
ontologies &
description logics
Parcours IA - Représentation des connaissances

Meghyn Bienvenu (LaBRI - CNRS & Université de Bordeaux)

reasoning in expressive dls

tableau method

Tableau method: popular approach for reasoning in expressive DLs
∙ implemented in state-of-the-art DL reasoners

Tableau algorithms are used to decide satisfiability
∙ solve other tasks (e.g. entailment) by reducing them to
satisfiability

Idea: to determine whether a given (concept or KB) Ψ is satisfiable,
try to construct a (representation of a) model of Ψ

∙ if we succeed, then we have shown that Ψ is satisfiable

∙ if we fail despite having considered all possibilities,
then we have proven that Ψ is unsatisfiable

3/33

tableau method

Tableau method: popular approach for reasoning in expressive DLs
∙ implemented in state-of-the-art DL reasoners

Tableau algorithms are used to decide satisfiability
∙ solve other tasks (e.g. entailment) by reducing them to
satisfiability

Idea: to determine whether a given (concept or KB) Ψ is satisfiable,
try to construct a (representation of a) model of Ψ

∙ if we succeed, then we have shown that Ψ is satisfiable

∙ if we fail despite having considered all possibilities,
then we have proven that Ψ is unsatisfiable

3/33

alc concepts

Recall that ALC concepts are built using the following constructors:

⊤ ⊥ ¬ ⊔ ⊓ ∀r.C ∃r.C

We say that an ALC concept C is in negation normal form (NNF) if
the symbol ¬ only appears directly in front of atomic concepts.

∙ in NNF: A ⊓ ¬B, ∃r.¬A, ¬A ⊔ ¬B
∙ not in NNF: ¬(A ⊓ B), ∃r.¬(∀s.B), A ⊔ ¬∀r.B, ¬⊤

Fact. Every ALC concept C can be transformed into an equivalent
concept in NNF in linear time by applying the following rewrite rules:

¬⊤⇝ ⊥ ¬(C ⊓ D)⇝ ¬C ⊔ ¬D ¬(∀r.C)⇝ ∃r.¬C
¬⊥⇝ ⊤ ¬(C ⊔ D)⇝ ¬C ⊓ ¬D ¬(∃r.C)⇝ ∀r.¬C

Note: say C and D are equivalent if the empty TBox entails C ≡ D.

4/33

alc concepts

Recall that ALC concepts are built using the following constructors:

⊤ ⊥ ¬ ⊔ ⊓ ∀r.C ∃r.C

We say that an ALC concept C is in negation normal form (NNF) if
the symbol ¬ only appears directly in front of atomic concepts.

∙ in NNF: A ⊓ ¬B, ∃r.¬A, ¬A ⊔ ¬B
∙ not in NNF: ¬(A ⊓ B), ∃r.¬(∀s.B), A ⊔ ¬∀r.B, ¬⊤

Fact. Every ALC concept C can be transformed into an equivalent
concept in NNF in linear time by applying the following rewrite rules:

¬⊤⇝ ⊥ ¬(C ⊓ D)⇝ ¬C ⊔ ¬D ¬(∀r.C)⇝ ∃r.¬C
¬⊥⇝ ⊤ ¬(C ⊔ D)⇝ ¬C ⊓ ¬D ¬(∃r.C)⇝ ∀r.¬C

Note: say C and D are equivalent if the empty TBox entails C ≡ D.

4/33

alc concepts

Recall that ALC concepts are built using the following constructors:

⊤ ⊥ ¬ ⊔ ⊓ ∀r.C ∃r.C

We say that an ALC concept C is in negation normal form (NNF) if
the symbol ¬ only appears directly in front of atomic concepts.

∙ in NNF: A ⊓ ¬B, ∃r.¬A, ¬A ⊔ ¬B
∙ not in NNF: ¬(A ⊓ B), ∃r.¬(∀s.B), A ⊔ ¬∀r.B, ¬⊤

Fact. Every ALC concept C can be transformed into an equivalent
concept in NNF in linear time by applying the following rewrite rules:

¬⊤⇝ ⊥ ¬(C ⊓ D)⇝ ¬C ⊔ ¬D ¬(∀r.C)⇝ ∃r.¬C
¬⊥⇝ ⊤ ¬(C ⊔ D)⇝ ¬C ⊓ ¬D ¬(∃r.C)⇝ ∀r.¬C

Note: say C and D are equivalent if the empty TBox entails C ≡ D.
4/33

satisfiability of alc-concepts via tableau

We begin by presenting a tableau algorithm for deciding
satisfiability of ALC-concepts (in NNF) w.r.t. the empty TBox

Procedure for testing satisfiability of C0:
∙ We work with a set S of ABoxes
∙ Initially, S contains a single ABox {C0(a0)}

∙ At each stage, we apply a tableau rule to some A ∈ S
(note: rules are detailed on next slide)

∙ A rule application involves replacing A by one or two ABoxes that
extend A with new assertions

∙ Stop applying rules when either:
∙ every A ∈ S contains a clash, i.e. an assertion ⊥(b) or a pair of
assertions {B(b),¬B(b)}

∙ some A ∈ S is clash-free and complete: no rule can be applied to A

∙ Return ‘yes, satisfiable’ if some A ∈ S is clash-free, else “no”.

5/33

satisfiability of alc-concepts via tableau

We begin by presenting a tableau algorithm for deciding
satisfiability of ALC-concepts (in NNF) w.r.t. the empty TBox

Procedure for testing satisfiability of C0:
∙ We work with a set S of ABoxes
∙ Initially, S contains a single ABox {C0(a0)}
∙ At each stage, we apply a tableau rule to some A ∈ S
(note: rules are detailed on next slide)

∙ A rule application involves replacing A by one or two ABoxes that
extend A with new assertions

∙ Stop applying rules when either:
∙ every A ∈ S contains a clash, i.e. an assertion ⊥(b) or a pair of
assertions {B(b),¬B(b)}

∙ some A ∈ S is clash-free and complete: no rule can be applied to A

∙ Return ‘yes, satisfiable’ if some A ∈ S is clash-free, else “no”.

5/33

satisfiability of alc-concepts via tableau

We begin by presenting a tableau algorithm for deciding
satisfiability of ALC-concepts (in NNF) w.r.t. the empty TBox

Procedure for testing satisfiability of C0:
∙ We work with a set S of ABoxes
∙ Initially, S contains a single ABox {C0(a0)}
∙ At each stage, we apply a tableau rule to some A ∈ S
(note: rules are detailed on next slide)

∙ A rule application involves replacing A by one or two ABoxes that
extend A with new assertions

∙ Stop applying rules when either:
∙ every A ∈ S contains a clash, i.e. an assertion ⊥(b) or a pair of
assertions {B(b),¬B(b)}

∙ some A ∈ S is clash-free and complete: no rule can be applied to A

∙ Return ‘yes, satisfiable’ if some A ∈ S is clash-free, else “no”.

