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Next two courses: reasoning with description logics

We will start by giving a general introduction to the area.

Then we will present the two main classes of lightweight DLs:

I EL

I DL-Lite

For DL-Lite, we will also show how reasoning can be distributed.
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1. Brief Introduction to DLs



Motivation: why ontologies?.
Ontologies are logical theories that formalize domain-specific knowledge,
thereby making it available for machine processing.

There are many reasons for adopting ontologies:
I to standardize the terminology of an application domain

• meaning of terms is unambiguous, so less misunderstandings
• by adopting a common vocabulary, easy to share information

I to support complex reasoning
• uncover implicit connections between terms, or errors in modelling
• exploit knowledge in the ontology during query answering, to get

back a more complete set of answers to queries
I to present an intuitive and unified view of data sources

• ontology can be used to enrich the data vocabulary, making it
easier for users to formulate their queries

• especially useful when integrating multiple data sources
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Description logics as ontology languages.

Description logics (DLs) are a popular way of specifying ontologies.

Formally, description logics are a family of fragments of first-order logic.

Wide variety of DLs, offering different levels of expressivity.

Complexity of reasoning well-understood (from PTIME to 2EXPTIME
and beyond).

Lots of work on reasoning algorithms, DL reasoners available for use.

DLs form the basis of the web ontology language OWL (W3C standard).
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DL basics: syntax.
Basic building blocks

I atomic concepts (unary relations) Mother, Student
I atomic roles (binary relations) ParentOf, PartOf
I individuals (constants) marie, pierre

Complex concepts
I concept constructors: ⊤, ¬C, C ⊓ D, C ⊔ D, ∃R.C, ≥ n R.C, ...
I some examples to illustrate:

I “Persons who are not parents”: Person ⊓ ¬Parent
I “Persons with at least one female child”: Person⊓∃ParentOf.Female
I “Persons having at least three children”: Person⊓ ≥ 3 ParentOf.⊤

Complex roles:
I role constructors: − (inverse), ◦ (composition), ...
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DL basics: TBox and ABox.
DL knowledge base = TBox (ontology) + ABox (data)

A TBox describes general knowledge about the domain. It contains:

I concept inclusions C ⊑ D, with C, D complex concepts
use C ≡ D when both C ⊑ D and D ⊑ C

Mother ≡ Female ⊓ ∃ParentOf.⊤ Parent ≡ Mother ⊔ Father

I in some DLs, also have role inclusions R ⊑ S, or can specify other
properties about roles (e.g. transitivity or functionality)

ParentOf ≡ ChildOf− ParentOf ⊑ AncestorOf (trans AncestorOf)

An ABox contains facts about specific individuals. It contains:

I concept assertions C(a) and role assertions R(a, b)

ParentOf(mary, george) ChildOf(paul, george) AncestorOf(mary, paul)
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DL basics: semantics.
Interpretation I = (∆I , ·I)

I ∆I is a non-empty set (universe)
I ·I is a function which maps

I individual a 7→ an element of the universe aI ∈ ∆I

I atomic concept A 7→ unary relation AI ⊆ ∆I

I atomic role R 7→ binary relation RI ⊆ ∆I × ∆I

Example interpretation:
∆I = PersonI

MaleI FemaleI

TeacherI

ParentI

represents ParentOfI

maryI

georgeI

8/60



DL basics: semantics.
We next extend the function ·I to complex concepts and roles, to
formalize the meaning of the constructors.

I ⊤I = ∆I and ⊥I = ∅

I (C ⊓ D)I = CI ∩ DI

I (C ⊔ D)I = CI ∪ DI

I (¬C)I = ∆I \ CI

I (∃R.C)I = {u | exists v such that (u, v) ∈ RI and v ∈ CI}

I (∀R.C)I = {u | for every v such that (u, v) ∈ RI we have v ∈ CI}

I (≥ n R.C)I = {u | at least n v such that (u, v) ∈ RI and v ∈ CI}

I R− = {(u, v)|(v, u) ∈ RI}
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DL basics: semantics.
Satisfaction of TBox statements:

I I satisfies an inclusion C ⊑ D if CI ⊆ DI

I I satisfies an inclusion R ⊑ S if RI ⊆ SI

I I satisfies (trans R) is RI is a transitive relation

I ...

