INCONSISTENCY-TOLERANT
QUE YING OF DESCRIPTION
LOGIC KNOWLEDGE BASES

Meghyn Bienvenu (CNRS, University of Montpellier, Inria)

ONTOLOGY-MEDIATED QUERY ANSWERING (OMQA)

incomplete ontology user query

database (logical theory)
(ground facts)

2/68

ONTOLOGY-MEDIATED QUERY ANSWERING (OMQA)

patient data medical knowledge user query
“Melanie has listeriosis” “Listeriosis & Lyme disease “Find all patients with
“Paul has Lyme disease” are bacterial infections” bacterial infections”

2/68

ONTOLOGY-MEDIATED QUERY ANSWERING (OMQA)

E»_ ¢

patient data medical knowledge user query
“Melanie has listeriosis” “Listeriosis & Lyme disease “Find all patients with
“Paul has Lyme disease” are bacterial infections” bacterial infections”

expected answers: Melanie, Paul

2/68

ONTOLOGY-MEDIATED QUERY ANSWERING (OMQA)

employee data org. knowledge

o . - . user query
Marie is a professor” “professors are teaching staff “Find all teaching staff”
“Mark teaches CS200” “Someone who teaches is

part of the teaching staff”

2/68

ONTOLOGY-MEDIATED QUERY ANSWERING (OMQA)

employee data org. knowledge

v R - user query
Marie is a professor” “professors are teaching staff” “Find all teaching staff”
“Mark teaches C5200” “Someone who teaches is

part of the teaching staff”

expected answers: Marie, Mark

2/68

WHAT ARE ONTOLOGIES GOOD FOR?

To standardize the terminology of an application domain
- by adopting a common vocabulary, easy to share information

- meaning of terms is constrained, so less misunderstandings

3/68

WHAT ARE ONTOLOGIES GOOD FOR?

To standardize the terminology of an application domain
- by adopting a common vocabulary, easy to share information

- meaning of terms is constrained, so less misunderstandings

To present an
- ontology can be used to , making it

- especially useful when

3/68

WHAT ARE ONTOLOGIES GOOD FOR?

To standardize the terminology of an application domain
- by adopting a common vocabulary, easy to share information

- meaning of terms is constrained, so less misunderstandings

To present an
- ontology can be used to , making it

- especially useful when

To support automated reasoning

- uncover implicit connections between terms, errors in modelling

- exploit knowledge in the ontology during query answering, to get
back a more complete set of answers to queries

3/68

OUR FOCUS: DESCRIPTION LOGIC ONTOLOGIES

Description logics (DLs):
- popular means for specifying ontologies
- basis of the web ontology language OWL (W3C standard)

Formally: decidable fragments of first-order logic

- inherit well-defined semantics

- succinct, variable-free syntax

4/68

OUR FOCUS: DESCRIPTION LOGIC ONTOLOGIES

Description logics (DLs):
- popular means for specifying ontologies
- basis of the web ontology language OWL (W3C standard)

Formally: decidable fragments of first-order logic

- inherit well-defined semantics

- succinct, variable-free syntax

Computational properties well understood (decidability, complexity)

Many available for use

4/68

TODAY: HANDLING DATA INCONSISTENCIES

In realistic settings, can expect some errors in the data
- ABox likely to be inconsistent with the TBox (ontology)

Standard semantics: everything is implied - not informative!

5/68

TODAY: HANDLING DATA INCONSISTENCIES

In realistic settings, can expect some errors in the data
- ABox likely to be inconsistent with the TBox (ontology)

Standard semantics: everything is implied - not informative!

Two approaches to inconsistency handling:
- resolve the inconsistencies

- preferable, but not always applicable!
- live with the inconsistencies -

to queries despite inconsistencies

Note: focus on case where errors in ABox (assume TBox reliable)

5/68

INTRODUCTION TO DLS & OMQA

DESCRIPTION LOGIC ONTOLOGIES

Building blocks:

- concept names (unary predicates, classes) Prof Fac Course

- role names (binary predicates, properties) Teaches HeadOf

Constructors to build complex descriptions L, r,-, v, 3, ...
Fac M —Prof JTeaches.GradCourse Teaches™

7/68

DESCRIPTION LOGIC ONTOLOGIES

Building blocks:

- concept names (unary predicates, classes) Prof Fac Course

- role names (binary predicates, properties) Teaches HeadOf

Constructors to build complex descriptions L, r,-, v, 3, ...
Fac M —Prof JTeaches.GradCourse Teaches™

TBox (ontology) = set of axioms

Prof C Fac Prof C —Fellow JTeaches.GradCourse C Prof
- role inclusions

TaughtBy C Teaches™ HeadOf C MemberOf

Note: allowed constructors and axioms depends on chosen DL
7/68

DL-LITE

Mainly focus on DLs of the DL-Lite family

- specifically designed for OMQA
- simple DLs with useful modelling constructs

- basis for OWL 2 QL profile

8/68

DL-LITE

Mainly focus on DLs of the DL-Lite family

- specifically designed for OMQA
- simple DLs with useful modelling constructs

- basis for OWL 2 QL profile

DL-Liteg dialect:

- concept inclusions By C (—)B; Bi, B, either A € Nc or 3R (R € N¥)

8/68

OTHER DLS

We will also briefly consider other DLs

‘Lightweight’ description logic ££ | :

- concept constructors: T, L, M, and 3r.C

- only concept inclusions CC D in TBox

‘Expressive’ description logic ALC:

- concept constructors: T, L, —,M,,3r.C, and vr.C
- only concept inclusions CC D in TBox

9/68

SEMANTICS OF DL KBS

”

Interpretation Z (“possible world”)
- domain of objects AT (possibly infinite set)
that maps

~ set of objects
~ set of pairs of objects
. ~ object
- extend - to complex concepts and roles in natural way

10/68

SEMANTICS OF DL KBS

Interpretation Z (“possible world”)
- domain of objects AT (possibly infinite set)
that maps
~ set of objects
~ set of pairs of objects
. ~ object

- extend - to complex concepts and roles in natural way
Interpretation Z is a model of KB (T, A) if:
- GT C H* for every (concept or role) inclusion GC H e T

for every and (a%,b?) e r* for every r(a,b) € A

Satisfiable KB = has at least one model

10/68

SEMANTICS OF DL KBS

Interpretation Z (“possible world”)
- domain of objects AT (possibly infinite set)
that maps
~ set of objects
~ set of pairs of objects
. ~ object

- extend - to complex concepts and roles in natural way
Interpretation Z is a model of KB (T, A) if:
- GT C H* for every (concept or role) inclusion GC H e T

for every and (a%,b?) e r* for every r(a,b) € A

Satisfiable KB = has at least one model

ABox A is T-consistent = KB (7, A) is satisfiable

10/68

EXAMPLE: UNSATISFIABLE KB

Example TBox Tyniv:

Prof C Fac Prof C JTeaches Prof C —Lect Fac C —Course
Lect C Fac Lect C JTeaches Prof C —Fellow
Fellow C Fac dTeaches™ C Course Lect C —Fellow

Example ABox A niv:

Prof(anna), Lect(anna), Fellow(anna), Prof(kim), Lect(kim),
Fellow(julie), Teaches(csc343,julie), Fellow(alex), Teaches(alex, csc486)

Claim:

C-minimal 7y, -inconsistent subsets of A,y

11/68

EXAMPLE: UNSATISFIABLE KB

Example TBox Tyniv:

Prof C Fac Prof C JTeaches Prof C —Lect Fac C —Course
Lect C Fac Lect C JTeaches Prof C —Fellow
Fellow C Fac dTeaches™ C Course Lect C —Fellow