5/33

satisfiability of alc-concepts via tableau

We begin by presenting a tableau algorithm for deciding
satisfiability of ALC-concepts (in NNF) w.r.t. the empty TBox

Procedure for testing satisfiability of C0:
∙ We work with a set S of ABoxes
∙ Initially, S contains a single ABox {C0(a0)}
∙ At each stage, we apply a tableau rule to some A ∈ S
(note: rules are detailed on next slide)

∙ A rule application involves replacing A by one or two ABoxes that
extend A with new assertions

∙ Stop applying rules when either:
∙ every A ∈ S contains a clash, i.e. an assertion ⊥(b) or a pair of
assertions {B(b),¬B(b)}

∙ some A ∈ S is clash-free and complete: no rule can be applied to A

∙ Return ‘yes, satisfiable’ if some A ∈ S is clash-free, else “no”.

5/33

satisfiability of alc-concepts via tableau

We begin by presenting a tableau algorithm for deciding
satisfiability of ALC-concepts (in NNF) w.r.t. the empty TBox

Procedure for testing satisfiability of C0:
∙ We work with a set S of ABoxes
∙ Initially, S contains a single ABox {C0(a0)}
∙ At each stage, we apply a tableau rule to some A ∈ S
(note: rules are detailed on next slide)

∙ A rule application involves replacing A by one or two ABoxes that
extend A with new assertions

∙ Stop applying rules when either:
∙ every A ∈ S contains a clash, i.e. an assertion ⊥(b) or a pair of
assertions {B(b),¬B(b)}

∙ some A ∈ S is clash-free and complete: no rule can be applied to A

∙ Return ‘yes, satisfiable’ if some A ∈ S is clash-free, else “no”.
5/33

tableau rules for alc

⊓-rule: if (C1 ⊓ C2)(a) ∈ A and {C1(a), C2(a)} ̸⊆ A
then replace A with A ∪ {C1(a), C2(a)}

⊔-rule: if (C1 ⊔ C2)(a) ∈ A and {C1(a), C2(a)} ∩ A = ∅
then replace A with A ∪ {C1(a))} and A ∪ {C2(a))}

∀-rule: if {∀r.C(a), r(a,b)} ∈ A and C(b) ̸∈ A
then replace A with A ∪ {C(b))}

∃-rule: if {∃r.C(a)} ∈ A and no b with {r(a,b), C(b)} ⊆ A,
then pick a new individual name d and
replace A with A ∪ {r(a,d), C(d)}

6/33

tableau rules for alc

⊓-rule: if (C1 ⊓ C2)(a) ∈ A and {C1(a), C2(a)} ̸⊆ A
then replace A with A ∪ {C1(a), C2(a)}

⊔-rule: if (C1 ⊔ C2)(a) ∈ A and {C1(a), C2(a)} ∩ A = ∅
then replace A with A ∪ {C1(a))} and A ∪ {C2(a))}

∀-rule: if {∀r.C(a), r(a,b)} ∈ A and C(b) ̸∈ A
then replace A with A ∪ {C(b))}

∃-rule: if {∃r.C(a)} ∈ A and no b with {r(a,b), C(b)} ⊆ A,
then pick a new individual name d and
replace A with A ∪ {r(a,d), C(d)}

6/33

tableau rules for alc

⊓-rule: if (C1 ⊓ C2)(a) ∈ A and {C1(a), C2(a)} ̸⊆ A
then replace A with A ∪ {C1(a), C2(a)}

⊔-rule: if (C1 ⊔ C2)(a) ∈ A and {C1(a), C2(a)} ∩ A = ∅
then replace A with A ∪ {C1(a))} and A ∪ {C2(a))}

∀-rule: if {∀r.C(a), r(a,b)} ∈ A and C(b) ̸∈ A
then replace A with A ∪ {C(b))}

∃-rule: if {∃r.C(a)} ∈ A and no b with {r(a,b), C(b)} ⊆ A,
then pick a new individual name d and
replace A with A ∪ {r(a,d), C(d)}

6/33

tableau rules for alc

⊓-rule: if (C1 ⊓ C2)(a) ∈ A and {C1(a), C2(a)} ̸⊆ A
then replace A with A ∪ {C1(a), C2(a)}

⊔-rule: if (C1 ⊔ C2)(a) ∈ A and {C1(a), C2(a)} ∩ A = ∅
then replace A with A ∪ {C1(a))} and A ∪ {C2(a))}

∀-rule: if {∀r.C(a), r(a,b)} ∈ A and C(b) ̸∈ A
then replace A with A ∪ {C(b))}

∃-rule: if {∃r.C(a)} ∈ A and no b with {r(a,b), C(b)} ⊆ A,
then pick a new individual name d and
replace A with A ∪ {r(a,d), C(d)}

6/33

first example: ⊓ and ⊔

Test satisfiability of concept C = (A ⊔ B) ⊓ ((¬B ⊔ D) ⊓ ¬A)

Start with S = {A0 } where A0 = { ((A ⊔ B) ⊓ ((¬B ⊔ D) ⊓ ¬A))(a0) }.
Apply ⊓-rule to A0:
get S = {A′

0 } where A′
0 = A0 ∪ {(A ⊔ B)(a0), ((¬B ⊔ D) ⊓ ¬A)(a0)}}.

Apply ⊔-rule to A′
0:

get S = {A1,A2 } where A1 = A′
0 ∪ {A(a0)} and A2 = A′

0 ∪ {B(a0)}.
Apply ⊓-rule to A1:
get S = {A′

1,A2 } where A′
1 = A1 ∪ {(¬B ⊔ D)(a0),¬A(a0)}

Apply ⊓-rule to A2:
get S = {A′

1,A′
2 } where A′

2 = A2 ∪ {(¬B ⊔ D)(a0),¬A(a0)}
Apply ⊔-rule to A′

2:
get S = {A′

1,A3,A4 } where A3 = A′
2 ∪ {¬B(a0)}, A4 = A′

2 ∪ {D(a0)}

7/33

first example: ⊓ and ⊔

Test satisfiability of concept C = (A ⊔ B) ⊓ ((¬B ⊔ D) ⊓ ¬A)

Start with S = {A0 } where A0 = { ((A ⊔ B) ⊓ ((¬B ⊔ D) ⊓ ¬A))(a0) }.

Apply ⊓-rule to A0:
get S = {A′

0 } where A′
0 = A0 ∪ {(A ⊔ B)(a0), ((¬B ⊔ D) ⊓ ¬A)(a0)}}.

Apply ⊔-rule to A′
0:

get S = {A1,A2 } where A1 = A′
0 ∪ {A(a0)} and A2 = A′

0 ∪ {B(a0)}.
Apply ⊓-rule to A1:
get S = {A′

1,A2 } where A′
1 = A1 ∪ {(¬B ⊔ D)(a0),¬A(a0)}

Apply ⊓-rule to A2:
get S = {A′

1,A′
2 } where A′

2 = A2 ∪ {(¬B ⊔ D)(a0),¬A(a0)}
Apply ⊔-rule to A′

2:
get S = {A′

1,A3,A4 } where A3 = A′
2 ∪ {¬B(a0)}, A4 = A′

2 ∪ {D(a0)}

7/33

first example: ⊓ and ⊔

Test satisfiability of concept C = (A ⊔ B) ⊓ ((¬B ⊔ D) ⊓ ¬A)

Start with S = {A0 } where A0 = { ((A ⊔ B) ⊓ ((¬B ⊔ D) ⊓ ¬A))(a0) }.
Apply ⊓-rule to A0:
get S = {A′

0 } where A′
0 = A0 ∪ {(A ⊔ B)(a0), ((¬B ⊔ D) ⊓ ¬A)(a0)}}.

