INCONSISTENCY-TOLERANT QUERYING OF DESCRIPTION LOGIC KNOWLEDGE BASES

Meghyn Bienvenu (CNRS, University of Montpellier, Inria)

To standardize the terminology of an application domain

- \cdot by adopting a common vocabulary, easy to share information
- meaning of terms is constrained, so less misunderstandings

To **standardize the terminology** of an application domain

- \cdot by adopting a common vocabulary, easy to share information
- meaning of terms is constrained, so less misunderstandings

To present an intuitive and unified view of data sources

- ontology can be used to **enrich the data vocabulary**, making it easier for users to formulate their queries
- \cdot especially useful when integrating multiple data sources

To **standardize the terminology** of an application domain

- · by adopting a common vocabulary, easy to share information
- · meaning of terms is constrained, so less misunderstandings

To present an intuitive and unified view of data sources

- ontology can be used to enrich the data vocabulary, making it easier for users to formulate their queries
- \cdot especially useful when integrating multiple data sources

To support automated reasoning

- · uncover implicit connections between terms, errors in modelling
- exploit knowledge in the ontology during query answering, to get back a more complete set of answers to queries

Description logics (DLs):

- · popular means for specifying ontologies
- \cdot basis of the web ontology language OWL (W3C standard)

Formally: decidable fragments of first-order logic

- $\cdot\,$ inherit well-defined semantics
- \cdot succinct, variable-free syntax

Description logics (DLs):

- · popular means for specifying ontologies
- \cdot basis of the web ontology language OWL (W3C standard)

Formally: decidable fragments of first-order logic

- $\cdot\,$ inherit well-defined semantics
- succinct, variable-free syntax

Computational properties well understood (decidability, complexity)

Many implemented reasoners and tools available for use

In realistic settings, can expect some errors in the data

· ABox likely to be **inconsistent** with the TBox (ontology)

Standard semantics: everything is implied - not informative!

In realistic settings, can expect some errors in the data

· ABox likely to be **inconsistent** with the TBox (ontology)

Standard semantics: everything is implied - not informative!

Two approaches to inconsistency handling:

- resolve the inconsistencies
 - · preferable, but not always applicable!
- · live with the inconsistencies adopt alternative semantics
 - meaningful answers to queries despite inconsistencies

Note: focus on case where errors in ABox (assume TBox reliable)

INTRODUCTION TO DLS & OMQA

Building blocks:

- · concept names (unary predicates, classes)
- · role names (binary predicates, properties)

Constructors to build complex descriptions

 $\mathsf{Fac}\sqcap\neg\mathsf{Prof}$

∃Teaches.GradCourse

Prof Fac Course Teaches HeadOf $\Box, \Box, \neg, \forall, \exists, ...$

Teaches⁻

Building blocks:

- · concept names (unary predicates, classes)
- · role names (binary predicates, properties)

Constructors to build complex descriptions $\Box, \Box, \neg, \forall, \exists, ...$

Fac □ ¬Prof

f ∃Teaches.GradCourse

Teaches⁻

TBox (ontology) = set of axioms

concept inclusions

Note: allowed constructors and axioms depends on chosen DL

Mainly focus on DLs of the DL-Lite family

- specifically designed for OMQA
- · simple DLs with useful modelling constructs
- · basis for OWL 2 QL profile

Mainly focus on DLs of the DL-Lite family

- specifically designed for OMQA
- \cdot simple DLs with useful modelling constructs
- · basis for OWL 2 QL profile

DL-Lite_R dialect:

- concept inclusions $B_1 \sqsubseteq (\neg)B_2$
- role inclusions $R_1 \sqsubseteq (\neg)R_2$

 B_1, B_2 either $A \in N_C$ or $\exists R \ (R \in N_R^{\pm})$ $R_1, R_2 \in N_R^{\pm}$ We will also briefly consider other DLs

'Lightweight' description logic \mathcal{EL}_{\perp} :

- · concept constructors: \top , \bot , \Box , and $\exists r.C$
- \cdot only concept inclusions ${\it C}\sqsubseteq {\it D}$ in TBox

'Expressive' description logic ALC:

- · concept constructors: $\top, \bot, \neg, \sqcap, \sqcup, \exists r.C, and \forall r.C$
- · only concept inclusions $C \sqsubseteq D$ in TBox

Interpretation *I* ("possible world")

- · **domain of objects** $\Delta^{\mathcal{I}}$ (possibly infinite set)
- \cdot interpretation function $\cdot^{\mathcal{I}}$ that maps
 - · **concept name** $A \rightsquigarrow$ set of objects $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$
 - · role name $r \rightsquigarrow$ set of pairs of objects $r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$
 - · individual name $a \rightsquigarrow \text{object } a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$
- \cdot extend $\cdot^{\mathcal{I}}$ to complex concepts and roles in natural way

Interpretation *I* ("possible world")

- · **domain of objects** $\Delta^{\mathcal{I}}$ (possibly infinite set)
- \cdot interpretation function $\cdot^{\mathcal{I}}$ that maps
 - · **concept name** $A \rightsquigarrow$ set of objects $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$
 - · role name $r \rightsquigarrow$ set of pairs of objects $r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$
 - · individual name $a \rightsquigarrow \text{object } a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$
- \cdot extend $\cdot^{\mathcal{I}}$ to complex concepts and roles in natural way

Interpretation \mathcal{I} is a model of KB $\langle \mathcal{T}, \mathcal{A} \rangle$ if:

- $\cdot \ G^{\mathcal{I}} \subseteq H^{\mathcal{I}}$ for every (concept or role) inclusion $G \sqsubseteq H \in \mathcal{T}$
- $\cdot a^{\mathcal{I}} \in A^{\mathcal{I}}$ for every $A(a) \in \mathcal{A}$ and $(a^{\mathcal{I}}, b^{\mathcal{I}}) \in r^{\mathcal{I}}$ for every $r(a, b) \in \mathcal{A}$

Satisfiable KB = has at least one model

Interpretation *I* ("possible world")

- · **domain of objects** $\Delta^{\mathcal{I}}$ (possibly infinite set)
- \cdot interpretation function $\cdot^{\mathcal{I}}$ that maps
 - \cdot concept name $A \rightsquigarrow$ set of objects $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$
 - · role name $r \rightsquigarrow$ set of pairs of objects $r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$
 - · individual name $a \rightsquigarrow \text{object } a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$
- $\cdot \hspace{0.1 cm} \text{extend} \hspace{0.1 cm} \cdot^{\mathcal{I}} \hspace{0.1 cm} \text{to complex concepts and roles in natural way}$

Interpretation \mathcal{I} is a model of KB $\langle \mathcal{T}, \mathcal{A} \rangle$ if:

- $\cdot \ G^{\mathcal{I}} \subseteq H^{\mathcal{I}}$ for every (concept or role) inclusion $G \sqsubseteq H \in \mathcal{T}$
- $\cdot a^{\mathcal{I}} \in A^{\mathcal{I}}$ for every $A(a) \in \mathcal{A}$ and $(a^{\mathcal{I}}, b^{\mathcal{I}}) \in r^{\mathcal{I}}$ for every $r(a, b) \in \mathcal{A}$

Satisfiable KB = has at least one model

ABox \mathcal{A} is \mathcal{T} -consistent = KB $\langle \mathcal{T}, \mathcal{A} \rangle$ is satisfiable

Prof⊑Fac	Prof ⊑ ∃Teaches	$Prof \sqsubseteq \neg Lect$	Fac ⊑ ¬Course
$Lect\sqsubseteqFac$	Lect $\sqsubseteq \exists Teaches$	$Prof \sqsubseteq \neg Fellow$	
Fellow ⊑ Fac	$\exists Teaches^- \sqsubseteq Course$	$Lect\sqsubseteq\negFellow$	

Example ABox A_{univ} :

Prof(anna), Lect(anna), Fellow(anna), Prof(kim), Lect(kim), Fellow(julie), Teaches(csc343, julie), Fellow(alex), Teaches(alex, csc486)

Claim: $\langle \mathcal{T}_{univ}, \mathcal{A}_{univ} \rangle$ is unsatisfiable

 \subseteq -minimal \mathcal{T}_{univ} -inconsistent subsets of \mathcal{A}_{univ} :

Prof⊑Fac	Prof ⊑ ∃Teaches	$Prof \sqsubseteq \neg Lect$	Fac ⊑ ¬Course
$Lect\sqsubseteqFac$	Lect $\sqsubseteq \exists Teaches$	$Prof \sqsubseteq \neg Fellow$	
Fellow ⊑ Fac	$\exists Teaches^- \sqsubseteq Course$	$Lect\sqsubseteq\negFellow$	

Example ABox A_{univ} :

Prof(anna), Lect(anna), Fellow(anna), Prof(kim), Lect(kim), Fellow(julie), Teaches(csc343, julie), Fellow(alex), Teaches(alex, csc486)

Claim: $\langle \mathcal{T}_{univ}, \mathcal{A}_{univ} \rangle$ is unsatisfiable

 \subseteq -minimal \mathcal{T}_{univ} -inconsistent subsets of \mathcal{A}_{univ} :

{Prof(anna), Lect(anna)} {Prof(anna), Fellow(anna)}
{Lect(anna), Fellow(anna)} {Prof(kim), Lect(kim)}
{Fellow(julie), Teaches(csc343, julie)}

