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Tableau method

Tableau method: most popular approach to reasoning in expressive DLs

» implemented in state-of-the-art DL reasoners

Tableau algorithms are used to decide satisfiability.

» can also be used for other reasoning tasks (e.g. instance checking)
that can be reduced to satisfiability
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Tableau method: most popular approach to reasoning in expressive DLs

» implemented in state-of-the-art DL reasoners

Tableau algorithms are used to decide satisfiability.

» can also be used for other reasoning tasks (e.g. instance checking)
that can be reduced to satisfiability

Idea: to determine whether a given (concept or KB) W is satisfiable,
try to construct a (representation of a) model of ¥
» if we succeed, then we have shown that W is satisfiable

» if we fail despite having considered all possibilities,
then we have proven that W is unsatisfiable
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ALC-concepts

Recall that ALC-concepts are built using the following constructors:

T L - U n VRC 3RC

4/37



ALC-concepts

Recall that ALC-concepts are built using the following constructors:

T L - U n VRC 3RC

We say that an ALC-concept C is in negation normal form (NNF) if
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ALC-concepts

Recall that ALC-concepts are built using the following constructors:

T L - U n VRC 3RC

We say that an ALC-concept C is in negation normal form (NNF) if
the symbol — only appears directly in front of atomic concepts.

» in NNF: A —-B, 3R—-A, —AU-B

» not in NNF: =(AM B), 3R.~(VS.B), ALU-VR.B, =T
Fact. Every ALC-concept C can be transformed into an equivalent
concept in NNF in linear time by applying the following rewriting rules:

-T~ L —-(CMN D)~ -CU-D -(VR.C) ~ IR-C
-L~T —(CU D)~ =Cn=D —(3R.C) ~ VR-C

Note: say C and D are equivalent if the empty TBox entails C= D.
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Algorithm for computing NNF
Algorithm NNF
Input: ALC-concept C

If C=T or C= L, then output C

If C= A or C=-A (with A atomic concept), then output C
If C= Dy M Dy, then output NNF(D;) MNNF(Ds)

If C= Dy U Dy, then output NNF(D;) LINNF(Ds)

If C=3R.D, then output IR.NNF(D)

If C=VR.D, then output YR.NNF(D)

If C= =T, return L; if C= -1, then output T

If C=—(D; M Dy), then output NNF(—D;) LI NNF(—D5)
If C=—(D; U Dy), then output NNF(—D;) M NNF(—Ds)
If C=—=3R.D, then output VR.NNF(—D)

If C=—=VR.D, then output IR.NNF(—D)

If C= —(=D), then output NNF(—D)

(we use NNF(E) to denote output of NNF on input E)
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Satisfiability of ALC-concepts via tableau

We start by giving a tableau algorithm for deciding
satisfiability of ALC-concepts in NNF w.r.t. the empty TBox.

Procedure for testing satisfiability of C:
» We work with a set S of ABoxes
» Initially, S contains a single ABox {Cy(ao)}
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» A rule application involves replacing A by one or two ABoxes that
extend A with new assertions

» Stop applying rules when either:

» every A € S contains a clash, i.e. an assertion _L(b) or a pair of
assertions {B(b), ~B(b)}
» some A € S is clash-free and complete: no rule can be applied to A
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Satisfiability of ALC-concepts via tableau

We start by giving a tableau algorithm for deciding
satisfiability of ALC-concepts in NNF w.r.t. the empty TBox.

Procedure for testing satisfiability of C:
» We work with a set S of ABoxes
» Initially, S contains a single ABox {Cy(ao)}

» At each stage, we apply a rule to some A € S
(note: rules are detailed on next slide)

» A rule application involves replacing A by one or two ABoxes that
extend A with new assertions

» Stop applying rules when either:

» every A € S contains a clash, i.e. an assertion _L(b) or a pair of
assertions {B(b), ~B(b)}
» some A € S is clash-free and complete: no rule can be applied to A

» Return “yes” if some A € S is clash-free, else “no".
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Tableau rules for ALC

M-rule: if (GG G)(a) € Aand {G(a),G(a)} £ A
then replace A with AU {C;(a), Co(a)}
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Tableau rules for ALC

M-rule:  if (G;M1G)(a) € Aand {Ci(a), G(a)} £ A
then replace A with AU {C;(a), Co(a)}

U-rule: if (C; U G)(a) € A and {Ci(a), Ce(a)} N A=1
then replace A with AU{C;(a))} and AU {C(a))}

