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Reasoning Techniques for Expressive DLs



Tableau method

Tableau method: most popular approach to reasoning in expressive DLs
▶ implemented in state-of-the-art DL reasoners

Tableau algorithms are used to decide satisfiability.
▶ can also be used for other reasoning tasks (e.g. instance checking)

that can be reduced to satisfiability

Idea: to determine whether a given (concept or KB) Ψ is satisfiable,
try to construct a (representation of a) model of Ψ

▶ if we succeed, then we have shown that Ψ is satisfiable

▶ if we fail despite having considered all possibilities,
then we have proven that Ψ is unsatisfiable
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ALC-concepts
Recall that ALC-concepts are built using the following constructors:

⊤ ⊥ ¬ ⊔ ⊓ ∀R.C ∃R.C

We say that an ALC-concept C is in negation normal form (NNF) if
the symbol ¬ only appears directly in front of atomic concepts.

▶ in NNF: A ⊓ ¬B, ∃R.¬A, ¬A ⊔ ¬B

▶ not in NNF: ¬(A ⊓ B), ∃R.¬(∀S.B), A ⊔ ¬∀R.B, ¬⊤

Fact. Every ALC-concept C can be transformed into an equivalent
concept in NNF in linear time by applying the following rewriting rules:

¬⊤ ; ⊥ ¬(C ⊓ D) ; ¬C ⊔ ¬D ¬(∀R.C) ; ∃R.¬C
¬⊥ ; ⊤ ¬(C ⊔ D) ; ¬C ⊓ ¬D ¬(∃R.C) ; ∀R.¬C

Note: say C and D are equivalent if the empty TBox entails C ≡ D.
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Algorithm for computing NNF
Algorithm NNF
Input: ALC-concept C
If C = ⊤ or C = ⊥, then output C
If C = A or C = ¬A (with A atomic concept), then output C
If C = D1 ⊓ D2, then output NNF(D1) ⊓ NNF(D2)

If C = D1 ⊔ D2, then output NNF(D1) ⊔ NNF(D2)

If C = ∃R.D, then output ∃R.NNF(D)

If C = ∀R.D, then output ∀R.NNF(D)

If C = ¬⊤, return ⊥; if C = ¬⊥, then output ⊤
If C = ¬(D1 ⊓ D2), then output NNF(¬D1) ⊔ NNF(¬D2)

If C = ¬(D1 ⊔ D2), then output NNF(¬D1) ⊓ NNF(¬D2)

If C = ¬∃R.D, then output ∀R.NNF(¬D)

If C = ¬∀R.D, then output ∃R.NNF(¬D)

If C = ¬(¬D), then output NNF(¬D)

(we use NNF(E) to denote output of NNF on input E)
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Satisfiability of ALC-concepts via tableau
We start by giving a tableau algorithm for deciding
satisfiability of ALC-concepts in NNF w.r.t. the empty TBox.

Procedure for testing satisfiability of C0:
▶ We work with a set S of ABoxes
▶ Initially, S contains a single ABox {C0(a0)}

▶ At each stage, we apply a rule to some A ∈ S
(note: rules are detailed on next slide)

▶ A rule application involves replacing A by one or two ABoxes that
extend A with new assertions

▶ Stop applying rules when either:
▶ every A ∈ S contains a clash, i.e. an assertion ⊥(b) or a pair of

assertions {B(b),¬B(b)}
▶ some A ∈ S is clash-free and complete: no rule can be applied to A

▶ Return “yes” if some A ∈ S is clash-free, else “no”.
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Tableau rules for ALC

⊓-rule: if (C1 ⊓ C2)(a) ∈ A and {C1(a),C2(a)} ̸⊆ A
then replace A with A ∪ {C1(a),C2(a)}

⊔-rule: if (C1 ⊔ C2)(a) ∈ A and {C1(a),C2(a)} ∩ A = ∅
then replace A with A ∪ {C1(a))} and A ∪ {C2(a))}