Instance queries (IQs): find instances of a given concept or role

Fac(x) Teaches(x, y)

Instance queries (IQs): find instances of a given concept or role

Fac(x) Teaches(x, y)

Conjunctive queries (CQs) ~ SPJ queries in SQL, BGPs in SPARQL conjunctions of atoms, some variables can be existentially quantified

 $\exists y. Fac(x) \land Teaches(x, y)$

(find all faculty members that teach something)

Instance queries (IQs): find instances of a given concept or role

Fac(x) Teaches(x, y)

Conjunctive queries (CQs) ~ SPJ queries in SQL, BGPs in SPARQL conjunctions of atoms, some variables can be existentially quantified

 $\exists y. Fac(x) \land Teaches(x, y)$

(find all faculty members that teach something)

Unions of conjunctive queries (UCQs): disjunction of CQs

Problem: each KB gives rise to multiple interpretations (its models)

Problem: each KB gives rise to multiple interpretations (its models)

Solution: adopt certain answer semantics

· require tuple to be an answer w.r.t. all models of KB

Problem: each KB gives rise to multiple interpretations (its models)

Solution: adopt certain answer semantics

· require tuple to be an answer w.r.t. all models of KB

Formally: Call a tuple (a_1, \ldots, a_n) of individuals from \mathcal{A} a certain answer to *n*-ary query *q* over DL KB $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ iff

 $(a_1^{\mathcal{I}}, \dots, a_n^{\mathcal{I}}) \in \operatorname{ans}(q, \mathcal{I})$ for every model \mathcal{I} of \mathcal{K} Notation: $\mathcal{K} \models q(a_1, \dots, a_n)$

Problem: each KB gives rise to multiple interpretations (its models)

Solution: adopt certain answer semantics

· require tuple to be an answer w.r.t. all models of KB

Formally: Call a tuple (a_1, \ldots, a_n) of individuals from \mathcal{A} a certain answer to *n*-ary query *q* over DL KB $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ iff

 $(a_1^{\mathcal{I}}, \ldots, a_n^{\mathcal{I}}) \in ans(q, \mathcal{I})$ for every model \mathcal{I} of \mathcal{K}

Notation: $\mathcal{K} \models q(a_1, \ldots, a_n)$

Ontology-mediated query answering (OMQA) = computing certain answers to queries

Prof ⊑ Fac	$Prof \sqsubseteq \exists Teaches$	$Prof \sqsubseteq \neg Lect$	Fac ⊑ ¬Course
Lect ⊑ Fac	Lect $\sqsubseteq \exists Teaches$	$Prof \sqsubseteq \neg Fellow$	
Fellow ⊑ Fac	$\exists Teaches^- \sqsubseteq Course$	$Lect\sqsubseteq\negFellow$	

Consistent subset of $\mathcal{A}_{\text{univ}}$:

Prof(anna), Lect(kim), Fellow(julie), Fellow(alex), Teaches(alex, csc486)

Prof ⊑ Fac	$Prof \sqsubseteq \exists Teaches$	$Prof \sqsubseteq \neg Lect$	$Fac \sqsubseteq \neg Course$
Lect ⊑ Fac	Lect $\sqsubseteq \exists Teaches$	$Prof \sqsubseteq \neg Fellow$	
Fellow 드 Fac	$\exists Teaches^- \sqsubseteq Course$	$Lect\sqsubseteq\negFellow$	

Consistent subset of \mathcal{A}_{univ} :

Prof(anna), Lect(kim), Fellow(julie), Fellow(alex), Teaches(alex, csc486)

Query: $q_1(x) = Fac(x)$

Certain answers to q_1 :

Prof⊑Fac	$Prof \sqsubseteq \exists Teaches$	$Prof \sqsubseteq \neg Lect$	$Fac \sqsubseteq \neg Course$
Lect ⊑ Fac	Lect $\sqsubseteq \exists Teaches$	$Prof \sqsubseteq \neg Fellow$	
Fellow 드 Fac	∃Teaches [–] ⊑ Course	$Lect\sqsubseteq\negFellow$	

Consistent subset of \mathcal{A}_{univ} :

Prof(anna), Lect(kim), Fellow(julie), Fellow(alex), Teaches(alex, csc486)

Query: $q_1(x) = Fac(x)$

Certain answers to q_1 : anna, kim, julie, alex

Prof ⊑ Fac	$Prof \sqsubseteq \exists Teaches$	$Prof \sqsubseteq \neg Lect$	Fac ⊑ ¬Course
Lect ⊑ Fac	Lect $\sqsubseteq \exists Teaches$	$Prof \sqsubseteq \neg Fellow$	
Fellow 드 Fac	$\exists Teaches^- \sqsubseteq Course$	$Lect\sqsubseteq\negFellow$	

Consistent subset of \mathcal{A}_{univ} :

Prof(anna), Lect(kim), Fellow(julie), Fellow(alex), Teaches(alex, csc486)

Query: $q_2(x) = \exists y \operatorname{Teaches}(x, y)$

Certain answers to q_2 :
Prof⊑ Fac	$Prof \sqsubseteq \exists Teaches$	$Prof \sqsubseteq \neg Lect$	$Fac \sqsubseteq \neg Course$
Lect ⊑ Fac	Lect $\sqsubseteq \exists Teaches$	$Prof \sqsubseteq \neg Fellow$	
Fellow 드 Fac	$\exists Teaches^- \sqsubseteq Course$	$Lect\sqsubseteq\negFellow$	

Consistent subset of \mathcal{A}_{univ} :

Prof(anna), Lect(kim), Fellow(julie), Fellow(alex), Teaches(alex, csc486)

Query: $q_2(x) = \exists y \operatorname{Teaches}(x, y)$

Certain answers to q_2 : anna, kim, alex

Prof ⊑ Fac	Prof ⊑ ∃Teaches	$Prof \sqsubseteq \neg Lect$	Fac ⊑ ¬Course
Lect ⊑ Fac	Lect $\sqsubseteq \exists Teaches$	$Prof \sqsubseteq \neg Fellow$	
Fellow 드 Fac	$\exists Teaches^- \sqsubseteq Course$	$Lect\sqsubseteq\negFellow$	

Consistent subset of \mathcal{A}_{univ} :

Prof(anna), Lect(kim), Fellow(julie), Fellow(alex), Teaches(alex, csc486)

Query: $q_3(x) = \exists y \operatorname{Fac}(x) \wedge \operatorname{Teaches}(x, y)$

Certain answers to q_3 :

Prof ⊑ Fac	Prof ⊑ ∃Teaches	$Prof \sqsubseteq \neg Lect$	Fac ⊑ ¬Course
Lect ⊑ Fac	Lect $\sqsubseteq \exists Teaches$	$Prof \sqsubseteq \neg Fellow$	
Fellow 드 Fac	$\exists Teaches^- \sqsubseteq Course$	$Lect\sqsubseteq\negFellow$	

Consistent subset of \mathcal{A}_{univ} :

Prof(anna), Lect(kim), Fellow(julie), Fellow(alex), Teaches(alex, csc486)

Query: $q_3(x) = \exists y \operatorname{Fac}(x) \land \operatorname{Teaches}(x, y)$

Certain answers to q_3 : anna, kim, alex

Prof ⊑ Fac	$Prof \sqsubseteq \exists Teaches$	$Prof \sqsubseteq \neg Lect$	Fac ⊑ ¬Course
Lect ⊑ Fac	Lect $\sqsubseteq \exists Teaches$	$Prof \sqsubseteq \neg Fellow$	
Fellow 드 Fac	$\exists Teaches^- \sqsubseteq Course$	$Lect\sqsubseteq\negFellow$	

Consistent subset of \mathcal{A}_{univ} :

Prof(anna), Lect(kim), Fellow(julie), Fellow(alex), Teaches(alex, csc486)

Query: $q_4(x, y) = Fac(x) \wedge Teaches(x, y)$

Certain answers to q_4 :

Prof ⊑ Fac	$Prof \sqsubseteq \exists Teaches$	$Prof \sqsubseteq \neg Lect$	$Fac \sqsubseteq \neg Course$
Lect ⊑ Fac	Lect $\sqsubseteq \exists Teaches$	$Prof \sqsubseteq \neg Fellow$	
Fellow 드 Fac	$\exists Teaches^- \sqsubseteq Course$	$Lect\sqsubseteq\negFellow$	

Consistent subset of \mathcal{A}_{univ} :

Prof(anna), Lect(kim), Fellow(julie), Fellow(alex), Teaches(alex, csc486)

Query: $q_4(x, y) = Fac(x) \wedge Teaches(x, y)$

Certain answers to q_4 : (alex, csc486)

Query rewriting: Reduces problem of finding certain answers to standard DB query evaluation (→ exploit existing DB systems)

Query rewriting: Reduces problem of finding certain answers to standard DB query evaluation (→ exploit existing DB systems)

Call $q'(\vec{x})$ a rewriting of $q(\vec{x})$ and \mathcal{T} iff for every ABox \mathcal{A} and tuple \vec{a}

$$\mathcal{T}, \mathcal{A} \models q(\vec{a}) \quad \Leftrightarrow \quad \vec{a} \in \operatorname{ans}(q'(\vec{x}), \mathcal{I}_{\mathcal{A}}) \qquad (\mathcal{I}_{\mathcal{A}} = \operatorname{treat} \mathcal{A} \text{ as DB})$$

