
inconsistency-tolerant
querying of description
logic knowledge bases
Meghyn Bienvenu (CNRS, University of Montpellier, Inria)

ontology-mediated query answering (omqa)

data

incomplete
database

(ground facts)

ontology
(logical theory)

???

user query

2/68

ontology-mediated query answering (omqa)

data ???

patient data
“Melanie has listeriosis”
“Paul has Lyme disease”

medical knowledge
“Listeriosis & Lyme disease

are bacterial infections”

user query
“Find all patients with
bacterial infections”

2/68

ontology-mediated query answering (omqa)

data ???

patient data
“Melanie has listeriosis”
“Paul has Lyme disease”

medical knowledge
“Listeriosis & Lyme disease

are bacterial infections”

user query
“Find all patients with
bacterial infections”

expected answers: Melanie, Paul

2/68

ontology-mediated query answering (omqa)

data ???

employee data
“Marie is a professor”
“Mark teaches CS200”

org. knowledge
“Professors are teaching staff”

“Someone who teaches is
part of the teaching staff”

user query
“Find all teaching staff”

2/68

ontology-mediated query answering (omqa)

data ???

employee data
“Marie is a professor”
“Mark teaches CS200”

org. knowledge
“Professors are teaching staff”

“Someone who teaches is
part of the teaching staff”

user query
“Find all teaching staff”

expected answers: Marie, Mark

2/68

what are ontologies good for?

To standardize the terminology of an application domain
∙ by adopting a common vocabulary, easy to share information
∙ meaning of terms is constrained, so less misunderstandings

To present an intuitive and unified view of data sources
∙ ontology can be used to enrich the data vocabulary, making it
easier for users to formulate their queries

∙ especially useful when integrating multiple data sources

To support automated reasoning
∙ uncover implicit connections between terms, errors in modelling
∙ exploit knowledge in the ontology during query answering, to get
back a more complete set of answers to queries

3/68

what are ontologies good for?

To standardize the terminology of an application domain
∙ by adopting a common vocabulary, easy to share information
∙ meaning of terms is constrained, so less misunderstandings

To present an intuitive and unified view of data sources
∙ ontology can be used to enrich the data vocabulary, making it
easier for users to formulate their queries

∙ especially useful when integrating multiple data sources

To support automated reasoning
∙ uncover implicit connections between terms, errors in modelling
∙ exploit knowledge in the ontology during query answering, to get
back a more complete set of answers to queries

3/68

what are ontologies good for?

To standardize the terminology of an application domain
∙ by adopting a common vocabulary, easy to share information
∙ meaning of terms is constrained, so less misunderstandings

To present an intuitive and unified view of data sources
∙ ontology can be used to enrich the data vocabulary, making it
easier for users to formulate their queries

∙ especially useful when integrating multiple data sources

To support automated reasoning
∙ uncover implicit connections between terms, errors in modelling
∙ exploit knowledge in the ontology during query answering, to get
back a more complete set of answers to queries

3/68

our focus: description logic ontologies

Description logics (DLs):
∙ popular means for specifying ontologies
∙ basis of the web ontology language OWL (W3C standard)

Formally: decidable fragments of first-order logic
∙ inherit well-defined semantics
∙ succinct, variable-free syntax

Computational properties well understood (decidability, complexity)

Many implemented reasoners and tools available for use

4/68

our focus: description logic ontologies

Description logics (DLs):
∙ popular means for specifying ontologies
∙ basis of the web ontology language OWL (W3C standard)

Formally: decidable fragments of first-order logic
∙ inherit well-defined semantics
∙ succinct, variable-free syntax

Computational properties well understood (decidability, complexity)

Many implemented reasoners and tools available for use

4/68

today: handling data inconsistencies

In realistic settings, can expect some errors in the data
∙ ABox likely to be inconsistent with the TBox (ontology)

Standard semantics: everything is implied - not informative!

Two approaches to inconsistency handling:
∙ resolve the inconsistencies
∙ preferable, but not always applicable!

∙ live with the inconsistencies - adopt alternative semantics
∙ meaningful answers to queries despite inconsistencies

Note: focus on case where errors in ABox (assume TBox reliable)

5/68

today: handling data inconsistencies

In realistic settings, can expect some errors in the data
∙ ABox likely to be inconsistent with the TBox (ontology)

Standard semantics: everything is implied - not informative!

Two approaches to inconsistency handling:
∙ resolve the inconsistencies
∙ preferable, but not always applicable!

∙ live with the inconsistencies - adopt alternative semantics
∙ meaningful answers to queries despite inconsistencies

Note: focus on case where errors in ABox (assume TBox reliable)

5/68

introduction to dls & omqa

description logic ontologies

Building blocks:
∙ concept names (unary predicates, classes) Prof Fac Course

∙ role names (binary predicates, properties) Teaches HeadOf

Constructors to build complex descriptions ⊔,⊓,¬, ∀,∃, ...

Fac ⊓ ¬Prof ∃Teaches.GradCourse Teaches−

TBox (ontology) = set of axioms
∙ concept inclusions

Prof ⊑ Fac Prof ⊑ ¬Fellow ∃Teaches.GradCourse ⊑ Prof

∙ role inclusions

TaughtBy ⊑ Teaches− HeadOf ⊑ MemberOf

Note: allowed constructors and axioms depends on chosen DL

7/68

description logic ontologies

Building blocks:
∙ concept names (unary predicates, classes) Prof Fac Course

∙ role names (binary predicates, properties) Teaches HeadOf

Constructors to build complex descriptions ⊔,⊓,¬, ∀,∃, ...

Fac ⊓ ¬Prof ∃Teaches.GradCourse Teaches−

TBox (ontology) = set of axioms
∙ concept inclusions

Prof ⊑ Fac Prof ⊑ ¬Fellow ∃Teaches.GradCourse ⊑ Prof

∙ role inclusions

TaughtBy ⊑ Teaches− HeadOf ⊑ MemberOf

Note: allowed constructors and axioms depends on chosen DL
7/68

dl-lite

Mainly focus on DLs of the DL-Lite family

∙ specifically designed for OMQA

∙ simple DLs with useful modelling constructs

∙ basis for OWL 2 QL profile

DL-LiteR dialect:

∙ concept inclusions B1 ⊑ (¬)B2 B1,B2 either A ∈ NC or ∃R (R ∈ N±
R)

∙ role inclusions R1 ⊑ (¬)R2 R1,R2 ∈ N±
R

8/68

dl-lite

Mainly focus on DLs of the DL-Lite family

∙ specifically designed for OMQA

∙ simple DLs with useful modelling constructs

∙ basis for OWL 2 QL profile

DL-LiteR dialect:

∙ concept inclusions B1 ⊑ (¬)B2 B1,B2 either A ∈ NC or ∃R (R ∈ N±
R)

∙ role inclusions R1 ⊑ (¬)R2 R1,R2 ∈ N±
R

8/68

other dls

We will also briefly consider other DLs

‘Lightweight’ description logic EL ⊥:

∙ concept constructors: ⊤, ⊥, ⊓, and ∃r.C
∙ only concept inclusions C⊑ D in TBox

‘Expressive’ description logic ALC:

∙ concept constructors: ⊤,⊥,¬,⊓,⊔, ∃r.C, and ∀r.C
∙ only concept inclusions C⊑ D in TBox

9/68

semantics of dl kbs

Interpretation I (“possible world”)
∙ domain of objects ∆I (possibly infinite set)
∙ interpretation function ·I that maps
∙ concept name A⇝ set of objects AI ⊆ ∆I

∙ role name r⇝ set of pairs of objects rI ⊆ ∆I ×∆I

∙ individual name a⇝ object aI ∈ ∆I

∙ extend ·I to complex concepts and roles in natural way

Interpretation I is a model of KB ⟨T ,A⟩ if:
∙ GI ⊆ HI for every (concept or role) inclusion G ⊑ H ∈ T
∙ aI ∈ AI for every A(a) ∈ A and (aI ,bI) ∈ rI for every r(a,b) ∈ A

Satisfiable KB = has at least one model

ABox A is T -consistent = KB ⟨T ,A⟩ is satisfiable

10/68

semantics of dl kbs

Interpretation I (“possible world”)
∙ domain of objects ∆I (possibly infinite set)
∙ interpretation function ·I that maps
∙ concept name A⇝ set of objects AI ⊆ ∆I

∙ role name r⇝ set of pairs of objects rI ⊆ ∆I ×∆I

∙ individual name a⇝ object aI ∈ ∆I

∙ extend ·I to complex concepts and roles in natural way

Interpretation I is a model of KB ⟨T ,A⟩ if:
∙ GI ⊆ HI for every (concept or role) inclusion G ⊑ H ∈ T
∙ aI ∈ AI for every A(a) ∈ A and (aI ,bI) ∈ rI for every r(a,b) ∈ A

Satisfiable KB = has at least one model

ABox A is T -consistent = KB ⟨T ,A⟩ is satisfiable

10/68

semantics of dl kbs

Interpretation I (“possible world”)
∙ domain of objects ∆I (possibly infinite set)
∙ interpretation function ·I that maps
∙ concept name A⇝ set of objects AI ⊆ ∆I

∙ role name r⇝ set of pairs of objects rI ⊆ ∆I ×∆I

∙ individual name a⇝ object aI ∈ ∆I

∙ extend ·I to complex concepts and roles in natural way

Interpretation I is a model of KB ⟨T ,A⟩ if:
∙ GI ⊆ HI for every (concept or role) inclusion G ⊑ H ∈ T
∙ aI ∈ AI for every A(a) ∈ A and (aI ,bI) ∈ rI for every r(a,b) ∈ A

Satisfiable KB = has at least one model

ABox A is T -consistent = KB ⟨T ,A⟩ is satisfiable
10/68

example: unsatisfiable kb

Example TBox Tuniv:

Prof ⊑ Fac Prof ⊑ ∃Teaches Prof ⊑ ¬Lect Fac ⊑ ¬Course
Lect ⊑ Fac Lect ⊑ ∃Teaches Prof ⊑ ¬Fellow
Fellow ⊑ Fac ∃Teaches− ⊑ Course Lect ⊑ ¬Fellow

Example ABox Auniv:

Prof(anna), Lect(anna), Fellow(anna), Prof(kim), Lect(kim),

Fellow(julie), Teaches(csc343, julie), Fellow(alex), Teaches(alex, csc486)

Claim: ⟨Tuniv,Auniv⟩ is unsatisfiable

⊆-minimal Tuniv-inconsistent subsets of Auniv:

{Prof(anna), Lect(anna)} {Prof(anna), Fellow(anna)}
{Lect(anna), Fellow(anna)} {Prof(kim), Lect(kim)}

{Fellow(julie), Teaches(csc343, julie)}

11/68

example: unsatisfiable kb

Example TBox Tuniv:

Prof ⊑ Fac Prof ⊑ ∃Teaches Prof ⊑ ¬Lect Fac ⊑ ¬Course
Lect ⊑ Fac Lect ⊑ ∃Teaches Prof ⊑ ¬Fellow
Fellow ⊑ Fac ∃Teaches− ⊑ Course Lect ⊑ ¬Fellow

Example ABox Auniv:

Prof(anna), Lect(anna), Fellow(anna), Prof(kim), Lect(kim),

Fellow(julie), Teaches(csc343, julie), Fellow(alex), Teaches(alex, csc486)

Claim: ⟨Tuniv,Auniv⟩ is unsatisfiable

⊆-minimal Tuniv-inconsistent subsets of Auniv:

{Prof(anna), Lect(anna)} {Prof(anna), Fellow(anna)}
{Lect(anna), Fellow(anna)} {Prof(kim), Lect(kim)}

{Fellow(julie), Teaches(csc343, julie)}

11/68

query languages

Instance queries (IQs): find instances of a given concept or role

Fac(x) Teaches(x, y)

Conjunctive queries (CQs) ∼ SPJ queries in SQL, BGPs in SPARQL
conjunctions of atoms, some variables can be existentially quantified

∃y. Fac(x) ∧ Teaches(x, y)
(find all faculty members that teach something)

Unions of conjunctive queries (UCQs): disjunction of CQs

12/68

query languages

Instance queries (IQs): find instances of a given concept or role

Fac(x) Teaches(x, y)

Conjunctive queries (CQs) ∼ SPJ queries in SQL, BGPs in SPARQL
conjunctions of atoms, some variables can be existentially quantified