Satisfaction of ABox assertions:

I I satisfies an assertion C(a) if aI ∈ CI

I I satisfies an assertion R(a, b) if (aI , bI) ∈ RI
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Example.
Reconsider the interpretation I:

∆I = PersonI

MaleI FemaleI

TeacherI

ParentI

represents ParentOfI

maryI

georgeI

Which of the following are satisfied in I?

Person ⊑ Male ⊑ Female Male ⊑ ∀ParentOf.Male
Female ⊑ Parent Person ⊑ ∃ParentOf.⊤
Parent ≡ ∃ParentOf.⊤ Person ≡≤ 2.ParentOf.⊤
∃ParentOf.Male(mary) Teacher(george)

11/60



DL basics: semantics.

Models:

I I is a model of TBox T if I satisfies every statement in T

I I is a model of ABox A if I satisfies every assertion in A

I I is a model of KB (T ,A) if I is a model of T and A

Entailment:

I A TBox T entails an inclusion α (written T |= α)
if every model of T satisfies α

I A KB (T ,A) entails an ABox assertion α (written (T ,A) |= α)
if every model I of (T ,A) satisfies α
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Defining a particular DL.
To define a description logic, we need to specify:

I which concept constructors can be used
I which role constructors can be used
I what types of statements can appear in the TBox

For example, the DL ALC is defined by:
I concept constructors: ⊤,⊥,¬,⊔,⊓,∀R.C,∃R.C
I no role constructors
I concept inclusions

The more expressive SHIQ is defined by:
I all ALC concept constructors, plus: ≥ n R.C,≤ n R.C
I inverse roles (R−)
I concept inclusions, role inclusions, and transitivity statements
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Reasoning tasks.
Classical reasoning tasks:

subsumption does T |= C ⊑ D?

classification find all atomic A,B such that T |= A ⊑ B

satisfiability is K = (T ,A) satisfiable? (i.e. has a model)

instance queries does (T ,A) |= C(b)?

Relations between these tasks:

I T |= C ⊑ D if and only if (T , {C(a)}) |= D(a)

I K satisfiable if and only if K ̸|= B(a) (where B does not appear in K)
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Short history of DLs.
1985-1995 Negative results (undecidability, or NP-hardness)

Tractable logics (e.g. AL) based on ⊓ and ∀R.C
Complexity: subsumption in P (without TBox)
Algorithms: structural subsumption

1995-2005 Expressive logics like SROIQ ≈ OWL 2 which offer:
¬, ⊔, ∃R.C, ≥ nR.C, ≤ R.C, R−, {a}, R ⊑ S, (trans R), ...

Complexity: subsumption ≥ EXPTIME (with TBox)
Algorithms: tableaux method with optimizations
Despite high complexity, algorithms seem to work !

2005-now Lightweight DLs, motivated by applications
DL-Lite family (OWL 2 QL) and EL family (OWL 2 EL)
Algorithms: query rewriting or form of forward chaining
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New challenges.

1. Large ontologies and lots of data

I need reasoning algorithms which scale up

2. More expressive queries

I conjunctive queries (like in databases)

q(x, z) = Female(x)∧ParentOf(x, y)∧Female(y)∧ParentOf(y, z)∧Female(z)

I approach called “ontology-based data access” (OBDA)
I difficulty: not reducible to classical reasoning tasks

Solution: new DLs of low complexity
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Short history of DLs.
1985-1995 Negative results (undecidability, or NP-hardness)

Tractable logics (e.g. AL) based on ⊓ and ∀R.C
Complexity: subsumption in P (without TBox)
Algorithms: normalization + structural comparison

1995-2005 Expressive logics like SROIQ ≈ OWL 2 which offer:
¬, ⊔, ∃R.C, ≥ nR.C, ≤ nR.C, R−, {a}, R ⊑ S, (trans R), ...

Complexity: subsumption ≥ EXPTIME (with TBox)
Algorithms: tableaux method with optimizations
Despite high complexity, algorithms seem to work !

2005-now Lightweight DLs, motivated by applications
EL family (OWL 2 EL) and DL-Lite family (OWL 2 QL)
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2. EL



The EL family.
The logic EL, and its extensions, are designed for applications requiring
very large ontologies.

This family of DLs is well-suited for biomedical applications.

Examples of large biomedical ontologies:
I GO (Gene Ontology), around 20,000 concepts
I NCI (cancer ontology), around 30,000 concepts
I SNOMED (medical ontology), close to 400,000 concepts (!)