Example ABox A niv:

Prof(anna), Lect(anna), Fellow(anna), Prof(kim), Lect(kim),
Fellow(julie), Teaches(csc343,julie), Fellow(alex), Teaches(alex, csc486)

Claim:
C-minimal 7, -inconsistent subsets of Ay

{Prof(anna), Lect(anna)} {Prof(anna), Fellow(anna)}
{Lect(anna), Fellow(anna)} {Prof(kim), Lect(kim)}
{Fellow(julie), Teaches(csc343, julie)}

11/68

QUERY LANGUAGES

Instance queries (1Qs): find instances of a given concept or role

Fac(x) Teaches(x, y)

12/68

QUERY LANGUAGES

Instance queries (1Qs): find instances of a given concept or role

Fac(x) Teaches(x, y)

Conjunctive queries (CQs) ~ SP) queries in SQL, BGPs in SPARQL
conjunctions of atoms, some variables can be existentially quantified

Jy. Fac(x) A Teaches(x, y)

(find all faculty members that teach something)

12/68

QUERY LANGUAGES

Instance queries (1Qs): find instances of a given concept or role

Fac(x) Teaches(x, y)

Conjunctive queries (CQs) ~ SP) queries in SQL, BGPs in SPARQL
conjunctions of atoms, some variables can be existentially quantified

Jy. Fac(x) A Teaches(x, y)

(find all faculty members that teach something)

Unions of conjunctive queries (UCQs): disjunction of CQs

12/68

QUERYING DL KNOWLEDGE BASES

in interpretation
tuples 6 € AT such that

13/68

QUERYING DL KNOWLEDGE BASES

in interpretation
tuples 6 € AT such that

Problem: each KB gives rise to multiple interpretations (its models)

13/68

QUERYING DL KNOWLEDGE BASES

in interpretation
tuples 6 € AT such that

Problem: each KB gives rise to multiple interpretations (its models)

Solution: adopt certain answer semantics
- require tuple to be an answer w.r.t. all models of KB

13/68

QUERYING DL KNOWLEDGE BASES

in interpretation
tuples 6 € AT such that

Problem: each KB gives rise to multiple interpretations (its models)

Solution: adopt certain answer semantics
- require tuple to be an answer w.r.t. all models of KB

Formally: Call a tuple (ay, ..., a,) of individuals from A a certain
answer to n-ary query g over DLKB K = (7, A) iff

(af,...,at) € ans(q, Z) for every model Z of
Notation: £ = g(ay, .. ., an)

13/68

QUERYING DL KNOWLEDGE BASES

in interpretation
tuples 6 € AT such that

Problem: each KB gives rise to multiple interpretations (its models)

Solution: adopt certain answer semantics
- require tuple to be an answer w.r.t. all models of KB

Formally: Call a tuple (ay, ..., a,) of individuals from A a certain
answer to n-ary query g over DLKB K = (7, A) iff
(af,...,at) € ans(q, Z) for every model Z of
Notation: £ = g(ay, .. ., an)

Ontology-mediated query answering (OMQA)
= computing certain answers to queries
13/68

EXAMPLE: OMQA WITH DL-LITE ONTOLOGIES

Same TBox Tiniv:

Prof C Fac Prof C JTeaches Prof C —Lect Fac C —Course
Lect C Fac Lect C JTeaches Prof C —Fellow
Fellow C Fac dTeaches™ C Course Lect C —Fellow

Consistent subset of Ay

Prof(anna), Lect(kim), Fellow(julie), Fellow(alex), Teaches(alex, csc486)

14/68

EXAMPLE: OMQA WITH DL-LITE ONTOLOGIES

Same TBox Tiniv:

Prof C Fac Prof C JTeaches Prof C —Lect Fac C —Course
Lect C Fac Lect C JTeaches Prof C —Fellow
Fellow C Fac dTeaches™ C Course Lect C —Fellow

Consistent subset of Ay

Prof(anna), Lect(kim), Fellow(julie), Fellow(alex), Teaches(alex, csc486)
Query: gi(x) = Fac(x)

Certain answers to g;:

14/68

EXAMPLE: OMQA WITH DL-LITE ONTOLOGIES

Same TBox Tiniv:

Prof C Fac Prof C JTeaches Prof C —Lect Fac C —Course
Lect C Fac Lect C JTeaches Prof C —Fellow
Fellow C Fac dTeaches™ C Course Lect C —Fellow

Consistent subset of Ay

Prof(anna), Lect(kim), Fellow(julie), Fellow(alex), Teaches(alex, csc486)
Query: gi(x) = Fac(x)

Certain answers to g;: anna, kim, julie, alex

14/68

EXAMPLE: OMQA WITH DL-LITE ONTOLOGIES

Same TBoX Tiniv:

Prof C Fac Prof C 3Teaches Prof C —Lect Fac C —=Course
Lect C Fac Lect C dTeaches Prof C —Fellow
Fellow C Fac dTeaches™ C Course Lect C —Fellow

Consistent subset of Ay

Prof(anna), Lect(kim), Fellow(julie), Fellow(alex), Teaches(alex, csc486)
Query: gx(x) = JyTeaches(x, y)

Certain answers to gy:

14/68

EXAMPLE: OMQA WITH DL-LITE ONTOLOGIES

Same TBoX Tiniv:

Prof C Fac Prof C 3Teaches Prof C —Lect Fac C —=Course
Lect C Fac Lect C dTeaches Prof C —Fellow
Fellow C Fac dTeaches™ C Course Lect C —Fellow

Consistent subset of Ay

Prof(anna), Lect(kim), Fellow(julie), Fellow(alex), Teaches(alex, csc486)
Query: gx(x) = JyTeaches(x, y)

Certain answers to g,: anna, kim, alex

14/68

EXAMPLE: OMQA WITH DL-LITE ONTOLOGIES

Same TBoX Tiniv:

Prof C Fac Prof C 3Teaches Prof C —Lect Fac C —=Course
Lect C Fac Lect C dTeaches Prof C —Fellow
Fellow C Fac dTeaches™ C Course Lect C —Fellow

Consistent subset of Ay

Prof(anna), Lect(kim), Fellow(julie), Fellow(alex), Teaches(alex, csc486)
Query: gs(x) = Jy Fac(x) A Teaches(x, y)

Certain answers to gs:

14/68

EXAMPLE: OMQA WITH DL-LITE ONTOLOGIES

Same TBoX Tiniv:

Prof C Fac Prof C 3Teaches Prof C —Lect Fac C —=Course
Lect C Fac Lect C dTeaches Prof C —Fellow
Fellow C Fac dTeaches™ C Course Lect C —Fellow

Consistent subset of Ay

Prof(anna), Lect(kim), Fellow(julie), Fellow(alex), Teaches(alex, csc486)
Query: gs(x) = Jy Fac(x) A Teaches(x, y)

Certain answers to gs: anna, kim, alex

14/68

EXAMPLE: OMQA WITH DL-LITE ONTOLOGIES

Same TBoX Tiniv:

Prof C Fac Prof C 3Teaches Prof C —Lect Fac C —Course
Lect C Fac Lect C JTeaches Prof C —Fellow
Fellow C Fac dTeaches™ C Course Lect C —Fellow

Consistent subset of Ay

Prof(anna), Lect(kim), Fellow(julie), Fellow(alex), Teaches(alex, csc486)
Query: gu(x,y) = Fac(x) A Teaches(x,y)

Certain answers to qu:

14/68

EXAMPLE: OMQA WITH DL-LITE ONTOLOGIES

Same TBoX Tiniv:

Prof C Fac Prof C 3Teaches Prof C —Lect Fac C —Course
Lect C Fac Lect C JTeaches Prof C —Fellow
Fellow C Fac dTeaches™ C Course Lect C —Fellow