∃y. Fac(x) ∧ Teaches(x, y)
(find all faculty members that teach something)

Unions of conjunctive queries (UCQs): disjunction of CQs

12/68

query languages

Instance queries (IQs): find instances of a given concept or role

Fac(x) Teaches(x, y)

Conjunctive queries (CQs) ∼ SPJ queries in SQL, BGPs in SPARQL
conjunctions of atoms, some variables can be existentially quantified

∃y. Fac(x) ∧ Teaches(x, y)
(find all faculty members that teach something)

Unions of conjunctive queries (UCQs): disjunction of CQs

12/68

querying dl knowledge bases

Answers to q(⃗x) in interpretation I :
tuples o⃗ ∈ ∆I such that q(⃗x 7→ o⃗) holds in I

Problem: each KB gives rise to multiple interpretations (its models)

Solution: adopt certain answer semantics
∙ require tuple to be an answer w.r.t. all models of KB

Formally: Call a tuple (a1, . . . ,an) of individuals from A a certain
answer to n-ary query q over DL KB K = (T ,A) iff

(aI1 , . . . ,aIn) ∈ ans(q, I) for every model I of K
Notation: K |= q(a1, . . . ,an)

Ontology-mediated query answering (OMQA)
= computing certain answers to queries

13/68

querying dl knowledge bases

Answers to q(⃗x) in interpretation I :
tuples o⃗ ∈ ∆I such that q(⃗x 7→ o⃗) holds in I

Problem: each KB gives rise to multiple interpretations (its models)

Solution: adopt certain answer semantics
∙ require tuple to be an answer w.r.t. all models of KB

Formally: Call a tuple (a1, . . . ,an) of individuals from A a certain
answer to n-ary query q over DL KB K = (T ,A) iff

(aI1 , . . . ,aIn) ∈ ans(q, I) for every model I of K
Notation: K |= q(a1, . . . ,an)

Ontology-mediated query answering (OMQA)
= computing certain answers to queries

13/68

querying dl knowledge bases

Answers to q(⃗x) in interpretation I :
tuples o⃗ ∈ ∆I such that q(⃗x 7→ o⃗) holds in I

Problem: each KB gives rise to multiple interpretations (its models)

Solution: adopt certain answer semantics
∙ require tuple to be an answer w.r.t. all models of KB

Formally: Call a tuple (a1, . . . ,an) of individuals from A a certain
answer to n-ary query q over DL KB K = (T ,A) iff

(aI1 , . . . ,aIn) ∈ ans(q, I) for every model I of K
Notation: K |= q(a1, . . . ,an)

Ontology-mediated query answering (OMQA)
= computing certain answers to queries

13/68

querying dl knowledge bases

Answers to q(⃗x) in interpretation I :
tuples o⃗ ∈ ∆I such that q(⃗x 7→ o⃗) holds in I

Problem: each KB gives rise to multiple interpretations (its models)

Solution: adopt certain answer semantics
∙ require tuple to be an answer w.r.t. all models of KB

Formally: Call a tuple (a1, . . . ,an) of individuals from A a certain
answer to n-ary query q over DL KB K = (T ,A) iff

(aI1 , . . . ,aIn) ∈ ans(q, I) for every model I of K
Notation: K |= q(a1, . . . ,an)

Ontology-mediated query answering (OMQA)
= computing certain answers to queries

13/68

querying dl knowledge bases

Answers to q(⃗x) in interpretation I :
tuples o⃗ ∈ ∆I such that q(⃗x 7→ o⃗) holds in I

Problem: each KB gives rise to multiple interpretations (its models)

Solution: adopt certain answer semantics
∙ require tuple to be an answer w.r.t. all models of KB

Formally: Call a tuple (a1, . . . ,an) of individuals from A a certain
answer to n-ary query q over DL KB K = (T ,A) iff

(aI1 , . . . ,aIn) ∈ ans(q, I) for every model I of K
Notation: K |= q(a1, . . . ,an)

Ontology-mediated query answering (OMQA)
= computing certain answers to queries

13/68

example: omqa with dl-lite ontologies

Same TBox Tuniv:

Prof ⊑ Fac Prof ⊑ ∃Teaches Prof ⊑ ¬Lect Fac ⊑ ¬Course
Lect ⊑ Fac Lect ⊑ ∃Teaches Prof ⊑ ¬Fellow
Fellow ⊑ Fac ∃Teaches− ⊑ Course Lect ⊑ ¬Fellow

Consistent subset of Auniv:

Prof(anna), Lect(kim), Fellow(julie), Fellow(alex), Teaches(alex, csc486)

Query: q1(x) = Fac(x)

Certain answers to q1:

anna, kim, julie, alex

14/68

example: omqa with dl-lite ontologies

Same TBox Tuniv:

Prof ⊑ Fac Prof ⊑ ∃Teaches Prof ⊑ ¬Lect Fac ⊑ ¬Course
Lect ⊑ Fac Lect ⊑ ∃Teaches Prof ⊑ ¬Fellow
Fellow ⊑ Fac ∃Teaches− ⊑ Course Lect ⊑ ¬Fellow

Consistent subset of Auniv:

Prof(anna), Lect(kim), Fellow(julie), Fellow(alex), Teaches(alex, csc486)

Query: q1(x) = Fac(x)

Certain answers to q1:

anna, kim, julie, alex

14/68

example: omqa with dl-lite ontologies

Same TBox Tuniv:

Prof ⊑ Fac Prof ⊑ ∃Teaches Prof ⊑ ¬Lect Fac ⊑ ¬Course
Lect ⊑ Fac Lect ⊑ ∃Teaches Prof ⊑ ¬Fellow
Fellow ⊑ Fac ∃Teaches− ⊑ Course Lect ⊑ ¬Fellow

Consistent subset of Auniv:

Prof(anna), Lect(kim), Fellow(julie), Fellow(alex), Teaches(alex, csc486)

Query: q1(x) = Fac(x)

Certain answers to q1: anna, kim, julie, alex

14/68

example: omqa with dl-lite ontologies

Same TBox Tuniv:

Prof ⊑ Fac Prof ⊑ ∃Teaches Prof ⊑ ¬Lect Fac ⊑ ¬Course
Lect ⊑ Fac Lect ⊑ ∃Teaches Prof ⊑ ¬Fellow
Fellow ⊑ Fac ∃Teaches− ⊑ Course Lect ⊑ ¬Fellow

Consistent subset of Auniv:

Prof(anna), Lect(kim), Fellow(julie), Fellow(alex), Teaches(alex, csc486)

Query: q2(x) = ∃y Teaches(x, y)

Certain answers to q2:

anna, kim, alex

14/68

example: omqa with dl-lite ontologies

Same TBox Tuniv:

Prof ⊑ Fac Prof ⊑ ∃Teaches Prof ⊑ ¬Lect Fac ⊑ ¬Course
Lect ⊑ Fac Lect ⊑ ∃Teaches Prof ⊑ ¬Fellow
Fellow ⊑ Fac ∃Teaches− ⊑ Course Lect ⊑ ¬Fellow

Consistent subset of Auniv:

Prof(anna), Lect(kim), Fellow(julie), Fellow(alex), Teaches(alex, csc486)

Query: q2(x) = ∃y Teaches(x, y)

Certain answers to q2: anna, kim, alex

14/68

example: omqa with dl-lite ontologies

Same TBox Tuniv:

Prof ⊑ Fac Prof ⊑ ∃Teaches Prof ⊑ ¬Lect Fac ⊑ ¬Course
Lect ⊑ Fac Lect ⊑ ∃Teaches Prof ⊑ ¬Fellow
Fellow ⊑ Fac ∃Teaches− ⊑ Course Lect ⊑ ¬Fellow

Consistent subset of Auniv:

Prof(anna), Lect(kim), Fellow(julie), Fellow(alex), Teaches(alex, csc486)

Query: q3(x) = ∃y Fac(x) ∧ Teaches(x, y)

Certain answers to q3:

anna, kim, alex

14/68

example: omqa with dl-lite ontologies

Same TBox Tuniv:

Prof ⊑ Fac Prof ⊑ ∃Teaches Prof ⊑ ¬Lect Fac ⊑ ¬Course
Lect ⊑ Fac Lect ⊑ ∃Teaches Prof ⊑ ¬Fellow
Fellow ⊑ Fac ∃Teaches− ⊑ Course Lect ⊑ ¬Fellow

Consistent subset of Auniv:

Prof(anna), Lect(kim), Fellow(julie), Fellow(alex), Teaches(alex, csc486)

Query: q3(x) = ∃y Fac(x) ∧ Teaches(x, y)

Certain answers to q3: anna, kim, alex

14/68

example: omqa with dl-lite ontologies

Same TBox Tuniv:

Prof ⊑ Fac Prof ⊑ ∃Teaches Prof ⊑ ¬Lect Fac ⊑ ¬Course
Lect ⊑ Fac Lect ⊑ ∃Teaches Prof ⊑ ¬Fellow
Fellow ⊑ Fac ∃Teaches− ⊑ Course Lect ⊑ ¬Fellow

Consistent subset of Auniv:

Prof(anna), Lect(kim), Fellow(julie), Fellow(alex), Teaches(alex, csc486)

Query: q4(x, y) = Fac(x) ∧ Teaches(x, y)

Certain answers to q4:

(alex, csc486)

14/68

example: omqa with dl-lite ontologies

Same TBox Tuniv:

Prof ⊑ Fac Prof ⊑ ∃Teaches Prof ⊑ ¬Lect Fac ⊑ ¬Course
Lect ⊑ Fac Lect ⊑ ∃Teaches Prof ⊑ ¬Fellow
Fellow ⊑ Fac ∃Teaches− ⊑ Course Lect ⊑ ¬Fellow

Consistent subset of Auniv:

Prof(anna), Lect(kim), Fellow(julie), Fellow(alex), Teaches(alex, csc486)

Query: q4(x, y) = Fac(x) ∧ Teaches(x, y)

Certain answers to q4: (alex, csc486)

14/68

key technique for omqa: query rewriting

Query rewriting: Reduces problem of finding certain answers to
standard DB query evaluation (⇝ exploit existing DB systems)

+
query rewriting

+

+
query evaluation

TBox T

query

ABox

q

database query q0

query answersA

Call q′(⃗x) a rewriting of q(⃗x) and T iff for every ABox A and tuple a⃗

T ,A |= q(a⃗) ⇔ a⃗ ∈ ans(q′(⃗x), IA) (IA = treat A as DB)

First-order (FO) rewritings: q′ is an FO (∼ SQL) query
UCQ-rewritings: q′ is a UCQ

15/68

key technique for omqa: query rewriting

Query rewriting: Reduces problem of finding certain answers to
standard DB query evaluation (⇝ exploit existing DB systems)

+
query rewriting

+

+
query evaluation

TBox T

query

ABox

q

database query q0

query answersA

Call q′(⃗x) a rewriting of q(⃗x) and T iff for every ABox A and tuple a⃗

T ,A |= q(a⃗) ⇔ a⃗ ∈ ans(q′(⃗x), IA) (IA = treat A as DB)

First-order (FO) rewritings: q′ is an FO (∼ SQL) query
UCQ-rewritings: q′ is a UCQ

15/68

key technique for omqa: query rewriting

Query rewriting: Reduces problem of finding certain answers to
standard DB query evaluation (⇝ exploit existing DB systems)

+
query rewriting

+

+
query evaluation

TBox T

query

ABox

q

database query q0

query answersA

Call q′(⃗x) a rewriting of q(⃗x) and T iff for every ABox A and tuple a⃗

T ,A |= q(a⃗) ⇔ a⃗ ∈ ans(q′(⃗x), IA) (IA = treat A as DB)

First-order (FO) rewritings: q′ is an FO (∼ SQL) query
UCQ-rewritings: q′ is a UCQ

15/68

example: query rewriting

Rewriting of q1(x) = Fac(x) w.r.t. Tuniv:

q′1(x) = Fac(x) ∨ Prof(x) ∨ Lect(x) ∨ Fellow(x)

Rewriting of q3(x) = ∃y Fac(x) ∧ Teaches(x, y) w.r.t. Tuniv:

q′3(x) = (∃y.Fac(x) ∧ Teaches(x, y)) ∨ Prof(x) ∨ Lect(x)∨
(∃y.Fellow(x) ∧ Teaches(x, y))

Rewriting of q4(x, y) = Fac(x) ∧ Teaches(x, y) w.r.t. Tuniv:

q′4(x, y) = (Fac(x) ∧ Teaches(x, y)) ∨ (Prof(x) ∧ Teaches(x, y))
(Lect(x) ∧ Teaches(x, y)) ∨ (Fellow(x) ∧ Teaches(x, y))

16/68

introduction to inconsistency-
tolerant semantics

handling data inconsistencies

In realistic settings, can expect some errors in the data
∙ ABox likely to be inconsistent with the TBox (ontology)

Standard semantics: everything is implied - not informative!