∀-rule: if {∀R.C(a),R(a, b)} ∈ A and C(b) ̸∈ A
then replace A with A ∪ {C(b))}

∃-rule: if {∃R.C(a)} ∈ A and there is no b with {R(a, b),C(b)} ⊆ A
then pick a new individual name d and
replace A with A ∪ {R(a, d),C(d)}
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Tableau example: only ⊓ and ⊔
Let’s use the tableau procedure to test satisfiability of

C0 = (A ⊔ B) ⊓ ((¬B ⊔ D) ⊓ ¬A)

Start with S = {A0 } where A0 = { ( (A ⊔ B) ⊓ ((¬B ⊔ D) ⊓ ¬A) )(a0) }.
Apply ⊓-rule to A0:
get S = {A′

0 } where A′
0 = A0 ∪ {(A ⊔ B)(a0), ((¬B ⊔ D) ⊓ ¬A)(a0)}}.

Apply ⊔-rule to A′
0:

get S = {A1,A2 } where A1 = A′
0 ∪ {A(a0)} and A2 = A′

0 ∪ {B(a0)}.
Apply ⊓-rule to A1:
get S = {A′

1,A2 } where A′
1 = A1 ∪ {(¬B ⊔ D)(a0),¬A(a0)}

Apply ⊓-rule to A2:
get S = {A′

1,A′
2 } where A′

2 = A2 ∪ {(¬B ⊔ D)(a0),¬A(a0)}
Apply ⊔-rule to A′

2:
get S = {A′

1,A3,A4 } where A3 = A′
2 ∪ {¬B(a0)}, A4 = A′

2 ∪ {D(a0)}
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Previous example in a picture

(A tB) u ((¬B tD) u ¬A) (a0)
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Tableau example: only ⊓ and ⊔
In our example, we had the complete and clash-free ABox A4:

( (A ⊔ B) ⊓ ((¬B ⊔ D) ⊓ ¬A) )(a0) (A ⊔ B)(a0)
((¬B ⊔ D) ⊓ ¬A)(a0) B(a0) (¬B ⊔ D)(a0) ¬A(a0) D(a0)

Can build from A4 the interpretation I with:

▶ ∆I = {a0} use individuals from A4

▶ AI = ∅ since A4 does not contain A(a0)

▶ BI = DI = {a0} since A4 contains B(a0) and D(a0)

We can verify that (A ⊔ B) ⊓ ((¬B ⊔ D) ⊓ ¬A)I = {a0}.
▶ I witnesses the satisfiability of C0 = (A ⊔ B) ⊓ ((¬B ⊔ D) ⊓ ¬A)
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Tableau example: ∀ and ∃

Let’s use the tableau procedure to test satisfiability of
C0 = ∃R.A ⊓ ∀R.¬A

Start with S = {A0 } where A0 = { (∃R.A ⊓ ∀R.¬A )(a0) }.
Apply ⊓-rule to A0:
get S = {A′

0 } where A′
0 = A0 ∪ {(∃R.A)(a0), (∀R.¬A)(a0)}}.

Apply ∃-rule to A′
0:

get S = {A′′
0 } where A′′

0 = A′
0 ∪ {R(a0, a1),A(a1)}.

Apply ∀-rule to A′′
0 :

get S = {A′′′
0 } where A′′′

0 = A′′
0 ∪ {¬A(a1)}.

11/37



Tableau example: ∀ and ∃

Let’s use the tableau procedure to test satisfiability of
C0 = ∃R.A ⊓ ∀R.¬A

Start with S = {A0 } where A0 = { (∃R.A ⊓ ∀R.¬A )(a0) }.

Apply ⊓-rule to A0:
get S = {A′

0 } where A′
0 = A0 ∪ {(∃R.A)(a0), (∀R.¬A)(a0)}}.

Apply ∃-rule to A′
0:

get S = {A′′
0 } where A′′

0 = A′
0 ∪ {R(a0, a1),A(a1)}.

Apply ∀-rule to A′′
0 :

get S = {A′′′
0 } where A′′′

0 = A′′
0 ∪ {¬A(a1)}.