Apply ⊔-rule to A′
0:

get S = {A1,A2 } where A1 = A′
0 ∪ {A(a0)} and A2 = A′

0 ∪ {B(a0)}.
Apply ⊓-rule to A1:
get S = {A′

1,A2 } where A′
1 = A1 ∪ {(¬B ⊔ D)(a0),¬A(a0)}

Apply ⊓-rule to A2:
get S = {A′

1,A′
2 } where A′

2 = A2 ∪ {(¬B ⊔ D)(a0),¬A(a0)}
Apply ⊔-rule to A′

2:
get S = {A′

1,A3,A4 } where A3 = A′
2 ∪ {¬B(a0)}, A4 = A′

2 ∪ {D(a0)}

7/33

first example: ⊓ and ⊔

Test satisfiability of concept C = (A ⊔ B) ⊓ ((¬B ⊔ D) ⊓ ¬A)

Start with S = {A0 } where A0 = { ((A ⊔ B) ⊓ ((¬B ⊔ D) ⊓ ¬A))(a0) }.
Apply ⊓-rule to A0:
get S = {A′

0 } where A′
0 = A0 ∪ {(A ⊔ B)(a0), ((¬B ⊔ D) ⊓ ¬A)(a0)}}.

Apply ⊔-rule to A′
0:

get S = {A1,A2 } where A1 = A′
0 ∪ {A(a0)} and A2 = A′

0 ∪ {B(a0)}.
Apply ⊓-rule to A1:
get S = {A′

1,A2 } where A′
1 = A1 ∪ {(¬B ⊔ D)(a0),¬A(a0)}

Apply ⊓-rule to A2:
get S = {A′

1,A′
2 } where A′

2 = A2 ∪ {(¬B ⊔ D)(a0),¬A(a0)}
Apply ⊔-rule to A′

2:
get S = {A′

1,A3,A4 } where A3 = A′
2 ∪ {¬B(a0)}, A4 = A′

2 ∪ {D(a0)}

7/33

first example: ⊓ and ⊔

Test satisfiability of concept C = (A ⊔ B) ⊓ ((¬B ⊔ D) ⊓ ¬A)

Start with S = {A0 } where A0 = { ((A ⊔ B) ⊓ ((¬B ⊔ D) ⊓ ¬A))(a0) }.
Apply ⊓-rule to A0:
get S = {A′

0 } where A′
0 = A0 ∪ {(A ⊔ B)(a0), ((¬B ⊔ D) ⊓ ¬A)(a0)}}.

Apply ⊔-rule to A′
0:

get S = {A1,A2 } where A1 = A′
0 ∪ {A(a0)} and A2 = A′

0 ∪ {B(a0)}.

Apply ⊓-rule to A1:
get S = {A′

1,A2 } where A′
1 = A1 ∪ {(¬B ⊔ D)(a0),¬A(a0)}

Apply ⊓-rule to A2:
get S = {A′

1,A′
2 } where A′

2 = A2 ∪ {(¬B ⊔ D)(a0),¬A(a0)}
Apply ⊔-rule to A′

2:
get S = {A′

1,A3,A4 } where A3 = A′
2 ∪ {¬B(a0)}, A4 = A′

2 ∪ {D(a0)}

7/33

first example: ⊓ and ⊔

Test satisfiability of concept C = (A ⊔ B) ⊓ ((¬B ⊔ D) ⊓ ¬A)

Start with S = {A0 } where A0 = { ((A ⊔ B) ⊓ ((¬B ⊔ D) ⊓ ¬A))(a0) }.
Apply ⊓-rule to A0:
get S = {A′

0 } where A′
0 = A0 ∪ {(A ⊔ B)(a0), ((¬B ⊔ D) ⊓ ¬A)(a0)}}.

Apply ⊔-rule to A′
0:

get S = {A1,A2 } where A1 = A′
0 ∪ {A(a0)} and A2 = A′

0 ∪ {B(a0)}.

Apply ⊓-rule to A1:
get S = {A′

1,A2 } where A′
1 = A1 ∪ {(¬B ⊔ D)(a0),¬A(a0)}

Apply ⊓-rule to A2:
get S = {A′

1,A′
2 } where A′

2 = A2 ∪ {(¬B ⊔ D)(a0),¬A(a0)}
Apply ⊔-rule to A′

2:
get S = {A′

1,A3,A4 } where A3 = A′
2 ∪ {¬B(a0)}, A4 = A′

2 ∪ {D(a0)}

7/33

first example: ⊓ and ⊔

Test satisfiability of concept C = (A ⊔ B) ⊓ ((¬B ⊔ D) ⊓ ¬A)

Start with S = {A0 } where A0 = { ((A ⊔ B) ⊓ ((¬B ⊔ D) ⊓ ¬A))(a0) }.
Apply ⊓-rule to A0:
get S = {A′

0 } where A′
0 = A0 ∪ {(A ⊔ B)(a0), ((¬B ⊔ D) ⊓ ¬A)(a0)}}.

Apply ⊔-rule to A′
0:

get S = {A1,A2 } where A1 = A′
0 ∪ {A(a0)} and A2 = A′

0 ∪ {B(a0)}.
Apply ⊓-rule to A1:
get S = {A′

1,A2 } where A′
1 = A1 ∪ {(¬B ⊔ D)(a0),¬A(a0)}

Apply ⊓-rule to A2:
get S = {A′

1,A′
2 } where A′

2 = A2 ∪ {(¬B ⊔ D)(a0),¬A(a0)}
Apply ⊔-rule to A′

2:
get S = {A′

1,A3,A4 } where A3 = A′
2 ∪ {¬B(a0)}, A4 = A′

2 ∪ {D(a0)}

7/33

first example: ⊓ and ⊔

Test satisfiability of concept C = (A ⊔ B) ⊓ ((¬B ⊔ D) ⊓ ¬A)

Start with S = {A0 } where A0 = { ((A ⊔ B) ⊓ ((¬B ⊔ D) ⊓ ¬A))(a0) }.
Apply ⊓-rule to A0:
get S = {A′

0 } where A′
0 = A0 ∪ {(A ⊔ B)(a0), ((¬B ⊔ D) ⊓ ¬A)(a0)}}.

Apply ⊔-rule to A′
0:

get S = {A1,A2 } where A1 = A′
0 ∪ {A(a0)} and A2 = A′

0 ∪ {B(a0)}.
Apply ⊓-rule to A1:
get S = {A′

1,A2 } where A′
1 = A1 ∪ {(¬B ⊔ D)(a0),¬A(a0)}

A′
1 contains clash {A(a0),¬A(a0)}!