Two approaches to inconsistency handling:
∙ resolve the inconsistencies
∙ preferable, but not always applicable!

∙ live with the inconsistencies - adopt alternative semantics
∙ meaningful answers to queries despite inconsistencies

Note: focus on case where errors in ABox (assume TBox reliable)

18/68

handling data inconsistencies

In realistic settings, can expect some errors in the data
∙ ABox likely to be inconsistent with the TBox (ontology)

Standard semantics: everything is implied - not informative!

Two approaches to inconsistency handling:
∙ resolve the inconsistencies
∙ preferable, but not always applicable!

∙ live with the inconsistencies - adopt alternative semantics
∙ meaningful answers to queries despite inconsistencies

Note: focus on case where errors in ABox (assume TBox reliable)

18/68

example: reasonable inferences

TBox Tuniv:

Prof ⊑ Fac Prof ⊑ ∃Teaches Prof ⊑ ¬Lect Fac ⊑ ¬Course
Lect ⊑ Fac Lect ⊑ ∃Teaches Prof ⊑ ¬Fellow
Fellow ⊑ Fac ∃Teaches− ⊑ Course Lect ⊑ ¬Fellow

Consider following ABoxes:

A1 = {Prof(anna), Lect(anna), Fellow(alex)}
A2 = {Prof(anna), Fellow(alex), Lect(alex)}

Which assertions would be reasonable to infer from these two KBs?

Prof(anna) Lect(anna) Fac(anna)
Fellow(alex) Lect(alex) Fac(alex)

19/68

example: reasonable answers

TBox Tuniv:

Prof ⊑ Fac Prof ⊑ ∃Teaches Prof ⊑ ¬Lect Fac ⊑ ¬Course
Lect ⊑ Fac Lect ⊑ ∃Teaches Prof ⊑ ¬Fellow
Fellow ⊑ Fac ∃Teaches− ⊑ Course Lect ⊑ ¬Fellow

ABox Auniv:

Prof(anna), Lect(anna), Fellow(anna), Prof(kim), Lect(kim),

Fellow(julie), Teaches(csc343, julie), Fellow(alex), Teaches(alex, csc486)

Question: what are reasonable answers for our example queries?

q1(x) = Fac(x) q2(x) = ∃y Teaches(x, y)
q3(x) = ∃y Fac(x) ∧ Teaches(x, y) q4(x, y) = Fac(x) ∧ Teaches(x, y)

20/68

alternative semantics

In general: no single best way to define answers for inconsistent KBs
⇒ consider many different inconsistency-tolerant semantics

Formally: a semantics S associates a set of query answers to every
KB and query
∙ if K is satisfiable, should return certain answers
∙ for unsatisfiable K, can give different answers than classical
semantics

Write K |=S q(a⃗) if a⃗ answer to q w.r.t. K under semantics S

Consider different ways of comparing semantics

21/68

consistency properties

Call C ⊆ A is a (consistent) T -support of q(a⃗) if:
(i) C is T -consistent (ii) ⟨T , C⟩ |= q(a⃗)

Semantics S satisfies the Consistent Support property if whenever
K |=S q(a⃗), there exists a T -support C ⊆ A of q(a⃗)
∙ important for explaining / justifying query results to users

Semantics S satisfies the Consistent Results property if for every KB
K, there exists a model I of T such that K |=S q(a⃗) implies I |= q(a⃗).

∙ set of query results is jointly consistent with TBox
∙ safe to combine query results

Note: neither property implies the other

22/68

consistency properties

Call C ⊆ A is a (consistent) T -support of q(a⃗) if:
(i) C is T -consistent (ii) ⟨T , C⟩ |= q(a⃗)

Semantics S satisfies the Consistent Support property if whenever
K |=S q(a⃗), there exists a T -support C ⊆ A of q(a⃗)
∙ important for explaining / justifying query results to users

Semantics S satisfies the Consistent Results property if for every KB
K, there exists a model I of T such that K |=S q(a⃗) implies I |= q(a⃗).

∙ set of query results is jointly consistent with TBox
∙ safe to combine query results

Note: neither property implies the other

22/68

consistency properties

Call C ⊆ A is a (consistent) T -support of q(a⃗) if:
(i) C is T -consistent (ii) ⟨T , C⟩ |= q(a⃗)

Semantics S satisfies the Consistent Support property if whenever
K |=S q(a⃗), there exists a T -support C ⊆ A of q(a⃗)
∙ important for explaining / justifying query results to users

Semantics S satisfies the Consistent Results property if for every KB
K, there exists a model I of T such that K |=S q(a⃗) implies I |= q(a⃗).

∙ set of query results is jointly consistent with TBox
∙ safe to combine query results

Note: neither property implies the other
22/68

comparing different semantics

Given two semantics S and S′, we say that:

∙ S′ is an under-approximation (or: sound approximation) of S just
in the case that

K |=S′ q(a⃗) ⇒ K |=S q(a⃗)

∙ S′ is an over-approximation (or: complete approximation) of S
just in the case that

K |=S q(a⃗) ⇒ K |=S′ q(a⃗)

Consistency properties are preserved by under-approximations:
S′ is an under-approximation of S & S satisfies P⇒ S′ also satisfies P

here P ∈∈ {Consistent Support, Consistent Results}

23/68

repairs

Many semantics are based upon the notion of repair

Repair of an ABox A w.r.t. a TBox T
= inclusion-maximal subset of A that is T -consistent

Intuition: different ways of achieving consistency while retaining as
much of the original data as possible

Denote by Rep(A, T) the set of repairs of A w.r.t. T
∙ abbreviate to Rep(K) when K = ⟨T ,A⟩

Every KB has at least one repair
∙ inconsistent KB⇒ typically multiple repairs

24/68

example: repairs

Reconsider the TBox Tuniv:

Prof ⊑ Fac Prof ⊑ ∃Teaches Prof ⊑ ¬Lect Fac ⊑ ¬Course
Lect ⊑ Fac Lect ⊑ ∃Teaches Prof ⊑ ¬Fellow
Fellow ⊑ Fac ∃Teaches− ⊑ Course Lect ⊑ ¬Fellow

and ABox Auniv:

Prof(anna), Lect(anna), Fellow(anna), Prof(kim), Lect(kim),

Fellow(julie), Teaches(csc343, julie), Fellow(alex), Teaches(alex, csc486)

Recall the minimal Tuniv-inconsistent subsets:

{Prof(anna), Lect(anna)} {Prof(anna), Fellow(anna)}
{Lect(anna), Fellow(anna)} {Prof(kim), Lect(kim)}

{Fellow(julie), Teaches(csc343, julie)}

Question: How many repairs of Auniv w.r.t. Tuniv?
25/68

example: repairs (cont.)

Twelve repairs of Auniv w.r.t. Tuniv:

R1 = {Prof(anna),Prof(kim), Fellow(julie)} ∪ AInt

R2 = {Lect(anna), Lect(kim), Fellow(julie)} ∪ AInt

R3 = {Fellow(anna), Prof(kim), Fellow(julie)} ∪ AInt

R4 = {Prof(anna), Lect(kim), Fellow(julie)} ∪ AInt

R5 = {Lect(anna), Prof(kim), Fellow(julie)} ∪ AInt

R6 = {Fellow(anna), Lect(kim), Fellow(julie)} ∪ AInt

R7 = {Prof(anna),Prof(kim), Teaches(csc343, julie)} ∪ AInt

R8 = {Lect(anna), Lect(kim), Teaches(csc343, julie)} ∪ AInt

R9 = {Fellow(anna), Prof(kim), Teaches(csc343, julie)} ∪ AInt

R10 = {Prof(anna), Lect(kim), Teaches(csc343, julie)} ∪ AInt

R11 = {Lect(anna),Prof(kim), Teaches(csc343, julie)} ∪ AInt

R12 = {Fellow(anna), Lect(kim), Teaches(csc343, julie)} ∪ AInt

where the ABox AInt that is common to all the repairs is as follows:

AInt = {Fellow(alex), Teaches(alex, csc486)}

26/68

inconsistency-tolerant seman-
tics: definitions and properties

plausible answers: ar semantics

Repair: ⊆-maximal subset of the data consistent with the ontology
∙ ways to achieve consistency, keeping as much information as possible

Plausible answers: hold no matter which repair is chosen

AR semantics: query each repair separately, intersect results

K |=AR q(a⃗) ⇔ ⟨T ,B⟩ |= q(a⃗) for every repair B ∈ Rep(K)

Repair: maximal subset of the data consistent with the ontology

CQA semantics
“Standard” inconsistency-tolerant semantics:

consistent query answering (CQA) semantics

✓-

Consistent query answering: intersect answers over all repairs

⇒ . . .

For Boolean queries (no free variables),
Consistent query entailment: query entailed from every repair

R1
R2

Rn

✔ ✔ ✔✔ ✘✘

q(~a)? q(~a)?q(~a)?q(~a)?

D

Bad news: query answering under AR semantics is intractable
(coNP-hard in the size of the data)

Worse: intractable even in very restricted settings (O = {A ⊑ ¬B})

28/68

plausible answers: ar semantics

Repair: ⊆-maximal subset of the data consistent with the ontology
∙ ways to achieve consistency, keeping as much information as possible

Plausible answers: hold no matter which repair is chosen

AR semantics: query each repair separately, intersect results

K |=AR q(a⃗) ⇔ ⟨T ,B⟩ |= q(a⃗) for every repair B ∈ Rep(K)

Repair: maximal subset of the data consistent with the ontology

CQA semantics
“Standard” inconsistency-tolerant semantics:

consistent query answering (CQA) semantics

✓-

Consistent query answering: intersect answers over all repairs

⇒ . . .

For Boolean queries (no free variables),
Consistent query entailment: query entailed from every repair

R1
R2

Rn

✔ ✔ ✔✔ ✘✘

q(~a)? q(~a)?q(~a)?q(~a)?

D

Bad news: query answering under AR semantics is intractable
(coNP-hard in the size of the data)

Worse: intractable even in very restricted settings (O = {A ⊑ ¬B})

28/68

plausible answers: ar semantics

Repair: ⊆-maximal subset of the data consistent with the ontology
∙ ways to achieve consistency, keeping as much information as possible

Plausible answers: hold no matter which repair is chosen

AR semantics: query each repair separately, intersect results

K |=AR q(a⃗) ⇔ ⟨T ,B⟩ |= q(a⃗) for every repair B ∈ Rep(K)

Repair: maximal subset of the data consistent with the ontology

CQA semantics
“Standard” inconsistency-tolerant semantics:

consistent query answering (CQA) semantics

✓-

Consistent query answering: intersect answers over all repairs

⇒ . . .

For Boolean queries (no free variables),
Consistent query entailment: query entailed from every repair

R1
R2

Rn

✔ ✔ ✔✔ ✘✘

q(~a)? q(~a)?q(~a)?q(~a)?