11/37



Tableau example: ∀ and ∃

Let’s use the tableau procedure to test satisfiability of
C0 = ∃R.A ⊓ ∀R.¬A

Start with S = {A0 } where A0 = { (∃R.A ⊓ ∀R.¬A )(a0) }.
Apply ⊓-rule to A0:
get S = {A′

0 } where A′
0 = A0 ∪ {(∃R.A)(a0), (∀R.¬A)(a0)}}.

Apply ∃-rule to A′
0:

get S = {A′′
0 } where A′′

0 = A′
0 ∪ {R(a0, a1),A(a1)}.

Apply ∀-rule to A′′
0 :

get S = {A′′′
0 } where A′′′

0 = A′′
0 ∪ {¬A(a1)}.

11/37



Tableau example: ∀ and ∃

Let’s use the tableau procedure to test satisfiability of
C0 = ∃R.A ⊓ ∀R.¬A

Start with S = {A0 } where A0 = { (∃R.A ⊓ ∀R.¬A )(a0) }.
Apply ⊓-rule to A0:
get S = {A′

0 } where A′
0 = A0 ∪ {(∃R.A)(a0), (∀R.¬A)(a0)}}.

Apply ∃-rule to A′
0:

get S = {A′′
0 } where A′′

0 = A′
0 ∪ {R(a0, a1),A(a1)}.

Apply ∀-rule to A′′
0 :

get S = {A′′′
0 } where A′′′

0 = A′′
0 ∪ {¬A(a1)}.

11/37



Tableau example: ∀ and ∃

Let’s use the tableau procedure to test satisfiability of
C0 = ∃R.A ⊓ ∀R.¬A

Start with S = {A0 } where A0 = { (∃R.A ⊓ ∀R.¬A )(a0) }.
Apply ⊓-rule to A0:
get S = {A′

0 } where A′
0 = A0 ∪ {(∃R.A)(a0), (∀R.¬A)(a0)}}.

Apply ∃-rule to A′
0:

get S = {A′′
0 } where A′′

0 = A′
0 ∪ {R(a0, a1),A(a1)}.

Apply ∀-rule to A′′
0 :

get S = {A′′′
0 } where A′′′

0 = A′′
0 ∪ {¬A(a1)}.

11/37



Tableau example: ∀ and ∃

Let’s use the tableau procedure to test satisfiability of
C0 = ∃R.A ⊓ ∀R.¬A

Start with S = {A0 } where A0 = { (∃R.A ⊓ ∀R.¬A )(a0) }.
Apply ⊓-rule to A0:
get S = {A′

0 } where A′
0 = A0 ∪ {(∃R.A)(a0), (∀R.¬A)(a0)}}.

Apply ∃-rule to A′
0:

get S = {A′′
0 } where A′′

0 = A′
0 ∪ {R(a0, a1),A(a1)}.

Apply ∀-rule to A′′
0 :

get S = {A′′′
0 } where A′′′

0 = A′′
0 ∪ {¬A(a1)}.

11/37



Tableau example: ∀ and ∃

Let’s use the tableau procedure to test satisfiability of
C0 = ∃R.A ⊓ ∀R.¬A

Start with S = {A0 } where A0 = { (∃R.A ⊓ ∀R.¬A )(a0) }.
Apply ⊓-rule to A0:
get S = {A′

0 } where A′
0 = A0 ∪ {(∃R.A)(a0), (∀R.¬A)(a0)}}.

Apply ∃-rule to A′
0:

get S = {A′′
0 } where A′′

0 = A′
0 ∪ {R(a0, a1),A(a1)}.

Apply ∀-rule to A′′
0 :

get S = {A′′′
0 } where A′′′

0 = A′′
0 ∪ {¬A(a1)}.

11/37



Tableau example: ∀ and ∃

Let’s use the tableau procedure to test satisfiability of
C0 = ∃R.A ⊓ ∀R.¬A

Start with S = {A0 } where A0 = { (∃R.A ⊓ ∀R.¬A )(a0) }.
Apply ⊓-rule to A0:
get S = {A′

0 } where A′
0 = A0 ∪ {(∃R.A)(a0), (∀R.¬A)(a0)}}.

