	DL	OWL (Manchester syntax)	Semantics	
Тор	T	owl:Thing	$\Delta^{\mathcal{I}}$	
Conjunction	$C\sqcap D$	C and D	$C^{\mathcal{I}} \cap D^{\mathcal{I}}$	
Disjunction	$C\sqcup D$	C or D	$C^{\mathcal{I}} \cup D^{\mathcal{I}}$	
Negation	$\neg C$	not C	$\Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}$	
Existential restriction	$\exists r.C$	r some C	$\{u \mid \text{ exists } v \text{ such that } (u,v) \in r^{\mathcal{I}} \text{ and } v \in C^{\mathcal{I}}\}$	
Universal restriction	$\forall r.C$	r only C	$\{u \mid \text{ for every } v \text{ such that } (u,v) \in r^{\mathcal{I}} \text{ we have } v \in C^{\mathcal{I}}\}$	
Number restrictions	$\geq k r.C$ $\leq k r.C$	r min k C r max k C	$\{u \mid \text{ at least } k v \text{ such that } (u,v) \in r^{\mathcal{I}} \text{ and } v \in C^{\mathcal{I}}\}$ $\{u \mid \text{ at most } k v \text{ such that } (u,v) \in r^{\mathcal{I}} \text{ and } v \in C^{\mathcal{I}}\}$	
Nominal	$\{a\}$	{a} {a,b,c}	$\{a^{\mathcal{I}}\} \qquad \{a^{\mathcal{I}}, b^{\mathcal{I}}, c^{\mathcal{I}}\}$	
Inverse role	r^{-}	inverse r	$\{(u,v) \mid (v,u) \in r^{\mathcal{I}}\}$	

	DL	OWL	Semantics
Concept inclusion	$C \sqsubseteq D$	C SubClassOf: D	$C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
Concept equivalence	$C \equiv D$	C EquivalentTo: D	$C^{\mathcal{I}} = D^{\mathcal{I}}$
Role inclusion	$r \sqsubseteq s$	r SubPropertyOf: S	$r^{\mathcal{I}}\subseteq s^{\mathcal{I}}$
Concept assertion	C(a)	a Type C	$a^{\mathcal{I}} \in C^{\mathcal{I}}$
Role assertion	r(a,b)	arb	$(a^{\mathcal{I}}, b^{\mathcal{I}}) \in r^{\mathcal{I}}$

Interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$

- $\Delta^{\mathcal{I}}$ is non-empty set (domain/universe)
- $\cdot^{\mathcal{I}}$ is a function that maps
 - each individual name $\,a\,$ to $\,a^{\mathcal{I}} \in \Delta^{\mathcal{I}}\,$
 - each concept name $\,A\,$ to $\,A^{\mathcal{I}}\subseteq\Delta^{\mathcal{I}}$
 - each role name $\ r$ to $\ r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} imes \Delta^{\mathcal{I}}$

Knowledge base (KB) = TBox (ontology) + ABox (data)

- TBox \mathcal{T} : finite set of axioms
- ABox \mathcal{A} : finite set of concept and role assertions

Model of KB: interpretation satisfying all axioms, assertions Satisfiable KB: has at least one model

Entailed from KB: holds in all models of the KB $\qquad \mathcal{K} \models \alpha$