D

Bad news: query answering under AR semantics is intractable
(coNP-hard in the size of the data)

Worse: intractable even in very restricted settings (O = {A ⊑ ¬B})

28/68

example: ar semantics

Reconsider our example KB Kuniv = ⟨Tuniv,Auniv⟩

For the query q1(x) = Fac(x) , we have:

∙ Kuniv |=AR q1(anna), as every repair contains one of Prof(anna),
Lect(anna), and Fellow(anna)

∙ Kuniv |=AR q1(kim), as every repair contains Prof(kim) or Lect(anna)

∙ Kuniv |=AR q1(alex), as every repair contains Fellow(alex)

These are the only answers under AR semantics:
∙ Kuniv ̸|=AR q1(julie) as ⟨Tuniv,R7⟩ ̸|= Fac(julie)

∙ can similarly show Kuniv ̸|=AR q1(csc486) and Kuniv ̸|=AR q1(csc343)

29/68

example: ar semantics

Reconsider our example KB Kuniv = ⟨Tuniv,Auniv⟩

For the query q1(x) = Fac(x) , we have:

∙ Kuniv |=AR q1(anna), as every repair contains one of Prof(anna),
Lect(anna), and Fellow(anna)

∙ Kuniv |=AR q1(kim), as every repair contains Prof(kim) or Lect(anna)

∙ Kuniv |=AR q1(alex), as every repair contains Fellow(alex)

These are the only answers under AR semantics:
∙ Kuniv ̸|=AR q1(julie) as ⟨Tuniv,R7⟩ ̸|= Fac(julie)

∙ can similarly show Kuniv ̸|=AR q1(csc486) and Kuniv ̸|=AR q1(csc343)

29/68

example: ar semantics

Reconsider our example KB Kuniv = ⟨Tuniv,Auniv⟩

For the query q1(x) = Fac(x) , we have:

∙ Kuniv |=AR q1(anna), as every repair contains one of Prof(anna),
Lect(anna), and Fellow(anna)

∙ Kuniv |=AR q1(kim), as every repair contains Prof(kim) or Lect(anna)

∙ Kuniv |=AR q1(alex), as every repair contains Fellow(alex)

These are the only answers under AR semantics:

∙ Kuniv ̸|=AR q1(julie) as ⟨Tuniv,R7⟩ ̸|= Fac(julie)

∙ can similarly show Kuniv ̸|=AR q1(csc486) and Kuniv ̸|=AR q1(csc343)

29/68

example: ar semantics

Reconsider our example KB Kuniv = ⟨Tuniv,Auniv⟩

For the query q1(x) = Fac(x) , we have:

∙ Kuniv |=AR q1(anna), as every repair contains one of Prof(anna),
Lect(anna), and Fellow(anna)

∙ Kuniv |=AR q1(kim), as every repair contains Prof(kim) or Lect(anna)

∙ Kuniv |=AR q1(alex), as every repair contains Fellow(alex)

These are the only answers under AR semantics:
∙ Kuniv ̸|=AR q1(julie) as ⟨Tuniv,R7⟩ ̸|= Fac(julie)

∙ can similarly show Kuniv ̸|=AR q1(csc486) and Kuniv ̸|=AR q1(csc343)

29/68

example: ar semantics

Reconsider our example KB Kuniv = ⟨Tuniv,Auniv⟩

For the query q2 = ∃y Teaches(x, y) , we have:

∙ Kuniv |=AR q2(kim), as every repair contains Prof(kim) or Lect(kim)

∙ Kuniv |=AR q2(alex), as every repair contains Teaches(alex, csc486)

These are the only answers under AR semantics:
∙ Kuniv ̸|=AR q1(anna) as ⟨Tuniv,R3⟩ ̸|= ∃y Teaches(anna, y)

∙ can similarly show julie, csc486, and csc343 are not answers

30/68

example: ar semantics

Reconsider our example KB Kuniv = ⟨Tuniv,Auniv⟩

For the query q2 = ∃y Teaches(x, y) , we have:

∙ Kuniv |=AR q2(kim), as every repair contains Prof(kim) or Lect(kim)

∙ Kuniv |=AR q2(alex), as every repair contains Teaches(alex, csc486)

These are the only answers under AR semantics:
∙ Kuniv ̸|=AR q1(anna) as ⟨Tuniv,R3⟩ ̸|= ∃y Teaches(anna, y)

∙ can similarly show julie, csc486, and csc343 are not answers

30/68

example: ar semantics

Reconsider our example KB Kuniv = ⟨Tuniv,Auniv⟩

For the query q2 = ∃y Teaches(x, y) , we have:

∙ Kuniv |=AR q2(kim), as every repair contains Prof(kim) or Lect(kim)

∙ Kuniv |=AR q2(alex), as every repair contains Teaches(alex, csc486)

These are the only answers under AR semantics:
∙ Kuniv ̸|=AR q1(anna) as ⟨Tuniv,R3⟩ ̸|= ∃y Teaches(anna, y)

∙ can similarly show julie, csc486, and csc343 are not answers

30/68

plausible answers: ar semantics

Repair: ⊆-maximal subset of the data consistent with the ontology
∙ ways to achieve consistency, keeping as much information as possible

Plausible answers: hold no matter which repair is chosen

AR semantics: query each repair separately, intersect results

K |=AR q(a⃗) ⇔ ⟨T ,B⟩ |= q(a⃗) for every repair B ∈ Rep(K)

Repair: maximal subset of the data consistent with the ontology

CQA semantics
“Standard” inconsistency-tolerant semantics:

consistent query answering (CQA) semantics

✓-

Consistent query answering: intersect answers over all repairs

⇒ . . .

For Boolean queries (no free variables),
Consistent query entailment: query entailed from every repair

R1
R2

Rn

✔ ✔ ✔✔ ✘✘

q(~a)? q(~a)?q(~a)?q(~a)?

D

Satisfies both Consistent Support and Consistent Results

31/68

surest answers: iar semantics

Idea: only use the surest assertions to answer queries
∙ disregard assertions involved in some contradiction

IAR semantics: query the intersection of the repairs

K |=IAR q(a⃗) ⇔ ⟨T ,D⟩ |= q(a⃗) where D =
∩

B∈Rep(K) B

Under-approximation of the AR semantics

Satisfies both Consistent Support and Consistent Results

32/68

surest answers: iar semantics

Idea: only use the surest assertions to answer queries
∙ disregard assertions involved in some contradiction

IAR semantics: query the intersection of the repairs

K |=IAR q(a⃗) ⇔ ⟨T ,D⟩ |= q(a⃗) where D =
∩

B∈Rep(K) B

Under-approximation of the AR semantics

Satisfies both Consistent Support and Consistent Results

32/68

example: iar semantics

Reconsider our example KB ⟨Tuniv,Auniv⟩

Intersection of the repairs of ⟨Tuniv,Auniv⟩:

AInt = {Fellow(alex), Teaches(alex, csc486)}

For the query q1(x) = Fac(x) , we have:

∙ Kuniv |=AR q1(alex), as ⟨Tuniv,AInt⟩ |= Fac(alex)

This is the only answer to q1 under IAR semantics:
∙ anna and kim are no longer considered answers since needed to
reason by cases (e.g., kim is either Prof or Lect)

33/68

example: iar semantics

Reconsider our example KB ⟨Tuniv,Auniv⟩

Intersection of the repairs of ⟨Tuniv,Auniv⟩:

AInt = {Fellow(alex), Teaches(alex, csc486)}

For the query q1(x) = Fac(x) , we have:

∙ Kuniv |=AR q1(alex), as ⟨Tuniv,AInt⟩ |= Fac(alex)

This is the only answer to q1 under IAR semantics:
∙ anna and kim are no longer considered answers since needed to
reason by cases (e.g., kim is either Prof or Lect)

33/68

example: iar semantics

Reconsider our example KB ⟨Tuniv,Auniv⟩

Intersection of the repairs of ⟨Tuniv,Auniv⟩:

AInt = {Fellow(alex), Teaches(alex, csc486)}

For the query q1(x) = Fac(x) , we have:

∙ Kuniv |=AR q1(alex), as ⟨Tuniv,AInt⟩ |= Fac(alex)

This is the only answer to q1 under IAR semantics:
∙ anna and kim are no longer considered answers since needed to
reason by cases (e.g., kim is either Prof or Lect)

33/68

surest answers: iar semantics

Idea: only use the surest assertions to answer queries
∙ disregard assertions involved in some contradiction

IAR semantics: query the intersection of the repairs

K |=IAR q(a⃗) ⇔ ⟨T ,D⟩ |= q(a⃗) where D =
∩

B∈Rep(K) B

Under-approximation of the AR semantics

Satisfies both Consistent Support and Consistent Results

34/68

possible answers: brave semantics

Idea: return all answers supported by consistent part of data
∙ can view them as possible answers, having coherent justification

Brave semantics: query the repairs, take union of their answers

K |=brave q(a⃗) ⇔ ⟨T ,B⟩ |= q(a⃗) for some repair B ∈ Rep(K)

Over-approximation of the AR semantics
∙ ... and every semantics that satisfies Consistent Support

Does not satisfy Consistent Results

35/68

possible answers: brave semantics

Idea: return all answers supported by consistent part of data
∙ can view them as possible answers, having coherent justification

Brave semantics: query the repairs, take union of their answers

K |=brave q(a⃗) ⇔ ⟨T ,B⟩ |= q(a⃗) for some repair B ∈ Rep(K)

Over-approximation of the AR semantics
∙ ... and every semantics that satisfies Consistent Support

Does not satisfy Consistent Results

35/68

example: brave semantics

Reconsider the KB Kuniv = ⟨Tuniv,Auniv⟩ and query q1(x) = Fac(x) .

Moving from AR to brave semantics yields an additional answer:

∙ Kuniv |=brave q1(anna) AR-answer

∙ Kuniv |=brave q1(kim) AR-answer

∙ Kuniv |=brave q1(alex) AR-answer

∙ Kuniv |=brave q1(julie) ⟨Tuniv,Ri⟩ |= q1(julie) for 1 ≤ i ≤ 6

These are the only answers to q1 under brave semantics:

∙ csc486 and csc343 cannot be obtained as answers from any repair

36/68

example: brave semantics

Reconsider the KB Kuniv = ⟨Tuniv,Auniv⟩ and query q1(x) = Fac(x) .

Moving from AR to brave semantics yields an additional answer:

∙ Kuniv |=brave q1(anna) AR-answer

∙ Kuniv |=brave q1(kim) AR-answer

∙ Kuniv |=brave q1(alex) AR-answer

∙ Kuniv |=brave q1(julie) ⟨Tuniv,Ri⟩ |= q1(julie) for 1 ≤ i ≤ 6

These are the only answers to q1 under brave semantics:

∙ csc486 and csc343 cannot be obtained as answers from any repair

36/68

example: brave semantics

Reconsider the KB Kuniv = ⟨Tuniv,Auniv⟩ and query q1(x) = Fac(x) .

Moving from AR to brave semantics yields an additional answer:

∙ Kuniv |=brave q1(anna) AR-answer

∙ Kuniv |=brave q1(kim) AR-answer

∙ Kuniv |=brave q1(alex) AR-answer

∙ Kuniv |=brave q1(julie) ⟨Tuniv,Ri⟩ |= q1(julie) for 1 ≤ i ≤ 6

These are the only answers to q1 under brave semantics:

∙ csc486 and csc343 cannot be obtained as answers from any repair

36/68

possible answers: brave semantics

Idea: return all answers supported by consistent part of data
∙ can view them as possible answers, having coherent justification

Brave semantics: query the repairs, take union of their answers

K |=brave q(a⃗) ⇔ ⟨T ,B⟩ |= q(a⃗) for some repair B ∈ Rep(K)

Over-approximation of the AR semantics
∙ ... and every semantics that satisfies Consistent Support

Does not satisfy Consistent Results Why?

37/68

k-support semantics

Goal: more fine-grained under-approximations of AR semantics

k-support semantics: bound # of supports used to ‘cover’ all repairs

K |=k-supp q(a⃗) iff exist subsets S1, . . . , Sk of A such that:

∙ each Si is a T -support for q(a⃗) in A

∙ for every R ∈ Rep(K), there is some Si with Si ⊆ R

Observe K |=k-supp q(a⃗) ⇒ K |=k+1-supp q(a⃗)

Relation to other semantics:
∙ when k = 1, same as IAR semantics
∙ for every k ≥ 1, under-approximation of AR semantics
∙ for every K, there is k ≥ 1 such that K |=k-supp q(a⃗) iff K |=AR q(a⃗)

Satisfy both Consistent Support and Consistent Results

38/68

k-support semantics

Goal: more fine-grained under-approximations of AR semantics

k-support semantics: bound # of supports used to ‘cover’ all repairs

K |=k-supp q(a⃗) iff exist subsets S1, . . . , Sk of A such that:

∙ each Si is a T -support for q(a⃗) in A

∙ for every R ∈ Rep(K), there is some Si with Si ⊆ R

Observe K |=k-supp q(a⃗) ⇒ K |=k+1-supp q(a⃗)

Relation to other semantics:
∙ when k = 1, same as IAR semantics
∙ for every k ≥ 1, under-approximation of AR semantics
∙ for every K, there is k ≥ 1 such that K |=k-supp q(a⃗) iff K |=AR q(a⃗)

Satisfy both Consistent Support and Consistent Results

38/68

example: k-support semantics

Reconsider the KB ⟨Tuniv,Auniv⟩ and query q1(x) = Fac(x) .