Pericarditis � Inflammation � ∃loc.Pericardium
Pericardium � Tissue � ∃partOf.Heart Inflammation � Disease

Disease � ∃loc.∃partOf.Heart � HeartDisease
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Syntax of EL.
The basic logic EL allows complex concepts of the following form:

C := ⊤ | A | C1 ⊓ C2 | ∃R.C

Inclusions C1 ⊑ C2 and assertions A(c), R(c, d)

Possible extensions:
I ⊥ (to express disjoint classes)
I domain restrictions dom(R) ⊑ C
I range restrictions range(R) ⊑ C
I complex role inclusions R1 ◦ ... ◦ Rn ⊑ Rn+1 (transitive

roles:R ◦ R ⊑ R)

OWL 2 EL includes all these extensions.
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Canonical Model.

We have seen that entailment of an inclusion or assertion involves
considering all the models of the KB.

In EL, for every KB K, there is a single model IK which is
guaranteed to give us the correct answers. Formally:

K |= α iff IK satisfies α

for every TBox statement or ABox assertion α1.

We call IK the canonical model of K.

Intuitively, IK is obtained by an exhaustive application of the inclusions.

1Actually, IK also gives the right answers for conjunctive queries.
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Example: construction of IK.

R(a, b) C(b)
D � ∃R.(A �D)

D � ∃S.(B �D)

∃R.E � D

C � EK =
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Continuing forever...

we obtain the canonical model IK
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Compact canonical model.

Problem: even though IK gives the right answers, we cannot use it
directly since it may be infinite.

Solution: make it finite by exploiting repetitions in IK

We define a compact canonical model CK, which is a finite representation
of IK and can be used for reasoning.

First, we must introduce a normal form for EL TBoxes.
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Normalization of TBoxes.
We say that an EL TBox T is in normal form if it contains only
inclusions of the following forms:

A1 ⊓ A2 ⊑ B A ⊑ ∃R.B ∃R.A ⊑ B

where A, A1, A2, B are atomic concepts (or ⊤).

For every TBox T , we can construct in polynomial time a TBox T ′ in
normal form such that:

I for every inclusion C ⊑ D which uses only atomic concepts from T ,
we have T |= C ⊑ D iff T ′ |= C ⊑ D

Note that T ′ may use extra atomic concepts which do not appear in T .

Example: the inclusion ∃R.(∃S.A ⊓ H) ⊑ B ⊓ D would be replaced by

∃R.E ⊑ B ∃R.E ⊑ D E ⊑ F E ⊑ H F⊓H ⊑ E F ⊑ ∃S.A ∃S.A ⊑ F
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Definition of CK.
Let K be composed of an ABox A (with individuals Ind(A)) and a TBox
T in normal form.

We begin by defining an initial interpretation I0 as follows:
I ∆I0 = Ind(A) ∪ {wA | A atomic concept appearing in K} ∪ {w⊤}
I AI0 = {a | A(a) ∈ A} ∪ {wA}
I RI0 = {(a, b) | R(a, b) ∈ A}

We obtain Ii+1 from Ii by applying one of the following rules:
R1 If e ∈ (A1 ⊓ A2)Ii and A1 ⊓ A2 ⊑ B ∈ T and e ̸∈ BIi ,

then BIi+1 = BIi ∪ {e}
R2 If e ∈ AIi and A ⊑ ∃R.B ∈ T and (e, wB) ̸∈ RIi ,

then RIi+1 = RIi ∪ {(e, wB)}
R3 If (d, e) ∈ RIi and e ∈ AIi and ∃R.A ⊑ B ∈ T and d ̸∈ BIi ,

then BIi+1 = BIi ∪ {d}
When we have Ik and no more rules apply, set CK = Ik.
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Example: construction of CK.

R(a, b) C(b)
D � ∃R.(A �D) ∃R.E � D

C � EK = D � ∃S.(B �D)∃S.B � B
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Example: construction of CK.

R(a, b) C(b)
D � ∃R.(A �D) ∃R.E � D

C � EK =

D � ∃R.(A �D) D � ∃R.F F � A F � D�

D � ∃S.(B �D) � D � ∃S.G G � B G � D

D � ∃S.(B �D)

A �D � F

B �D � G

TBox normalization:

∃S.B � B
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Properties of CK.