Apply ⊓-rule to A2:
get S = {A′

1,A′
2 } where A′

2 = A2 ∪ {(¬B ⊔ D)(a0),¬A(a0)}
Apply ⊔-rule to A′

2:
get S = {A′

1,A3,A4 } where A3 = A′
2 ∪ {¬B(a0)}, A4 = A′

2 ∪ {D(a0)}

7/33

first example: ⊓ and ⊔

Test satisfiability of concept C = (A ⊔ B) ⊓ ((¬B ⊔ D) ⊓ ¬A)

Start with S = {A0 } where A0 = { ((A ⊔ B) ⊓ ((¬B ⊔ D) ⊓ ¬A))(a0) }.
Apply ⊓-rule to A0:
get S = {A′

0 } where A′
0 = A0 ∪ {(A ⊔ B)(a0), ((¬B ⊔ D) ⊓ ¬A)(a0)}}.

Apply ⊔-rule to A′
0:

get S = {A1,A2 } where A1 = A′
0 ∪ {A(a0)} and A2 = A′

0 ∪ {B(a0)}.
Apply ⊓-rule to A1:
get S = {A′

1,A2 } where A′
1 = A1 ∪ {(¬B ⊔ D)(a0),¬A(a0)}

Apply ⊓-rule to A2:
get S = {A′

1,A′
2 } where A′

2 = A2 ∪ {(¬B ⊔ D)(a0),¬A(a0)}
Apply ⊔-rule to A′

2:
get S = {A′

1,A3,A4 } where A3 = A′
2 ∪ {¬B(a0)}, A4 = A′

2 ∪ {D(a0)}

7/33

first example: ⊓ and ⊔

Test satisfiability of concept C = (A ⊔ B) ⊓ ((¬B ⊔ D) ⊓ ¬A)

Start with S = {A0 } where A0 = { ((A ⊔ B) ⊓ ((¬B ⊔ D) ⊓ ¬A))(a0) }.
Apply ⊓-rule to A0:
get S = {A′

0 } where A′
0 = A0 ∪ {(A ⊔ B)(a0), ((¬B ⊔ D) ⊓ ¬A)(a0)}}.

Apply ⊔-rule to A′
0:

get S = {A1,A2 } where A1 = A′
0 ∪ {A(a0)} and A2 = A′

0 ∪ {B(a0)}.
Apply ⊓-rule to A1:
get S = {A′

1,A2 } where A′
1 = A1 ∪ {(¬B ⊔ D)(a0),¬A(a0)}

Apply ⊓-rule to A2:
get S = {A′

1,A′
2 } where A′

2 = A2 ∪ {(¬B ⊔ D)(a0),¬A(a0)}

Apply ⊔-rule to A′
2:

get S = {A′
1,A3,A4 } where A3 = A′

2 ∪ {¬B(a0)}, A4 = A′
2 ∪ {D(a0)}

7/33

first example: ⊓ and ⊔

Test satisfiability of concept C = (A ⊔ B) ⊓ ((¬B ⊔ D) ⊓ ¬A)

Start with S = {A0 } where A0 = { ((A ⊔ B) ⊓ ((¬B ⊔ D) ⊓ ¬A))(a0) }.
Apply ⊓-rule to A0:
get S = {A′

0 } where A′
0 = A0 ∪ {(A ⊔ B)(a0), ((¬B ⊔ D) ⊓ ¬A)(a0)}}.

Apply ⊔-rule to A′
0:

get S = {A1,A2 } where A1 = A′
0 ∪ {A(a0)} and A2 = A′

0 ∪ {B(a0)}.
Apply ⊓-rule to A1:
get S = {A′

1,A2 } where A′
1 = A1 ∪ {(¬B ⊔ D)(a0),¬A(a0)}

Apply ⊓-rule to A2:
get S = {A′

1,A′
2 } where A′

2 = A2 ∪ {(¬B ⊔ D)(a0),¬A(a0)}

Apply ⊔-rule to A′
2:

get S = {A′
1,A3,A4 } where A3 = A′

2 ∪ {¬B(a0)}, A4 = A′
2 ∪ {D(a0)}

7/33

first example: ⊓ and ⊔

Test satisfiability of concept C = (A ⊔ B) ⊓ ((¬B ⊔ D) ⊓ ¬A)

Start with S = {A0 } where A0 = { ((A ⊔ B) ⊓ ((¬B ⊔ D) ⊓ ¬A))(a0) }.
Apply ⊓-rule to A0:
get S = {A′

0 } where A′
0 = A0 ∪ {(A ⊔ B)(a0), ((¬B ⊔ D) ⊓ ¬A)(a0)}}.

Apply ⊔-rule to A′
0:

get S = {A1,A2 } where A1 = A′
0 ∪ {A(a0)} and A2 = A′

0 ∪ {B(a0)}.
Apply ⊓-rule to A1:
get S = {A′

1,A2 } where A′
1 = A1 ∪ {(¬B ⊔ D)(a0),¬A(a0)}

Apply ⊓-rule to A2:
get S = {A′

1,A′
2 } where A′

2 = A2 ∪ {(¬B ⊔ D)(a0),¬A(a0)}
Apply ⊔-rule to A′

2:
get S = {A′

1,A3,A4 } where A3 = A′
2 ∪ {¬B(a0)}, A4 = A′

2 ∪ {D(a0)}

7/33

first example: ⊓ and ⊔

Test satisfiability of concept C = (A ⊔ B) ⊓ ((¬B ⊔ D) ⊓ ¬A)

Start with S = {A0 } where A0 = { ((A ⊔ B) ⊓ ((¬B ⊔ D) ⊓ ¬A))(a0) }.
Apply ⊓-rule to A0:
get S = {A′

0 } where A′
0 = A0 ∪ {(A ⊔ B)(a0), ((¬B ⊔ D) ⊓ ¬A)(a0)}}.

Apply ⊔-rule to A′
0:

get S = {A1,A2 } where A1 = A′
0 ∪ {A(a0)} and A2 = A′

0 ∪ {B(a0)}.
Apply ⊓-rule to A1:
get S = {A′

1,A2 } where A′
1 = A1 ∪ {(¬B ⊔ D)(a0),¬A(a0)}

Apply ⊓-rule to A2:
get S = {A′

1,A′
2 } where A′

2 = A2 ∪ {(¬B ⊔ D)(a0),¬A(a0)}
Apply ⊔-rule to A′

2:
get S = {A′

1,A3,A4 } where A3 = A′
2 ∪ {¬B(a0)}, A4 = A′

2 ∪ {D(a0)}
A3 contains clash {B(a0),¬B(a0)}!

7/33

first example: ⊓ and ⊔

Test satisfiability of concept C = (A ⊔ B) ⊓ ((¬B ⊔ D) ⊓ ¬A)

Start with S = {A0 } where A0 = { ((A ⊔ B) ⊓ ((¬B ⊔ D) ⊓ ¬A))(a0) }.
Apply ⊓-rule to A0:
get S = {A′

0 } where A′
0 = A0 ∪ {(A ⊔ B)(a0), ((¬B ⊔ D) ⊓ ¬A)(a0)}}.

Apply ⊔-rule to A′
0:

get S = {A1,A2 } where A1 = A′
0 ∪ {A(a0)} and A2 = A′

0 ∪ {B(a0)}.
Apply ⊓-rule to A1:
get S = {A′

1,A2 } where A′
1 = A1 ∪ {(¬B ⊔ D)(a0),¬A(a0)}

Apply ⊓-rule to A2:
get S = {A′

1,A′
2 } where A′

2 = A2 ∪ {(¬B ⊔ D)(a0),¬A(a0)}
Apply ⊔-rule to A′

2:
get S = {A′

1,A3,A4 } where A3 = A′
2 ∪ {¬B(a0)}, A4 = A′

2 ∪ {D(a0)}
A4 is complete, so we can stop.