Query rewriting: Reduces problem of finding certain answers to standard DB query evaluation (→ exploit existing DB systems)

Call $q'(\vec{x})$ a rewriting of $q(\vec{x})$ and \mathcal{T} iff for every ABox \mathcal{A} and tuple \vec{a}

$$\mathcal{T}, \mathcal{A} \models q(\vec{a}) \quad \Leftrightarrow \quad \vec{a} \in \operatorname{ans}(q'(\vec{x}), \mathcal{I}_{\mathcal{A}}) \qquad (\mathcal{I}_{\mathcal{A}} = \operatorname{treat} \mathcal{A} \text{ as DB})$$

First-order (FO) rewritings: q' is an FO (~ SQL) query UCQ-rewritings: q' is a UCQ

Rewriting of $q_1(x) = Fac(x)$ w.r.t. \mathcal{T}_{univ} :

 $q'_1(x) = Fac(x) \lor Prof(x) \lor Lect(x) \lor Fellow(x)$

Rewriting of $q_3(x) = \exists y \operatorname{Fac}(x) \land \operatorname{Teaches}(x, y)$ w.r.t. $\mathcal{T}_{\operatorname{univ}}$:

 $\begin{array}{ll} q'_3(x) &= & (\exists y. \mathsf{Fac}(x) \land \mathsf{Teaches}(x, y)) \lor \mathsf{Prof}(x) \lor \mathsf{Lect}(x) \lor \\ & & (\exists y. \mathsf{Fellow}(x) \land \mathsf{Teaches}(x, y)) \end{array}$

Rewriting of $q_4(x, y) = Fac(x) \land Teaches(x, y)$ w.r.t. \mathcal{T}_{univ} :

 $\begin{array}{ll} q'_4(x,y) &= & (\operatorname{Fac}(x) \wedge \operatorname{Teaches}(x,y)) \lor (\operatorname{Prof}(x) \wedge \operatorname{Teaches}(x,y)) \\ & & (\operatorname{Lect}(x) \wedge \operatorname{Teaches}(x,y)) \lor (\operatorname{Fellow}(x) \wedge \operatorname{Teaches}(x,y)) \end{array}$

INTRODUCTION TO INCONSISTENCY-TOLERANT SEMANTICS

In realistic settings, can expect some errors in the data

· ABox likely to be **inconsistent** with the TBox (ontology)

Standard semantics: everything is implied - not informative!

In realistic settings, can expect some errors in the data

· ABox likely to be **inconsistent** with the TBox (ontology)

Standard semantics: everything is implied - not informative!

Two approaches to inconsistency handling:

- resolve the inconsistencies
 - · preferable, but not always applicable!
- · live with the inconsistencies adopt alternative semantics
 - meaningful answers to queries despite inconsistencies

Note: focus on case where errors in ABox (assume TBox reliable)

Prof ⊑ Fac	$Prof \sqsubseteq \exists Teaches$	Prof ⊑ ¬Lect	$Fac \sqsubseteq \neg Course$
Lect ⊑ Fac	Lect $\sqsubseteq \exists Teaches$	$Prof \sqsubseteq \neg Fellow$	
Fellow ⊑ Fac	$\exists Teaches^- \sqsubseteq Course$	$Lect\sqsubseteq\negFellow$	

Consider following ABoxes:

$A_1 = \{ Prof(anna), Lect(anna), Fellow(alex) \} \}$

 $A_2 = \{ Prof(anna), Fellow(alex), Lect(alex) \} \}$

Which assertions would be reasonable to infer from these two KBs?

Prof(anna)	Lect(anna)	Fac(anna)
Fellow(alex)	Lect(alex)	Fac(alex)

Prof ⊑ Fac	Prof ⊑ ∃Teaches	Prof ⊑ ¬Lect	Fac ⊑ ¬Course
Lect ⊑ Fac	Lect ⊑ ∃Teaches	Prof ⊑ ¬Fellow	
Fellow 드 Fac	$\exists Teaches^- \sqsubseteq Course$	$Lect\sqsubseteq\negFellow$	

ABox \mathcal{A}_{univ} :

Prof(anna), Lect(anna), Fellow(anna), Prof(kim), Lect(kim), Fellow(julie), Teaches(csc343, julie), Fellow(alex), Teaches(alex, csc486)

Question: what are reasonable answers for our example queries?

 $\begin{array}{ll} q_1(x) = \operatorname{Fac}(x) & q_2(x) = \exists y \operatorname{Teaches}(x, y) \\ q_3(x) = \exists y \operatorname{Fac}(x) \wedge \operatorname{Teaches}(x, y) & q_4(x, y) = \operatorname{Fac}(x) \wedge \operatorname{Teaches}(x, y) \end{array}$

In general: **no single best way** to define answers for inconsistent KBs ⇒ consider **many different inconsistency-tolerant semantics**

Formally: a semantics *S* associates a set of query answers to every KB and query

- \cdot if \mathcal{K} is satisfiable, should return certain answers
- \cdot for unsatisfiable \mathcal{K} , can give different answers than classical semantics

Write $\mathcal{K} \models_{\mathcal{S}} q(\vec{a})$ if \vec{a} answer to q w.r.t. \mathcal{K} under semantics \mathcal{S}

Consider different ways of comparing semantics

Call $C \subseteq A$ is a (consistent) \mathcal{T} -support of $q(\vec{a})$ if: (i) C is \mathcal{T} -consistent (ii) $\langle \mathcal{T}, C \rangle \models q(\vec{a})$

Semantics *S* satisfies the **CONSISTENT SUPPORT property** if whenever $\mathcal{K} \models_S q(\vec{a})$, there **exists a** \mathcal{T} -support $\mathcal{C} \subseteq \mathcal{A}$ of $q(\vec{a})$

 \cdot important for explaining / justifying query results to users

Call $C \subseteq A$ is a (consistent) \mathcal{T} -support of $q(\vec{a})$ if: (i) C is \mathcal{T} -consistent (ii) $\langle \mathcal{T}, C \rangle \models q(\vec{a})$

Semantics *S* satisfies the **CONSISTENT SUPPORT property** if whenever $\mathcal{K} \models_S q(\vec{a})$, there **exists a** \mathcal{T} -support $C \subseteq \mathcal{A}$ of $q(\vec{a})$

· important for explaining / justifying query results to users

Semantics *S* satisfies the **CONSISTENT RESULTS property** if for every KB \mathcal{K} , there exists a model \mathcal{I} of \mathcal{T} such that $\mathcal{K} \models_{S} q(\vec{a})$ implies $\mathcal{I} \models q(\vec{a})$.

- \cdot set of query results is jointly consistent with TBox
- \cdot safe to combine query results

Call $C \subseteq A$ is a (consistent) \mathcal{T} -support of $q(\vec{a})$ if: (i) C is \mathcal{T} -consistent (ii) $\langle \mathcal{T}, C \rangle \models q(\vec{a})$

Semantics *S* satisfies the **CONSISTENT SUPPORT property** if whenever $\mathcal{K} \models_S q(\vec{a})$, there **exists a** \mathcal{T} -support $\mathcal{C} \subseteq \mathcal{A}$ of $q(\vec{a})$

· important for explaining / justifying query results to users

Semantics *S* satisfies the **CONSISTENT RESULTS property** if for every KB \mathcal{K} , there exists a model \mathcal{I} of \mathcal{T} such that $\mathcal{K} \models_{S} q(\vec{a})$ implies $\mathcal{I} \models q(\vec{a})$.

- $\cdot\,$ set of query results is jointly consistent with TBox
- \cdot safe to combine query results

Note: neither property implies the other

Given two semantics S and S', we say that:

• S' is an **under-approximation** (or: **sound approximation**) of S just in the case that

$$\mathcal{K}\models_{S'}q(\vec{a}) \quad \Rightarrow \quad \mathcal{K}\models_{S}q(\vec{a})$$

• *S'* is an **over-approximation** (or: **complete approximation**) of *S* just in the case that

$$\mathcal{K} \models_{\mathsf{S}} q(\vec{a}) \Rightarrow \mathcal{K} \models_{\mathsf{S}'} q(\vec{a})$$

Consistency properties are preserved by under-approximations: S' is an under-approximation of S & S satisfies $P \Rightarrow S'$ also satisfies P here $P \in \in \{\text{CONSISTENT SUPPORT, CONSISTENT RESULTS}\}$ Many semantics are based upon the notion of repair

```
Repair of an ABox A w.r.t. a TBox T
= inclusion-maximal subset of A that is T-consistent
```

Intuition: different ways of achieving consistency while retaining as much of the original data as possible

Denote by $Rep(\mathcal{A}, \mathcal{T})$ the set of repairs of \mathcal{A} w.r.t. \mathcal{T}

· abbreviate to $Rep(\mathcal{K})$ when $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$

Every KB has <mark>at least one repair</mark>

 \cdot inconsistent KB \Rightarrow typically multiple repairs

Reconsider the TBox \mathcal{T}_{univ} :

Prof⊑Fac	Prof ⊑ ∃Teaches	$Prof \sqsubseteq \neg Lect$	Fac ⊑ ¬Course
Lect ⊑ Fac	Lect $\sqsubseteq \exists Teaches$	$Prof \sqsubseteq \neg Fellow$	
Fellow 드 Fac	$\exists Teaches^- \sqsubseteq Course$	$Lect\sqsubseteq\negFellow$	

and ABox \mathcal{A}_{univ} :

Prof(anna), Lect(anna), Fellow(anna), Prof(kim), Lect(kim), Fellow(julie), Teaches(csc343, julie), Fellow(alex), Teaches(alex, csc486)

Recall the minimal \mathcal{T}_{univ} -inconsistent subsets:

{Prof(anna), Lect(anna)} {Prof(anna), Fellow(anna)} {Lect(anna), Fellow(anna)} {Prof(kim), Lect(kim)} {Fellow(julie), Teaches(csc343, julie)}

Question: How many repairs of A_{univ} w.r.t. T_{univ} ?