Some important properties of CK:

I CK is a model of K

I CK can be constructed in polynomial time in |K|

I for every ABox assertion α:
K |= α iff CK satisfies α

I for every concept inclusion A ⊑ B (with A, B atomic concepts):
K |= A ⊑ B iff CK satisfies B(wA)

Remark: CK does not give the right answers to conjunctive queries

27/60



Reasoning in EL.
To test whether an ABox assertion α is entailed from K:

1. Normalize T and then construct CK.
2. Check whether CK satisfies α.

To perform classification for a TBox T :
1. Normalize T and then construct CK, where K = (T , ∅).
2. To test whether T |= A ⊑ B, check if CK satisfies B(wA).

To decide subsumption between general concepts, use new atomic
concepts to represent the general concepts, e.g. if C is a complex
concept, add XC ≡ C to T (where XC is a fresh atomic concept).

Theorem. Subsumption and instance checking in EL are in PTIME.

Note that with only ⊓ and ∀R.C, these problems are EXPTIME-hard!
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Example: using CK for reasoning.

R(a, b) C(b)
∃R.E � D

C � EK = D � ∃R.F
F � A F � D

D � ∃S.G G � B G � D
A �D � FB �D � G
∃S.B � B

R
a b

C

wA

A

wB

B

wC

C

D wD

wE

wF

F

E
wG

R

R R

R

S

S
S

S E

ED

A

GB
D

D

w�

B

B

B
G

Which of the following holds?

A(a) B(a) S(a, a) D ⊑ F D ⊑ B F ⊑ D
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Proof theory for EL.

The following rules can be used to derive inclusions from a normalized
TBox T .

A ⊑ A A ⊑ ⊤ α with α ∈ T

A ⊑ B B ⊑ C
A ⊑ C

A ⊑ B A ⊑ C B ⊓ C ⊑ D
A ⊑ D

A ⊑ B B ⊑ ∃R.C
A ⊑ ∃R.C

A ⊑ ∃R.B B ⊑ C ∃R.C ⊑ D
A ⊑ D

Theorem.The above proof theory is sound (i.e. it only yields inclusions
which are entailed from T ) and complete for classification (i.e. every
entailed inclusion A ⊑ B, with atomic A, B, can be derived).
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Example: proof theory.
Consider the TBox T consisting of the following axioms:

A ⊑ B A ⊑ D B ⊑ ∃R.E E ⊑ ∃R.F F ⊑ ∃R.G ∃R.G ⊑ G G⊓D ⊑ H

We give a proof that T |= A ⊑ H:

F ⊑ ∃R.G G ⊑ G ∃R.G ⊑ G
F ⊑ G

A ⊑ B B ⊑ ∃R.E
A ⊑ ∃R.E

E ⊑ ∃R.F F ⊑ G ∃R.G ⊑ G
E ⊑ G

A ⊑ ∃R.E E ⊑ G ∃R.G ⊑ G
A ⊑ G
A ⊑ G A ⊑ D G ⊓ D ⊑ A

A ⊑ H
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Extensions of EL.
We can add all of the following without losing tractability:

I ⊥
I dom(R) ⊑ C, range(R) ⊑ C
I R1 ◦ ... ◦ Rn ⊑ Rn+1

However, just one of the following makes subsumption EXPTIME-hard:
I negation ¬
I disjunction ⊔
I at-least or at-most restrictions: ≥ 2R, ≤ 1R
I functional roles (funct R)

I inverse roles R−
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Intractability of EL¬
.

Let EL¬ be the extension of EL with ¬.

Using EL¬ concepts, we can simulate ALC concepts:
I in place of ⊥, we use ¬⊤
I in place of ∀R.C, we use ¬∃R.¬C
I in place of C ⊔ D, we use ¬(¬C ⊓ ¬D)

Since subsumption is EXPTIME-hard in ALC, the same is true for EL¬.

We even get EXPTIME-hardness for EL(¬), which allows negation only
in front of atomic concepts or ⊤:

I replace ¬C by ¬AC (AC fresh atomic concept),
and then add AC ≡ C to the TBox

33/60



Intractability of ELU.
We reduce subsumption in EL(¬) to subsumption in ELU (= EL + ⊔).

Let T be a EL(¬) TBox, and let T ′ be obtained by:
I introducing a new atomic concept A⊥

I introducing a new atomic concept A, for every atomic concept A in T
I replacing every occurrence of ¬A in T by A
I adding ⊤ ⊑ A ⊔ A, A ⊓ A ⊑ A⊥, and A⊥ ⊑ A for every atomic A in T
I adding ∃R.A⊥ ⊑ A⊥ for every atomic role R in T

It can be shown that

T |= A ⊑ B iff T ′ |= A ⊑ B

for every pair of atomic concepts A, B in T .

