, A; = A(ag) and

Pumping argument: enough to find ABox of particular finite size kg

- desired ABox Ay, exists = can construct full sequence of ABoxes

Use tree automata to check whether such a witness ABox exists

39/50

PROOF IDEA FOR UPPER BOUNDS

Characterization of non-existence of FO-rewriting:
oMQ (T, A(x)) is iff there exist tree-shaped ABoxes

Al .AQ .A3 A4

,4'1/AM AIZ lS ‘4

such that forall i >1: 7, A; = A(ag) and

Pumping argument: enough to find ABox of particular finite size kg

- desired ABox Ay, exists = can construct full sequence of ABoxes
Use tree automata to check whether such a witness ABox exists

Can generalize this technique to handle CQs as well
39/50

COMPUTING FO-REWRITINGS OF 1QS IN EL [HLsw15]

Use existing backwards-chaining rewriting procedure
- if FO-rewriting does exist, terminates and outputs UCQ-rewriting

- to ensure termination in general: use characterization result

40/50

COMPUTING FO-REWRITINGS OF 1QS IN EL [HLsw15]

Use existing backwards-chaining rewriting procedure
- if FO-rewriting does exist, terminates and outputs UCQ-rewriting

- to ensure termination in general: use characterization result
To make practical: decomposed algorithm

- allows for structure sharing
- produces (succinct) NDL-rewriting instead of UCQ-rewriting

40/50

COMPUTING FO-REWRITINGS OF 1QS IN EL [HLsw15]

Use existing backwards-chaining rewriting procedure
- if FO-rewriting does exist, terminates and outputs UCQ-rewriting

- to ensure termination in general: use characterization result

To make practical: decomposed algorithm
- allows for structure sharing
- produces (succinct) NDL-rewriting instead of UCQ-rewriting

Experimental results are
, produced are

- suggests that in practice for

40/50

REWRITABILITY FOR (ALC, 1Q) [BcLw13] [BCcLwW14]

FO-rewritability and Datalog-rewritability of (ALC,1Q) are both
NEXPTIME-complete.

41/50

REWRITABILITY FOR (ALC, 1Q) [BcLw13] [BCcLwW14]

FO-rewritability and Datalog-rewritability of (ALC,1Q) are both
NEXPTIME-complete.

Lower bound: reduction from

41/50

REWRITABILITY FOR (ALC, 1Q) [BcLw13] [BCcLwW14]

FO-rewritability and Datalog-rewritability of (ALC,1Q) are both
NEXPTIME-complete.

Lower bound: reduction from

Upper bound: connection to constraint satisfaction problems (CSPs)
- CSP(B): decide if homomorphism from input structure D into B
- (Boolean) OMQs in (ALC, Q) ~ (complement of) CSPs

- exponential reduction to problem of deciding whether a CSP is
definable in FO / Datalog

- use NP upper bounds for latter problems [LLTO7] [FKKMMWOQ9]

41/50

FO-REWRITABILITY FOR (ALC, UCQ) [BL16] [FKL16]

FO-rewritability of (ALC, UCQ) is 2NEXPTIME-complete

42/50

FO-REWRITABILITY FOR (ALC, UCQ)

FO-rewritability of (ALC, UCQ) is 2NEXPTIME-complete

Instead of CSP, uses
fragment of monadic second-order

[BL16] [FKL16]

42/50

FO-REWRITABILITY FOR (ALC, UCQ) [BL16] [FKL16]

FO-rewritability of (ALC, UCQ) is 2NEXPTIME-complete

Instead of CSP, uses
fragment of monadic second-order

OMQs from (ALC,UCQ) ~ complement of MMSNP formulas
~ monadic disjunctive Datalog

42/50

FO-REWRITABILITY FOR (ALC, UCQ) [BL16] [FKL16]

FO-rewritability of (ALC, UCQ) is 2NEXPTIME-complete

Instead of CSP, uses
fragment of monadic second-order

OMQs from (ALC,UCQ) ~ complement of MMSNP formulas
~ monadic disjunctive Datalog

FO-expressibility of (co)MMSNP not studied in CSP literature

42/50

FO-REWRITABILITY FOR (ALC, UCQ) [BL16] [FKL16]

FO-rewritability of (ALC, UCQ) is 2NEXPTIME-complete

Instead of CSP, uses
fragment of monadic second-order

OMQs from (ALC,UCQ) ~ complement of MMSNP formulas
~ monadic disjunctive Datalog

FO-expressibility of (co)MMSNP not studied in CSP literature

Recently: shown to be decidable and 2NEXPTIME-complete

42/50

CONCLUDING REMARKS

CONCLUSION

Ontology-mediated query answering:
- new paradigm for intelligent information systems
- offers many advantages, but also computational challenges

Many interesting problems related to OMQA and query rewriting:

- succinctness of rewritings (Boolean functions, circuit complexity)
- optimality of rewritings (Datalog fragments, param. complexity)

- existence of FO and Datalog rewritings (automata, CSP / MMSNP)

Lots left to do!
- experiment + optimize NDL-rewritings, evaluation strategies
- develop practical algorithms going beyond ££ and 1Qs

4450

QUESTIONS ?