Apply ∃-rule to A′
0:

get S = {A′′
0 } where A′′

0 = A′
0 ∪ {R(a0, a1),A(a1)}.

Apply ∀-rule to A′′
0 :

get S = {A′′′
0 } where A′′′

0 = A′′
0 ∪ {¬A(a1)}.

A′′′
0 contains clash {A(a1),¬A(a1)}!

11/37



Tableau example: ∀ and ∃

Let’s use the tableau procedure to test satisfiability of
C0 = ∃R.A ⊓ ∀R.¬A

Start with S = {A0 } where A0 = { (∃R.A ⊓ ∀R.¬A )(a0) }.
Apply ⊓-rule to A0:
get S = {A′

0 } where A′
0 = A0 ∪ {(∃R.A)(a0), (∀R.¬A)(a0)}}.

Apply ∃-rule to A′
0:

get S = {A′′
0 } where A′′

0 = A′
0 ∪ {R(a0, a1),A(a1)}.

Apply ∀-rule to A′′
0 :

get S = {A′′′
0 } where A′′′

0 = A′′
0 ∪ {¬A(a1)}.

The only set in S contains a clash ⇒ C0 is unsatisfiable

11/37



Previous example in a picture

( 9R.A u 8R.¬A ) (a0)
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Tableau example: ∀ and ∃

Suppose that we consider a slightly different concept

C0 = ∃R.A ⊓ ∀R.¬B

Now the tableau algorithm yields the following complete, clash-free ABox:

(∃R.A ⊓ ∀R.¬B )(a0) (∃R.A)(a0) (∀R.¬B)(a0) R(a0, a1) A(a1) ¬B(a1)

Corresponding interpretation I:
▶ ∆I = {a0, a1}
▶ AI = {a1}
▶ BI = ∅
▶ RI = {(a0, a1)}

Can check that I is such that CI
0 = {a0}.
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Exercise: Concept satisfiability via tableau

Use the tableau algorithm to decide which of the following concepts is
satisfiable:

1. C1 = (∃R.(A ⊓ B)) ⊓ (∀R.(¬A ⊔ D))

2. C2 = (∃R.∃S.A) ⊓ (∀R.∀S.¬A)

3. C3 = (∃R.B) ⊓ (∀R.(∀R.A)) ⊓ (∀R.¬A)

If a concept is found to be satisfiable, use the result to construct an
interpretation in which the concept is non-empty.
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Properties of the tableau algorithm

Let’s call our tableau algorithm CSat (for concept satisfiability).
To show that CSat is a decision procedure, we must show:

Termination: The algorithm CSat always terminates.

Soundness: CSat outputs “yes” on input C0 ⇒ C0 is satisfiable.

Completeness: C0 satisfiable ⇒ CSat will output “yes”.

15/37



Preliminary definitions
Subconcepts of a concept:

sub(⊤) = {⊤}
sub(⊥) = {⊥}
sub(A) = {A}

sub(¬C) = {¬C} ∪ sub(C)
sub(∃R.C) = {∃R.C} ∪ sub(C)
sub(∀R.C) = {∀R.C} ∪ sub(C)

sub(C1 ⊔ C2) = {C1 ⊔ C2} ∪ sub(C1) ∪ sub(C2)

sub(C1 ⊓ C2) = {C1 ⊓ C2} ∪ sub(C1) ∪ sub(C2)

Role depth of a concept:

depth(A) = depth(⊤) = depth(⊥) = 0

depth(¬C) = depth(C)
depth(∃R.C) = depth(∀R.C) = depth(C) + 1

depth(C1 ⊔ C2) = depth(C1 ⊓ C2) = max(depth(C1), depth(C2))
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Termination of CSat
Suppose we run CSat starting from S = {{C0(a0)}}.