It follows that subsumption in ELU is EXPTIME-hard.
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3. DL-Lite



The DL-Lite family.
Objective:
useful ontology language allowing efficient conjunctive query answering

Idea: exploit the efficiency of relational DB systems

General approach: query rewriting
I ABox is stored as a traditional database
I the input query is rewritten to integrate the relevant information

from the TBox
I the new query is evaluated over the database

TBox

query

T

q query q�

ABox
answer
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Syntax of DL-Lite.
We present the dialect DL-LiteR (which underlies OWL2 QL).

Assertions: A(c), R(c, d)

Inclusions: B1 ⊑ B2, B1 ⊑ ¬B2, S1 ⊑ S2, S1 ⊑ ¬S2 where

B := ⊤ | A | ∃S S := R | R−

with A an atomic concept and R an atomic role

Other DL-Lite dialects allow:
I functional roles (funct S)
I cardinality restrictions (≥ q S, ≤ q S)
I Horn inclusions (B1 ⊓ ... ⊓ Bn ⊑ (¬)Bn+1)
I roles which are symmetric, asymmetric, reflexive, or anti-reflexive

37/60



Conjunctive queries.

Conjunctive queries are an important subclass of first-order logic queries.

They correspond to select-project-join queries in relational DBs .

Formally: a conjunctive query (CQ) has the form

q(x1, . . . , xk) = ∃xk+1, . . . , xm α1 ∧ . . . ∧ αr

where α1, . . . , αr are assertions involving individuals or variables from
x1, . . . , xm. We call x1, . . . , xk the answer variables and xk+1, . . . , xm the
quantified variables.

Boolean CQs are CQs which have no answer variables.
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Semantics of conjunctive queries.
Satisfaction in an interpretation:

I I satisfies a Boolean CQ ∃x1, . . . , xn α1 ∧ . . . ∧ αm if there exists a
function π : {x1, . . . , xn} → ∆I such that I satisfies each α′

i , where
αi is obtained by replacing any occurrence of xj by π(xj)

Entailment of a Boolean query:
I A Boolean CQ q is entailed from K (written K |= q) iff every model

of K satisfies q

Certain answers to a query:
I a tuple (a1, . . . , ak) of individuals is a (certain) answer to

q(x1, . . . , xk) w.r.t. K iff K |= q[a1, . . . , ak]
(where q[a1, . . . , ak] is q with every xi replaced by ai)

I we denote by cert(q,K) the certain answers to q w.r.t. K
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Example: Satisfaction in an interpretation.
Reconsider the interpretation I:

∆I = PersonI

MaleI FemaleI

TeacherI

ParentI

represents ParentOfI

maryI

georgeI

Which of the following CQs are satisfied in I?
∃x ParentOf(x, george) ∧ Female(x) ∃x ParentOf(george, x) ∧ Female(x)
∃x ParentOf(mary, x) ∧ Female(x) ParentOf(mary, george)
∃x, y Male(x) ∧ ParentOf(x, y) ∧ Female(y) ∃x ParentOf(x, x)
∃x, y Teacher(x) ∧ ParentOf(x, y) ∧ Teacher(y) ∃x Teacher(x) ∧ Female(x)

40/60



Example: Certain answers.

Consider the DL-Lite KB K consisting of the TBox:

Parent ⊑ ∃ParentOf ∃ParentOf ⊑ Parent Mother ⊑ Parent Father ⊑ Parent
Mother ⊑ Female Father ⊑ Male ParentOf ⊑ ChildOf− ChildOf− ⊑ ParentOf

and the ABox:

Mother(mary) Father(paul) ParentOf(julie, marc) ParentOf(marc, paul)

Determine the certain answers to the following queries.
I Female(x)
I ChildOf(x, y)
I ∃y ParentOf(x, y)
I ParentOf(x, y) ∧ ChildOf(y, z)
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First-order queries.
Atomic formulas have the forms A(t), R(t, t′) or t = t′, where A is an
atomic concept, R is an atomic role, and t, t′ are terms (either individuals
or variables).