Consistent subset of Ay

Prof(anna), Lect(kim), Fellow(julie), Fellow(alex), Teaches(alex, csc486)
Query: gu(x,y) = Fac(x) A Teaches(x,y)

Certain answers to g,: (alex, csc486)

14/68

KEY TECHNIQUE FOR OMQA: QUERY REWRITING

Query rewriting: Reduces problem of finding certain answers to
standard DB query evaluation (~ exploit existing DB systems)

query evolucn‘lon

15/68

KEY TECHNIQUE FOR OMQA: QUERY REWRITING

Query rewriting: Reduces problem of finding certain answers to
standard DB query evaluation (~ exploit existing DB systems)

query evolucn‘lon

Call g’(X) a rewriting of g(X) and 7 iff for every ABox A and tuple d@

T,AE=q(d) < deans(q(X),Za) (Z4 = treat A as DB)

15/68

KEY TECHNIQUE FOR OMQA: QUERY REWRITING

Query rewriting: Reduces problem of finding certain answers to
standard DB query evaluation (~ exploit existing DB systems)

query evolucn‘lon

Call g’(X) a rewriting of g(X) and 7 iff for every ABox A and tuple d@

T,AE=q(d) < deans(q(X),Za) (Z4 = treat A as DB)

: @' isan FO (~ SQL) query
UCQ-rewritings: g’ is a UCQ
15/68

EXAMPLE: QUERY REWRITING

Rewriting of g1(x) = Fac(x) w.r.t. Toniv:

gi(x) = Fac(x) Vv Prof(x) V Lect(x) Vv Fellow(x)

Rewriting of gs(x) = 3y Fac(x) A Teaches(x,y) w.r.t. Toniv:

g5(x) = (3y.Fac(x) A Teaches(x,y)) V Prof(x) Vv Lect(x)V
(Jy-Fellow(x) A Teaches(x,y))

Rewriting of g4(x,y) = Fac(x) A Teaches(x,y) w.r.t. Tyniv:

g.(x,y) = (Fac(x) A Teaches(x,y)) V (Prof(x) A Teaches(x,y))
(Lect(x) A Teaches(x, y)) V (Fellow(x) A Teaches(x, y))

16/68

INTRODUCTION TO INCONSISTENCY-
TOLERANT SEMANTICS

HANDLING DATA INCONSISTENCIES

In realistic settings, can expect some errors in the data
- ABox likely to be inconsistent with the TBox (ontology)

Standard semantics: everything is implied - not informative!

18/68

HANDLING DATA INCONSISTENCIES

In realistic settings, can expect some errors in the data
- ABox likely to be inconsistent with the TBox (ontology)

Standard semantics: everything is implied - not informative!

Two approaches to inconsistency handling:
- resolve the inconsistencies

- preferable, but not always applicable!
- live with the inconsistencies -

to queries despite inconsistencies

Note: focus on case where errors in ABox (assume TBox reliable)

18/68

EXAMPLE: REASONABLE INFERENCES

TBox 'Rm\,i
Prof C Fac Prof C ITeaches Prof C —Lect Fac C —Course
Lect C Fac Lect C JTeaches Prof C —Fellow

Fellow C Fac dTeaches™ LC Course Lect C —Fellow

Consider following ABoxes:

A; = {Prof(anna), Lect(anna), Fellow(alex)}
Ay {Prof(anna), Fellow(alex), Lect(alex)}

Which assertions would be reasonable to infer from these two KBs?

Prof(anna) Lect(anna) Fac(anna)
Fellow(alex) Lect(alex) Fac(alex)

19/68

EXAMPLE: REASONABLE ANSWERS

TBox 7Tmiv:
Prof C Fac Prof C 3Teaches Prof C —Lect Fac C —Course
Lect C Fac Lect C JTeaches Prof C —Fellow

Fellow C Fac dTeaches™ C Course Lect C —Fellow

ABOX Aniv:

Prof(anna), Lect(anna), Fellow(anna), Prof(kim), Lect(kim),
Fellow(julie), Teaches(csc343,julie), Fellow(alex), Teaches(alex, csc486)

Question: what are reasonable answers for our example queries?

q1(x) = Fac(x) G2(x) = Jy Teaches(x, y)
g3(x) = Jy Fac(x) A Teaches(x,y) qa(x,y) = Fac(x) A Teaches(x,y)

20/68

ALTERNATIVE SEMANTICS

In general: no single best way to define answers for inconsistent KBs
= consider many different inconsistency-tolerant semantics

Formally: a semantics S associates a set of query answers to every
KB and query

- if K is satisfiable, should return certain answers

- for unsatisfiable K, can give different answers than classical
semantics

Write K =s q(d) if d answer to g w.r.t. K under semantics S

Consider different ways of

21/68

CONSISTENCY PROPERTIES

Call isa of g(d) if:
(i) Cis (ii)
Semantics S satisfies the CONSISTENT SUPPORT property if whenever

K Es g(d), there exists a T-support C C A of g(d)
- important for explaining / justifying query results to users

22/68

CONSISTENCY PROPERTIES

Call isa of g(d) if:
(i) Cis (ii)

Semantics S satisfies the CONSISTENT SUPPORT property if whenever
K Es g(d), there exists a T-support C C A of g(d)

- important for explaining / justifying query results to users

Semantics S satisfies the CONSISTENT RESULTS property if for every KB
K, there exists a model Z of T such that K |=s q(d) implies Z = q(d).

- set of query results is jointly consistent with TBox

- safe to combine query results

22/68

CONSISTENCY PROPERTIES

Call isa of g(d) if:
(i) Cis (ii)

Semantics S satisfies the CONSISTENT SUPPORT property if whenever
K Es g(d), there exists a T-support C C A of g(d)

- important for explaining / justifying query results to users

Semantics S satisfies the CONSISTENT RESULTS property if for every KB
K, there exists a model Z of T such that K |=s q(d) implies Z = q(d).

- set of query results is jointly consistent with TBox

- safe to combine query results

Note: neither property implies the other
22/68

COMPARING DIFFERENT SEMANTICS

Given two semantics S and S/, we say that:

- S'is an under-approximation (or: sound approximation) of S just
in the case that

KEsq(@ = Ksq(d)

- S’ is an over-approximation (or: complete approximation) of S
just in the case that

Klsq(d = KEsq(d)

Consistency properties are preserved by under-approximations:

S’ is an under-approximation of S & S satisfies P = S’ also satisfies P
here P €€ {CONSISTENT SUPPORT, CONSISTENT RESULTS }

23/68

REPAIRS

Many semantics are based upon the notion of repair

Repair of an ABox A w.r.t. a TBox T
= inclusion-maximal subset of A that is 7-consistent

Intuition: different ways of achieving consistency while retaining as
much of the original data as possible

Denote by Rep(.A, T) the set of repairs of A w.r.t. T
- abbreviate to Rep(K) when K = (T, A)

Every KB has
- inconsistent KB =

24/68

EXAMPLE: REPAIRS

Reconsider the TBox Tiniv:

Prof C Fac Prof C JTeaches Prof C —Lect Fac C —Course
Lect C Fac Lect C dTeaches Prof C —Fellow
Fellow C Fac dTeaches™ C Course Lect C —Fellow

and ABox Ayniv:
Prof(anna), Lect(anna), Fellow(anna), Prof(kim), Lect(kim),
Fellow(julie), Teaches(csc343, julie), Fellow(alex), Teaches(alex, csc486)
Recall the minimal 7, -inconsistent subsets:

{Prof(anna), Lect(anna)} {Prof(anna), Fellow(anna)}
{Lect(anna), Fellow(anna)} {Prof(kim), Lect(kim)}
{Fellow(julie), Teaches(csc343, julie)}

Question:

25/68

EXAMPLE: REPAIRS (CONT.)