EXAMPLE: REPAIRS (CONT.)

Twelve repairs of \mathcal{A}_{univ} w.r.t. \mathcal{T}_{univ} :

where the ABox \mathcal{A}_{int} that is common to all the repairs is as follows:

 $A_{Int} = \{Fellow(alex), Teaches(alex, csc486)\}$

INCONSISTENCY-TOLERANT SEMAN-TICS: DEFINITIONS AND PROPERTIES

Repair: \subseteq -maximal subset of the data consistent with the ontology

 \cdot ways to achieve consistency, keeping as much information as possible

Repair: \subseteq -maximal subset of the data consistent with the ontology

 \cdot ways to achieve consistency, keeping as much information as possible

Plausible answers: hold no matter which repair is chosen

Repair: \subseteq -maximal subset of the data consistent with the ontology

 \cdot ways to achieve consistency, keeping as much information as possible

Plausible answers: hold no matter which repair is chosen

AR semantics: query each repair separately, intersect results

 $\mathcal{K} \models_{AR} q(\vec{a}) \quad \Leftrightarrow \quad \langle \mathcal{T}, \mathcal{B} \rangle \models q(\vec{a}) \text{ for every repair } \mathcal{B} \in Rep(\mathcal{K})$

For the query $q_1(x) = Fac(x)$, we have:

For the query $q_1(x) = Fac(x)$, we have:

- $\mathcal{K}_{univ} \models_{AR} q_1(anna)$, as every repair contains one of Prof(anna), Lect(anna), and Fellow(anna)
- · $\mathcal{K}_{univ} \models_{AR} q_1(kim)$, as every repair contains Prof(kim) or Lect(anna)
- · $\mathcal{K}_{univ} \models_{AR} q_1(alex)$, as every repair contains Fellow(alex)

For the query $q_1(x) = Fac(x)$, we have:

- $\mathcal{K}_{univ} \models_{AR} q_1(anna)$, as every repair contains one of Prof(anna), Lect(anna), and Fellow(anna)
- · $\mathcal{K}_{univ} \models_{AR} q_1(kim)$, as every repair contains Prof(kim) or Lect(anna)
- · $\mathcal{K}_{univ} \models_{AR} q_1(alex)$, as every repair contains Fellow(alex)

These are the only answers under AR semantics:

For the query $q_1(x) = Fac(x)$, we have:

- $\mathcal{K}_{univ} \models_{AR} q_1(anna)$, as every repair contains one of Prof(anna), Lect(anna), and Fellow(anna)
- · $\mathcal{K}_{univ} \models_{AR} q_1(kim)$, as every repair contains Prof(kim) or Lect(anna)
- · $\mathcal{K}_{univ} \models_{AR} q_1(alex)$, as every repair contains Fellow(alex)

These are the only answers under AR semantics:

- · $\mathcal{K}_{univ} \not\models_{AR} q_1(julie)$ as $\langle \mathcal{T}_{univ}, \mathcal{R}_7 \rangle \not\models Fac(julie)$
- · can similarly show $\mathcal{K}_{univ} \not\models_{AR} q_1(csc486)$ and $\mathcal{K}_{univ} \not\models_{AR} q_1(csc343)$

For the query $q_2 = \exists y \operatorname{Teaches}(x, y)$, we have:

For the query $q_2 = \exists y \operatorname{Teaches}(x, y)$, we have:

- · $\mathcal{K}_{univ} \models_{AR} q_2(kim)$, as every repair contains Prof(kim) or Lect(kim)
- · $\mathcal{K}_{univ} \models_{AR} q_2(alex)$, as every repair contains Teaches(alex, csc486)

For the query $q_2 = \exists y \operatorname{Teaches}(x, y)$, we have:

- · $\mathcal{K}_{univ} \models_{AR} q_2(kim)$, as every repair contains Prof(kim) or Lect(kim)
- · $\mathcal{K}_{univ} \models_{AR} q_2(alex)$, as every repair contains Teaches(alex, csc486)

These are the only answers under AR semantics:

- · $\mathcal{K}_{univ} \not\models_{AR} q_1(anna)$ as $\langle \mathcal{T}_{univ}, \mathcal{R}_3 \rangle \not\models \exists y \text{ Teaches}(anna, y)$
- can similarly show julie, csc486, and csc343 are not answers

Repair: ⊆-maximal subset of the data consistent with the ontology

 \cdot ways to achieve consistency, keeping as much information as possible

Plausible answers: hold no matter which repair is chosen

AR semantics: query each repair separately, intersect results

 $\mathcal{K} \models_{\mathsf{AR}} q(\vec{a}) \quad \Leftrightarrow \quad \langle \mathcal{T}, \mathcal{B} \rangle \models q(\vec{a}) \text{ for every repair } \mathcal{B} \in \operatorname{Rep}(\mathcal{K})$

Satisfies both CONSISTENT SUPPORT and CONSISTENT RESULTS

Idea: only use the surest assertions to answer queries

 \cdot disregard assertions involved in some contradiction

Idea: only use the surest assertions to answer queries

 \cdot disregard assertions involved in some contradiction

IAR semantics: query the intersection of the repairs

 $\mathcal{K} \models_{\mathsf{IAR}} q(\vec{a}) \quad \Leftrightarrow \quad \langle \mathcal{T}, \mathcal{D} \rangle \models q(\vec{a}) \text{ where } \mathcal{D} = \bigcap_{\mathcal{B} \in \operatorname{Rep}(\mathcal{K})} \mathcal{B}$
Reconsider our example KB $\langle T_{univ}, A_{univ} \rangle$

Intersection of the repairs of $\langle T_{univ}, A_{univ} \rangle$:

 $A_{Int} = \{Fellow(alex), Teaches(alex, csc486)\}$

For the query $q_1(x) = Fac(x)$, we have:

Reconsider our example KB $\langle \mathcal{T}_{univ}, \mathcal{A}_{univ} \rangle$

Intersection of the repairs of $\langle T_{univ}, A_{univ} \rangle$:

 $A_{Int} = \{Fellow(alex), Teaches(alex, csc486)\}$

For the query $q_1(x) = Fac(x)$, we have:

· $\mathcal{K}_{univ} \models_{AR} q_1(alex)$, as $\langle \mathcal{T}_{univ}, \mathcal{A}_{Int} \rangle \models Fac(alex)$

Reconsider our example KB $\langle T_{univ}, A_{univ} \rangle$

Intersection of the repairs of $\langle T_{univ}, A_{univ} \rangle$:

 $A_{Int} = \{Fellow(alex), Teaches(alex, csc486)\}$

For the query $q_1(x) = Fac(x)$, we have:

· $\mathcal{K}_{univ} \models_{AR} q_1(alex)$, as $\langle \mathcal{T}_{univ}, \mathcal{A}_{Int} \rangle \models Fac(alex)$

This is the **only answer to** q_1 under **IAR semantics**:

• anna and kim are no longer considered answers since needed to reason by cases (e.g., kim is either Prof or Lect)

Idea: only use the surest assertions to answer queries

 \cdot disregard assertions involved in some contradiction

IAR semantics: query the intersection of the repairs

 $\mathcal{K} \models_{\mathsf{IAR}} q(\vec{a}) \quad \Leftrightarrow \quad \langle \mathcal{T}, \mathcal{D} \rangle \models q(\vec{a}) \text{ where } \mathcal{D} = \bigcap_{\mathcal{B} \in \mathsf{Rep}(\mathcal{K})} \mathcal{B}$

Under-approximation of the AR semantics

Satisfies both CONSISTENT SUPPORT and CONSISTENT RESULTS

Idea: return all answers supported by consistent part of data

 \cdot can view them as possible answers, having coherent justification

Idea: return all answers supported by consistent part of data

 \cdot can view them as possible answers, having coherent justification

Brave semantics: query the repairs, take union of their answers

 $\mathcal{K} \models_{\text{brave}} q(\vec{a}) \quad \Leftrightarrow \quad \langle \mathcal{T}, \mathcal{B} \rangle \models q(\vec{a}) \text{ for some repair } \mathcal{B} \in Rep(\mathcal{K})$

Reconsider the KB $\mathcal{K}_{univ} = \langle \mathcal{T}_{univ}, \mathcal{A}_{univ} \rangle$ and query $q_1(x) = Fac(x)$.