7/33

first example: ⊓ and ⊔

Test satisfiability of concept C = (A ⊔ B) ⊓ ((¬B ⊔ D) ⊓ ¬A)

Start with S = {A0 } where A0 = { ((A ⊔ B) ⊓ ((¬B ⊔ D) ⊓ ¬A))(a0) }.
Apply ⊓-rule to A0:
get S = {A′

0 } where A′
0 = A0 ∪ {(A ⊔ B)(a0), ((¬B ⊔ D) ⊓ ¬A)(a0)}}.

Apply ⊔-rule to A′
0:

get S = {A1,A2 } where A1 = A′
0 ∪ {A(a0)} and A2 = A′

0 ∪ {B(a0)}.
Apply ⊓-rule to A1:
get S = {A′

1,A2 } where A′
1 = A1 ∪ {(¬B ⊔ D)(a0),¬A(a0)}

Apply ⊓-rule to A2:
get S = {A′

1,A′
2 } where A′

2 = A2 ∪ {(¬B ⊔ D)(a0),¬A(a0)}
Apply ⊔-rule to A′

2:
get S = {A′

1,A3,A4 } where A3 = A′
2 ∪ {¬B(a0)}, A4 = A′

2 ∪ {D(a0)}
A4 is complete and contains no clash⇒ C0 is satisfiable

7/33

previous example in graphical format

Test satisfiability of concept C = (A ⊔ B) ⊓ ((¬B ⊔ D) ⊓ ¬A)

(A tB) u ((¬B tD) u ¬A) (a0)

8/33

previous example in graphical format

Test satisfiability of concept C = (A ⊔ B) ⊓ ((¬B ⊔ D) ⊓ ¬A)

(A tB) (a0)

(A tB) u ((¬B tD) u ¬A) (a0)

((¬B tD) u ¬A) (a0) u-rule

8/33

previous example in graphical format

Test satisfiability of concept C = (A ⊔ B) ⊓ ((¬B ⊔ D) ⊓ ¬A)

(A tB) (a0)

(A tB) u ((¬B tD) u ¬A) (a0)

((¬B tD) u ¬A) (a0)

A (a0) B (a0) t-rule

8/33

previous example in graphical format

Test satisfiability of concept C = (A ⊔ B) ⊓ ((¬B ⊔ D) ⊓ ¬A)

(A tB) (a0)

(A tB) u ((¬B tD) u ¬A) (a0)

((¬B tD) u ¬A) (a0)

A (a0) B (a0)

(¬B tD) (a0)

¬A (a0)

u-rule

8/33

previous example in graphical format

Test satisfiability of concept C = (A ⊔ B) ⊓ ((¬B ⊔ D) ⊓ ¬A)

(A tB) (a0)

(A tB) u ((¬B tD) u ¬A) (a0)

((¬B tD) u ¬A) (a0)

A (a0) B (a0)

(¬B tD) (a0)

¬A (a0)

(¬B tD) (a0)

¬A (a0)

u-rule

8/33

previous example in graphical format

Test satisfiability of concept C = (A ⊔ B) ⊓ ((¬B ⊔ D) ⊓ ¬A)

(A tB) (a0)

(A tB) u ((¬B tD) u ¬A) (a0)

((¬B tD) u ¬A) (a0)

A (a0) B (a0)

(¬B tD) (a0)

¬A (a0)

(¬B tD) (a0)

¬A (a0)

¬B (a0) D (a0) t-rule

8/33

previous example in graphical format

Test satisfiability of concept C = (A ⊔ B) ⊓ ((¬B ⊔ D) ⊓ ¬A)

(A tB) (a0)

(A tB) u ((¬B tD) u ¬A) (a0)

((¬B tD) u ¬A) (a0)

A (a0) B (a0)

(¬B tD) (a0)

¬A (a0)

(¬B tD) (a0)

¬A (a0)

¬B (a0) D (a0)

8/33

previous example in graphical format

Test satisfiability of concept C = (A ⊔ B) ⊓ ((¬B ⊔ D) ⊓ ¬A)

(A tB) (a0)

(A tB) u ((¬B tD) u ¬A) (a0)

((¬B tD) u ¬A) (a0)

A (a0) B (a0)

(¬B tD) (a0)

¬A (a0)

✘

✔

(¬B tD) (a0)

¬A (a0)

¬B (a0) D (a0)

✘

8/33

example: witnessing interpretation

In our example, we had the complete and clash-free ABox A4:

((A ⊔ B) ⊓ ((¬B ⊔ D) ⊓ ¬A))(a0) (A ⊔ B)(a0)
((¬B ⊔ D) ⊓ ¬A)(a0) B(a0) (¬B ⊔ D)(a0) ¬A(a0) D(a0)

Can build from A4 the interpretation I with:

∙ ∆I = {a0} use individuals from A4

∙ AI = ∅ since A4 does not contain A(a0)

∙ BI = DI = {a0} since A4 contains B(a0) and D(a0)

We can verify that (A ⊔ B) ⊓ ((¬B ⊔ D) ⊓ ¬A)I = {a0}.

∙ I witnesses the satisfiability of C0 = (A ⊔ B) ⊓ ((¬B ⊔ D) ⊓ ¬A)

9/33

another example: ∀ and ∃

Let’s use the tableau procedure to test satisfiability of

C = ∃r.A ⊓ ∀r.¬A

Start with S = {A0 } where A0 = { (∃r.A ⊓ ∀r.¬A)(a0) }.
Apply ⊓-rule to A0:
get S = {A′

0 } where A′
0 = A0 ∪ {(∃r.A)(a0), (∀r.¬A)(a0)}}.

Apply ∃-rule to A′
0:

get S = {A′′
0 } where A′′

0 = A′
0 ∪ {r(a0,a1),A(a1)}.

Apply ∀-rule to A′′
0 :

get S = {A′′′
0 } where A′′′

0 = A′′
0 ∪ {¬A(a1)}.

A′′′
0 contains clash {A(a1),¬A(a1)}!

The only ABox in S contains a clash⇒ C0 is unsatisfiable

10/33

another example: ∀ and ∃

Let’s use the tableau procedure to test satisfiability of

C = ∃r.A ⊓ ∀r.¬A

Start with S = {A0 } where A0 = { (∃r.A ⊓ ∀r.¬A)(a0) }.

Apply ⊓-rule to A0:
get S = {A′

0 } where A′
0 = A0 ∪ {(∃r.A)(a0), (∀r.¬A)(a0)}}.

Apply ∃-rule to A′
0:

get S = {A′′
0 } where A′′

0 = A′
0 ∪ {r(a0,a1),A(a1)}.

Apply ∀-rule to A′′
0 :

get S = {A′′′
0 } where A′′′

0 = A′′
0 ∪ {¬A(a1)}.

A′′′
0 contains clash {A(a1),¬A(a1)}!

