
ontologies &
description logics
Parcours IA - Représentation des connaissances

Meghyn Bienvenu (LaBRI - CNRS & Université de Bordeaux)



owl



owl: web ontology language

Standard of the World Wide Web Consortium (W3C)
∙ Original version: OWL 1 from 2004
∙ Current version: OWL 2 from 2012 (introduces EL, QL, RL profiles)

Motivated by the Semantic Web

Based upon (highly expressive) description logics, but offers
∙ extra features, like annotations, comments, imports
∙ several different formats (serializations):
∙ XML, Turtle (RDF), Manchester syntax

Much more well known than DLs outside academia 3/13



owl basics

Building blocks of OWL

∙ individuals
∙ classes ⇝ concepts in DLs
∙ object properties ⇝ roles in DLs
∙ data properties:
∙ connect individuals to data values (integers, strings)

∙ annotation properties:
∙ used to annotate ontologies, classes, axioms, etc.
∙ metadata, not used for reasoning

Axioms
DL syntax OWL (Manchester syntax)
C ⊑ D C SubClassOf: D
C ≡ D C EquivalentTo: D
C ⊑ ¬D C DisjointWith: D
R ⊑ S R SubPropertyOf: S

4/13



constructors in owl

DL syntax OWL (Manchester syntax)
¬C not C
C ⊔ D C or D
C ⊓ D C and D
∃r.C r some C
∀r.C r only C
∃r.{a} r value {a}
≥ n r.C r min n C
≤ n r.C r max n C
r− inverse r
⊤ owl:Thing
⊥ owl:Nothing

5/13



example classes in owl

Female and Scientist Cat or Dog

Person and (not Parent)

teaches some (CompSciCourse and (offeredBy some FrenchUniv))

teaches only CompSciCourse

hasIngredient max 5 owl:Thing

6/13



ontology construction



task of ontology construction

No single ‘correct’ ontology for any domain
∙ many possible ways to model a given domain
∙ different people will model in different ways
∙ need to consider how it will be used

Generally not possible to fully automate ontology design
∙ needs domain expert, analysis of application needs

Guidelines / methodologies for ontology design
∙ present approach from ‘Ontology Development 101’ (Noy &
McGuinness, 2001)

8/13



steps in ontology construction

1) Determine domain and scope of the ontology
∙ what is the domain that the ontology will cover?
∙ how is the ontology going to be used?
∙ what types of questions should the information in the ontology
allow us to answer? (competency questions)

∙ who will use and maintain the ontology?

⇝ help to choose appropriate level of detail, ontology language

2) Consider reusing (parts of) existing ontologies

3) Make a list all of the important terms

9/13



steps in ontology construction (cont.)

4) Define the classes and organize them into hierarchy
∙ different approaches: top-down / bottom-up / mixed

5) Define properties and link them to the classes
∙ add existential / universal / cardinality restrictions to classes

6) Define other characteristics of properties
∙ subproperties, inverses
∙ functionality, transitivity, ...
∙ domain and range

7) Create individuals and assertions about them

Note: iterative, not linear process, will likely need revisit steps!
10/13



zoom on step 4: defining and organizing classes

Ensure concept hierarchy reflects subclass (‘ is-a’) relationship
∙ If C is subclass of D, every member of C must be a member of D
∙ don’t just organize into classes by association!
∙ example: HockeyStick and Goalie are not subclasses of Hockey

Multiple inheritance is allowed (e.g. C subclass of D, E, and F)

‘Sibling’ classes should have same level of generality

Keep number of sibling classes reasonable (roughly 2-12)
∙ avoid having just a single class on a given ‘level’
∙ if large number of sibling classes, see if it would make sense to
group them into intermediate classes

11/13



more on step 4: defining and organizing classes

When to add a new class?
∙ a subclass usually has some further characteristics / restrictions /
participates in different relationships than its superclasses

Class or individual?
∙ not always obvious, really depends on application

Add disjointness axioms where appropriate
∙ useful for debugging

Limiting the scope
∙ cannot describe every possible aspect of the domain
∙ don’t go into more detail than you need for your application

12/13



debugging, reasoning support

Run the reasoner often and fix problems right away
∙ if too many problems, reasoner may fail / very slow
∙ better to fix modelling errors early, else lose lots of time

Errors to look for:
∙ unsatisfiable concepts (marked in red in Protégé)
∙ unsatisfiable KB (error message, owl:Thing subclassOf owl:Nothing)
∙ any unexpected entailments

Take advantage of Protégé’s ‘explain inference’ facility (button
marked ?) to help understand source of problems
∙ justifications = minimal sets of axioms / assertions that are
sufficient to get the entailment

13/13


	OWL
	Ontology Construction