First-order queries are constructed from atomic formulas using:
I conjunction ∧
I disjunction ∨
I negation ¬
I universal quantification ∀x φ (with x a variable)
I existential quantification ∃x φ (with x a variable)

We write I |= q if the interpretation I satisfies Boolean query q (under
usual first-order semantics).
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Query rewriting.
Given an ABox A, we define the interpretation IA as follows:

I ∆IA contains the individuals in A
I AIA = {a | A(a) ∈ A}
I RIA = {(a, b) | R(a, b) ∈ A}

A first-order query q′ is called a perfect rewriting of a CQ q w.r.t. a
TBox T if and only if we have

a⃗ ∈ cert(q,K) ⇔ IA |= q[⃗a]

for every ABox A.

Existence of perfect rewritings:
I In DL-Lite, a perfect rewriting exists for every CQ and TBox.
I In EL, a perfect rewriting need not exist.
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Example.

Professeur � Enseignant

Mcf � Enseignant

Mcf � ¬Professeur

Enseignant � ∃enseigne

∃enseigne � Enseignant

∃enseigne− � Cours

Professeur(Marie)
Mcf(Jean)

enseigne(Paul, INF100)

∃ directeur � ProfesseurProfesseur � HDR

T

A
HDR(Paul) directeur(Marc, deptInfo)
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Mcf � Enseignant

Mcf � ¬Professeur

Enseignant � ∃enseigne

∃enseigne � Enseignant

∃enseigne− � Cours

Professeur(Marie)
Mcf(Jean)

enseigne(Paul, INF100)

∃ directeur � ProfesseurProfesseur � HDR

T
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q

q�

Answers: Marie, Paul, Marc

Enseignant(x) ∧ HDR(x)

HDR(Paul)

(Enseignant(x) ∧HDR(x)) ∨ Professeur(x) ∨ (Mcf(x) ∧HDR(x))
∨(∃y.enseigne(x, y) ∧ HDR(x)) ∨ (∃y.directeur(x, y))

directeur(Marc, deptInfo)

x = Marie

x = Paul, y = INF100 x = Marc, y = deptInfo
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Rewriting algorithm: atoms.
Let I be an inclusion that is applicable to atom α. Then ra(α, I) is
defined as follows:

I if α = A(x) and I = B ⊑ A, then ra(α, I) = B(x)
I if α = A(x) and I = ∃R ⊑ A, then ra(α, I) = R(x, _)
I if α = A(x) and I = ∃R− ⊑ A, then ra(α, I) = R(_, x)
I if α = R(x, _) and I = A ⊑ ∃R, then ra(α, I) = A(x)
I if α = R(x, _) and I = ∃S ⊑ ∃R, then ra(α, I) = S(x, _)
I if α = R(x, _) and I = ∃S− ⊑ ∃R, then ra(α, I) = S(_, x)
I if α = R(_, x) and I = A ⊑ ∃R−, then ra(α, I) = A(x)
I if α = R(_, x) and I = ∃S ⊑ ∃R−, then ra(α, I) = S(x, _)
I if α = R(_, x) and I = ∃S− ⊑ ∃R−, then ra(α, I) = S(_, x)
I if α = R(x, y) and I = S ⊑ R or I = S− ⊑ R−, then ra(α, I) = S(x, y)
I if α = R(x, y) and I = S ⊑ R− or I = S− ⊑ R, then ra(α, I) = S(x, y)
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Rewriting algorithm.
Algorithm PerfectRef(q, T )
Input: conjunctive query q, TBox T
Output: a query PR which is a perfect rewriting of q given T
PR := {q}
repeat until PR′ = PR

PR′ := PR
for each α ∈ PR′ do

for each α ∈ q do
if I is applicable to α

PR := PR ∪ {q[α/ra(α, I)]}
for each α, β ∈ q do

if α and β unify
PR := PR ∪ {τ(reduce(q, α, β))}

return PR

τ : replaces unbound variables by ’_’
reduce: replaces α and β by most general unifier
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Satisfiability.
Satisfiability in DL-LiteR can also be reduced to database querying.

1. Compute the set NI of all entailed negative inclusions (i.e. inclusions
of the form B ⊑ ¬B′ or R ⊑ ¬R′).

2. For each inclusion φ in NI, let unsat(φ) be the first-order query
which describes when φ is not satisfied. For example:

I φ = A ⊑ ¬D,

then unsat(φ) = ∃x A(x) ∧ D(x)

I φ = ∃R ⊑ ¬∃S−,

then unsat(φ) = ∃x, y, z R(x, y) ∧ S(z, x)

3. Evaluate the following union of conjunctive queries∨
φ∈NI

unsat(φ)

over IA.
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Complexity of DL-Lite.