Reconsider the KB $\mathcal{K}_{univ} = \langle \mathcal{T}_{univ}, \mathcal{A}_{univ} \rangle$ and query $q_1(x) = Fac(x)$.

Moving from AR to brave semantics yields an additional answer:

 $\begin{array}{ll} & \mathcal{K}_{\text{univ}} \models_{\text{brave}} q_1(\text{anna}) & \text{AR-answer} \\ & \mathcal{K}_{\text{univ}} \models_{\text{brave}} q_1(\text{kim}) & \text{AR-answer} \\ & \mathcal{K}_{\text{univ}} \models_{\text{brave}} q_1(\text{alex}) & \text{AR-answer} \\ & \mathcal{K}_{\text{univ}} \models_{\text{brave}} q_1(\text{julie}) & \langle \mathcal{T}_{\text{univ}}, \mathcal{R}_i \rangle \models q_1(\text{julie}) \text{ for } 1 < i < 6 \end{array}$

Reconsider the KB $\mathcal{K}_{univ} = \langle \mathcal{T}_{univ}, \mathcal{A}_{univ} \rangle$ and query $q_1(x) = Fac(x)$.

Moving from AR to brave semantics yields an additional answer:

 $\cdot \mathcal{K}_{univ} \models_{brave} q_1(anna)$ AR-answer $\cdot \mathcal{K}_{univ} \models_{brave} q_1(kim)$ AR-answer $\cdot \mathcal{K}_{univ} \models_{brave} q_1(alex)$ AR-answer $\cdot \mathcal{K}_{univ} \models_{brave} q_1(alex)$ AR-answer

These are the only answers to *q*₁ under brave semantics:

· csc486 and csc343 cannot be obtained as answers from any repair

Idea: return all answers supported by consistent part of data

 \cdot can view them as possible answers, having coherent justification

Brave semantics: query the repairs, take union of their answers

 $\mathcal{K} \models_{\text{brave}} q(\vec{a}) \iff \langle \mathcal{T}, \mathcal{B} \rangle \models q(\vec{a}) \text{ for some repair } \mathcal{B} \in Rep(\mathcal{K})$

Over-approximation of the **AR semantics**

· ... and every semantics that satisfies CONSISTENT SUPPORT

Does not satisfy CONSISTENT RESULTS

Why?

Goal: more fine-grained under-approximations of AR semantics

Goal: more fine-grained under-approximations of AR semantics

k-support semantics: bound *#* of supports used to 'cover' all repairs

 $\mathcal{K} \models_{k-\text{supp}} q(\vec{a})$ iff exist subsets S_1, \ldots, S_k of \mathcal{A} such that:

- each S_i is a \mathcal{T} -support for $q(\vec{a})$ in \mathcal{A}
- for every $R \in Rep(\mathcal{K})$, there is some S_i with $S_i \subseteq R$

Observe $\mathcal{K} \models_{k\text{-supp}} q(\vec{a}) \Rightarrow \mathcal{K} \models_{k+1\text{-supp}} q(\vec{a})$

Reconsider the KB $\langle \mathcal{T}_{univ}, \mathcal{A}_{univ} \rangle$ and query $q_1(x) = Fac(x)$.

When k = 1, the 1-support semantics gives same result as IAR: $\cdot \mathcal{K}_{univ} \models_{1-supp} q_1(alex)$ use {Fellow(alex)}

When k = 1, the 1-support semantics gives same result as IAR: $\cdot \mathcal{K}_{univ} \models_{1-supp} q_1(alex)$ use {Fellow(alex)}

When k = 2, obtain **one additional answer**:

- · $\mathcal{K}_{univ} \models_{2-supp} q_1(alex)$
- · $\mathcal{K}_{univ} \models_{2-supp} q_1(kim)$ use $S_1 = \{Prof(kim)\}$ and $S_2 = \{Lect(kim)\}$

When k = 1, the 1-support semantics gives same result as IAR: $\cdot \mathcal{K}_{univ} \models_{1-supp} q_1(alex)$ use {Fellow(alex)}

When k = 2, obtain **one additional answer**:

- · $\mathcal{K}_{univ} \models_{2-supp} q_1(alex)$
- $\mathcal{K}_{univ} \models_{2-supp} q_1(kim)$ use $S_1 = \{Prof(kim)\}$ and $S_2 = \{Lect(kim)\}$

When k = 3, obtain all three AR-answers:

- · $\mathcal{K}_{univ} \models_{2-supp} q_1(alex)$
- · $\mathcal{K}_{univ} \models_{2-supp} q_1(kim)$

 $\cdot \mathcal{K}_{univ} \models_{3-supp} q_1(anna)$

use $S_1 = \{Prof(anna)\}, S_2 = \{Lect(anna)\},$ and $S_3 = \{Fellow(anna)\}$ Goal: more fine-grained under-approximations of AR semantics

k-support semantics: bound # of supports used to 'cover' all repairs

 $\mathcal{K} \models_{k\text{-supp}} q(\vec{a})$ iff exist subsets S_1, \ldots, S_k of \mathcal{A} such that:

- each S_i is a \mathcal{T} -support for $q(\vec{a})$ in \mathcal{A}
- for every $R \in Rep(\mathcal{K})$, there is some S_i with $S_i \subseteq R$

Observe $\mathcal{K} \models_{k+1\text{-supp}} q(\vec{a}) \Rightarrow \mathcal{K} \models_{k\text{-supp}} q(\vec{a})$

Relation to other semantics:

- \cdot when k = 1, same as IAR semantics
- · for every $k \ge 1$, under-approximation of AR semantics
- for every \mathcal{K} , there is $k \ge 1$ such that $\mathcal{K} \models_{k-\text{supp}} q(\vec{a})$ iff $\mathcal{K} \models_{AR} q(\vec{a})$

Goal: more fine-grained under-approximations of AR semantics

k-support semantics: bound *#* of supports used to 'cover' all repairs

 $\mathcal{K} \models_{k\text{-supp}} q(\vec{a})$ iff exist subsets S_1, \ldots, S_k of \mathcal{A} such that:

- each S_i is a \mathcal{T} -support for $q(\vec{a})$ in \mathcal{A}
- for every $R \in Rep(\mathcal{K})$, there is some S_i with $S_i \subseteq R$

Observe $\mathcal{K} \models_{k+1\text{-supp}} q(\vec{a}) \Rightarrow \mathcal{K} \models_{k\text{-supp}} q(\vec{a})$

Relation to other semantics:

- \cdot when k = 1, same as IAR semantics
- · for every $k \ge 1$, under-approximation of AR semantics
- for every \mathcal{K} , there is $k \ge 1$ such that $\mathcal{K} \models_{k-\text{supp}} q(\vec{a})$ iff $\mathcal{K} \models_{AR} q(\vec{a})$

Satisfy both CONSISTENT SUPPORT and CONSISTENT RESULTS

Goal: more fine-grained over-approximations of AR semantics

Goal: more fine-grained over-approximations of AR semantics

k-defeater semantics: bound *#* of assertions to block all supports

 $\mathcal{K} \models_{k-\text{def}} q(\vec{a})$ iff does not exist a \mathcal{T} -consistent subset S of \mathcal{A} with:

- $|S| \leq k$
- $\cdot \langle \mathcal{T}, S \cup C \rangle \models \bot$ for every \subseteq -minimal \mathcal{T} -support $C \subseteq \mathcal{A}$ of $q(\vec{a})$

Observe $\mathcal{K} \models_{k+1-\text{def}} q(\vec{a}) \Rightarrow \mathcal{K} \models_{k-\text{def}} q(\vec{a})$

Reconsider the KB $\langle \mathcal{T}_{univ}, \mathcal{A}_{univ} \rangle$ and query $q_2(x) = \exists y \operatorname{Teaches}(x, y)$.

Reconsider the KB $\langle \mathcal{T}_{univ}, \mathcal{A}_{univ} \rangle$ and query $q_2(x) = \exists y \operatorname{Teaches}(x, y)$.

Reconsider the KB $\langle \mathcal{T}_{univ}, \mathcal{A}_{univ} \rangle$ and query $q_2(x) = \exists y \operatorname{Teaches}(x, y)$.

When k = 0, same answers as for brave semantics:

• anna, kim, alex, and csc343

Reconsider the KB $\langle T_{univ}, A_{univ} \rangle$ and query $q_2(x) = \exists y \operatorname{Teaches}(x, y)$.

When k = 0, same answers as for **brave semantics**:

 \cdot anna, kim, alex, and csc343

When k = 1, we 'lose' answers anna and csc343:

· $\mathcal{K}_{univ} \not\models_{1-def} q_2(anna)$

· $\mathcal{K}_{\text{univ}} \not\models_{1-\text{def}} q_2(\text{csc343})$

{Fellow(anna)} contradicts both minimal
supports: {Prof(anna)} and {Lect(anna)}
{Fellow(julie)} contradicts only minimal
support {Teaches(csc343,julie)}

Reconsider the KB $\langle T_{univ}, A_{univ} \rangle$ and query $q_2(x) = \exists y \operatorname{Teaches}(x, y)$.