The only ABox in S contains a clash⇒ C0 is unsatisfiable

10/33

another example: ∀ and ∃

Let’s use the tableau procedure to test satisfiability of

C = ∃r.A ⊓ ∀r.¬A

Start with S = {A0 } where A0 = { (∃r.A ⊓ ∀r.¬A)(a0) }.
Apply ⊓-rule to A0:
get S = {A′

0 } where A′
0 = A0 ∪ {(∃r.A)(a0), (∀r.¬A)(a0)}}.

Apply ∃-rule to A′
0:

get S = {A′′
0 } where A′′

0 = A′
0 ∪ {r(a0,a1),A(a1)}.

Apply ∀-rule to A′′
0 :

get S = {A′′′
0 } where A′′′

0 = A′′
0 ∪ {¬A(a1)}.

A′′′
0 contains clash {A(a1),¬A(a1)}!

The only ABox in S contains a clash⇒ C0 is unsatisfiable

10/33

another example: ∀ and ∃

Let’s use the tableau procedure to test satisfiability of

C = ∃r.A ⊓ ∀r.¬A

Start with S = {A0 } where A0 = { (∃r.A ⊓ ∀r.¬A)(a0) }.
Apply ⊓-rule to A0:
get S = {A′

0 } where A′
0 = A0 ∪ {(∃r.A)(a0), (∀r.¬A)(a0)}}.

Apply ∃-rule to A′
0:

get S = {A′′
0 } where A′′

0 = A′
0 ∪ {r(a0,a1),A(a1)}.

Apply ∀-rule to A′′
0 :

get S = {A′′′
0 } where A′′′

0 = A′′
0 ∪ {¬A(a1)}.

A′′′
0 contains clash {A(a1),¬A(a1)}!

The only ABox in S contains a clash⇒ C0 is unsatisfiable

10/33

another example: ∀ and ∃

Let’s use the tableau procedure to test satisfiability of

C = ∃r.A ⊓ ∀r.¬A

Start with S = {A0 } where A0 = { (∃r.A ⊓ ∀r.¬A)(a0) }.
Apply ⊓-rule to A0:
get S = {A′

0 } where A′
0 = A0 ∪ {(∃r.A)(a0), (∀r.¬A)(a0)}}.

Apply ∃-rule to A′
0:

get S = {A′′
0 } where A′′

0 = A′
0 ∪ {r(a0,a1),A(a1)}.

Apply ∀-rule to A′′
0 :

get S = {A′′′
0 } where A′′′

0 = A′′
0 ∪ {¬A(a1)}.

A′′′
0 contains clash {A(a1),¬A(a1)}!

The only ABox in S contains a clash⇒ C0 is unsatisfiable

10/33

another example: ∀ and ∃

Let’s use the tableau procedure to test satisfiability of

C = ∃r.A ⊓ ∀r.¬A

Start with S = {A0 } where A0 = { (∃r.A ⊓ ∀r.¬A)(a0) }.
Apply ⊓-rule to A0:
get S = {A′

0 } where A′
0 = A0 ∪ {(∃r.A)(a0), (∀r.¬A)(a0)}}.

Apply ∃-rule to A′
0:

get S = {A′′
0 } where A′′

0 = A′
0 ∪ {r(a0,a1),A(a1)}.

Apply ∀-rule to A′′
0 :

get S = {A′′′
0 } where A′′′

0 = A′′
0 ∪ {¬A(a1)}.

A′′′
0 contains clash {A(a1),¬A(a1)}!

The only ABox in S contains a clash⇒ C0 is unsatisfiable

10/33

another example: ∀ and ∃

Let’s use the tableau procedure to test satisfiability of

C = ∃r.A ⊓ ∀r.¬A

Start with S = {A0 } where A0 = { (∃r.A ⊓ ∀r.¬A)(a0) }.
Apply ⊓-rule to A0:
get S = {A′

0 } where A′
0 = A0 ∪ {(∃r.A)(a0), (∀r.¬A)(a0)}}.

Apply ∃-rule to A′
0:

get S = {A′′
0 } where A′′

0 = A′
0 ∪ {r(a0,a1),A(a1)}.

Apply ∀-rule to A′′
0 :

get S = {A′′′
0 } where A′′′

0 = A′′
0 ∪ {¬A(a1)}.

A′′′
0 contains clash {A(a1),¬A(a1)}!

The only ABox in S contains a clash⇒ C0 is unsatisfiable

10/33

another example: ∀ and ∃

Let’s use the tableau procedure to test satisfiability of

C = ∃r.A ⊓ ∀r.¬A

Start with S = {A0 } where A0 = { (∃r.A ⊓ ∀r.¬A)(a0) }.
Apply ⊓-rule to A0:
get S = {A′

0 } where A′
0 = A0 ∪ {(∃r.A)(a0), (∀r.¬A)(a0)}}.

Apply ∃-rule to A′
0:

get S = {A′′
0 } where A′′

0 = A′
0 ∪ {r(a0,a1),A(a1)}.

Apply ∀-rule to A′′
0 :

get S = {A′′′
0 } where A′′′

0 = A′′
0 ∪ {¬A(a1)}.

A′′′
0 contains clash {A(a1),¬A(a1)}!

The only ABox in S contains a clash⇒ C0 is unsatisfiable

10/33

another example: ∀ and ∃

Let’s use the tableau procedure to test satisfiability of

C = ∃r.A ⊓ ∀r.¬A

Start with S = {A0 } where A0 = { (∃r.A ⊓ ∀r.¬A)(a0) }.
Apply ⊓-rule to A0:
get S = {A′

0 } where A′
0 = A0 ∪ {(∃r.A)(a0), (∀r.¬A)(a0)}}.

Apply ∃-rule to A′
0:

get S = {A′′
0 } where A′′

0 = A′
0 ∪ {r(a0,a1),A(a1)}.

Apply ∀-rule to A′′
0 :

get S = {A′′′
0 } where A′′′

0 = A′′
0 ∪ {¬A(a1)}.

A′′′
0 contains clash {A(a1),¬A(a1)}!

The only ABox in S contains a clash⇒ C0 is unsatisfiable

10/33

previous example in graphical format

Test satisfiability of concept C = ∃r.A ⊓ ∀r.¬A

(9r.A u 8r.¬A)(a0)
<latexit sha1_base64="STR7qMdNn/Psm3PXWFYZA64szvo=">AAACFnicbVA9SwNBEN3z2/gVtbRZDEIsDHdR0DJqYxnBJELuCHObSVzc2zt398Rw5FfY+FdsLBSxFTv/jZuPQhMfDDzem2FmXpgIro3rfjszs3PzC4tLy7mV1bX1jfzmVl3HqWJYY7GI1XUIGgWXWDPcCLxOFEIUCmyEt+cDv3GPSvNYXplegkEEXck7nIGxUit/UPTxwa7RVJXoKfX1HYOE+p1YgRADzZfYpaf7tAgtd7+VL7gldwg6TbwxKZAxqq38l9+OWRqhNEyA1k3PTUyQgTKcCezn/FRjAuwWuti0VEKEOsiGb/XpnlXa1J5iSxo6VH9PZBBp3YtC2xmBudGT3kD8z2umpnMSZFwmqUHJRos6qaAmpoOMaJsrZEb0LAGmuL2VshtQwIxNMmdD8CZfnib1csk7LJUvjwqVs3EcS2SH7JIi8cgxqZALUiU1wsgjeSav5M15cl6cd+dj1DrjjGe2yR84nz/jNJyn</latexit>