REFERENCES: SUCCINCTNESS & OPTIMALITY OF REWRITINGS

[KKPZ12] S. Kikot, R. Kontchakov, V. Podolskii, and M. Zakharyaschev: Exponential Lower
Bounds and Separation for Query Rewriting. 39th International Collogquium on
Automata, Languages, and Programming (ICALP"12), 2012.

[GS12] G. Gottlob and T. Schwentick: Rewriting Ontological Queries into Small
Nonrecursive Datalog Programs. 13th International Conference on the Principles of
Knowledge Representation and Reasoning (KR"12), 2012.

[GKKPSZ14] G. Gottlob, S. Kikot, R. Kontchakov, V. Podolskii, T. Schwentick, and M.
Zakharyaschev: The Price of Query Rewriting in Ontology-based Data Access. Artificial
Intelligence (Al)), 2014.

[KKPZ14] S. Kikot, R. Kontchakov, V. Podolskii, and M. Zakharyaschev: On the
Succinctness of Query Rewriting over Shallow Ontologies. 29th Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS4), 2014.

46/50

REFERENCES: SUCCINCTNESS & OPTIMALITY OF REWRITINGS

[BKP15] M. Bienvenu, S. Kikot, V. Podolskii: Tree-like Queries in OWL 2 QL: Succinctness
and Complexity Results. 30th Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS"5), 2075.

[BKKPZ16a] M. Bienvenu, S. Kikot, R. Kontchakov, V. Podolskii, and M. Zakharyaschev:
Theoretically Optimal Datalog Rewritings for OWL 2 QL Ontology-Mediated Queries.
29th International Workshop on Description Logics (DL16), 2016.

[BKKPZ16b] M. Bienvenu, S. Kikot, R. Kontchakov, V. Podolskii, and M. Zakharyaschev:
Ontology-Mediated Queries: Combined Complexity and Succinctness of Rewritings via
Circuit Complexity. Under review, CoRR abs/1605.01207, 2016.

[BKKPRZ16] M. Bienvenu, S. Kikot, R. Kontchakov, V. Podolskii, V. Ryzhikov and M.
Zakharyaschev: The Complexity of Ontology-Based Data Access with OWL 2 QL and
Bounded Treewidth Queries. Under review, 2016.

47/50

REFERENCES: EXISTENCE OF REWRITINGS

[BCLW13] M. Bienvenu, B. ten Cate, C. Lutz, and F. Wolter: Ontology-based Data Access:
A Study through Disjunctive Datalog, CSP, and MMSNP. 32nd International Conference
on the Principles of Database Systems (PODS"3), 2013.

[BLW13] M. Bienvenu, C. Lutz, and F. Wolter: First Order-Rewritability of Atomic Queries
in Horn Description Logics. 23rd International Joint Conference on Artificial
Intelligence (IJCAI13), 2013.

[BCLW14] M. Bienvenu, B. ten Cate, C. Lutz, and F. Wolter: Ontology-based Data Access:
A Study through Disjunctive Datalog, CSP, and MMSNP. Transactions on Database
Systems (TODS), 2014.

[KNG14] M. Kaminski, Y. Nenov, and B. Cuenca Grau: Datalog Rewritability of Disjunctive
Datalog Programs and its Applications to Ontology Reasoning. 28th AAAI Conference
on Artificial Intelligence (AAAI4), 2014,

48/50

REFERENCES: EXISTENCE OF REWRITINGS

[HLSW15] P. Hansen, C. Lutz, I. Seylan, and F. Wolter: Efficient Query Rewriting in the
Description Logic EL and Beyond. 24th International Joint Conference on Artificial
Intelligence (1JCAI"5), 2015.

[BL16] P. Bourhis and C. Lutz: Containment in Monadic Disjunctive Datalog, MMSNP, and
Expressive Description Logics. 15th International Conference on the Principles of
Knowledge Representation and Reasoning (KR"6), 2016.

[FKL16] C. Feier, A. Kuusisto, and C. Lutz: FO-Rewritability of Expressive
Ontology-Mediated Queries. 29th International Workshop on Description Logics
(DL"6), 2016.

[BCLW16] M. Bienvenu, P. Hansen, C. Lutz, and F. Wolter: First Order-Rewritability and
Containment of Conjunctive Queries in Horn Description Logics. 25th International

Joint Conference on Artificial Intelligence (1JCAI"6), 2016.

49/50

REFERENCES: DEFINABILITY OF CSPS

[LLTO7] B. Larose, C. Loten, and C. Tardif. A characterisation of first-order constraint
satisfaction problems. Logical Methods in Computer Science (LMCS), 2007.
[FKKMMWO09] R. Freese, M. Kozik, A. Krokhin, M. Maroti, R. Mckenzie, and R. Willard. On
maltsev conditions associated with omitting certain types of local structures.
Available at: http://www.math.hawaii.
edu/~ralph/Classes/619/0OmittingTypesMaltsev.pdf, 2009.

50/50

	Brief Intro to DLs & OMQA
	Query Rewriting
	Size of Rewritings
	Optimality of Rewritings
	Existence of Rewritings
	Concluding Remarks