V-rule: if {VR.C(a),R(a,b)} € A and C(b) ¢ A
then replace A with AU {C(b))}
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Tableau rules for ALC

M-rule:

Ll-rule:

V-rule:

F-rule:

if (C1MNG)(a) e Aand {Ci(a),C(a)} LA
then replace A with AU {C;(a), Co(a)}

if (CLUG)(a) € Aand {Ci(a),Ca(a)}NA=0
then replace A with AU{C;(a))} and AU {C(a))}

if {VR.C(a),R(a,b)} € Aand C(b) ¢ A
then replace A with AU {C(b))}

if {3R.C(a)} € A and there is no b with {R(a, b), C(b)} C A
then pick a new individual name d and
replace A with AU {R(a, d), C(d)}
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Tableau example: only M and L

Let's use the tableau procedure to test satisfiability of

Co = (AU B) M ((~BU D) M —A)
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Apply U-rule to Aj:
get S={ A}, A3, Ay } where A5 = AL, U {-B(ap)}, Ay = A5 U{D(ap)}

Ay is complete, so we can stop.
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Tableau example: only M and L

Let’s use the tableau procedure to test satisfiability of
Co=(AuB)n((-BuD)m—-A)
Start with S= { Ap } where Ao = {((AUB)N ((-BU D) M -A))(ao) }

Apply M-rule to Ag:
get S = { A} } where A = Ay U{(AU B)(ap), (-BU D) M —A)(a0)}}.
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get S = {.A/l, .AQ} where ./4/1 =AU {(ﬁBl_l D)(ao), ﬁA(QQ)}

Apply M-rule to As:
get S={ A}, A5} where A5 = Ay U{(=BUL D)(ap), ~A(ao)}

Apply U-rule to Aj:
get S={ A}, A3, Ay } where A5 = AL, U {-B(ap)}, Ay = A5 U{D(ap)}

A, contains no clash = ( is satisfiable
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Previous example in a picture

(AUB)N((-BUD)M=A) (ag)
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Tableau example: only M and L

In our example, we had the complete and clash-free ABox Ajy:

((AuB)M((=BUD)M=A))(a0) (AU B)(a0)
(=BUD)M—=A)(a0) B(ap) (=BUD)(a0) —A(ao) D(ao)

Can build from A4 the interpretation Z with:

> AT ={a} use individuals from Ay
> AT =10 since A4 does not contain A(ag)
» BT =D ={a} since Ay contains B(ap) and D(ap)

We can verify that (ALI B) M ((-BU D) M -A)Z = {ag}.
» T witnesses the satisfiability of Co = (AU B) M ((=BU D) M -A)
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Tableau example: V and 4

Let's use the tableau procedure to test satisfiability of

Co=3IRAMVR-A
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Tableau example: V and 4

Let's use the tableau procedure to test satisfiability of

Co=3IRAMVR-A

Start with S= { A } where A9 = { (IRATIVR.-A)(a) }.

Apply M-rule to Ag:
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Apply 3-rule to Aj:
get S= { A } where Af = Aj U {R(ap, a1),A(a1)}.

Apply V-rule to Aj:
get S= { A’ } where A}’ = Aj U {-A(a1)}.

The only set in S contains a clash = ( is unsatisfiable
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Previous example in a picture

(3R.ANYR.~A) (ao)
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Previous example in a picture
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Previous example in a picture

(FIR.ANVR.~A) (ao)
(3R.A) ()
(VR.—A) (ag)
R (ap,a1)
Al(ay) V-rule
-A (a1)
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Previous example in a picture

(FIR.AMVR.AA) (ao)
(3R.A) (a0)
(VR.—A) (ao)
R (ap,a1)
A(a1)
-A (a1)

X
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Tableau example: V and 4

Suppose that we consider a slightly different concept

Cy =3JdRAMVYR-B

Now the tableau algorithm yields the following complete, clash-free ABox:

(FRAMNVR-B)(ag) (3RA)(a9) (VR—-B)(ag) R(ap,a1) A(a1) —B(ay)

13/37



Tableau example: V and 4

Suppose that we consider a slightly different concept

Cy =3JdRAMVYR-B

Now the tableau algorithm yields the following complete, clash-free ABox:
(FRAMNVR-B)(ag) (3RA)(a9) (VR—-B)(ag) R(ap,a1) A(a1) —B(ay)

Corresponding interpretation Z:

| 4 AI: {30,31}
> AT ={a}
» B — )

> RY ={(a,a1)}

Can check that Z is such that G = {ap}.