Conclude that C is unsatisfiable

11/33

previous example in graphical format

Test satisfiability of concept C = ∃r.A ⊓ ∀r.¬A

u-rule
(9r.A u 8r.¬A)(a0)

<latexit sha1_base64="STR7qMdNn/Psm3PXWFYZA64szvo=">AAACFnicbVA9SwNBEN3z2/gVtbRZDEIsDHdR0DJqYxnBJELuCHObSVzc2zt398Rw5FfY+FdsLBSxFTv/jZuPQhMfDDzem2FmXpgIro3rfjszs3PzC4tLy7mV1bX1jfzmVl3HqWJYY7GI1XUIGgWXWDPcCLxOFEIUCmyEt+cDv3GPSvNYXplegkEEXck7nIGxUit/UPTxwa7RVJXoKfX1HYOE+p1YgRADzZfYpaf7tAgtd7+VL7gldwg6TbwxKZAxqq38l9+OWRqhNEyA1k3PTUyQgTKcCezn/FRjAuwWuti0VEKEOsiGb/XpnlXa1J5iSxo6VH9PZBBp3YtC2xmBudGT3kD8z2umpnMSZFwmqUHJRos6qaAmpoOMaJsrZEb0LAGmuL2VshtQwIxNMmdD8CZfnib1csk7LJUvjwqVs3EcS2SH7JIi8cgxqZALUiU1wsgjeSav5M15cl6cd+dj1DrjjGe2yR84nz/jNJyn</latexit>

(9r.A)(a0)
<latexit sha1_base64="k1R98jLCN9hlCIvRIG5pMHcnDcs=">AAAB/XicbVDLSsNAFL3xWesrPnZuBovQbkJSBV1W3bisYB/QhjCZTtqhkwczE7GG4q+4caGIW//DnX/jtM1CWw9cOJxzL/fe4yecSWXb38bS8srq2npho7i5tb2za+7tN2WcCkIbJOaxaPtYUs4i2lBMcdpOBMWhz2nLH15P/NY9FZLF0Z0aJdQNcT9iASNYackzD8td+qDXSCQsdFlBZezZFc8s2ZY9BVokTk5KkKPumV/dXkzSkEaKcCxlx7ET5WZYKEY4HRe7qaQJJkPcpx1NIxxS6WbT68foRCs9FMRCV6TQVP09keFQylHo684Qq4Gc9ybif14nVcGFm7EoSRWNyGxRkHKkYjSJAvWYoETxkSaYCKZvRWSABSZKB1bUITjzLy+SZtVyTq3q7VmpdpXHUYAjOIYyOHAONbiBOjSAwCM8wyu8GU/Gi/FufMxal4x85gD+wPj8AXSHk0Y=</latexit>

(8r.¬A)(a0)
<latexit sha1_base64="IuqpHHKM1rlX0zCo6kvq+1e2mBg=">AAACAnicbVBNS8NAEN3Ur1q/op7Ey2IR2ktJqqDHqhePFewHNKFstpN26WYTdjdCKcWLf8WLB0W8+iu8+W/ctjlo64OBx3szzMwLEs6UdpxvK7eyura+kd8sbG3v7O7Z+wdNFaeSQoPGPJbtgCjgTEBDM82hnUggUcChFQxvpn7rAaRisbjXowT8iPQFCxkl2khd+6jkhbEknGNZwZ6APr4q4xLpOuWuXXQqzgx4mbgZKaIM9a795fVimkYgNOVEqY7rJNofE6kZ5TApeKmChNAh6UPHUEEiUP549sIEnxqlh80ppoTGM/X3xJhESo2iwHRGRA/UojcV//M6qQ4v/TETSapB0PmiMOVYx3iaB+4xCVTzkSGESmZuxXRAJKHapFYwIbiLLy+TZrXinlWqd+fF2nUWRx4doxNUQi66QDV0i+qogSh6RM/oFb1ZT9aL9W59zFtzVjZziP7A+vwBuUyVDg==</latexit>

Conclude that C is unsatisfiable

11/33

previous example in graphical format

Test satisfiability of concept C = ∃r.A ⊓ ∀r.¬A

9-rule
A (a1)

(9r.A u 8r.¬A)(a0)
<latexit sha1_base64="STR7qMdNn/Psm3PXWFYZA64szvo=">AAACFnicbVA9SwNBEN3z2/gVtbRZDEIsDHdR0DJqYxnBJELuCHObSVzc2zt398Rw5FfY+FdsLBSxFTv/jZuPQhMfDDzem2FmXpgIro3rfjszs3PzC4tLy7mV1bX1jfzmVl3HqWJYY7GI1XUIGgWXWDPcCLxOFEIUCmyEt+cDv3GPSvNYXplegkEEXck7nIGxUit/UPTxwa7RVJXoKfX1HYOE+p1YgRADzZfYpaf7tAgtd7+VL7gldwg6TbwxKZAxqq38l9+OWRqhNEyA1k3PTUyQgTKcCezn/FRjAuwWuti0VEKEOsiGb/XpnlXa1J5iSxo6VH9PZBBp3YtC2xmBudGT3kD8z2umpnMSZFwmqUHJRos6qaAmpoOMaJsrZEb0LAGmuL2VshtQwIxNMmdD8CZfnib1csk7LJUvjwqVs3EcS2SH7JIi8cgxqZALUiU1wsgjeSav5M15cl6cd+dj1DrjjGe2yR84nz/jNJyn</latexit>

(9r.A)(a0)
<latexit sha1_base64="k1R98jLCN9hlCIvRIG5pMHcnDcs=">AAAB/XicbVDLSsNAFL3xWesrPnZuBovQbkJSBV1W3bisYB/QhjCZTtqhkwczE7GG4q+4caGIW//DnX/jtM1CWw9cOJxzL/fe4yecSWXb38bS8srq2npho7i5tb2za+7tN2WcCkIbJOaxaPtYUs4i2lBMcdpOBMWhz2nLH15P/NY9FZLF0Z0aJdQNcT9iASNYackzD8td+qDXSCQsdFlBZezZFc8s2ZY9BVokTk5KkKPumV/dXkzSkEaKcCxlx7ET5WZYKEY4HRe7qaQJJkPcpx1NIxxS6WbT68foRCs9FMRCV6TQVP09keFQylHo684Qq4Gc9ybif14nVcGFm7EoSRWNyGxRkHKkYjSJAvWYoETxkSaYCKZvRWSABSZKB1bUITjzLy+SZtVyTq3q7VmpdpXHUYAjOIYyOHAONbiBOjSAwCM8wyu8GU/Gi/FufMxal4x85gD+wPj8AXSHk0Y=</latexit>