Twelve repairs of Ayniy W.I.t. Toniv:

Ry = {Prof(anna), Prof(kim), Fellow(julie)} U Ajn
R {Lect(anna), Lect(kim), Fellow(julie)} U Aint

Rs = {Fellow(anna), Prof(kim), Fellow(julie)} U Ajnt

R+ = {Prof(anna), Lect(kim), Fellow(julie)} U A

Rs = {Lect(anna), Prof(kim), Fellow(julie)} U Ajn

Re = {Fellow(anna),Lect(kim), Fellow(julie)} U Ajnt

R; = {Prof(anna), Prof(kim), Teaches(csc343,julie)} U A
Rs = {lect(anna),Lect(kim), Teaches(csc343,julie)} U At
Ro = {Fellow(anna), Prof(kim), Teaches(csc343,julie)} U At
Rw = {Prof(anna), Lect(kim), Teaches(csc343,julie)} U At
Rwn = {lect(anna), Prof(kim), Teaches(csc343,julie)} U At
Rn = {Fellow(anna), Lect(kim), Teaches(csc343,julie)} U Ajnt

where the ABox A that is common to all the repairs is as follows:
At = {Fellow(alex), Teaches(alex, csc486)}

26/68

INCONSISTENCY-TOLERANT SEMAN-
TICS: DEFINITIONS AND PROPERTIES

PLAUSIBLE ANSWERS: AR SEMANTICS

Repair: C-maximal subset of the data consistent with the ontology
- ways to achieve consistency, keeping as much information as possible

28/68

PLAUSIBLE ANSWERS: AR SEMANTICS

Repair: C-maximal subset of the data consistent with the ontology
- ways to achieve consistency, keeping as much information as possible

Plausible answers: hold no matter which repair is chosen

28/68

PLAUSIBLE ANSWERS: AR SEMANTICS

Repair: C-maximal subset of the data consistent with the ontology
- ways to achieve consistency, keeping as much information as possible

Plausible answers: hold no matter which repair is chosen

AR semantics: query each repair separately, intersect results

K Eaq(@ < (T,B) [q(a) for every repair B € Rep(K)

3 <
| = % — .
7 (R
q(@)? q(@)?

q(@)? q(@)?

28/68

EXAMPLE: AR SEMANTICS

Reconsider our example KB Kyniy = (Tuniv, Auniv)

For the query g1(x) = Fac(x) , we have:

29/68

EXAMPLE: AR SEMANTICS

Reconsider our example KB Kyniy = (Tuniv, Auniv)

For the query g1(x) = Fac(x) , we have:

- Kuniv Ear Gi(anna), as every repair contains one of Prof(anna),
Lect(anna), and Fellow(anna)

© Kuniv Ear g1(kim), as every repair contains Prof(kim) or Lect(anna)

- Kuniv Ear G1(alex), as every repair contains Fellow(alex)

29/68

EXAMPLE: AR SEMANTICS

Reconsider our example KB Kyniy = (Tuniv, Auniv)

For the query g1(x) = Fac(x) , we have:

- Kuniv Ear Gi(anna), as every repair contains one of Prof(anna),
Lect(anna), and Fellow(anna)

© Kuniv Ear g1(kim), as every repair contains Prof(kim) or Lect(anna)

- Kuniv Ear G1(alex), as every repair contains Fellow(alex)

These are the only answers under AR semantics:

29/68

EXAMPLE: AR SEMANTICS

Reconsider our example KB Kyniy = (Tunivs Auniv)

For the query g1(x) = Fac(x) , we have:

- Kuniv Ear Gi(anna), as every repair contains one of Prof(anna),
Lect(anna), and Fellow(anna)

© Kuniv Ear g1(kim), as every repair contains Prof(kim) or Lect(anna)
- Kuniv Ear G1(alex), as every repair contains Fellow(alex)
These are the only answers under AR semantics:

: ICumv I#AR Cﬁ(ju“e) as <7IJniV7R7> l?é Fac(julie)
- can similarly show Ky Far g1(csc486) and Kyniv Far G1(CSC343)

29/68

EXAMPLE: AR SEMANTICS

Reconsider our example KB Kyniv = (Tunivs Auniv)

For the query g, = JyTeaches(x,y) , we have:

30/68

EXAMPLE: AR SEMANTICS

Reconsider our example KB Kyniv = (Tunivs Auniv)

For the query g, = JyTeaches(x,y) , we have:
- Kuniv Ear G2(kim), as every repair contains Prof(kim) or Lect(kim)

- Kuniv Far G2(alex), as every repair contains Teaches(alex, csc486)

30/68

EXAMPLE: AR SEMANTICS

Reconsider our example KB Kyniv = (Tunivs Auniv)

For the query g, = JyTeaches(x,y) , we have:
- Kuniv Ear G2(kim), as every repair contains Prof(kim) or Lect(kim)

- Kuniv Far G2(alex), as every repair contains Teaches(alex, csc486)

These are the only answers under AR semantics:
- Kuniv Far g1(anna) as (Tuniv, R3) = 3y Teaches(anna, y)

- can similarly show julie, csc486, and csc343 are not answers

30/68

PLAUSIBLE ANSWERS: AR SEMANTICS

Repair: C-maximal subset of the data consistent with the ontology

- ways to achieve consistency, keeping as much information as possible

Plausible answers: hold no matter which repair is chosen

AR semantics: query each repair separately, intersect results

K Eaq(@) < (T,B) [q(a) for every repair B € Rep(K)

— >

D $ % e \@n/
Ra Ne—"
q(@)? q(@)? q(@)?

both and

31/68

SUREST ANSWERS: IAR SEMANTICS

Idea: only use the surest assertions to answer queries
- disregard assertions involved in some contradiction

32/68

SUREST ANSWERS: IAR SEMANTICS

Idea: only use the surest assertions to answer queries
- disregard assertions involved in some contradiction

IAR semantics: query the intersection of the repairs

KEwrq(d) < (T,D) | q(d)whereD = Niereprcy B

32/68

EXAMPLE: IAR SEMANTICS

Reconsider our example KB (Tuniv, Auniv)

Intersection of the repairs of (Tiniv, Auniv):

Ane = {Fellow(alex), Teaches(alex, csc486)}

For the query g1(x) = Fac(x) , we have:

33/68

EXAMPLE: IAR SEMANTICS

Reconsider our example KB (Tuniv, Auniv)

Intersection of the repairs of (Tiniv, Auniv):

Ane = {Fellow(alex), Teaches(alex, csc486)}

For the query g1(x) = Fac(x) , we have:

- Kuniv Ear gi(alex), as (Toniv, Aint) | Fac(alex)

33/68

EXAMPLE: IAR SEMANTICS

Reconsider our example KB (Tuniv, Auniv)

Intersection of the repairs of (Tiniv, Auniv):

Ane = {Fellow(alex), Teaches(alex, csc486)}

For the query g1(x) = Fac(x) , we have:

- Kuniv Ear gi(alex), as (Toniv, Aint) | Fac(alex)

This is the only answer to g, under IAR semantics:

- anna and kim are no longer considered answers since needed to
reason by cases (e.g., kim is either Prof or Lect)

33/68

SUREST ANSWERS: IAR SEMANTICS

Idea: only use the surest assertions to answer queries
- disregard assertions involved in some contradiction

IAR semantics: query the intersection of the repairs

KEwrq(d) < (T,D) | q(d)whereD = Niereprcy B
of the

Satisfies both CONSISTENT SUPPORT and CONSISTENT RESULTS

34/68

POSSIBLE ANSWERS: BRAVE SEMANTICS

Idea: return all answers supported by consistent part of data
- can view them as possible answers, having coherent justification

35/68

POSSIBLE ANSWERS: BRAVE SEMANTICS

Idea: return all answers supported by consistent part of data
- can view them as possible answers, having coherent justification

Brave semantics: query the repairs, take union of their answers

K Evae (@) < (T,B) k= q(d) for some repair B € Rep(K)

35/68

EXAMPLE: BRAVE SEMANTICS

Reconsider the KB Kyniv = (Tuniv, Auniv) and query gq(x) = Fac(x) .