When k = 1, the 1-support semantics gives same result as IAR:
∙ Kuniv |=1-supp q1(alex) use {Fellow(alex)}

When k = 2, obtain one additional answer:
∙ Kuniv |=2-supp q1(alex)
∙ Kuniv |=2-supp q1(kim) use S1 = {Prof(kim)} and S2 = {Lect(kim)}

When k = 3, obtain all three AR-answers:
∙ Kuniv |=2-supp q1(alex)
∙ Kuniv |=2-supp q1(kim)

∙ Kuniv |=3-supp q1(anna) use S1 = {Prof(anna)}, S2 = {Lect(anna)},
and S3 = {Fellow(anna)}

39/68

example: k-support semantics

Reconsider the KB ⟨Tuniv,Auniv⟩ and query q1(x) = Fac(x) .

When k = 1, the 1-support semantics gives same result as IAR:
∙ Kuniv |=1-supp q1(alex) use {Fellow(alex)}

When k = 2, obtain one additional answer:
∙ Kuniv |=2-supp q1(alex)
∙ Kuniv |=2-supp q1(kim) use S1 = {Prof(kim)} and S2 = {Lect(kim)}

When k = 3, obtain all three AR-answers:
∙ Kuniv |=2-supp q1(alex)
∙ Kuniv |=2-supp q1(kim)

∙ Kuniv |=3-supp q1(anna) use S1 = {Prof(anna)}, S2 = {Lect(anna)},
and S3 = {Fellow(anna)}

39/68

example: k-support semantics

Reconsider the KB ⟨Tuniv,Auniv⟩ and query q1(x) = Fac(x) .

When k = 1, the 1-support semantics gives same result as IAR:
∙ Kuniv |=1-supp q1(alex) use {Fellow(alex)}

When k = 2, obtain one additional answer:
∙ Kuniv |=2-supp q1(alex)
∙ Kuniv |=2-supp q1(kim) use S1 = {Prof(kim)} and S2 = {Lect(kim)}

When k = 3, obtain all three AR-answers:
∙ Kuniv |=2-supp q1(alex)
∙ Kuniv |=2-supp q1(kim)

∙ Kuniv |=3-supp q1(anna) use S1 = {Prof(anna)}, S2 = {Lect(anna)},
and S3 = {Fellow(anna)}

39/68

example: k-support semantics

Reconsider the KB ⟨Tuniv,Auniv⟩ and query q1(x) = Fac(x) .

When k = 1, the 1-support semantics gives same result as IAR:
∙ Kuniv |=1-supp q1(alex) use {Fellow(alex)}

When k = 2, obtain one additional answer:
∙ Kuniv |=2-supp q1(alex)
∙ Kuniv |=2-supp q1(kim) use S1 = {Prof(kim)} and S2 = {Lect(kim)}

When k = 3, obtain all three AR-answers:
∙ Kuniv |=2-supp q1(alex)
∙ Kuniv |=2-supp q1(kim)

∙ Kuniv |=3-supp q1(anna) use S1 = {Prof(anna)}, S2 = {Lect(anna)},
and S3 = {Fellow(anna)}

39/68

k-support semantics

Goal: more fine-grained under-approximations of AR semantics

k-support semantics: bound # of supports used to ‘cover’ all repairs

K |=k-supp q(a⃗) iff exist subsets S1, . . . , Sk of A such that:

∙ each Si is a T -support for q(a⃗) in A

∙ for every R ∈ Rep(K), there is some Si with Si ⊆ R

Observe K |=k+1-supp q(a⃗) ⇒ K |=k-supp q(a⃗)

Relation to other semantics:
∙ when k = 1, same as IAR semantics
∙ for every k ≥ 1, under-approximation of AR semantics
∙ for every K, there is k ≥ 1 such that K |=k-supp q(a⃗) iff K |=AR q(a⃗)

Satisfy both Consistent Support and Consistent Results

40/68

k-support semantics

Goal: more fine-grained under-approximations of AR semantics

k-support semantics: bound # of supports used to ‘cover’ all repairs

K |=k-supp q(a⃗) iff exist subsets S1, . . . , Sk of A such that:

∙ each Si is a T -support for q(a⃗) in A

∙ for every R ∈ Rep(K), there is some Si with Si ⊆ R

Observe K |=k+1-supp q(a⃗) ⇒ K |=k-supp q(a⃗)

Relation to other semantics:
∙ when k = 1, same as IAR semantics
∙ for every k ≥ 1, under-approximation of AR semantics
∙ for every K, there is k ≥ 1 such that K |=k-supp q(a⃗) iff K |=AR q(a⃗)

Satisfy both Consistent Support and Consistent Results
40/68

k-defeater semantics

Goal: more fine-grained over-approximations of AR semantics

k-defeater semantics: bound # of assertions to block all supports

K |=k-def q(a⃗) iff does not exist a T -consistent subset S of A with:

∙ |S| ≤ k

∙ ⟨T , S ∪ C⟩ |= ⊥ for every ⊆-minimal T -support C ⊆ A of q(a⃗)

Observe K |=k+1-def q(a⃗) ⇒ K |=k-def q(a⃗)

Relation to other semantics:
∙ when k = 0, same as brave semantics
∙ for every k ≥ 0, over-approximation of AR semantics
∙ for every K, there is k ≥ 0 such that K |=k-def q(a⃗) iff K |=AR q(a⃗)

Satisfy Consistent Support but not Consistent Results

41/68

k-defeater semantics

Goal: more fine-grained over-approximations of AR semantics

k-defeater semantics: bound # of assertions to block all supports

K |=k-def q(a⃗) iff does not exist a T -consistent subset S of A with:

∙ |S| ≤ k

∙ ⟨T , S ∪ C⟩ |= ⊥ for every ⊆-minimal T -support C ⊆ A of q(a⃗)

Observe K |=k+1-def q(a⃗) ⇒ K |=k-def q(a⃗)

Relation to other semantics:
∙ when k = 0, same as brave semantics
∙ for every k ≥ 0, over-approximation of AR semantics
∙ for every K, there is k ≥ 0 such that K |=k-def q(a⃗) iff K |=AR q(a⃗)

Satisfy Consistent Support but not Consistent Results

41/68

example: k-defeater semantics

Reconsider the KB ⟨Tuniv,Auniv⟩ and query q2(x) = ∃y Teaches(x, y) .

When k = 0, same answers as for brave semantics:
∙ anna, kim, alex, and csc343

When k = 1, we ‘lose’ answers anna and csc343:
∙ Kuniv ̸|=1-def q2(anna) {Fellow(anna)} contradicts both minimal

supports: {Prof(anna)} and {Lect(anna)}
∙ Kuniv ̸|=1-def q2(csc343) {Fellow(julie)} contradicts only minimal

support {Teaches(csc343, julie)}

Two other answers continue to hold under 1-support semantics:
∙ Kuniv |=1-def q2(kim)

∙ Kuniv |=1-def q2(alex)

42/68

example: k-defeater semantics

Reconsider the KB ⟨Tuniv,Auniv⟩ and query q2(x) = ∃y Teaches(x, y) .

When k = 0, same answers as for brave semantics:
∙ anna, kim, alex, and csc343

When k = 1, we ‘lose’ answers anna and csc343:
∙ Kuniv ̸|=1-def q2(anna) {Fellow(anna)} contradicts both minimal

supports: {Prof(anna)} and {Lect(anna)}
∙ Kuniv ̸|=1-def q2(csc343) {Fellow(julie)} contradicts only minimal

support {Teaches(csc343, julie)}

Two other answers continue to hold under 1-support semantics:
∙ Kuniv |=1-def q2(kim)

∙ Kuniv |=1-def q2(alex)

42/68

example: k-defeater semantics

Reconsider the KB ⟨Tuniv,Auniv⟩ and query q2(x) = ∃y Teaches(x, y) .

When k = 0, same answers as for brave semantics:
∙ anna, kim, alex, and csc343

When k = 1, we ‘lose’ answers anna and csc343:
∙ Kuniv ̸|=1-def q2(anna) {Fellow(anna)} contradicts both minimal

supports: {Prof(anna)} and {Lect(anna)}
∙ Kuniv ̸|=1-def q2(csc343) {Fellow(julie)} contradicts only minimal

support {Teaches(csc343, julie)}

Two other answers continue to hold under 1-support semantics:
∙ Kuniv |=1-def q2(kim)

∙ Kuniv |=1-def q2(alex)

42/68

example: k-defeater semantics

Reconsider the KB ⟨Tuniv,Auniv⟩ and query q2(x) = ∃y Teaches(x, y) .

When k = 0, same answers as for brave semantics:
∙ anna, kim, alex, and csc343

When k = 1, we ‘lose’ answers anna and csc343:
∙ Kuniv ̸|=1-def q2(anna) {Fellow(anna)} contradicts both minimal

supports: {Prof(anna)} and {Lect(anna)}
∙ Kuniv ̸|=1-def q2(csc343) {Fellow(julie)} contradicts only minimal

support {Teaches(csc343, julie)}

Two other answers continue to hold under 1-support semantics:
∙ Kuniv |=1-def q2(kim)

∙ Kuniv |=1-def q2(alex)

42/68

example: k-defeater semantics

Reconsider the KB ⟨Tuniv,Auniv⟩ and query q2(x) = ∃y Teaches(x, y) .

When k = 0, same answers as for brave semantics:
∙ anna, kim, alex, and csc343

When k = 1, we ‘lose’ answers anna and csc343:
∙ Kuniv ̸|=1-def q2(anna) {Fellow(anna)} contradicts both minimal

supports: {Prof(anna)} and {Lect(anna)}
∙ Kuniv ̸|=1-def q2(csc343) {Fellow(julie)} contradicts only minimal

support {Teaches(csc343, julie)}

Two other answers continue to hold under 1-support semantics:
∙ Kuniv |=1-def q2(kim)

∙ Kuniv |=1-def q2(alex)

42/68

k-defeater semantics

Goal: more fine-grained over-approximations of AR semantics

k-defeater semantics: bound # of assertions to block all supports

K |=k-def q(a⃗) iff does not exist a T -consistent subset S of A with:

∙ |S| ≤ k

∙ ⟨T , S ∪ C⟩ |= ⊥ for every ⊆-minimal T -support C ⊆ A of q(a⃗)

Observe K |=k-def q(a⃗) ⇒ K |=k+1-def q(a⃗)

Relation to other semantics:
∙ when k = 0, same as brave semantics
∙ for every k ≥ 0, over-approximation of AR semantics
∙ for every K, there is k ≥ 0 such that K |=k-def q(a⃗) iff K |=AR q(a⃗)

Satisfy Consistent Support but not Consistent Results

43/68

k-defeater semantics

Goal: more fine-grained over-approximations of AR semantics

k-defeater semantics: bound # of assertions to block all supports

K |=k-def q(a⃗) iff does not exist a T -consistent subset S of A with:

∙ |S| ≤ k

∙ ⟨T , S ∪ C⟩ |= ⊥ for every ⊆-minimal T -support C ⊆ A of q(a⃗)

Observe K |=k-def q(a⃗) ⇒ K |=k+1-def q(a⃗)

Relation to other semantics:
∙ when k = 0, same as brave semantics
∙ for every k ≥ 0, over-approximation of AR semantics
∙ for every K, there is k ≥ 0 such that K |=k-def q(a⃗) iff K |=AR q(a⃗)

Satisfy Consistent Support but not Consistent Results
43/68

icr semantics

Goal: obtain closer under-approximation of AR than IAR

closeT (A) = all ABox assertions entailed from ⟨T ,A⟩

ICR semantics: close repairs, intersect them, then query the result

K |=ICR q(a⃗) iff ⟨T ,D⟩ |= q(a⃗) where D =
∩

B∈Rep(K) closeT (B)

Under-approximation of AR semantics, over-approximation of IAR
∙ same as IAR semantics for IQs and quantifier-free CQs

Satisfies Consistent Support and Consistent Results

44/68

example: icr semantics

Reconsider the KB ⟨Tuniv,Auniv⟩ and query q1(x) = Fac(x) .