13/37



Exercise: Concept satisfiability via tableau

Use the tableau algorithm to decide which of the following concepts is
satisfiable:

1. G = (3R(AN B)) N (VR.(-AL D))
2. G = (AR3S.A) M (VRVS.~A)
3. C3 = (GR.B) M (VR.(VR.A)) M (VR-A)

If a concept is found to be satisfiable, use the result to construct an
interpretation in which the concept is non-empty.
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Properties of the tableau algorithm

Let's call our tableau algorithm CSat (for concept satisfiability).

To show that CSat is a decision procedure, we must show:
Termination: The algorithm CSat always terminates.
Soundness: CSat outputs “yes” on input Cy = ( is satisfiable.

Completeness: (j satisfiable = CSat will output “yes”.
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Preliminary definitions

Subconcepts of a concept:

ub(T) = {T}

sub(L) {1}

sub(A) = {A}
sub(—=C) = {=C} Usub(C)

sub(3R.C) = {3R.C} Usub(()

sub(VR.C) = {VR.C} Usub(()
sub(G U G) = {C U G} Usub(Gy) Usub(G)
sub(C; M G) = {C. N G} Usub(Cr) Usub(Cy)
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Preliminary definitions

Subconcepts of a concept: [sub(O)] < (]
sub(T) = {T}
sub(L) ={L}
sub(A) = {A}
sub(—=C) = {=C} Usub(C)

sub(3R.C) = {3R.C} Usub(C)

sub(VR.C) = {VR.C} Usub(()
sub(G U G) = {C U G} Usub(Gy) Usub(G)
sub(C; M G) = {C. N G} Usub(Cr) Usub(Cy)

Role depth of a concept: depth(C) < |C|
depth(A) = depth(T) = depth(L) =
depth(—C) = depth(C)
depth(3R.C) = depth(VR.C) = depth(C) +
depth(C; U Go) = depth(G, M G) = max(depth(Cl),depth(Cg))
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Termination of CSat

Suppose we run CSat starting from S = {{Cy(a0)}}.
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Termination of CSat

Suppose we run CSat starting from S = {{Cy(a0)}}.

We observe that for every ABox A generated by the procedure:

1. if D(b) € A, then D € sub((y)

» A contains at most |Cy| concept assertions per individual

2. the set of role assertions in A forms a tree

3. if D(b) € A and the unique path from ag to b has length k,
then depth(D) < depth(Cy) — k

» each individual in A is at distance < depth(Cp) from ag

4. for every individual b in A, there are at most |Cy| individuals ¢ such
that R(b, c) € A for some R (at most one per existential concept)

Thus: bound on the size of ABoxes generated by the procedure.

The tableau procedure only adds assertions to ABoxes
= eventually all ABoxes will contain a clash or will be complete
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Soundness of CSat (1)

Suppose that CSat returns “yes” on input Cp.

Then S must contain a complete and clash-free ABox A.
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Then S must contain a complete and clash-free ABox A.

Use A to define an interpretation Z as follows:
» AT ={a| ais an individual in A}
> AT ={a] Aa) € A}
> RI ={(a,b) | R(a,b) € A}

Claim: 7 is such that C% # ()
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Soundness of CSat (1)

Suppose that CSat returns “yes” on input Cp.
Then S must contain a complete and clash-free ABox A.

Use A to define an interpretation Z as follows:
» AT ={a| ais an individual in A}
> AT ={a] Aa) € A}
> RI ={(a,b) | R(a,b) € A}

Claim: 7 is such that C% # ()

To show the claim, we prove by induction on the size of concepts that:

Db)e A = beD"
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Soundness of CSat (2)

Base case: D=AorD=-AorD=Tor D=1
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Soundness of CSat (2)
Base case: D=AorD=-AorD=Tor D=1

If D= A, then b e AT,

If D= —A, then A(b) € A, so b€ -AZ.

If D=, trivially b € TZ = AT, We cannot have D = | since
clash-free.