36/68

EXAMPLE: BRAVE SEMANTICS

Reconsider the KB Kyniv = (Tuniv, Auniv) and query gq(x) = Fac(x) .

Moving from AR to brave semantics yields an additional answer:

* Kuniv Fbrave g1(anna) AR-answer
Kuniv FEbrave g1(kim) AR-answer
* Kuniv Fbrave g1(alex) AR-answer
Kuniv Ebrave Ga(julie) (Tonivs Ri) = qa(julie) for1<i <6

36/68

EXAMPLE: BRAVE SEMANTICS

Reconsider the KB Kyniv = (Tuniv, Auniv) and query gq(x) = Fac(x) .

Moving from AR to brave semantics yields an additional answer:

* Kuniv Fbrave g1(anna) AR-answer
Kuniv FEbrave g1(kim) AR-answer
* Kuniv Fbrave g1(alex) AR-answer
Kuniv Ebrave Ga(julie) (Tonivs Ri) = qa(julie) for1<i <6

These are the

and cannot be obtained as answers from any repair

36/68

POSSIBLE ANSWERS: BRAVE SEMANTICS

Idea: return all answers supported by consistent part of data
- can view them as possible answers, having coherent justification

Brave semantics: query the repairs, take union of their answers

K Evae (@) < (T,B) k= q(d) for some repair B € Rep(K)

of the
- ...and

Does not satisfy CONSISTENT RESULTS Why?

37/68

K-SUPPORT SEMANTICS

Goal:

38/68

K-SUPPORT SEMANTICS

Goal:

k-support semantics: bound # of supports used to ‘cover’ all repairs
K Ek-supp q(4) iff exist subsets Sy, ..., S, of A such that:

each S; is a T-support for g(d) in A

for every R € Rep(K), there is some S; with S; C R

Observe K Eg-supp G(G) = K Ert1-supp G(0)

38/68

EXAMPLE: K-SUPPORT SEMANTICS

Reconsider the KB (Tuniv, Auniv) and query gi(x) = Fac(x) .

39/68

EXAMPLE: K-SUPPORT SEMANTICS

Reconsider the KB (Tuniv, Auniv) and query gi(x) = Fac(x) .

When k = 1, the 1-support semantics gives same result as IAR:
- Kuniv F1-supp ga(alex) use {Fellow(alex)}

39/68

EXAMPLE: K-SUPPORT SEMANTICS

Reconsider the KB (Tyniv, Auniv) and query g(x) = Fac(x) .

When k = 1, the 1-support semantics gives same result as IAR:
- Kuniv F1-supp ga(alex) use {Fellow(alex)}

When k = 2, obtain one additional answer:

: Kuniv ’:275upp QW(alex)
© Kuniv F2-supp g1(kim) use Sy = {Prof(kim)} and S, = {Lect(kim)}

39/68

EXAMPLE: K-SUPPORT SEMANTICS

Reconsider the KB (Tyniv, Auniv) and query g(x) = Fac(x) .

When k = 1, the 1-support semantics gives same result as IAR:
- Kuniv F1-supp ga(alex) use {Fellow(alex)}

When k = 2, obtain one additional answer:

: Kuniv ’:275upp QW(alex)
© Kuniv F2-supp g1(kim) use Sy = {Prof(kim)} and S, = {Lect(kim)}

When , obtain

use , ,
and

39/68

K-SUPPORT SEMANTICS

Goal:
k-support semantics: bound # of supports used to ‘cover’ all repairs
K Er-supp q(d) iff exist subsets S, ..., S, of A such that:

each S; is a T-support for g(d) in A

for every R € Rep(K), there is some S; with S; C R

Observe IC ':fHstupp C](a) =K ‘:kfsupp C](a)

Relation to other semantics:

- when k = 1, same as IAR semantics

- for every k > 1, under-approximation of AR semantics

- for every K, there is k > 1 such that K |=r-supp q(@) iff K [=ar 9(4)

40/68

K-SUPPORT SEMANTICS

Goal:

k-support semantics: bound # of supports used to ‘cover’ all repairs
K Er-supp q(d) iff exist subsets S, ..., S, of A such that:

each S; is a T-support for q(@) in A

for every R € Rep(K), there is some S; with S; C R

Observe IC ':fHstupp C](a) =K ‘:kfsupp Q(a)

Relation to other semantics:

- when k = 1, same as IAR semantics

- for every k > 1, under-approximation of AR semantics

- for every K, there is k > 1 such that K |=r-supp q(@) iff K [=ar 9(4)

Satisfy both CONSISTENT SUPPORT and CONSISTENT RESULTS
40/68

K-DEFEATER SEMANTICS

Goal:

41/68

K-DEFEATER SEMANTICS

Goal:

k-defeater semantics: bound # of assertions to block all supports

K =r-ger q(@) iff does not exist a T-consistent subset S of A with:

IS| <k
(T,SUC) | L for every C-minimal 7-support C C A of g(a)

Observe K =ri1-der 4(4) = K Er-ger q(4)

41/68

EXAMPLE: K-DEFEATER SEMANTICS

Reconsider the KB (Tuniv, Auniv) and query gx(x) = Iy Teaches(x,y) .

42/68

EXAMPLE: K-DEFEATER SEMANTICS

Reconsider the KB (Tuniv, Auniv) and query gx(x) = Iy Teaches(x,y) .

42/68

EXAMPLE: K-DEFEATER SEMANTICS

Reconsider the KB (Tuniv, Auniv) and query gx(x) = Iy Teaches(x,y) .

When k = 0, same answers as for brave semantics:
- anna, kim, alex, and csc343

42/68

EXAMPLE: K-DEFEATER SEMANTICS

Reconsider the KB (Tuniv, Auniv) and query gx(x) = Iy Teaches(x,y) .

When k = 0, same answers as for brave semantics:
- anna, kim, alex, and csc343

When kR = 1, we ‘lose’ answers anna and csc343:

* Kuniv FE1-def G2(anna) {Fellow(anna)} contradicts both minimal
supports: {Prof(anna)} and {Lect(anna)}
* Kuniv FE1-def G2(€SC343) {Fellow(julie)} contradicts only minimal

support {Teaches(csc343,julie) }

42/68

EXAMPLE: K-DEFEATER SEMANTICS

Reconsider the KB (Tuniv, Auniv) and query gx(x) = Iy Teaches(x,y) .