Close the repairs of Kuniv:

closeTuniv(R1) = {Prof(anna),Prof(kim), Fellow(julie), Fac(anna),
Fac(kim), Fac(alex), Fac(julie), Course(csc486)}
...

closeTuniv(R12) = {Fellow(anna), Lect(kim), Teaches(csc343, julie),
Fac(anna), Fac(kim), Fac(alex), Fac(julie), Course(julie)}

Take intersection of the closed repairs:
A′
Int = {Fellow(alex), Teaches(alex, csc486), Fac(anna),

Fac(kim), Fac(alex), Course(csc486)}

Get following ICR-answers: anna, kim, alex

45/68

example: icr semantics

Reconsider the KB ⟨Tuniv,Auniv⟩ and query q1(x) = Fac(x) .

Close the repairs of Kuniv:

closeTuniv(R1) = {Prof(anna),Prof(kim), Fellow(julie), Fac(anna),
Fac(kim), Fac(alex), Fac(julie), Course(csc486)}
...

closeTuniv(R12) = {Fellow(anna), Lect(kim), Teaches(csc343, julie),
Fac(anna), Fac(kim), Fac(alex), Fac(julie), Course(julie)}

Take intersection of the closed repairs:
A′
Int = {Fellow(alex), Teaches(alex, csc486), Fac(anna),

Fac(kim), Fac(alex), Course(csc486)}

Get following ICR-answers: anna, kim, alex

45/68

example: icr semantics

Reconsider the KB ⟨Tuniv,Auniv⟩ and query q1(x) = Fac(x) .

Close the repairs of Kuniv:

closeTuniv(R1) = {Prof(anna),Prof(kim), Fellow(julie), Fac(anna),
Fac(kim), Fac(alex), Fac(julie), Course(csc486)}
...

closeTuniv(R12) = {Fellow(anna), Lect(kim), Teaches(csc343, julie),
Fac(anna), Fac(kim), Fac(alex), Fac(julie), Course(julie)}

Take intersection of the closed repairs:
A′
Int = {Fellow(alex), Teaches(alex, csc486), Fac(anna),

Fac(kim), Fac(alex), Course(csc486)}

Get following ICR-answers: anna, kim, alex

45/68

example: icr semantics

Reconsider the KB ⟨Tuniv,Auniv⟩ and query q1(x) = Fac(x) .

Close the repairs of Kuniv:

closeTuniv(R1) = {Prof(anna),Prof(kim), Fellow(julie), Fac(anna),
Fac(kim), Fac(alex), Fac(julie), Course(csc486)}
...

closeTuniv(R12) = {Fellow(anna), Lect(kim), Teaches(csc343, julie),
Fac(anna), Fac(kim), Fac(alex), Fac(julie), Course(julie)}

Take intersection of the closed repairs:
A′
Int = {Fellow(alex), Teaches(alex, csc486), Fac(anna),

Fac(kim), Fac(alex), Course(csc486)}

Get following ICR-answers: anna, kim, alex

45/68

icr semantics

Goal: obtain closer under-approximation of AR than IAR

closeT (A) = all ABox assertions entailed from ⟨T ,A⟩

ICR semantics: close repairs, intersect them, then query the result

K |=ICR q(a⃗) iff ⟨T ,D⟩ |= q(a⃗) where D =
∩

B∈Rep(K) closeT (B)

Under-approximation of AR semantics, over-approximation of IAR
∙ same as AR semantics for IQs and quantifier-free CQs

Satisfies Consistent Support and Consistent Results

46/68

icr semantics

Goal: obtain closer under-approximation of AR than IAR

closeT (A) = all ABox assertions entailed from ⟨T ,A⟩

ICR semantics: close repairs, intersect them, then query the result

K |=ICR q(a⃗) iff ⟨T ,D⟩ |= q(a⃗) where D =
∩

B∈Rep(K) closeT (B)

Under-approximation of AR semantics, over-approximation of IAR
∙ same as AR semantics for IQs and quantifier-free CQs

Satisfies Consistent Support and Consistent Results

46/68

car and icar semantics

Goal: define semantics that are (almost) syntax-independent
∙ apply closure operator on original ABox

Need alternative notion of closure:
close∗T (A) = {β | ∃S ⊆ A such that S is T -consistent and ⟨T , S⟩ |= β}

Closed ABox repair: maximally ‘complete’ the standard ABox repairs
with additional facts from close∗T (A) \ A

CAR semantics = AR semantics but using closed ABox repairs
ICAR semantics = IAR semantics but using closed ABox repairs

47/68

car and icar semantics

Goal: define semantics that are (almost) syntax-independent
∙ apply closure operator on original ABox

Need alternative notion of closure:
close∗T (A) = {β | ∃S ⊆ A such that S is T -consistent and ⟨T , S⟩ |= β}

Closed ABox repair: maximally ‘complete’ the standard ABox repairs
with additional facts from close∗T (A) \ A

CAR semantics = AR semantics but using closed ABox repairs
ICAR semantics = IAR semantics but using closed ABox repairs

47/68

car and icar semantics

Goal: define semantics that are (almost) syntax-independent
∙ apply closure operator on original ABox

Need alternative notion of closure:
close∗T (A) = {β | ∃S ⊆ A such that S is T -consistent and ⟨T , S⟩ |= β}

Closed ABox repair: maximally ‘complete’ the standard ABox repairs
with additional facts from close∗T (A) \ A

CAR semantics = AR semantics but using closed ABox repairs
ICAR semantics = IAR semantics but using closed ABox repairs

47/68

car and icar semantics

Goal: define semantics that are (almost) syntax-independent
∙ apply closure operator on original ABox

Need alternative notion of closure:
close∗T (A) = {β | ∃S ⊆ A such that S is T -consistent and ⟨T , S⟩ |= β}

Closed ABox repair: maximally ‘complete’ the standard ABox repairs
with additional facts from close∗T (A) \ A

CAR semantics = AR semantics but using closed ABox repairs
ICAR semantics = IAR semantics but using closed ABox repairs

47/68

properties of car and icar semantics

Relations with other semantics:

∙ ICAR semantics is an under-approximation of the CAR semantics

∙ CAR semantics is an over-approximation of the AR semantics

∙ ICAR semantics is an over-approximation of the ICR semantics

∙ CAR and ICAR are not under-approximations of brave semantics

CAR and ICAR semantics satisfy Consistent Results

These semantics do not satisfy Consistent Support

T = {A ⊑ B, C ⊑ D,A ⊑ ¬C}, A = {A(e), C(e)}, and q = B(x) ∧ D(x)

48/68

properties of car and icar semantics

Relations with other semantics:

∙ ICAR semantics is an under-approximation of the CAR semantics

∙ CAR semantics is an over-approximation of the AR semantics

∙ ICAR semantics is an over-approximation of the ICR semantics

∙ CAR and ICAR are not under-approximations of brave semantics

CAR and ICAR semantics satisfy Consistent Results

These semantics do not satisfy Consistent Support

T = {A ⊑ B, C ⊑ D,A ⊑ ¬C}, A = {A(e), C(e)}, and q = B(x) ∧ D(x)

48/68

properties of car and icar semantics

Relations with other semantics:

∙ ICAR semantics is an under-approximation of the CAR semantics

∙ CAR semantics is an over-approximation of the AR semantics

∙ ICAR semantics is an over-approximation of the ICR semantics

∙ CAR and ICAR are not under-approximations of brave semantics

CAR and ICAR semantics satisfy Consistent Results

These semantics do not satisfy Consistent Support

T = {A ⊑ B, C ⊑ D,A ⊑ ¬C}, A = {A(e), C(e)}, and q = B(x) ∧ D(x)

48/68

k-lazy semantics

Clusters: partition of ABox assertions
∙ group together assertions that appear together in minimal
T -inconsistent subset

k-lazy repairs: for each cluster Ci, remove from A either
∙ minimal subset C′

i ⊆ Ci such that |C′
i | ≤ k and Ci \ C′

i is
T -consistent

∙ if no such C′
i exists, remove the whole cluster Ci

k-lazy semantics: like AR, but use k-lazy repairs

49/68

k-lazy semantics

Clusters: partition of ABox assertions
∙ group together assertions that appear together in minimal
T -inconsistent subset

k-lazy repairs: for each cluster Ci, remove from A either
∙ minimal subset C′

i ⊆ Ci such that |C′
i | ≤ k and Ci \ C′

i is
T -consistent

∙ if no such C′
i exists, remove the whole cluster Ci

k-lazy semantics: like AR, but use k-lazy repairs

49/68

k-lazy semantics

Clusters: partition of ABox assertions
∙ group together assertions that appear together in minimal
T -inconsistent subset

k-lazy repairs: for each cluster Ci, remove from A either
∙ minimal subset C′

i ⊆ Ci such that |C′
i | ≤ k and Ci \ C′

i is
T -consistent

∙ if no such C′
i exists, remove the whole cluster Ci

k-lazy semantics: like AR, but use k-lazy repairs

49/68

k-lazy semantics

Relation to other semantics:
∙ K |=IAR q(a⃗) iff K |=0-lazy q(a⃗)

∙ for every k ≥ 0, if K |=k-lazy q(a⃗), then K |=brave q(a⃗)

∙ for every KB K, there exists some k ≥ 0 such that for every k′ ≥ k:
K |=AR q(a⃗) iff K |=k′-lazy q(a⃗)

Convergence not monotone in k:
∙ possible to have K |=k-lazy q(a⃗) but K ̸|=k+1-lazy q(a⃗)

Consistent Support and Consistent Results satisfied (for every k)

50/68

k-lazy semantics

Relation to other semantics:
∙ K |=IAR q(a⃗) iff K |=0-lazy q(a⃗)

∙ for every k ≥ 0, if K |=k-lazy q(a⃗), then K |=brave q(a⃗)

∙ for every KB K, there exists some k ≥ 0 such that for every k′ ≥ k:
K |=AR q(a⃗) iff K |=k′-lazy q(a⃗)

Convergence not monotone in k:
∙ possible to have K |=k-lazy q(a⃗) but K ̸|=k+1-lazy q(a⃗)

Consistent Support and Consistent Results satisfied (for every k)

50/68

k-lazy semantics

Relation to other semantics:
∙ K |=IAR q(a⃗) iff K |=0-lazy q(a⃗)

∙ for every k ≥ 0, if K |=k-lazy q(a⃗), then K |=brave q(a⃗)

∙ for every KB K, there exists some k ≥ 0 such that for every k′ ≥ k:
K |=AR q(a⃗) iff K |=k′-lazy q(a⃗)

Convergence not monotone in k:
∙ possible to have K |=k-lazy q(a⃗) but K ̸|=k+1-lazy q(a⃗)

Consistent Support and Consistent Results satisfied (for every k)

50/68

semantics based upon preferred repairs

Idea: some repairs are more likely than others
∙ exploit knowledge about relative reliability of ABox assertions

Formally: use preference relation ⪯ to compare repairs
∙ compare w.r.t. cardinality (≤)
∙ partition ABox into priority levels P = (P1, . . . ,Pn)
∙ compare level-by-level using set inclusion (⊆P)
∙ compare level-by-level using cardinality (≤P)

∙ assign weights to ABox assertions
∙ compare repairs by total weight (≤w)

AR / IAR / brave semantics based upon most preferred repairs
(⪯-AR, ⪯-IAR, ⪯-brave)

51/68

semantics based upon preferred repairs

Idea: some repairs are more likely than others
∙ exploit knowledge about relative reliability of ABox assertions

Formally: use preference relation ⪯ to compare repairs
∙ compare w.r.t. cardinality (≤)
∙ partition ABox into priority levels P = (P1, . . . ,Pn)
∙ compare level-by-level using set inclusion (⊆P)
∙ compare level-by-level using cardinality (≤P)

∙ assign weights to ABox assertions
∙ compare repairs by total weight (≤w)

AR / IAR / brave semantics based upon most preferred repairs
(⪯-AR, ⪯-IAR, ⪯-brave)

51/68

semantics based upon preferred repairs

Idea: some repairs are more likely than others
∙ exploit knowledge about relative reliability of ABox assertions

Formally: use preference relation ⪯ to compare repairs
∙ compare w.r.t. cardinality (≤)
∙ partition ABox into priority levels P = (P1, . . . ,Pn)
∙ compare level-by-level using set inclusion (⊆P)
∙ compare level-by-level using cardinality (≤P)

∙ assign weights to ABox assertions
∙ compare repairs by total weight (≤w)

AR / IAR / brave semantics based upon most preferred repairs
(⪯-AR, ⪯-IAR, ⪯-brave)

51/68

complexity of inconsistency-
tolerant query answering

measuring complexity

View OMQA as a decision problem (yes-or-no question):

Problem: Q answering in L under semantics S
(Q a query language, L a DL, S chosen semantics)

Input: An n-ary query q ∈ Q, an ABox A, a L-TBox T ,
and a tuple a⃗ ∈ Ind(A)n

Question: Does ⟨T ,A⟩ |=S q(a⃗)?