When k = 0, same answers as for **brave semantics**:

• anna, kim, alex, and csc343

When k = 1, we 'lose' answers anna and csc343:

· $\mathcal{K}_{univ} \not\models_{1-def} q_2(anna)$

· $\mathcal{K}_{\text{univ}} \not\models_{1-\text{def}} q_2(\text{csc343})$

{Fellow(anna)} contradicts both minimal
supports: {Prof(anna)} and {Lect(anna)}
{Fellow(julie)} contradicts only minimal
support {Teaches(csc343,julie)}

Two other answers continue to hold under 1-support semantics:

- · $\mathcal{K}_{univ} \models_{1-def} q_2(kim)$
- · $\mathcal{K}_{univ} \models_{1-def} q_2(alex)$

Goal: more fine-grained over-approximations of AR semantics

k-defeater semantics: bound *#* of assertions to block all supports

 $\mathcal{K} \models_{k-\text{def}} q(\vec{a})$ iff does not exist a \mathcal{T} -consistent subset S of \mathcal{A} with:

- $|S| \leq k$
- $\cdot \langle \mathcal{T}, S \cup C \rangle \models \bot$ for every \subseteq -minimal \mathcal{T} -support $C \subseteq \mathcal{A}$ of $q(\vec{a})$

Observe $\mathcal{K} \models_{k-\text{def}} q(\vec{a}) \Rightarrow \mathcal{K} \models_{k+1-\text{def}} q(\vec{a})$

Relation to other semantics:

- \cdot when k = 0, same as brave semantics
- · for every $k \ge 0$, over-approximation of AR semantics
- for every \mathcal{K} , there is $k \ge 0$ such that $\mathcal{K} \models_{k-\text{def}} q(\vec{a})$ iff $\mathcal{K} \models_{AR} q(\vec{a})$

Goal: more fine-grained over-approximations of AR semantics

k-defeater semantics: bound *#* of assertions to block all supports

 $\mathcal{K} \models_{k-\text{def}} q(\vec{a})$ iff does not exist a \mathcal{T} -consistent subset S of \mathcal{A} with:

- $|S| \leq k$
- $\cdot \langle \mathcal{T}, S \cup C \rangle \models \bot$ for every \subseteq -minimal \mathcal{T} -support $C \subseteq \mathcal{A}$ of $q(\vec{a})$

Observe $\mathcal{K} \models_{k-\text{def}} q(\vec{a}) \Rightarrow \mathcal{K} \models_{k+1-\text{def}} q(\vec{a})$

Relation to other semantics:

- \cdot when k = 0, same as brave semantics
- · for every $k \ge 0$, over-approximation of AR semantics
- for every \mathcal{K} , there is $k \ge 0$ such that $\mathcal{K} \models_{k-\text{def}} q(\vec{a})$ iff $\mathcal{K} \models_{AR} q(\vec{a})$

Satisfy CONSISTENT SUPPORT but not CONSISTENT RESULTS

Goal: obtain closer under-approximation of AR than IAR

 $close_{\mathcal{T}}(\mathcal{A})$ = all ABox assertions entailed from $\langle \mathcal{T}, \mathcal{A} \rangle$

ICR semantics: close repairs, intersect them, then query the result

 $\mathcal{K} \models_{\mathsf{ICR}} q(\vec{a}) \text{ iff } \langle \mathcal{T}, \mathcal{D} \rangle \models q(\vec{a}) \text{ where } \mathcal{D} = \bigcap_{\mathcal{B} \in Rep(\mathcal{K})} \mathsf{close}_{\mathcal{T}}(\mathcal{B})$

Reconsider the KB $\langle \mathcal{T}_{univ}, \mathcal{A}_{univ} \rangle$ and query $q_1(x) = Fac(x)$.

Close the repairs of \mathcal{K}_{univ} :

- $close_{\tau_{univ}}(\mathcal{R}_{1}) = \{Prof(anna), Prof(kim), Fellow(julie), Fac(anna), Fac(kim), Fac(alex), Fac(julie), Course(csc486)\}$
- $close_{\mathcal{T}_{univ}}(\mathcal{R}_{12}) = \{Fellow(anna), Lect(kim), Teaches(csc343, julie), \\Fac(anna), Fac(kim), Fac(alex), Fac(julie), Course(julie)\}$

Close the repairs of \mathcal{K}_{univ} :

- $close_{\tau_{univ}}(\mathcal{R}_{1}) = \{Prof(anna), Prof(kim), Fellow(julie), Fac(anna), Fac(kim), Fac(alex), Fac(julie), Course(csc486)\}$
- $close_{\tau_{univ}}(\mathcal{R}_{12}) = \{Fellow(anna), Lect(kim), Teaches(csc343, julie), \\Fac(anna), Fac(kim), Fac(alex), Fac(julie), Course(julie)\}$

Take intersection of the closed repairs:

Close the repairs of \mathcal{K}_{univ} :

- $close_{\tau_{univ}}(\mathcal{R}_{1}) = \{Prof(anna), Prof(kim), Fellow(julie), Fac(anna), Fac(kim), Fac(alex), Fac(julie), Course(csc486)\}$
- $close_{\tau_{univ}}(\mathcal{R}_{12}) = \{Fellow(anna), Lect(kim), Teaches(csc343, julie), \\Fac(anna), Fac(kim), Fac(alex), Fac(julie), Course(julie)\}$

Take intersection of the closed repairs:

$$\mathcal{A}'_{\text{int}} = \{ \text{Fellow(alex)}, \text{Teaches(alex, csc486)}, \text{Fac(anna)}, \\ \text{Fac(kim)}, \text{Fac(alex)}, \text{Course(csc486)} \}$$

Get following ICR-answers: anna, kim, alex

Goal: obtain closer under-approximation of AR than IAR

 $close_{\mathcal{T}}(\mathcal{A})$ = all ABox assertions entailed from $\langle \mathcal{T}, \mathcal{A} \rangle$

ICR semantics: close repairs, intersect them, then query the result

 $\mathcal{K} \models_{\mathsf{ICR}} q(\vec{a}) \text{ iff } \langle \mathcal{T}, \mathcal{D} \rangle \models q(\vec{a}) \text{ where } \mathcal{D} = \bigcap_{\mathcal{B} \in \mathsf{Rep}(\mathcal{K})} \mathsf{close}_{\mathcal{T}}(\mathcal{B})$

Under-approximation of AR semantics, over-approximation of IAR

 $\cdot\,$ same as AR semantics for IQs and quantifier-free CQs

Goal: obtain closer under-approximation of AR than IAR

 $close_{\mathcal{T}}(\mathcal{A})$ = all ABox assertions entailed from $\langle \mathcal{T}, \mathcal{A} \rangle$

ICR semantics: close repairs, intersect them, then query the result

 $\mathcal{K} \models_{\mathsf{ICR}} q(\vec{a}) \text{ iff } \langle \mathcal{T}, \mathcal{D} \rangle \models q(\vec{a}) \text{ where } \mathcal{D} = \bigcap_{\mathcal{B} \in \mathsf{Rep}(\mathcal{K})} \mathsf{close}_{\mathcal{T}}(\mathcal{B})$

Under-approximation of AR semantics, over-approximation of IAR · same as AR semantics for IQs and quantifier-free CQs

Satisfies CONSISTENT SUPPORT and CONSISTENT RESULTS

Goal: define semantics that are (almost) syntax-independent

• apply closure operator on original ABox

Goal: define semantics that are (almost) syntax-independent

• apply closure operator on original ABox

Need alternative notion of closure:

 $close^*_{\mathcal{T}}(\mathcal{A}) = \{\beta \mid \exists S \subseteq \mathcal{A} \text{ such that } S \text{ is } \mathcal{T}\text{-consistent and } \langle \mathcal{T}, S \rangle \models \beta \}$
Goal: define semantics that are (almost) syntax-independent

• apply closure operator on original ABox

Need alternative notion of closure:

 $close^*_{\mathcal{T}}(\mathcal{A}) = \{\beta \mid \exists S \subseteq \mathcal{A} \text{ such that } S \text{ is } \mathcal{T}\text{-consistent and } \langle \mathcal{T}, S \rangle \models \beta \}$

Closed ABox repair: maximally 'complete' the standard ABox repairs with additional facts from $close^*_{\mathcal{T}}(\mathcal{A}) \setminus \mathcal{A}$

Goal: define semantics that are (almost) syntax-independent

• apply closure operator on original ABox

Need alternative notion of closure:

 $close^*_{\mathcal{T}}(\mathcal{A}) = \{\beta \mid \exists S \subseteq \mathcal{A} \text{ such that } S \text{ is } \mathcal{T}\text{-consistent and } \langle \mathcal{T}, S \rangle \models \beta \}$

Closed ABox repair: maximally 'complete' the standard ABox repairs with additional facts from $close^*_{\mathcal{T}}(\mathcal{A}) \setminus \mathcal{A}$

CAR semantics = AR semantics but using closed ABox repairs ICAR semantics = IAR semantics but using closed ABox repairs Relations with other semantics:

- · ICAR semantics is an under-approximation of the CAR semantics
- · CAR semantics is an over-approximation of the AR semantics
- · ICAR semantics is an over-approximation of the ICR semantics
- · CAR and ICAR are not under-approximations of brave semantics

Relations with other semantics:

- · ICAR semantics is an under-approximation of the CAR semantics
- · CAR semantics is an over-approximation of the AR semantics
- · ICAR semantics is an over-approximation of the ICR semantics
- · CAR and ICAR are not under-approximations of brave semantics

CAR and ICAR semantics satisfy CONSISTENT RESULTS

Relations with other semantics:

- · ICAR semantics is an under-approximation of the CAR semantics
- · CAR semantics is an over-approximation of the AR semantics
- · ICAR semantics is an over-approximation of the ICR semantics
- · CAR and ICAR are not under-approximations of brave semantics

CAR and ICAR semantics satisfy CONSISTENT RESULTS

These semantics do not satisfy CONSISTENT SUPPORT

 $\mathcal{T} = \{A \sqsubseteq B, C \sqsubseteq D, A \sqsubseteq \neg C\}, A = \{A(e), C(e)\}, \text{ and } q = B(x) \land D(x)\}$

Clusters: partition of ABox assertions

 \cdot group together assertions that appear together in minimal $\mathcal{T}\text{-inconsistent subset}$

Clusters: partition of ABox assertions

 \cdot group together assertions that appear together in minimal $\mathcal{T}\text{-inconsistent subset}$

k-lazy repairs: for each cluster C_i , remove from A either

- minimal subset $C'_i \subseteq C_i$ such that $|C'_i| \leq k$ and $C_i \setminus C'_i$ is \mathcal{T} -consistent
- · if no such C'_i exists, remove the whole cluster C_i

Clusters: partition of ABox assertions

 \cdot group together assertions that appear together in minimal $\mathcal{T}\text{-inconsistent subset}$

k-lazy repairs: for each cluster C_i , remove from A either

- minimal subset $C'_i \subseteq C_i$ such that $|C'_i| \leq k$ and $C_i \setminus C'_i$ is \mathcal{T} -consistent
- · if no such C'_i exists, remove the whole cluster C_i

k-lazy semantics: like AR, but use k-lazy repairs

Relation to other semantics:

- $\cdot \mathcal{K} \models_{\mathsf{IAR}} q(\vec{a}) \text{ iff } \mathcal{K} \models_{\mathsf{0-lazy}} q(\vec{a})$
- · for every $k \ge 0$, if $\mathcal{K} \models_{k-\text{lazy}} q(\vec{a})$, then $\mathcal{K} \models_{\text{brave}} q(\vec{a})$
- for every KB \mathcal{K} , there exists some $k \ge 0$ such that for every $k' \ge k$: $\mathcal{K} \models_{AR} q(\vec{a})$ iff $\mathcal{K} \models_{k'-lazy} q(\vec{a})$

Relation to other semantics:

- $\cdot \mathcal{K} \models_{\mathsf{IAR}} q(\vec{a}) \text{ iff } \mathcal{K} \models_{\mathsf{0-lazy}} q(\vec{a})$
- · for every $k \ge 0$, if $\mathcal{K} \models_{k-\text{lazy}} q(\vec{a})$, then $\mathcal{K} \models_{\text{brave}} q(\vec{a})$
- for every KB \mathcal{K} , there exists some $k \ge 0$ such that for every $k' \ge k$: $\mathcal{K} \models_{AR} q(\vec{a})$ iff $\mathcal{K} \models_{k'-lazy} q(\vec{a})$

Convergence not monotone in *k*:

· possible to have $\mathcal{K} \models_{k-\text{lazy}} q(\vec{a})$ but $\mathcal{K} \nvDash_{k+1-\text{lazy}} q(\vec{a})$

Relation to other semantics:

- $\cdot \mathcal{K} \models_{\mathsf{IAR}} q(\vec{a}) \text{ iff } \mathcal{K} \models_{\mathsf{0-lazy}} q(\vec{a})$
- · for every $k \ge 0$, if $\mathcal{K} \models_{k-\text{lazy}} q(\vec{a})$, then $\mathcal{K} \models_{\text{brave}} q(\vec{a})$
- for every KB \mathcal{K} , there exists some $k \ge 0$ such that for every $k' \ge k$: $\mathcal{K} \models_{AR} q(\vec{a})$ iff $\mathcal{K} \models_{k'-lazy} q(\vec{a})$

Convergence not monotone in k:

· possible to have $\mathcal{K} \models_{k-\text{lazy}} q(\vec{a})$ but $\mathcal{K} \nvDash_{k+1-\text{lazy}} q(\vec{a})$

CONSISTENT SUPPORT and **CONSISTENT RESULTS** satisfied (for every *k*)

Idea: some repairs are more likely than others

· exploit knowledge about relative reliability of ABox assertions

Idea: some repairs are more likely than others

• exploit knowledge about relative reliability of ABox assertions

Formally: use preference relation \leq to compare repairs

- compare w.r.t. cardinality (≤)
- partition ABox into priority levels $\mathcal{P} = (\mathcal{P}_1, \dots, \mathcal{P}_n)$
 - · compare level-by-level using set inclusion ($\subseteq_{\mathcal{P}}$)
 - \cdot compare level-by-level using cardinality ($\leq_{\mathcal{P}}$)
- · assign weights to ABox assertions
 - · compare repairs by total weight (\leq_w)

Idea: some repairs are more likely than others

• exploit knowledge about relative reliability of ABox assertions

Formally: use preference relation \leq to compare repairs

- compare w.r.t. cardinality (≤)
- partition ABox into priority levels $\mathcal{P} = (\mathcal{P}_1, \dots, \mathcal{P}_n)$
 - · compare level-by-level using set inclusion ($\subseteq_{\mathcal{P}}$)
 - \cdot compare level-by-level using cardinality ($\leq_{\mathcal{P}}$)
- · assign weights to ABox assertions
 - · compare repairs by total weight (\leq_w)

AR / IAR / brave semantics based upon most preferred repairs (\leq -AR, \leq -IAR, \leq -brave)

COMPLEXITY OF INCONSISTENCY-TOLERANT QUERY ANSWERING

View OMQA as a **decision problem** (yes-or-no question):

- PROBLEM: \mathcal{Q} answering in \mathcal{L} under semantics S
(\mathcal{Q} a query language, \mathcal{L} a DL, S chosen semantics)INPUT:An *n*-ary query $q \in \mathcal{Q}$, an ABox \mathcal{A} , a \mathcal{L} -TBox \mathcal{T} ,
 - and a $\mathsf{tuple}\ ec{a} \in \mathsf{Ind}(\mathcal{A})^n$
- QUESTION: **Does** $\langle \mathcal{T}, \mathcal{A} \rangle \models_{S} q(\vec{a})$?

View OMQA as a **decision problem** (yes-or-no question):

PROBLEM: \mathcal{Q} answering in \mathcal{L} under semantics S
(\mathcal{Q} a query language, \mathcal{L} a DL, S chosen semantics)INPUT:An *n*-ary query $q \in \mathcal{Q}$, an ABox \mathcal{A} , a \mathcal{L} -TBox \mathcal{T} ,
and a tuple $\vec{a} \in \operatorname{Ind}(\mathcal{A})^n$ QUESTION:Does $\langle \mathcal{T}, \mathcal{A} \rangle \models_S q(\vec{a})$?

Combined complexity: in terms of size of whole input

Data complexity: in terms of size of A only

- view rest of input as fixed (of constant size)
- motivation: ABox typically much larger than rest of input

Note: use $|\mathcal{A}|$ to denote size of \mathcal{A} (similarly for $|\mathcal{T}|$, |q|, etc.)

Results apply to $DL-Lite_{\mathcal{R}}$ and all DL-Lite dialects that satisfy:

· every minimal support for $q(\vec{a})$ contains at most |q| assertions

- · every minimal support for $q(\vec{a})$ contains at most |q| assertions
- \cdot every minimal \mathcal{T} -inconsistent subset has cardinality at most two

- · every minimal support for $q(\vec{a})$ contains at most |q| assertions
- $\cdot\,$ every minimal $\mathcal{T}\text{-inconsistent}$ subset has cardinality at most two
- CQ answering, IQ answering, and KB consistency can be performed by FO query rewriting (so in AC⁰ in data complexity)

- · every minimal support for $q(\vec{a})$ contains at most |q| assertions
- $\cdot\,$ every minimal $\mathcal{T}\text{-inconsistent}$ subset has cardinality at most two
- CQ answering, IQ answering, and KB consistency can be performed by FO query rewriting (so in AC⁰ in data complexity)
- · CQ answering is NP-complete for combined complexity

- · every minimal support for $q(\vec{a})$ contains at most |q| assertions
- $\cdot\,$ every minimal $\mathcal{T}\text{-inconsistent}$ subset has cardinality at most two
- CQ answering, IQ answering, and KB consistency can be performed by FO query rewriting (so in AC⁰ in data complexity)
- · CQ answering is NP-complete for combined complexity
- · IQ answering is NL-complete in combined complexity

Theorem CQ and IQ answering under AR semantics are coNP-complete in data complexity

Theorem CQ and IQ answering under AR semantics are coNP-complete in data complexity

Upper bound: guess $\mathcal{A}' \subseteq \mathcal{A}$, verify \mathcal{A}' is repair and $\langle \mathcal{T}, \mathcal{A}' \rangle \not\models q(\vec{a})$

Theorem CQ and IQ answering under AR semantics are coNP-complete in data complexity