When k = 0, same answers as for brave semantics:
- anna, kim, alex, and csc343

When kR = 1, we ‘lose’ answers anna and csc343:

* Kuniv FE1-def G2(anna) {Fellow(anna)} contradicts both minimal
supports: {Prof(anna)} and {Lect(anna)}
* Kuniv FE1-def G2(€SC343) {Fellow(julie)} contradicts only minimal

support {Teaches(csc343,julie) }

under 1-support semantics:

42/68

K-DEFEATER SEMANTICS

Goal:

k-defeater semantics: bound # of assertions to block all supports
K =r-ger q(@) iff does not exist a T-consistent subset S of A with:
IS| <k
(T,SUC) = L for every C-minimal 7-support C C A of q(d)
Observe K Fr-gef G(d) = K [Eria-ger 9(0)
Relation to other semantics:
- when k = 0, same as brave semantics

- for every k > 0, over-approximation of AR semantics
- for every K, there is k > 0 such that K E-qer g(@) iff K Ear g(d)

43/68

K-DEFEATER SEMANTICS

Goal:

k-defeater semantics: bound # of assertions to block all supports

K =r-ger q(@) iff does not exist a T-consistent subset S of A with:
IS| <k
(T,SUC) = L for every C-minimal 7-support C C A of q(d)
Observe K Ep-gef (@) = K Fryi1-der 9(4)
Relation to other semantics:
- when k = 0, same as brave semantics

- for every k > 0, over-approximation of AR semantics
- for every K, there is k > 0 such that K E-qer g(@) iff K Ear g(d)

Satisfy CONSISTENT SUPPORT but not CONSISTENT RESULTS
43/68

ICR SEMANTICS

Goal: obtain closer under-approximation of AR than IAR

closer(A) = all ABox assertions entailed from (7, A)

ICR semantics: close repairs, intersect them, then query the result

K =ik q(a@) iff (T, D) |= q(d@) where D = Ngegep(x) CloseT(B)

44/68

EXAMPLE: ICR SEMANTICS

Reconsider the KB (Tuniv, Auniv) and query gq(x) = Fac(x) .

45/68

EXAMPLE: ICR SEMANTICS

Reconsider the KB (Tuniv, Auniv) and query gq(x) = Fac(x) .

Close the repairs of Kyniv:

closer, (R1) = {Prof(anna),Prof(kim), Fellow(julie), Fac(anna),
Fac(kim), Fac(alex), Fac(julie), Course(csc486)}
closer, (R2) = {Fellow(anna),Lect(kim), Teaches(csc343,julie),

Fac(anna), Fac(kim), Fac(alex), Fac(julie), Course(julie)}

45/68

EXAMPLE: ICR SEMANTICS

Reconsider the KB (Tuniv, Auniv) and query gq(x) = Fac(x) .

Close the repairs of Kyniv:

closer, (R1) = {Prof(anna),Prof(kim), Fellow(julie), Fac(anna),
Fac(kim), Fac(alex), Fac(julie), Course(csc486)}

closer, (R2) = {Fellow(anna),Lect(kim), Teaches(csc343,julie),
Fac(anna), Fac(kim), Fac(alex), Fac(julie), Course(julie)}

Take

= {Fellow(alex), Teaches(alex, csc486), ,

I) }

45/68

EXAMPLE: ICR SEMANTICS

Reconsider the KB (Tuniv, Auniv) and query gq(x) = Fac(x) .

Close the repairs of Kyniv:

closer, (R1) = {Prof(anna),Prof(kim), Fellow(julie), Fac(anna),
Fac(kim), Fac(alex), Fac(julie), Course(csc486)}

closer, (R2) = {Fellow(anna),Lect(kim), Teaches(csc343,julie),
Fac(anna), Fac(kim), Fac(alex), Fac(julie), Course(julie)}

Take

= {Fellow(alex), Teaches(alex, csc486), ,

I) }

Get following ICR-answers: anna, kim, alex

45/68

ICR SEMANTICS

Goal: obtain closer under-approximation of AR than IAR

closer(A) = all ABox assertions entailed from (7, A)

ICR semantics: close repairs, intersect them, then query the result

K =ik q(a@) iff (T, D) |= q(d@) where D = Ngegep(x) CloseT(B)

Under-approximation of AR semantics, over-approximation of IAR
- same as AR semantics for Qs and quantifier-free CQs

46/68

ICR SEMANTICS

Goal: obtain closer under-approximation of AR than IAR

closer(A) = all ABox assertions entailed from (7, A)

ICR semantics: close repairs, intersect them, then query the result

K =ik q(a@) iff (T, D) |= q(d@) where D = Ngegep(x) CloseT(B)

Under-approximation of AR semantics, over-approximation of IAR
- same as AR semantics for Qs and quantifier-free CQs

and

46/68

CAR AND ICAR SEMANTICS

Goal: define semantics that are (almost) syntax-independent
- apply closure operator on original ABox

47/68

CAR AND ICAR SEMANTICS

Goal: define semantics that are (almost) syntax-independent
- apply closure operator on original ABox

Need
closer(A) = {B | 3S C A such that S is T-consistent and (T, S) = 8}

47/68

CAR AND ICAR SEMANTICS

Goal: define semantics that are (almost) syntax-independent

- apply closure operator on original ABox

Need
closer(A) = {B | 3S C A such that S is T-consistent and (T, S) = 8}

Closed ABox repair: maximally ‘complete’ the standard ABox repairs
with additional facts from closer(A) \ A

47/68

CAR AND ICAR SEMANTICS

Goal: define semantics that are (almost) syntax-independent
- apply closure operator on original ABox

Need
closer(A) = {B | 3S C A such that S is T-consistent and (T, S) = 8}

Closed ABox repair: maximally ‘complete’ the standard ABox repairs
with additional facts from closer(A) \ A

CAR semantics = AR semantics but using closed ABox repairs
ICAR semantics = IAR semantics but using closed ABox repairs

47/68

PROPERTIES OF CAR AND ICAR SEMANTICS

Relations with other semantics:

- ICAR semantics is an under-approximation of the CAR semantics
- CAR semantics is an over-approximation of the AR semantics

- ICAR semantics is an over-approximation of the ICR semantics

- CAR and ICAR are not under-approximations of brave semantics

48/68

PROPERTIES OF CAR AND ICAR SEMANTICS

Relations with other semantics:

- ICAR semantics is an under-approximation of the CAR semantics
- CAR semantics is an over-approximation of the AR semantics

- ICAR semantics is an over-approximation of the ICR semantics

- CAR and ICAR are not under-approximations of brave semantics

CAR and ICAR semantics satisfy CONSISTENT RESULTS

48/68

PROPERTIES OF CAR AND ICAR SEMANTICS

Relations with other semantics:

- ICAR semantics is an under-approximation of the CAR semantics
- CAR semantics is an over-approximation of the AR semantics

- ICAR semantics is an over-approximation of the ICR semantics

- CAR and ICAR are not under-approximations of brave semantics

CAR and ICAR semantics satisfy CONSISTENT RESULTS

These semantics

T={ACB,CC D,AC =C}, A= {A(e),C(e)}, and g = B(x) A D(x)

48/68

K-LAZY SEMANTICS

Clusters: partition of ABox assertions

- group together assertions that appear together in minimal
T-inconsistent subset

49/68

K-LAZY SEMANTICS

Clusters: partition of ABox assertions

- group together assertions that appear together in minimal
T-inconsistent subset

k-lazy repairs: for each cluster C;, remove from A either
- minimal subset C/ C C; such that |C/| < kand C;\ (] is
T-consistent

- if no such C/ exists, remove the whole cluster C;

49/68

K-LAZY SEMANTICS

Clusters: partition of ABox assertions

- group together assertions that appear together in minimal
T-inconsistent subset

k-lazy repairs: for each cluster C;, remove from A either
- minimal subset C/ C C; such that |C/| < kand C;\ (] is
T-consistent

- if no such C/ exists, remove the whole cluster C;

. like AR, but use

49/68

K-LAZY SEMANTICS

Relation to other semantics:
- K Eur (@) iff K Fo-tazy q(0)
- forevery R > 0, if K Ep-iazy G(4), then K Eprave q(4)