Combined complexity: in terms of size of whole input

Data complexity: in terms of size of A only
∙ view rest of input as fixed (of constant size)
∙ motivation: ABox typically much larger than rest of input

Note: use |A| to denote size of A (similarly for |T |, |q|, etc.)

53/68

measuring complexity

View OMQA as a decision problem (yes-or-no question):

Problem: Q answering in L under semantics S
(Q a query language, L a DL, S chosen semantics)

Input: An n-ary query q ∈ Q, an ABox A, a L-TBox T ,
and a tuple a⃗ ∈ Ind(A)n

Question: Does ⟨T ,A⟩ |=S q(a⃗)?

Combined complexity: in terms of size of whole input

Data complexity: in terms of size of A only
∙ view rest of input as fixed (of constant size)
∙ motivation: ABox typically much larger than rest of input

Note: use |A| to denote size of A (similarly for |T |, |q|, etc.)

53/68

complexity analysis for dl-lite

Today: mainly focus on DL-Lite, important DL for OMQA

Results apply to DL-LiteR and all DL-Lite dialects that satisfy:

∙ every minimal support for q(a⃗) contains at most |q| assertions

∙ every minimal T -inconsistent subset has cardinality at most two

∙ CQ answering, IQ answering, and KB consistency can be performed
by FO query rewriting (so in AC0 in data complexity)

∙ CQ answering is NP-complete for combined complexity

∙ IQ answering is NL-complete in combined complexity

54/68

complexity analysis for dl-lite

Today: mainly focus on DL-Lite, important DL for OMQA

Results apply to DL-LiteR and all DL-Lite dialects that satisfy:

∙ every minimal support for q(a⃗) contains at most |q| assertions

∙ every minimal T -inconsistent subset has cardinality at most two

∙ CQ answering, IQ answering, and KB consistency can be performed
by FO query rewriting (so in AC0 in data complexity)

∙ CQ answering is NP-complete for combined complexity

∙ IQ answering is NL-complete in combined complexity

54/68

complexity analysis for dl-lite

Today: mainly focus on DL-Lite, important DL for OMQA

Results apply to DL-LiteR and all DL-Lite dialects that satisfy:

∙ every minimal support for q(a⃗) contains at most |q| assertions

∙ every minimal T -inconsistent subset has cardinality at most two

∙ CQ answering, IQ answering, and KB consistency can be performed
by FO query rewriting (so in AC0 in data complexity)

∙ CQ answering is NP-complete for combined complexity

∙ IQ answering is NL-complete in combined complexity

54/68

complexity analysis for dl-lite

Today: mainly focus on DL-Lite, important DL for OMQA

Results apply to DL-LiteR and all DL-Lite dialects that satisfy:

∙ every minimal support for q(a⃗) contains at most |q| assertions

∙ every minimal T -inconsistent subset has cardinality at most two

∙ CQ answering, IQ answering, and KB consistency can be performed
by FO query rewriting (so in AC0 in data complexity)

∙ CQ answering is NP-complete for combined complexity

∙ IQ answering is NL-complete in combined complexity

54/68

complexity analysis for dl-lite

Today: mainly focus on DL-Lite, important DL for OMQA

Results apply to DL-LiteR and all DL-Lite dialects that satisfy:

∙ every minimal support for q(a⃗) contains at most |q| assertions

∙ every minimal T -inconsistent subset has cardinality at most two

∙ CQ answering, IQ answering, and KB consistency can be performed
by FO query rewriting (so in AC0 in data complexity)

∙ CQ answering is NP-complete for combined complexity

∙ IQ answering is NL-complete in combined complexity

54/68

complexity analysis for dl-lite

Today: mainly focus on DL-Lite, important DL for OMQA

Results apply to DL-LiteR and all DL-Lite dialects that satisfy:

∙ every minimal support for q(a⃗) contains at most |q| assertions

∙ every minimal T -inconsistent subset has cardinality at most two

∙ CQ answering, IQ answering, and KB consistency can be performed
by FO query rewriting (so in AC0 in data complexity)

∙ CQ answering is NP-complete for combined complexity

∙ IQ answering is NL-complete in combined complexity

54/68

bad news: intractability of ar semantics

Theorem CQ and IQ answering under AR semantics are
coNP-complete in data complexity

Upper bound: guess A′ ⊆ A, verify A′ is repair and ⟨T ,A′⟩ ̸|= q(a⃗)

Lower bound: reduction from UNSAT φ = c1 ∧ . . . ∧ cm over v1, . . . , vk

Bad news: co-NP-hard in general

Previous work (Lembo et al. 2010) showed this problem be
co-NP-hard in data complexity for instance queries and DL-Lite.

Reduction from UNSAT:

A =

CNF � = c1 ^ . . . ^ cm over v1, . . . , vk

vj

a

cic1 cm

vlv1 vk

U

P N

U U

... ...

...

T =

T ,A |=
cons

A(a) iff � unsat

�P� ⇥ ¬�N�,

�P ⇥ ¬�U�,

�N ⇥ ¬�U�,

�U ⇥ A

vj 2 ci
¬vl 2 ci

Can show φ unsatisfiable⇔ T ,A |=AR A(a)

55/68

bad news: intractability of ar semantics

Theorem CQ and IQ answering under AR semantics are
coNP-complete in data complexity

Upper bound: guess A′ ⊆ A, verify A′ is repair and ⟨T ,A′⟩ ̸|= q(a⃗)

Lower bound: reduction from UNSAT φ = c1 ∧ . . . ∧ cm over v1, . . . , vk

Bad news: co-NP-hard in general

Previous work (Lembo et al. 2010) showed this problem be
co-NP-hard in data complexity for instance queries and DL-Lite.

Reduction from UNSAT:

A =

CNF � = c1 ^ . . . ^ cm over v1, . . . , vk

vj

a

cic1 cm

vlv1 vk

U

P N

U U

... ...

...

T =

T ,A |=
cons

A(a) iff � unsat

�P� ⇥ ¬�N�,

�P ⇥ ¬�U�,

�N ⇥ ¬�U�,

�U ⇥ A

vj 2 ci
¬vl 2 ci

Can show φ unsatisfiable⇔ T ,A |=AR A(a)

55/68

bad news: intractability of ar semantics

Theorem CQ and IQ answering under AR semantics are
coNP-complete in data complexity

Upper bound: guess A′ ⊆ A, verify A′ is repair and ⟨T ,A′⟩ ̸|= q(a⃗)

Lower bound: reduction from UNSAT φ = c1 ∧ . . . ∧ cm over v1, . . . , vk

Bad news: co-NP-hard in general

Previous work (Lembo et al. 2010) showed this problem be
co-NP-hard in data complexity for instance queries and DL-Lite.

Reduction from UNSAT:

A =

CNF � = c1 ^ . . . ^ cm over v1, . . . , vk

vj

a

cic1 cm

vlv1 vk

U

P N

U U

... ...

...

T =

T ,A |=
cons

A(a) iff � unsat

�P� ⇥ ¬�N�,

�P ⇥ ¬�U�,

�N ⇥ ¬�U�,

�U ⇥ A

vj 2 ci
¬vl 2 ci

Can show φ unsatisfiable⇔ T ,A |=AR A(a)
55/68

bad news: intractability of ar semantics (cont.)

In fact: CQ answering is coNP-hard for simple TBox T = {T ⊑ ¬F}

Reduction from 2+2UNSAT: φ = c1 ∧ . . . ∧ cm over v1, . . . , vk,⊤,⊥
each clause has two positive and two negative literals

Intractability of CQA semantics
Have coNP-hardness in data complexity for following settings:

- Atomic queries + DL-Lite ontology
- Acyclic conjunctive queries + class disjointness

� = c1 ^ ... ^ cm over v1, ..., vk,>,?

q =
N1

N2

vj

cic1 cm

vlv1 vk

... ...

...

N2
N1

> ?

ci = v1 � vk � ¬vj � ¬vl

Reduction from 2+2UNSAT:
where each clause has two positive and two negative literals

T � ¬F

T ,A |=CQA q iff ' unsat

T =A =

[Lembo et al. 2010]
[Bienvenu 2012]

TF TF TF TF T F

FF T T

P1
P2 P2

P1

Can show φ unsatisfiable⇔ T ,A |= q

56/68

bad news: intractability of ar semantics (cont.)

In fact: CQ answering is coNP-hard for simple TBox T = {T ⊑ ¬F}

Reduction from 2+2UNSAT: φ = c1 ∧ . . . ∧ cm over v1, . . . , vk,⊤,⊥
each clause has two positive and two negative literals

Intractability of CQA semantics
Have coNP-hardness in data complexity for following settings:

- Atomic queries + DL-Lite ontology
- Acyclic conjunctive queries + class disjointness

� = c1 ^ ... ^ cm over v1, ..., vk,>,?

q =
N1

N2

vj

cic1 cm

vlv1 vk

... ...

...

N2
N1

> ?

ci = v1 � vk � ¬vj � ¬vl

Reduction from 2+2UNSAT:
where each clause has two positive and two negative literals

T � ¬F

T ,A |=CQA q iff ' unsat

T =A =

[Lembo et al. 2010]
[Bienvenu 2012]

TF TF TF TF T F

FF T T

P1
P2 P2

P1

Can show φ unsatisfiable⇔ T ,A |= q

56/68

more bad news: icr, car, k-lazy

Can use preceding reductions to show more intractability results

Theorem CQ and IQ answering under ICR semantics are
coNP-complete in data complexity

Theorem CQ answering under CAR semantics is coNP-complete
in data complexity

Theorem CQ answering under k-lazy semantics is coNP-complete in
data complexity for every k ≥ 1

57/68

more bad news: icr, car, k-lazy

Can use preceding reductions to show more intractability results

Theorem CQ and IQ answering under ICR semantics are
coNP-complete in data complexity

Theorem CQ answering under CAR semantics is coNP-complete
in data complexity

Theorem CQ answering under k-lazy semantics is coNP-complete in
data complexity for every k ≥ 1

57/68

good news: iar and brave

For IAR and brave semantics,
have same low data complexity as classical semantics

Theorem CQ and IQ answering under IAR semantics are
in AC0 in data complexity

Theorem CQ and IQ answering under brave semantics are
in AC0 in data complexity

Can use FO-query rewriting to compute IAR- and brave-answers

58/68

good news: iar and brave

For IAR and brave semantics,
have same low data complexity as classical semantics

Theorem CQ and IQ answering under IAR semantics are
in AC0 in data complexity

Theorem CQ and IQ answering under brave semantics are
in AC0 in data complexity

Can use FO-query rewriting to compute IAR- and brave-answers

58/68

example: rewriting for iar semantics

Idea: modify UCQ-rewriting to ensure ABox assertions matching
disjuncts are not involved in any contradictions

(Normal) rewriting of q2(x) = ∃y Teaches(x, y) w.r.t. Tuniv:

q′2(x) = Prof(x) ∨ Lect(x) ∨ ∃y.Teaches(x, y)

Rewriting of q2 for IAR semantics:

q′′
2 (x) =Prof(x)∧ (¬Lect(x) ∧ ¬Fellow(x) ∧ ¬Course(x) ∧ ¬∃z. Teaches(z, x)) ∨

Lect(x)∧ (¬Prof(x) ∧ ¬Fellow(x) ∧ ¬Course(x) ∧ ¬∃z. Teaches(z, x)) ∨

∃y.(Teaches(x, y)∧ (¬Prof(y) ∧ ¬Lect(y) ∧ ¬Fellow(y)))

59/68

example: rewriting for iar semantics

Idea: modify UCQ-rewriting to ensure ABox assertions matching
disjuncts are not involved in any contradictions