Two complexity measures:
I combined complexity: in terms of the size of the TBox and ABox
I data complexity: only in terms of the size of the ABox

I appropriate when |A| >> |T |

For DL-LiteR, satisfiability and conjunctive query answering are:
I in AC0 (( LOGSPACE ⊆ PTIME) for data complexity
I NLOGSPACE-complete for combined complexity

Same low data complexity as querying relational databases
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4. Distributed reasoning in DL-Lite



Distributed DL-LiteR setting.

Each peer Pi in the system has:

I its own vocabulary (set of concepts and roles)
I use index i to identify Pi’s relations, e.g. Ai, ri

I its own DL-LiteR TBox Ti, in its vocabulary

I its own DL-LiteR ABox Ai, in its vocabulary

I mappings = DL-LiteR inclusions using vocabulary of different peers
I a mapping between peers Pi and Pi belongs to both Ti and Tj

Goal: use the algorithm DeCA to perform distributed query rewriting
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Propositional encoding of a TBox.
We will only give the translation for positive inclusions,
since these are what is needed for rewriting queries.

Concepts and roles
I prop(A) = A and prop(R) = R
I prop(R−) = R−

I prop(∃R) = R∃ and prop(∃R−) = R∃−

Inclusions
I prop(B ⊑ C) = prop(B) → prop(C)
I prop(R ⊑ S) = {R → S, R− → S−, R∃ → S∃, R∃− → S∃−}
I prop(R− ⊑ S) = {R− → S, R → S−, R∃− → S∃, R∃ → S∃−}
I prop(R ⊑ S−) = {R → S,− R− → S, R∃ → S∃−, R∃− → S∃}
I prop(R− ⊑ S−) = {R → S, R− → S−, R∃ → S∃, R∃− → S∃−}

51/60



Computing rewritings of an atom.
Let AR(α, PI) be the set of atoms β such that there exists I1, . . . , In ∈ PI
and α = γ0, γ1, . . . , γn = β such that for each 1 ≤ i ≤ n, γi = ra(γi−1, Ii).

Theorem. Let PI be a set of positive inclusions. Then β ∈ AR(α, PI) if
and only if prop(PI) ∪ {¬V1} |= ¬V2 where:

I α = A(x), β = B(x), V1 = A, and V2 = B
I α = A(x), β = R(x, _), V1 = A, and V2 = R∃

I α = A(x), β = R(_, x), V1 = A, and V2 = R∃−

I α = R(x, y), β = s(x, y), V1 = R, and V2 = S
I α = R(x, y), β = s(y, x), V1 = R, and V2 = S−

I α = R(x, _), β = A(x), V1 = R∃, and V2 = A
I α = R(x, _), β = S(x, _), V1 = R∃, and V2 = S∃

I α = R(x, _), β = S(_, x), V1 = R∃, and V2 = S∃−

I ...

Rewriting atoms using DeCA: if α uses the vocabulary of Pi, then
β ∈ AR(α, PI) if and only if ¬V2 ∈ DeCAi(¬V1)
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Decentralized query rewriting algorithm.

Algorithm PerfectRefi(q, T )
Input: conjunctive query q using Pi’s vocabulary, TBox Ti
Output: union of conjunctive queries PR over the global vocabulary
PR := {q}
PR′ := PR
while PR′ ̸= ∅

(a) for each q′ = α1 ∧ . . . ∧ αn ∈ PR′ do
PR′′ = ?n

j=1AR(αj, PI) // compute using DeCAi

PR′ = ∅
(b) for each q′′ ∈ PR′′, and each pair α, β ∈ q′′ do

if α and β unify
PR′ := PR′ ∪ {τ(reduce(q′′, α, β))}

PR = PR ∪ PR′ ∪ PR′′

return PR
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5. Current challenges



Current challenges.

1. Improve performance
I DL-Lite: rewritten queries can be huge!

I lots of work on alternative query rewriting algorithms
I combined rewriting approach (saturation+rewriting)

2. Extension to more expressive data-tractable languages
I Horn-SHIQ: PTIME (data complexity), EXPTIME (combined),

extends both EL and DL-Lite

3. Make ontologies easier to build, modify, and understand
I modularity, forgetting, ... (see next course!)
I debugging, explanation, ...
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