- for every KB K, there exists some k > 0 such that for every R’ > k:
K |:AR CI(a) iff K ':fe’—lazy CI(a)

50/68

K-LAZY SEMANTICS

Relation to other semantics:
- K Enr q(a) iff K = lazy 9(a a)
- forevery R > 0, if K =poazy G(4), then K Eprave q(d)

- for every KB K, there exists some k > 0 such that for every R’ > k:
K |*AR CI() iff K ':I?’ lazy CI()

Convergence not monotone in k:
pOSSIble to have € ‘_fe lazy CI() but K |7éfe+1 lazy CI()

50/68

K-LAZY SEMANTICS

Relation to other semantics:
- K Enr q(a) iff K = lazy 9(a a)
- forevery R > 0, if K =poazy G(4), then K Eprave q(d)

- for every KB K, there exists some k > 0 such that for every R’ > k:
K |*AR CI() iff K ':I?’ lazy CI()

Convergence not monotone in k:
pOSSIble to have € ‘_fe lazy CI() but K |7éfe+1 lazy CI()

and satisfied (for every k)

50/68

SEMANTICS BASED UPON PREFERRED REPAIRS

Idea: some repairs are more likely than others
- exploit knowledge about relative reliability of ABox assertions

51/68

SEMANTICS BASED UPON PREFERRED REPAIRS

Idea: some repairs are more likely than others
- exploit knowledge about relative reliability of ABox assertions

Formally: use preference relation < to compare repairs
- compare w.rt. cardinality (<)
- partition ABox into priority levels P = (Py,...,Pp)
- compare level-by-level using set inclusion (Cp)
- compare level-by-level using cardinality (<p)
- assign weights to ABox assertions
- compare repairs by total weight (<)

51/68

SEMANTICS BASED UPON PREFERRED REPAIRS

Idea: some repairs are more likely than others
- exploit knowledge about relative reliability of ABox assertions

Formally: use preference relation < to compare repairs
- compare w.rt. cardinality (<)
- partition ABox into priority levels P = (Py,...,Pp)

- compare level-by-level using set inclusion (Cp)
- compare level-by-level using cardinality (<p)

- assign weights to ABox assertions
- compare repairs by total weight (<)

based upon

51/68

COMPLEXITY OF INCONSISTENCY-
TOLERANT QUERY ANSWERING

MEASURING COMPLEXITY

View OMQA as a decision problem (yes-or-no question):
PROBLEM: Q answering in £ under semantics S
(Q a query language, £ a DL, S chosen semantics)

INPUT: An n-ary query g € Q, an ABox A4, a L-TBox 7,
and a tuple @ € Ind(A)"

QUESTION: Does (T, A) s q(d)?

53/68

MEASURING COMPLEXITY

View OMQA as a decision problem (yes-or-no question):
PROBLEM: Q answering in £ under semantics S
(Q a query language, £ a DL, S chosen semantics)

INPUT: An n-ary query g € Q, an ABox A4, a L-TBox 7,
and a tuple @ € Ind(A)"

QUESTION: Does (T, A) s q(d)?

:in terms of

Data complexity: in terms of size of A only
- view rest of input as fixed (of constant size)

- motivation: ABox typically much larger than rest of input

Note: use |A| to denote size of A (similarly for |T], |q|, etc.)

53/68

COMPLEXITY ANALYSIS FOR DL-LITE

Today: mainly , important DL for OMQA

Results apply to DL-Liter and all DL-Lite dialects that satisfy:

54/68

COMPLEXITY ANALYSIS FOR DL-LITE

Today: mainly , important DL for OMQA

Results apply to DL-Liter and all DL-Lite dialects that satisfy:

- every minimal support for g(d) contains at most |g| assertions

54/68

COMPLEXITY ANALYSIS FOR DL-LITE

Today: mainly , important DL for OMQA

Results apply to DL-Liter and all DL-Lite dialects that satisfy:

- every minimal support for g(d) contains at most |g| assertions

- every minimal 7-inconsistent subset has cardinality at most two

54/68

COMPLEXITY ANALYSIS FOR DL-LITE

Today: mainly , important DL for OMQA

Results apply to DL-Liter and all DL-Lite dialects that satisfy:
- every minimal support for g(d) contains at most |g| assertions
- every minimal 7-inconsistent subset has cardinality at most two

- CQ answering, 1Q answering, and KB consistency can be performed
by FO query rewriting (so in AC® in data complexity)

54/68

COMPLEXITY ANALYSIS FOR DL-LITE

Today: mainly , important DL for OMQA

Results apply to DL-Liter and all DL-Lite dialects that satisfy:
- every minimal support for g(d) contains at most |g| assertions
- every minimal 7-inconsistent subset has cardinality at most two

- CQ answering, 1Q answering, and KB consistency can be performed
by FO query rewriting (so in AC® in data complexity)

- CQ answering is NP-complete for combined complexity

54/68

COMPLEXITY ANALYSIS FOR DL-LITE

Today: mainly , important DL for OMQA

Results apply to DL-Liter and all DL-Lite dialects that satisfy:
- every minimal support for g(d) contains at most |g| assertions
- every minimal 7-inconsistent subset has cardinality at most two

- CQ answering, 1Q answering, and KB consistency can be performed
by FO query rewriting (so in AC® in data complexity)

- CQ answering is NP-complete for combined complexity

is

54/68

BAD NEWS: INTRACTABILITY OF AR SEMANTICS

Theorem CQ and 1Q answering under AR semantics are
coNP-complete in data complexity

55/68

BAD NEWS: INTRACTABILITY OF AR SEMANTICS

Theorem CQ and 1Q answering under AR semantics are
coNP-complete in data complexity

Upper bound: guess A’ C A, verify A’ is repair and (7, A’) |~ q(d)

55/68

BAD NEWS: INTRACTABILITY OF AR SEMANTICS

Theorem CQ and 1Q answering under AR semantics are
coNP-complete in data complexity

Upper bound: guess A’ C A, verify A’ is repair and (7, A’) |~ q(d)

Lower bound: reduction from UNSAT ¢ =Cy A ... ACm OVErVy,...,Vp
’L}l .o v] e vl LRy vk
A= ‘ -y € ¢ T =3P LC =30
Cl ... € ---Cm N E —3U-
U\ U/J —_—
a
Can show &

55/68

BAD NEWS: INTRACTABILITY OF AR SEMANTICS (CONT.)

In fact: CQ answering is coNP-hard for simple TBox 7 = {T C —F}

56/68

BAD NEWS: INTRACTABILITY OF AR SEMANTICS (CONT.)

In fact: CQ answering is coNP-hard for simple TBox 7 = {T C —F}

Reduction from 2+2UNSAT: @=CIA... \NCnOVervy,...,Vp, T, L

each clause has two positive and two negative literals

¢ =01 VoV Vo

Can show ¢ unsatisfiable & 7, A = g

56/68

MORE BAD NEWS: ICR, CAR, K-LAZY

Can use preceding reductions to show more intractability results

57/68

MORE BAD NEWS: ICR, CAR, K-LAZY

Can use preceding reductions to show more intractability results

Theorem under are

Theorem CQ answering under CAR semantics is coNP-complete
in data complexity

Theorem CQ answering under k-lazy semantics is coNP-complete in
data complexity for every k > 1