Induction hypothesis (IH): suppose statement holds whenever |D| < k
Induction step: show statement holds for D with |D| = k+ 1
Again, many cases to consider:
» D= ENF: since A is complete, it must contain both E(b) and F(b).
Applying the IH, we get b€ EX and b € FZ, hence b € (ET F)*

» D = JR.E: since A is complete, there is some ¢ such that
R(b,c) € A and E(c) € A. Then (b,c) € RT and by the IH, we get
ce Ef, so be (ARE)T

» D= EU F: left as practice

» D =VR.E: left as practice
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Completeness of CSat

Suppose that the concept C is satisfiable.
Then the ABox {Cy(ap)} must be satisfiable too.
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Suppose that the concept C is satisfiable.
Then the ABox {Cy(ap)} must be satisfiable too.

We observe that the tableau rules are satisfiability-preserving:

» If an ABox A is satisfiable and A’ is the result of applying a rule to
A, then A’ is also satisfiable.

» If an ABox A is satisfiable and A; and A5 are obtained when
applying a rule to A, then either A; is satisfiable or A, is satisfiable.
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Completeness of CSat

Suppose that the concept C is satisfiable.
Then the ABox {Cy(ap)} must be satisfiable too.

We observe that the tableau rules are satisfiability-preserving:

» If an ABox A is satisfiable and A’ is the result of applying a rule to
A, then A’ is also satisfiable.

» If an ABox A is satisfiable and A; and A5 are obtained when
applying a rule to A, then either A; is satisfiable or A, is satisfiable.

We start with a satisfiable ABox and the rules are satisfiability-preserving,
so eventually we will reach a complete, satisfiable (thus: clash-free) ABox.

20/37



Complexity of CSat

Bad news: our algorithm may require exponential time and space...

To see why, consider what happens if we run CSat on the concept

[] YR_..VR (3R.BN3R-B)
N—_——

0<i<n i times
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Complexity of CSat

Bad news: our algorithm may require exponential time and space...

To see why, consider what happens if we run CSat on the concept

|_| VR....YR,(3R.BN3R.—B)

)<’<" i times
Good news: can modify the procedure so it runs in polynomial space

» instead of a set of ABoxes, keep only one ABox in memory at a time

» when apply the U-rule, first examine A1, then afterwards examine A2
» remember that second disjunct stills needs to be checked

» explore the children of an individual one at a time

» possible because no interaction between the different “branches”
» store which 3R.C concepts have been tested, which are left to do

» this allows us to keep at most |Cy| individuals in memory at a time
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Complexity of ALC concept satisfability

Hierarchy of complexity classes
PTIMECNPC ... C PSPACE CEXPTIME C NEXPTIME C ... CEXPSPACE ...

(it is believed that all inclusions are strict)
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Complexity of ALC concept satisfability

Hierarchy of complexity classes
PTIMECNPC... C PSPACE CEXPTIMECNEXPTIME C ... CEXPSPACE ...

(it is believed that all inclusions are strict)

PSPACE = class of decision problems solvable using polynomial space

PSPACE-complete problems = hardest problems in PSPACE

Theorem: ALC concept satisfiability (no TBox) is PSPACE-complete.
» Membership in PSPACE shown using modified tableau procedure

» Hardness for PSPACE shown by giving a reduction from some known
PSPACE-hard problem (e.g. QBF validity)

22/37



Extending the tableau algorithm to KBs



Extension to KB satisfiability

Now we want to modify the algorithm to handle KB satisfability.

Adding an ABox is easy: simply start with {4} instead of {Cy(ao)}
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Extension to KB satisfiability

Now we want to modify the algorithm to handle KB satisfability.
Adding an ABox is easy: simply start with {4} instead of {Cy(ao)}
Adding a TBox is a bit more tricky...

Idea: if we have CC D, then every element must satisfy either =C or D

Concretely, we might try adding the following rule:

TBox rule: if aisin A, CC De T, & (NNF(-C) LUNNF(D)) (a) ¢ A
then replace A with AU {(NNF(—~C) LINNF(D))(a)}

24/37



Examples: KB satisfiability

Let's try the modified procedure on the KB (7, {A(a)}) where

T={ AC3IRB BLD 3RDC-A }
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Examples: KB satisfiability

Let's try the modified procedure on the KB (7, {A(a)}) where

T={ AC3IRB BLD 3RDC-A }

Now try it on the KB ({F C 3S.F}, {F(a)}).

Seems we have a problem... How can we ensure termination?
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Blocking

Basic idea: if two individuals “look the same”, then it is unnecessary to
explore both of them
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explore both of them

Formally, give individuals a, b in A, we say that b blocks a if:
» {C| Ca) e A} C{C| C(b) € A}
» b was present in A before a was introduced

Say that individual a is blocked (in A) if some b blocks a.
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Blocking

Basic idea: if two individuals “look the same”, then it is unnecessary to
explore both of them

Formally, give individuals a, b in A, we say that b blocks a if:
» {C| Ca) e A} C{C| C(b) € A}
» b was present in A before a was introduced

Say that individual a is blocked (in A) if some b blocks a.