We observe that for every ABox A generated by the procedure:

1. if D(b) ∈ A, then D ∈ sub(C0)
▶ A contains at most |C0| concept assertions per individual

2. the set of role assertions in A forms a tree
3. if D(b) ∈ A and the unique path from a0 to b has length k,

then depth(D) ≤ depth(C0)− k
▶ each individual in A is at distance ≤ depth(C0) from a0

4. for every individual b in A, there are at most |C0| individuals c such
that R(b, c) ∈ A for some R (at most one per existential concept)

Thus: bound on the size of ABoxes generated by the procedure.
The tableau procedure only adds assertions to ABoxes
⇒ eventually all ABoxes will contain a clash or will be complete
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Soundness of CSat (1)
Suppose that CSat returns “yes” on input C0.

Then S must contain a complete and clash-free ABox A.

Use A to define an interpretation I as follows:

▶ ∆I = {a | a is an individual in A}

▶ AI = {a | A(a) ∈ A}

▶ RI = {(a, b) | R(a, b) ∈ A}

Claim: I is such that CI
0 ̸= ∅

To show the claim, we prove by induction on the size of concepts that:

D(b) ∈ A ⇒ b ∈ DI
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Soundness of CSat (2)
Base case: D = A or D = ¬A or D = ⊤ or D = ⊥

If D = A, then b ∈ AI .
If D = ¬A, then A(b) ̸∈ A, so b ∈ ¬AI .
If D = ⊤, trivially b ∈ ⊤I = ∆I . We cannot have D = ⊥ since
clash-free.
Induction hypothesis (IH): suppose statement holds whenever |D| ≤ k
Induction step: show statement holds for D with |D| = k + 1

Again, many cases to consider:
▶ D = E⊓ F: since A is complete, it must contain both E(b) and F(b).

Applying the IH, we get b ∈ EI and b ∈ FI , hence b ∈ (E ⊓ F)I

▶ D = ∃R.E: since A is complete, there is some c such that
R(b, c) ∈ A and E(c) ∈ A. Then (b, c) ∈ RI and by the IH, we get
c ∈ EI , so b ∈ (∃R.E)I

▶ D = E ⊔ F: left as practice

▶ D = ∀R.E: left as practice
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Completeness of CSat

Suppose that the concept C0 is satisfiable.
Then the ABox {C0(a0)} must be satisfiable too.

We observe that the tableau rules are satisfiability-preserving:

▶ If an ABox A is satisfiable and A′ is the result of applying a rule to
A, then A′ is also satisfiable.

▶ If an ABox A is satisfiable and A1 and A2 are obtained when
applying a rule to A, then either A1 is satisfiable or A2 is satisfiable.

We start with a satisfiable ABox and the rules are satisfiability-preserving,
so eventually we will reach a complete, satisfiable (thus: clash-free) ABox.
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Complexity of CSat
Bad news: our algorithm may require exponential time and space...

To see why, consider what happens if we run CSat on the conceptl
0≤i<n

∀R. . . . ∀R.︸ ︷︷ ︸
i times

(∃R.B ⊓ ∃R.¬B)

Good news: can modify the procedure so it runs in polynomial space

▶ instead of a set of ABoxes, keep only one ABox in memory at a time
▶ when apply the ⊔-rule, first examine A1, then afterwards examine A2

▶ remember that second disjunct stills needs to be checked

▶ explore the children of an individual one at a time
▶ possible because no interaction between the different “branches”
▶ store which ∃R.C concepts have been tested, which are left to do

▶ this allows us to keep at most |C0| individuals in memory at a time
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Complexity of ALC concept satisfability

Hierarchy of complexity classes

PTIME⊆NP⊆ ... ⊆ PSPACE⊆EXPTIME⊆NEXPTIME⊆ ... ⊆EXPSPACE ...

(it is believed that all inclusions are strict)

PSPACE = class of decision problems solvable using polynomial space
PSPACE-complete problems = hardest problems in PSPACE

Theorem: ALC concept satisfiability (no TBox) is PSPACE-complete.