Upper bound: guess $\mathcal{A}' \subseteq \mathcal{A}$, verify \mathcal{A}' is repair and $\langle \mathcal{T}, \mathcal{A}' \rangle \not\models q(\vec{a})$

Lower bound: reduction from UNSAT $\varphi = c_1 \land \ldots \land c_m$ over v_1, \ldots, v_k

Can show φ unsatisfiable $\Leftrightarrow \mathcal{T}, \mathcal{A} \models_{AR} \mathcal{A}(a)$

In fact: **CQ** answering is **coNP-hard** for simple TBox $T = \{T \sqsubseteq \neg F\}$

In fact: **CQ answering** is **coNP-hard** for simple TBox $T = \{T \subseteq \neg F\}$

Reduction from 2+2UNSAT: $\varphi = c_1 \land \ldots \land c_m$ over $v_1, \ldots, v_k, \top, \bot$ each clause has two positive and two negative literals

Can show φ unsatisfiable $\Leftrightarrow \mathcal{T}, \mathcal{A} \models q$

Can use preceding reductions to show more intractability results

Can use preceding reductions to show more intractability results

Theorem CQ and IQ answering under ICR semantics are coNP-complete in data complexity

Theorem CQ answering under CAR semantics is coNP-complete in data complexity

Theorem CQ answering under k-lazy semantics is coNP-complete in data complexity for every $k \ge 1$

For IAR and brave semantics,

have same low data complexity as classical semantics

Theorem CQ and IQ answering under IAR semantics are in AC⁰ in **data complexity**

Theorem CQ and IQ answering under brave semantics are in AC⁰ in data complexity For IAR and brave semantics, have same low data complexity as classical semantics

Theorem CQ and IQ answering under IAR semantics are in AC⁰ in **data complexity**

Theorem CQ and IQ answering under brave semantics are in AC⁰ in data complexity

Can use FO-query rewriting to compute IAR- and brave-answers

Idea: modify UCQ-rewriting to ensure ABox assertions matching disjuncts are not involved in any contradictions

Idea: modify UCQ-rewriting to ensure ABox assertions matching disjuncts are not involved in any contradictions

(Normal) rewriting of $q_2(x) = \exists y \operatorname{Teaches}(x, y)$ w.r.t. \mathcal{T}_{univ} :

 $q'_2(x) = Prof(x) \lor Lect(x) \lor \exists y.Teaches(x,y)$

Idea: modify UCQ-rewriting to ensure ABox assertions matching disjuncts are not involved in any contradictions

(Normal) rewriting of $q_2(x) = \exists y \operatorname{Teaches}(x, y)$ w.r.t. \mathcal{T}_{univ} :

 $q'_2(x) = Prof(x) \lor Lect(x) \lor \exists y.Teaches(x,y)$

Rewriting of *q*² for IAR semantics:

 $q_{2}''(x) = \operatorname{Prof}(x) \land (\neg \operatorname{Lect}(x) \land \neg \operatorname{Fellow}(x) \land \neg \operatorname{Course}(x) \land \neg \exists z. \operatorname{Teaches}(z, x)) \lor$ $\operatorname{Lect}(x) \land (\neg \operatorname{Prof}(x) \land \neg \operatorname{Fellow}(x) \land \neg \operatorname{Course}(x) \land \neg \exists z. \operatorname{Teaches}(z, x)) \lor$ $\exists y.(\operatorname{Teaches}(x, y) \land (\neg \operatorname{Prof}(y) \land \neg \operatorname{Lect}(y) \land \neg \operatorname{Fellow}(y)))$

Idea: modify UCQ-rewriting to ensure each disjunct can only match $\mathcal{T}\text{-}\mathsf{consistent}$ subset of ABox
Idea: modify UCQ-rewriting to ensure each disjunct can only match $\mathcal{T}\text{-}\mathsf{consistent}$ subset of ABox

Modified **TBox** \mathcal{T}'_{univ} : add \exists **Teaches** \sqsubseteq **Fac** to \mathcal{T}_{univ}

Idea: modify UCQ-rewriting to ensure each disjunct can only match $\mathcal{T}\text{-}\mathsf{consistent}$ subset of ABox

Modified **TBox** \mathcal{T}'_{univ} : add \exists **Teaches** \sqsubseteq **Fac** to \mathcal{T}_{univ}

(Normal) rewriting of $q_2(x) = \exists y \operatorname{Teaches}(x, y)$ w.r.t. \mathcal{T}'_{univ} : $q'_2(x) = \operatorname{Prof}(x) \lor \operatorname{Lect}(x) \lor \exists y.\operatorname{Teaches}(x, y)$ Idea: modify UCQ-rewriting to ensure each disjunct can only match $\mathcal{T}\text{-}\mathsf{consistent}$ subset of ABox

Modified **TBox** \mathcal{T}'_{univ} : add \exists **Teaches** \sqsubseteq **Fac** to \mathcal{T}_{univ}

(Normal) rewriting of $q_2(x) = \exists y \text{ Teaches}(x, y) \text{ w.r.t. } \mathcal{T}'_{\text{univ}}$: $q'_2(x) = \text{Prof}(x) \lor \text{Lect}(x) \lor \exists y.\text{Teaches}(x, y)$

Rewriting of *q*² for **brave semantics**:

 $q'_2(x) = Prof(x) \lor Lect(x) \lor (\exists y.Teaches(x, y) \land x \neq y)$

to **disallow** using assertions of the form Teaches(a, a)

Shape of rewriting for *k*-support semantics:

Shape of rewriting for k-support semantics:

Shape of rewriting for *k*-defeater semantics:

Shape of rewriting for k-support semantics:

Shape of rewriting for *k*-defeater semantics:

Note: positive results hold for all FO-rewritable ontology languages

Semantics	Data complexity		Combined complexity	
	CQs	lQs	CQs	IQs
classical	in AC ⁰	in AC ⁰	NP	NL
AR	coNP	coNP	Π_2^p	coNP
IAR	in AC ⁰	in AC ⁰	NP	NL
brave	in AC ⁰	in AC ⁰	NP	NL
k -support ($k \ge 1$)	in AC ⁰	in AC ⁰	NP	NL
k -defeater ($k \ge 0$)	in AC ⁰	in AC ⁰	NP	NL
ICR	coNP	coNP	$\Delta_2^p[O(\log n)]$	coNP
CAR	coNP	in AC ⁰	Π_2^p	NL
ICAR	in AC ⁰	in AC ⁰	NP	NL
<i>k</i> -lazy (<i>k</i> ≥ 1)	coNP	in P	Π_2^p	in P

CQAPri first system for AR query answering in DL-Lite

Implements hybrid approach:

compute IAR and brave answers

gives upper and lower bounds on AR answers

polytime

- use SAT solvers to identify remaining AR answers
- three categories of answers : possible, likely, (almost) sure

CQAPri first system for AR query answering in DL-Lite

Implements hybrid approach:

- compute IAR and brave answers
 - · gives upper and lower **bounds on AR answers**

polytime

- · use SAT solvers to identify remaining AR answers
- three categories of answers : possible, likely, (almost) sure

Encouraging experimental results:

- · in most cases, IAR and brave enough to decide if tuple is AR-answer \Rightarrow few calls to SAT solvers
- $\cdot\,$ SAT encodings are typically small and easy to solve

Lightweight DL \mathcal{EL}_{\perp} : constructors $\top, \bot, \neg, \exists r.C$

Semantics	Data complexity		Combined complexity	
	CQs	IQs	CQs	lQs
classical	Р	Р	NP	Р
AR	coNP	coNP	Π_2^p	coNP
IAR	coNP	coNP	$\Delta_2^p[O(\log n)]$	coNP
brave	NP	NP	NP	NP

Observe: IAR and brave are no longer tractable

 \cdot no bound on size of minimal $\mathcal{T}\text{-inconsistent subsets}$

Expressive DL ALC: constructors $\top, \bot, \neg, \sqcap, \sqcup, \exists r.C, \forall r.C$

Semantics	Data complexity		Combined complexity	
	CQs	IQs	CQs	IQs
classical	coNP	coNP	Exp	Exp
AR	Π_2^p	Π_2^p	Exp	Exp
IAR	Π_2^p	Π_2^p	Exp	Exp
brave	Σ_2^p	Σ_2^p	Exp	Exp

Observe:

- · IAR and brave no easier than AR
- · increased data complexity, no increase in combined complexity

CONCLUSION & OUTLOOK

Traditional OMQA techniques not robust to data inconsistencies ⇒ need for inconsistency-tolerant semantics

Many different semantics have been proposed

- some borrowed from other areas (DBs, KR)
- many proposed specifically for OMQA

Good understanding of complexity landscape for inconsistency-tolerant OMQA

- · complete picture for DL-Lite
- $\cdot\,$ quite a few results for other DLs, existential rules

First implemented systems, promising results for DL-Lite

Algorithms for DL-Lite:

- mostly based upon UCQ-rewritings (can be very large)
- · can we adapt other techniques to our setting?

Beyond DL-Lite:

- \cdot complexity landscape already explored, mostly negative results
- · challenge: how to design effective algorithms?
- difficulty: unbounded size of query supports and minimal inconsistent subsets

Usability issues:

- · need for explanation services: help users interpret query results
- \cdot try to improve data quality though interaction with users