Modify rules so that they only apply to unblocked individuals.
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Tableau rules for KBs

M-rule:

LI-rule:

V-rule:

J-rule:

C-rule:

if (G111 G)(a) € A, ais not blocked, and {Ci(a), Co(a)} € A,
then replace A with AU {C(a), Cx(a)}

if (C1 U G)(a) € A, ais not blocked, and {C;(a), Co(a)} N.A =0,
then replace A with AU{C;(a))} and AU {C:(a))}

if {VYR.C(a), R(a,b)} € A, ais not blocked, and C(b) & A,
then replace A with AU {C(b))}

if {3R.C(a)} € A, a is not blocked, and no {R(a, b), C(b)} C A,
then pick a new individual name d and replace A with
AU{R(a,d), C(d)}

if a appears in A and a is not blocked, CC D € T, and
(NNF(=C) LUNNF(D))(a) & A,

then replace A with AU {(NNF(=C) LINNF(D))(a)}
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Example: blocking

Let’s try blocking on the problematic KB ({F C 35.F, {F(a)}}.
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(~F U3S.F) (ag)

“F(ao) | (3S.F)(ao)

AS(ao,al) :;
x F(ay)

ay is blocked by ag
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Example: blocking

Let’s try blocking on the problematic KB ({F C 35.F, {F(a)}}.

(~F U3S.F) (ag)

“F(ao) | (3S.F)(ao)

AS(ao,al) :;
x F(ay)

ay is blocked by ag

We obtain a complete and clash-free ABox = the KB is satisfiable !
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Another blocking example

Consider the following TBox

T={AC3JIRAALC B,3RBLC D}
and suppose we want to test whether 7 = A C D.

We can do this by running the algorithm on the KB (7, {(AM—D)(ap)}).
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Another blocking example

Consider the following TBox

T={AC3IRAAC B, IRBC D}
and suppose we want to test whether 7 = A C D.
We can do this by running the algorithm on the KB (7, {(AM—D)(ap)}).
Result: the KB is unsatisfiable = 7 = AC D

Observation: an individual can be blocked, then later become unblocked
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Properties of the tableau algorithm

Let's call our new tableau algorithm KBSat (for KB satisfiability).

Termination: The algorithm KBSat always terminates.
» similar to before: bound the size of generated ABoxes
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Properties of the tableau algorithm

Let's call our new tableau algorithm KBSat (for KB satisfiability).

Termination: The algorithm KBSat always terminates.
» similar to before: bound the size of generated ABoxes

Soundness: KBSat outputs “yes” on (7, .A) = (T,.A) is satisfiable.
» again, we use complete, clash-free ABox to build a model

» tricky part: need to handle the blocked individuals

Completeness: (T, .A) satisfiable = KBSat will output “yes”.
» again, show rules satisfiability-preserving

So: KBSat is a decision procedure for KB satisfiability.
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Complexity of KB satisfiability

The KBSat algorithm generates ABoxes of at most exponential size

But even if with the tricks from earlier, need exponential space.

» single branch may be exponentially long
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The KBSat algorithm generates ABoxes of at most exponential size

But even if with the tricks from earlier, need exponential space.

» single branch may be exponentially long

This is most likely not optimal, as we can show the following:

Theorem: ALC KB satisfiability is EXPTIME-complete.
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Complexity of KB satisfiability

The KBSat algorithm generates ABoxes of at most exponential size

But even if with the tricks from earlier, need exponential space.

» single branch may be exponentially long

This is most likely not optimal, as we can show the following:
Theorem: ALC KB satisfiability is EXPTIME-complete.

This result means no polynomial-time algorithm can every be found.

31/37



Optimizations

Despite high worst-case complexity, tableau algorithms for ALC and
other expressive DLs can work well in practice.
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Optimizations

Despite high worst-case complexity, tableau algorithms for ALC and
other expressive DLs can work well in practice.

However, good performance crucially depends on optimizations!