57/68

GOOD NEWS: IAR AND BRAVE

For IAR and brave semantics,
have

Theorem CQ and 1Q answering under IAR semantics are
in AC® in data complexity

Theorem CQ and 1Q answering under brave semantics are
in AC® in data complexity

58/68

GOOD NEWS: IAR AND BRAVE

For IAR and brave semantics,
have

Theorem CQ and 1Q answering under IAR semantics are
in AC® in data complexity

Theorem CQ and 1Q answering under brave semantics are
in AC® in data complexity

Can use FO-query rewriting to compute IAR- and brave-answers

58/68

EXAMPLE: REWRITING FOR IAR SEMANTICS

Idea: to ensure matching
disjuncts are

59/68

EXAMPLE: REWRITING FOR IAR SEMANTICS

Idea: to ensure matching
disjuncts are

(Normal) rewriting of g,(x) = 3y Teaches(x,y) W.r.t. Tuniv:

q5(x) = Prof(x) v Lect(x) v Jy.Teaches(x,y)

59/68

EXAMPLE: REWRITING FOR IAR SEMANTICS

Idea: to ensure matching
disjuncts are

(Normal) rewriting of g,(x) = 3y Teaches(x,y) W.r.t. Tuniv:

q5(x) = Prof(x) v Lect(x) v Jy.Teaches(x,y)

Rewriting of g, for IAR semantics:
g5 (x) =Prof(x) A (—Lect(x) A =Fellow(x) A ~Course(x) A —3z. Teaches(z, x)) Vv
Lect(x)A (=Prof(x) A =Fellow(x) A =Course(x) A —3z. Teaches(z, x)) V

Jy.(Teaches(x, y)A (=Prof(y) A =Lect(y) A =Fellow(y)))

59/68

EXAMPLE: REWRITING FOR BRAVE SEMANTICS

ldea: to ensure each

60/68

EXAMPLE: REWRITING FOR BRAVE SEMANTICS

ldea: to ensure each

Modified TBox 7 ,: add 3Teaches C Fac to Tyniy

60/68

EXAMPLE: REWRITING FOR BRAVE SEMANTICS

ldea: to ensure each

Modified TBox 7 ,: add 3Teaches C Fac to Tyniy

(Normal) rewriting of g,(x) = 3y Teaches(x,y) w.rt. T/

univ-

q5(x) = Prof(x) v Lect(x) Vv Jy.Teaches(x,y)

60/68

EXAMPLE: REWRITING FOR BRAVE SEMANTICS

ldea: to ensure each

Modified TBox 7 ,: add 3Teaches C Fac to Tyniy

(Normal) rewriting of g,(x) = 3y Teaches(x,y) w.rt. 7/ ..;
g5(x) = Prof(x) Vv Lect(x) v Jy.Teaches(x, y)
Rewriting of g, for brave semantics:
g5(x) = Prof(x) v Lect(x) Vv (Jy.Teaches(x,y)A X £ y)

to disallow using assertions of the form Teaches(a, a)

60/68

MORE GOOD NEWS: K-SUPPORT AND K-DEFEATER SEMANTICS

Theorem CQ and IQ answering under k-support semantics (k > 1) or
k-defeater semantics (k > 0) are in ACY in data complexity

61/68

MORE GOOD NEWS: K-SUPPORT AND K-DEFEATER SEMANTICS

Theorem CQ and IQ answering under k-support semantics (k > 1) or
k-defeater semantics (k > 0) are in ACY in data complexity

Shape of rewriting for k-support semantics:

\/ (chosen supports A supports cannot be)
present in the ABox simultaneously contradicted

choice of k

support-types

61/68

MORE GOOD NEWS: K-SUPPORT AND K-DEFEATER SEMANTICS

Theorem CQ and IQ answering under k-support semantics (k > 1) or
k-defeater semantics (k > 0) are in ACY in data complexity

Shape of rewriting for k-support semantics:
\/ (chosen supports A supports cannot be)
present in the ABox simultaneously contradicted
choice of k
support-types
Shape of rewriting for k-defeater semantics:
- (\/ (chosen defeater A\ contradicts every support
present in the ABox present in the ABox)
choice of

defeater of
size at most k

61/68

MORE GOOD NEWS: K-SUPPORT AND K-DEFEATER SEMANTICS

Theorem CQ and IQ answering under k-support semantics (k > 1) or
k-defeater semantics (k > 0) are in ACY in data complexity

Shape of rewriting for k-support semantics:

\/ (chosen supports A supports cannot be)
present in the ABox simultaneously contradicted

choice of k

support-types

Shape of rewriting for k-defeater semantics:

- (\/ (chosen defeater A\ contradicts every support)
present in the ABox present in the ABox
choice of

defeater of
size at most k

Note: positive results hold for
61/68

COMPLEXITY LANDSCAPE FOR DL-LITE

Data complexity

Combined complexity

Semantics

CQs 1Qs CQs 1Qs
classical in AC° in AC° NP NL
AR cONP coNP ns coNP
IAR in AC° in AC NP NL
brave in AC° in AC° NP NL
k-support (k > 1) in AC’ in AC° NP NL
k-defeater (k > 0) in AC° in AC NP NL
ICR coNP CONP AS[O(log n)) CONP
CAR coNP in AC? ne NL
ICAR in AC° in AC° NP NL
k-lazy (k > 1) cONP in P ns in P

62/68

TOWARDS PRACTICAL SYSTEMS FOR INCONSISTENCY HANDLING

CQOAPri first system for AR query answering in DL-Lite

Implements hybrid approach:

compute IAR and brave answers polytime
- gives upper and lower bounds on AR answers

- use SAT solvers to identify remaining AR answers

- three categories of answers : possible, likely, (almost) sure

63/68

TOWARDS PRACTICAL SYSTEMS FOR INCONSISTENCY HANDLING

CQOAPri first system for AR query answering in DL-Lite

Implements hybrid approach:

compute IAR and brave answers polytime
- gives upper and lower bounds on AR answers

- use SAT solvers to identify remaining AR answers

- three categories of answers : possible, likely, (almost) sure

- in most cases, IAR and brave enough to decide if tuple is
AR-answer = few calls to SAT solvers

- SAT encodings are typically small and easy to solve

63/68

BEYOND DL-LITE: LIGHTWEIGHT DLS

Lightweight DL ££: constructors T, 1, M,3r.C

Semantics Data complexity Combined complexity
CQs 1Qs CQs 1Qs
classical p P NP P
AR ns coNP
IAR AS[0(log n)] CONP
brave NP NP

Observe: IAR and brave are no longer tractable

- no bound on size of minimal 7-inconsistent subsets

64/68

BEYOND DL-LITE: EXPRESSIVE DLS

Expressive DL ALC: constructors T, L, —,M,,3r.C,vr.C

. Data complexit Combined complexit

Semantics P y P y

CQs 1Qs CQs 1Qs
classical coNP coNP Exp Exp
AR Exp Exp
IAR Exp Exp
brave Exp Exp

Observe:

- 1AR and brave no easier than AR

- increased data complexity, no increase in combined complexity

65/68

CONCLUSION & OUTLOOK

CONCLUSION

techniques

Many different semantics have been proposed
- some borrowed from other areas (DBs, KR)

- many proposed specifically for OMQA

Good understanding of complexity landscape for
inconsistency-tolerant OMQA

- complete picture for DL-Lite

- quite a few results for other DLs, existential rules

First implemented systems, promising results for DL-Lite

67/68

OUTLOOK

- mostly based upon UCQ-rewritings (can be very large)
- can we to our setting?

Beyond DL-Lite:
- complexity landscape already explored, mostly negative results
- challenge: how to design effective algorithms?

- difficulty: unbounded size of query supports and minimal
inconsistent subsets

Usability issues:
- need for explanation services: help users interpret query results
- try to improve data quality though interaction with users

68/68

	Introduction to DLs & OMQA
	Introduction to Inconsistency-Tolerant Semantics
	Inconsistency-Tolerant Semantics: Definitions and Properties
	Complexity of Inconsistency-Tolerant Query Answering
	Conclusion & Outlook