▶ Membership in PSPACE shown using modified tableau procedure

▶ Hardness for PSPACE shown by giving a reduction from some known
PSPACE-hard problem (e.g. QBF validity)
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Extending the tableau algorithm to KBs



Extension to KB satisfiability

Now we want to modify the algorithm to handle KB satisfability.

Adding an ABox is easy: simply start with {A} instead of {C0(a0)}

Adding a TBox is a bit more tricky...

Idea: if we have C ⊑ D, then every element must satisfy either ¬C or D

Concretely, we might try adding the following rule:

TBox rule: if a is in A, C ⊑ D ∈ T , & (NNF(¬C) ⊔ NNF(D)) (a) ̸∈ A

then replace A with A ∪ {(NNF(¬C) ⊔ NNF(D))(a)}
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Examples: KB satisfiability

Let’s try the modified procedure on the KB (T , {A(a)}) where

T = { A ⊑ ∃R.B B ⊑ D ∃R.D ⊑ ¬A }

Now try it on the KB ({F ⊑ ∃S.F}, {F(a)}).

Seems we have a problem... How can we ensure termination?
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Blocking

Basic idea: if two individuals “look the same”, then it is unnecessary to
explore both of them

Formally, give individuals a, b in A, we say that b blocks a if:

▶ {C | C(a) ∈ A} ⊆ {C | C(b) ∈ A}

▶ b was present in A before a was introduced

Say that individual a is blocked (in A) if some b blocks a.

Modify rules so that they only apply to unblocked individuals.
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Tableau rules for KBs

⊓-rule: if (C1 ⊓ C2)(a) ∈ A, a is not blocked, and {C1(a),C2(a)} ̸⊆ A,
then replace A with A ∪ {C1(a),C2(a)}

⊔-rule: if (C1 ⊔ C2)(a) ∈ A, a is not blocked, and {C1(a),C2(a)} ∩ A = ∅,
then replace A with A ∪ {C1(a))} and A ∪ {C2(a))}

∀-rule: if {∀R.C(a),R(a, b)} ∈ A, a is not blocked, and C(b) ̸∈ A,
then replace A with A ∪ {C(b))}

∃-rule: if {∃R.C(a)} ∈ A, a is not blocked, and no {R(a, b),C(b)} ⊆ A,
then pick a new individual name d and replace A with
A ∪ {R(a, d),C(d)}

⊑-rule: if a appears in A and a is not blocked, C ⊑ D ∈ T , and
(NNF(¬C) ⊔ NNF(D))(a) ̸∈ A,
then replace A with A ∪ {(NNF(¬C) ⊔ NNF(D))(a)}
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Example: blocking
Let’s try blocking on the problematic KB ({F ⊑ ∃S.F, {F(a)}}.

F (a0)

(¬F t 9S.F ) (a0)

(9S.F ) (a0)¬F (a0)

S(a0, a1)

F (a1)
✘

a1 is blocked by a0

We obtain a complete and clash-free ABox ⇒ the KB is satisfiable !
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Another blocking example

Consider the following TBox

T = {A ⊑ ∃R.A,A ⊑ B,∃R.B ⊑ D}

and suppose we want to test whether T |= A ⊑ D.

We can do this by running the algorithm on the KB (T , {(A⊓¬D)(a0)}).

Result: the KB is unsatisfiable ⇒ T |= A ⊑ D

Observation: an individual can be blocked, then later become unblocked
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Properties of the tableau algorithm

Let’s call our new tableau algorithm KBSat (for KB satisfiability).

Termination: The algorithm KBSat always terminates.
▶ similar to before: bound the size of generated ABoxes

Soundness: KBSat outputs “yes” on (T ,A) ⇒ (T ,A) is satisfiable.
▶ again, we use complete, clash-free ABox to build a model
▶ tricky part: need to handle the blocked individuals

Completeness: (T ,A) satisfiable ⇒ KBSat will output “yes”.
▶ again, show rules satisfiability-preserving

So: KBSat is a decision procedure for KB satisfiability.
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▶ again, show rules satisfiability-preserving

So: KBSat is a decision procedure for KB satisfiability.
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Complexity of KB satisfiability

The KBSat algorithm generates ABoxes of at most exponential size

But even if with the tricks from earlier, need exponential space.