Many types of optimizations:
» explore only one branch of one ABox at a time
strategies / heuristics for choosing next rule to apply
caching of results to reduce redundant computation
examine source of conflicts to prune search space (backjumping)

reduce number of LI’s created by TBox inclusions (absorption)

vV v v v Vv

reduce number of satisfiability checks during classification
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Absorption (1)

When T = {G C D;| 1 < i< n}, we get n disjunctions per individual:

(NNF(=C1) LUNNF(Dy))(a), - .., (NNF(=C,) LINNF(D,))(a)

33/37



Absorption (1)

When T = {G C D;| 1 < i< n}, we get n disjunctions per individual:
(NNF(=Cy) LINNF(Dy))(a), ..., (NNF(=C,) LINNF(D,))(a)
Observation: if have inclusion A C D with A atomic
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» if have A(a), then must have D(a)
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When T = {G C D;| 1 < i< n}, we get n disjunctions per individual:
(NNF(=Cy) LINNF(Dy))(a), ..., (NNF(=C,) LINNF(D,))(a)
Observation: if have inclusion A C D with A atomic

» if don't have A(a), can satisfy the inclusion by choosing —A(a)
» if have A(a), then must have D(a)

So for inclusions with atomic left-hand side, can replace C-rule by:

C?-rule: if A(a) € A, ais not blocked, AC D € T (with A atomic),
and D(a) ¢ A, then replace A with AU {D(a)}
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Absorption (1)

When T = {G C D;| 1 < i< n}, we get n disjunctions per individual:
(NNF(=Cy) LINNF(Dy))(a), ..., (NNF(=C,) LINNF(D,))(a)
Observation: if have inclusion A C D with A atomic

» if don't have A(a), can satisfy the inclusion by choosing —A(a)
» if have A(a), then must have D(a)

So for inclusions with atomic left-hand side, can replace C-rule by:

C?-rule: if A(a) € A, ais not blocked, AC D € T (with A atomic),
and D(a) ¢ A, then replace A with AU {D(a)}

Good news: we've lowered the number of disjunctions!
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Absorption (2)

Second observation: can transform some inclusions with complex
concept on left into equivalent inclusions with atomic left-hand side
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Absorption (2)

Second observation: can transform some inclusions with complex
concept on left into equivalent inclusions with atomic left-hand side

(ANCOCD ~ AL (-CuD)

Absorption technique:

1. preprocess the TBox by replacing inclusions with equivalent
inclusions with atomic concept on left, whenever possible

2. when running tableau algorithm
» use new C"?-rule for inclusions A = D with A atomic

P use regular C-rule for the other TBox inclusions
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Example: Absorption

Let's use absorption on the KB (7, {A(a)}) from earlier with:

{ AC3RB BCD 3JRDC-A }
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Example: Absorption

Let's use absorption on the KB (7, {A(a)}) from earlier with:

{ AC3RB BCD 3JRDC-A }

» first two inclusions in 7 already have atomic concept on left
» third inclusion in 7 can be equivalently written as A C VR.—D

» so: only need to use C?-rule
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Example: Absorption

Let's use absorption on the KB (7, {A(a)}) from earlier with:

{ AC3RB BCD 3JRDC-A }

» first two inclusions in 7 already have atomic concept on left
» third inclusion in 7 can be equivalently written as A C VR.—D

» so: only need to use C?-rule

Result: completely avoid disjunction, algorithm terminates much faster!
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Optimizations for classification

Classification: find all pairs of atomic concepts A, Bwith T =EAC B

Naive approach: test satisfiability of AM =B w.r.t. T for all pairs A, B

» but T may contain hundreds or thousands of atomic concepts....
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Optimizations for classification

Classification: find all pairs of atomic concepts A, Bwith T =EAC B

Naive approach: test satisfiability of AM =B w.r.t. T for all pairs A, B

» but T may contain hundreds or thousands of atomic concepts....

Each satisfiability check is costly = want to reduce number of checks

Some ideas:

» some subsumptions are obvious
» A LC A and subsumptions that are explicitly stated in 7
» can use simple reasoning to obtain new (non-)subsumptions

» ifknow T=EAC Band 7T =BLC D, then 7T =ACD
» ifknow TE=EAC Band T £ ALC D, then T = BC D
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Exercise: KB satisfiability via tableau

Consider the following TBox:
T={ACVRBBC -F,EC GACDUEDC3JRF,IR-BLC G}

Use the KBSat algorithm to decide whether:
1.

AN N

6.

You are encouraged to use the optimizations introduced in the course.

TEACE
TEECG
TEECF
TEACG
TEDCG
TEGCF
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