(Normal) rewriting of q2(x) = ∃y Teaches(x, y) w.r.t. Tuniv:

q′2(x) = Prof(x) ∨ Lect(x) ∨ ∃y.Teaches(x, y)

Rewriting of q2 for IAR semantics:

q′′
2 (x) =Prof(x)∧ (¬Lect(x) ∧ ¬Fellow(x) ∧ ¬Course(x) ∧ ¬∃z. Teaches(z, x)) ∨

Lect(x)∧ (¬Prof(x) ∧ ¬Fellow(x) ∧ ¬Course(x) ∧ ¬∃z. Teaches(z, x)) ∨

∃y.(Teaches(x, y)∧ (¬Prof(y) ∧ ¬Lect(y) ∧ ¬Fellow(y)))

59/68

example: rewriting for iar semantics

Idea: modify UCQ-rewriting to ensure ABox assertions matching
disjuncts are not involved in any contradictions

(Normal) rewriting of q2(x) = ∃y Teaches(x, y) w.r.t. Tuniv:

q′2(x) = Prof(x) ∨ Lect(x) ∨ ∃y.Teaches(x, y)

Rewriting of q2 for IAR semantics:

q′′
2 (x) =Prof(x)∧ (¬Lect(x) ∧ ¬Fellow(x) ∧ ¬Course(x) ∧ ¬∃z. Teaches(z, x)) ∨

Lect(x)∧ (¬Prof(x) ∧ ¬Fellow(x) ∧ ¬Course(x) ∧ ¬∃z. Teaches(z, x)) ∨

∃y.(Teaches(x, y)∧ (¬Prof(y) ∧ ¬Lect(y) ∧ ¬Fellow(y)))

59/68

example: rewriting for brave semantics

Idea: modify UCQ-rewriting to ensure each disjunct can only match
T -consistent subset of ABox

Modified TBox T ′
univ: add ∃Teaches ⊑ Fac to Tuniv

(Normal) rewriting of q2(x) = ∃y Teaches(x, y) w.r.t. T ′
univ:

q′2(x) = Prof(x) ∨ Lect(x) ∨ ∃y.Teaches(x, y)

Rewriting of q2 for brave semantics:

q′2(x) = Prof(x) ∨ Lect(x) ∨ (∃y.Teaches(x, y)∧ x ̸= y)

to disallow using assertions of the form Teaches(a,a)

60/68

example: rewriting for brave semantics

Idea: modify UCQ-rewriting to ensure each disjunct can only match
T -consistent subset of ABox

Modified TBox T ′
univ: add ∃Teaches ⊑ Fac to Tuniv

(Normal) rewriting of q2(x) = ∃y Teaches(x, y) w.r.t. T ′
univ:

q′2(x) = Prof(x) ∨ Lect(x) ∨ ∃y.Teaches(x, y)

Rewriting of q2 for brave semantics:

q′2(x) = Prof(x) ∨ Lect(x) ∨ (∃y.Teaches(x, y)∧ x ̸= y)

to disallow using assertions of the form Teaches(a,a)

60/68

example: rewriting for brave semantics

Idea: modify UCQ-rewriting to ensure each disjunct can only match
T -consistent subset of ABox

Modified TBox T ′
univ: add ∃Teaches ⊑ Fac to Tuniv

(Normal) rewriting of q2(x) = ∃y Teaches(x, y) w.r.t. T ′
univ:

q′2(x) = Prof(x) ∨ Lect(x) ∨ ∃y.Teaches(x, y)

Rewriting of q2 for brave semantics:

q′2(x) = Prof(x) ∨ Lect(x) ∨ (∃y.Teaches(x, y)∧ x ̸= y)

to disallow using assertions of the form Teaches(a,a)

60/68

example: rewriting for brave semantics

Idea: modify UCQ-rewriting to ensure each disjunct can only match
T -consistent subset of ABox

Modified TBox T ′
univ: add ∃Teaches ⊑ Fac to Tuniv

(Normal) rewriting of q2(x) = ∃y Teaches(x, y) w.r.t. T ′
univ:

q′2(x) = Prof(x) ∨ Lect(x) ∨ ∃y.Teaches(x, y)

Rewriting of q2 for brave semantics:

q′2(x) = Prof(x) ∨ Lect(x) ∨ (∃y.Teaches(x, y)∧ x ̸= y)

to disallow using assertions of the form Teaches(a,a)

60/68

more good news: k-support and k-defeater semantics

Theorem CQ and IQ answering under k-support semantics (k ≥ 1) or
k-defeater semantics (k ≥ 0) are in AC0 in data complexity

Shape of rewriting for k-support semantics:Shape of rewriting for k-support semantics:

Intuition behind the rewritings

Shape of rewriting for k-defeater semantics:

_

choice of k
support-types

chosen supports
present in the ABox

^(supports cannot be
simultaneously contradicted)

_

choice of
defeater of

size at most k

chosen defeater
present in the ABox

^(contradicts every support
present in the ABox)¬ ()

Shape of rewriting for k-defeater semantics:

Shape of rewriting for k-support semantics:

Intuition behind the rewritings

Shape of rewriting for k-defeater semantics:

_

choice of k
support-types

chosen supports
present in the ABox

^(supports cannot be
simultaneously contradicted)

_

choice of
defeater of

size at most k

chosen defeater
present in the ABox

^(contradicts every support
present in the ABox)¬ ()

Note: positive results hold for all FO-rewritable ontology languages

61/68

more good news: k-support and k-defeater semantics

Theorem CQ and IQ answering under k-support semantics (k ≥ 1) or
k-defeater semantics (k ≥ 0) are in AC0 in data complexity

Shape of rewriting for k-support semantics:Shape of rewriting for k-support semantics:

Intuition behind the rewritings

Shape of rewriting for k-defeater semantics:

_

choice of k
support-types

chosen supports
present in the ABox

^(supports cannot be
simultaneously contradicted)

_

choice of
defeater of

size at most k

chosen defeater
present in the ABox

^(contradicts every support
present in the ABox)¬ ()

Shape of rewriting for k-defeater semantics:

Shape of rewriting for k-support semantics:

Intuition behind the rewritings

Shape of rewriting for k-defeater semantics:

_

choice of k
support-types

chosen supports
present in the ABox

^(supports cannot be
simultaneously contradicted)

_

choice of
defeater of

size at most k

chosen defeater
present in the ABox

^(contradicts every support
present in the ABox)¬ ()

Note: positive results hold for all FO-rewritable ontology languages

61/68

more good news: k-support and k-defeater semantics

Theorem CQ and IQ answering under k-support semantics (k ≥ 1) or
k-defeater semantics (k ≥ 0) are in AC0 in data complexity

Shape of rewriting for k-support semantics:Shape of rewriting for k-support semantics:

Intuition behind the rewritings

Shape of rewriting for k-defeater semantics:

_

choice of k
support-types

chosen supports
present in the ABox

^(supports cannot be
simultaneously contradicted)

_

choice of
defeater of

size at most k

chosen defeater
present in the ABox

^(contradicts every support
present in the ABox)¬ ()

Shape of rewriting for k-defeater semantics:

Shape of rewriting for k-support semantics:

Intuition behind the rewritings

Shape of rewriting for k-defeater semantics:

_

choice of k
support-types

chosen supports
present in the ABox

^(supports cannot be
simultaneously contradicted)

_

choice of
defeater of

size at most k

chosen defeater
present in the ABox

^(contradicts every support
present in the ABox)¬ ()

Note: positive results hold for all FO-rewritable ontology languages

61/68

more good news: k-support and k-defeater semantics

Theorem CQ and IQ answering under k-support semantics (k ≥ 1) or
k-defeater semantics (k ≥ 0) are in AC0 in data complexity

Shape of rewriting for k-support semantics:Shape of rewriting for k-support semantics:

Intuition behind the rewritings

Shape of rewriting for k-defeater semantics:

_

choice of k
support-types

chosen supports
present in the ABox

^(supports cannot be
simultaneously contradicted)

_

choice of
defeater of

size at most k

chosen defeater
present in the ABox

^(contradicts every support
present in the ABox)¬ ()

Shape of rewriting for k-defeater semantics:

Shape of rewriting for k-support semantics:

Intuition behind the rewritings

Shape of rewriting for k-defeater semantics:

_

choice of k
support-types

chosen supports
present in the ABox

^(supports cannot be
simultaneously contradicted)

_

choice of
defeater of

size at most k

chosen defeater
present in the ABox

^(contradicts every support
present in the ABox)¬ ()

Note: positive results hold for all FO-rewritable ontology languages
61/68

complexity landscape for dl-lite

Semantics Data complexity Combined complexity

CQs IQs CQs IQs

classical in AC0 in AC0 NP NL
AR coNP coNP Πp

2 coNP
IAR in AC0 in AC0 NP NL
brave in AC0 in AC0 NP NL
k-support (k ≥ 1) in AC0 in AC0 NP NL
k-defeater (k ≥ 0) in AC0 in AC0 NP NL
ICR coNP coNP ∆p

2 [O(log n)] coNP
CAR coNP in AC0 Πp

2 NL
ICAR in AC0 in AC0 NP NL
k-lazy (k ≥ 1) coNP in P Πp

2 in P

62/68

towards practical systems for inconsistency handling

CQAPri first system for AR query answering in DL-Lite

Implements hybrid approach:

∙ compute IAR and brave answers polytime
∙ gives upper and lower bounds on AR answers

∙ use SAT solvers to identify remaining AR answers

∙ three categories of answers : possible, likely, (almost) sure

Encouraging experimental results:
∙ in most cases, IAR and brave enough to decide if tuple is
AR-answer⇒ few calls to SAT solvers

∙ SAT encodings are typically small and easy to solve

63/68

towards practical systems for inconsistency handling

CQAPri first system for AR query answering in DL-Lite

Implements hybrid approach:

∙ compute IAR and brave answers polytime
∙ gives upper and lower bounds on AR answers

∙ use SAT solvers to identify remaining AR answers

∙ three categories of answers : possible, likely, (almost) sure

Encouraging experimental results:
∙ in most cases, IAR and brave enough to decide if tuple is
AR-answer⇒ few calls to SAT solvers

∙ SAT encodings are typically small and easy to solve
63/68

beyond dl-lite: lightweight dls

Lightweight DL EL⊥: constructors ⊤,⊥,⊓, ∃r.C

Semantics Data complexity Combined complexity

CQs IQs CQs IQs

classical P P NP P
AR coNP coNP Πp

2 coNP
IAR coNP coNP ∆p

2 [O(log n)] coNP
brave NP NP NP NP

Observe: IAR and brave are no longer tractable
∙ no bound on size of minimal T -inconsistent subsets

64/68

beyond dl-lite: expressive dls

Expressive DL ALC: constructors ⊤,⊥,¬,⊓,⊔, ∃r.C, ∀r.C

Semantics Data complexity Combined complexity

CQs IQs CQs IQs

classical coNP coNP Exp Exp
AR Πp

2 Πp
2 Exp Exp

IAR Πp
2 Πp

2 Exp Exp
brave Σp

2 Σp
2 Exp Exp

Observe:
∙ IAR and brave no easier than AR
∙ increased data complexity, no increase in combined complexity

65/68

conclusion & outlook

conclusion

Traditional OMQA techniques not robust to data inconsistencies
⇒ need for inconsistency-tolerant semantics

Many different semantics have been proposed
∙ some borrowed from other areas (DBs, KR)
∙ many proposed specifically for OMQA

Good understanding of complexity landscape for
inconsistency-tolerant OMQA
∙ complete picture for DL-Lite
∙ quite a few results for other DLs, existential rules

First implemented systems, promising results for DL-Lite

67/68

outlook

Algorithms for DL-Lite:
∙ mostly based upon UCQ-rewritings (can be very large)
∙ can we adapt other techniques to our setting?

Beyond DL-Lite:
∙ complexity landscape already explored, mostly negative results
∙ challenge: how to design effective algorithms?
∙ difficulty: unbounded size of query supports and minimal
inconsistent subsets

Usability issues:
∙ need for explanation services: help users interpret query results
∙ try to improve data quality though interaction with users

68/68

	Introduction to DLs & OMQA
	Introduction to Inconsistency-Tolerant Semantics
	Inconsistency-Tolerant Semantics: Definitions and Properties
	Complexity of Inconsistency-Tolerant Query Answering
	Conclusion & Outlook