▶ single branch may be exponentially long

This is most likely not optimal, as we can show the following:

Theorem: ALC KB satisfiability is EXPTIME-complete.

This result means no polynomial-time algorithm can every be found.
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Optimizations
Despite high worst-case complexity, tableau algorithms for ALC and
other expressive DLs can work well in practice.

However, good performance crucially depends on optimizations!

Many types of optimizations:

▶ explore only one branch of one ABox at a time

▶ strategies / heuristics for choosing next rule to apply

▶ caching of results to reduce redundant computation

▶ examine source of conflicts to prune search space (backjumping)

▶ reduce number of ⊔’s created by TBox inclusions (absorption)

▶ reduce number of satisfiability checks during classification
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Absorption (1)

When T = {Ci ⊑ Di | 1 ≤ i ≤ n}, we get n disjunctions per individual:

(NNF(¬C1) ⊔ NNF(D1))(a), . . . , (NNF(¬Cn) ⊔ NNF(Dn))(a)

Observation: if have inclusion A ⊑ D with A atomic
▶ if don’t have A(a), can satisfy the inclusion by choosing ¬A(a)
▶ if have A(a), then must have D(a)

So for inclusions with atomic left-hand side, can replace ⊑-rule by:

⊑at-rule: if A(a) ∈ A, a is not blocked, A ⊑ D ∈ T (with A atomic),
and D(a) ̸∈ A, then replace A with A ∪ {D(a)}

Good news: we’ve lowered the number of disjunctions!
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Absorption (2)

Second observation: can transform some inclusions with complex
concept on left into equivalent inclusions with atomic left-hand side

(A ⊓ C) ⊑ D ; A ⊑ (¬C ⊔ D)

Absorption technique:

1. preprocess the TBox by replacing inclusions with equivalent
inclusions with atomic concept on left, whenever possible

2. when running tableau algorithm
▶ use new ⊑at-rule for inclusions A ⊑ D with A atomic
▶ use regular ⊑-rule for the other TBox inclusions
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Example: Absorption

Let’s use absorption on the KB (T , {A(a)}) from earlier with:

{ A ⊑ ∃R.B B ⊑ D ∃R.D ⊑ ¬A }

▶ first two inclusions in T already have atomic concept on left

▶ third inclusion in T can be equivalently written as A ⊑ ∀R.¬D

▶ so: only need to use ⊑at-rule

Result: completely avoid disjunction, algorithm terminates much faster!
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Optimizations for classification

Classification: find all pairs of atomic concepts A,B with T |= A ⊑ B

Naïve approach: test satisfiability of A ⊓ ¬B w.r.t. T for all pairs A,B
▶ but T may contain hundreds or thousands of atomic concepts....

Each satisfiability check is costly ⇒ want to reduce number of checks

Some ideas:

▶ some subsumptions are obvious
▶ A ⊑ A and subsumptions that are explicitly stated in T

▶ can use simple reasoning to obtain new (non-)subsumptions
▶ if know T |= A ⊑ B and T |= B ⊑ D, then T |= A ⊑ D
▶ if know T |= A ⊑ B and T ̸|= A ⊑ D, then T ̸|= B ⊑ D
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Exercise: KB satisfiability via tableau

Consider the following TBox:

T = {A ⊑ ∀R.B,B ⊑ ¬F,E ⊑ G,A ⊑ D ⊔ E,D ⊑ ∃R.F,∃R.¬B ⊑ G}

Use the KBSat algorithm to decide whether:
1. T |= A ⊑ E
2. T |= E ⊑ G
3. T |= E ⊑ F
4. T |= A ⊑ G
5. T |= D ⊑ G
6. T |= G ⊑ F

You are encouraged to use the optimizations introduced in the course.
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