(8r.¬A)(a0)
<latexit sha1_base64="IuqpHHKM1rlX0zCo6kvq+1e2mBg=">AAACAnicbVBNS8NAEN3Ur1q/op7Ey2IR2ktJqqDHqhePFewHNKFstpN26WYTdjdCKcWLf8WLB0W8+iu8+W/ctjlo64OBx3szzMwLEs6UdpxvK7eyura+kd8sbG3v7O7Z+wdNFaeSQoPGPJbtgCjgTEBDM82hnUggUcChFQxvpn7rAaRisbjXowT8iPQFCxkl2khd+6jkhbEknGNZwZ6APr4q4xLpOuWuXXQqzgx4mbgZKaIM9a795fVimkYgNOVEqY7rJNofE6kZ5TApeKmChNAh6UPHUEEiUP549sIEnxqlh80ppoTGM/X3xJhESo2iwHRGRA/UojcV//M6qQ4v/TETSapB0PmiMOVYx3iaB+4xCVTzkSGESmZuxXRAJKHapFYwIbiLLy+TZrXinlWqd+fF2nUWRx4doxNUQi66QDV0i+qogSh6RM/oFb1ZT9aL9W59zFtzVjZziP7A+vwBuUyVDg==</latexit>

r(a0, a1)
<latexit sha1_base64="y6LD5ra8Ossl/Lb1JFr7T+vuXcc=">AAAB8XicbVBNS8NAEJ34WetX1aOXYBEqSEmqoMeiF48V7Ae2IUy2m3bpZhN2N0IJ/RdePCji1X/jzX/jts1BWx8MPN6bYWZekHCmtON8Wyura+sbm4Wt4vbO7t5+6eCwpeJUEtokMY9lJ0BFORO0qZnmtJNIilHAaTsY3U799hOVisXiQY8T6kU4ECxkBLWRHmUFfeccfffML5WdqjODvUzcnJQhR8MvffX6MUkjKjThqFTXdRLtZSg1I5xOir1U0QTJCAe0a6jAiCovm108sU+N0rfDWJoS2p6pvycyjJQaR4HpjFAP1aI3Ff/zuqkOr72MiSTVVJD5ojDlto7t6ft2n0lKNB8bgkQyc6tNhiiRaBNS0YTgLr68TFq1qntRrd1flus3eRwFOIYTqIALV1CHO2hAEwgIeIZXeLOU9WK9Wx/z1hUrnzmCP7A+fwDPU4+y</latexit>

Conclude that C is unsatisfiable

11/33

previous example in graphical format

Test satisfiability of concept C = ∃r.A ⊓ ∀r.¬A

8-rule
A (a1)

¬A (a1)

(9r.A u 8r.¬A)(a0)
<latexit sha1_base64="STR7qMdNn/Psm3PXWFYZA64szvo=">AAACFnicbVA9SwNBEN3z2/gVtbRZDEIsDHdR0DJqYxnBJELuCHObSVzc2zt398Rw5FfY+FdsLBSxFTv/jZuPQhMfDDzem2FmXpgIro3rfjszs3PzC4tLy7mV1bX1jfzmVl3HqWJYY7GI1XUIGgWXWDPcCLxOFEIUCmyEt+cDv3GPSvNYXplegkEEXck7nIGxUit/UPTxwa7RVJXoKfX1HYOE+p1YgRADzZfYpaf7tAgtd7+VL7gldwg6TbwxKZAxqq38l9+OWRqhNEyA1k3PTUyQgTKcCezn/FRjAuwWuti0VEKEOsiGb/XpnlXa1J5iSxo6VH9PZBBp3YtC2xmBudGT3kD8z2umpnMSZFwmqUHJRos6qaAmpoOMaJsrZEb0LAGmuL2VshtQwIxNMmdD8CZfnib1csk7LJUvjwqVs3EcS2SH7JIi8cgxqZALUiU1wsgjeSav5M15cl6cd+dj1DrjjGe2yR84nz/jNJyn</latexit>

(9r.A)(a0)
<latexit sha1_base64="k1R98jLCN9hlCIvRIG5pMHcnDcs=">AAAB/XicbVDLSsNAFL3xWesrPnZuBovQbkJSBV1W3bisYB/QhjCZTtqhkwczE7GG4q+4caGIW//DnX/jtM1CWw9cOJxzL/fe4yecSWXb38bS8srq2npho7i5tb2za+7tN2WcCkIbJOaxaPtYUs4i2lBMcdpOBMWhz2nLH15P/NY9FZLF0Z0aJdQNcT9iASNYackzD8td+qDXSCQsdFlBZezZFc8s2ZY9BVokTk5KkKPumV/dXkzSkEaKcCxlx7ET5WZYKEY4HRe7qaQJJkPcpx1NIxxS6WbT68foRCs9FMRCV6TQVP09keFQylHo684Qq4Gc9ybif14nVcGFm7EoSRWNyGxRkHKkYjSJAvWYoETxkSaYCKZvRWSABSZKB1bUITjzLy+SZtVyTq3q7VmpdpXHUYAjOIYyOHAONbiBOjSAwCM8wyu8GU/Gi/FufMxal4x85gD+wPj8AXSHk0Y=</latexit>

(8r.¬A)(a0)
<latexit sha1_base64="IuqpHHKM1rlX0zCo6kvq+1e2mBg=">AAACAnicbVBNS8NAEN3Ur1q/op7Ey2IR2ktJqqDHqhePFewHNKFstpN26WYTdjdCKcWLf8WLB0W8+iu8+W/ctjlo64OBx3szzMwLEs6UdpxvK7eyura+kd8sbG3v7O7Z+wdNFaeSQoPGPJbtgCjgTEBDM82hnUggUcChFQxvpn7rAaRisbjXowT8iPQFCxkl2khd+6jkhbEknGNZwZ6APr4q4xLpOuWuXXQqzgx4mbgZKaIM9a795fVimkYgNOVEqY7rJNofE6kZ5TApeKmChNAh6UPHUEEiUP549sIEnxqlh80ppoTGM/X3xJhESo2iwHRGRA/UojcV//M6qQ4v/TETSapB0PmiMOVYx3iaB+4xCVTzkSGESmZuxXRAJKHapFYwIbiLLy+TZrXinlWqd+fF2nUWRx4doxNUQi66QDV0i+qogSh6RM/oFb1ZT9aL9W59zFtzVjZziP7A+vwBuUyVDg==</latexit>

r(a0, a1)
<latexit sha1_base64="y6LD5ra8Ossl/Lb1JFr7T+vuXcc=">AAAB8XicbVBNS8NAEJ34WetX1aOXYBEqSEmqoMeiF48V7Ae2IUy2m3bpZhN2N0IJ/RdePCji1X/jzX/jts1BWx8MPN6bYWZekHCmtON8Wyura+sbm4Wt4vbO7t5+6eCwpeJUEtokMY9lJ0BFORO0qZnmtJNIilHAaTsY3U799hOVisXiQY8T6kU4ECxkBLWRHmUFfeccfffML5WdqjODvUzcnJQhR8MvffX6MUkjKjThqFTXdRLtZSg1I5xOir1U0QTJCAe0a6jAiCovm108sU+N0rfDWJoS2p6pvycyjJQaR4HpjFAP1aI3Ff/zuqkOr72MiSTVVJD5ojDlto7t6ft2n0lKNB8bgkQyc6tNhiiRaBNS0YTgLr68TFq1qntRrd1flus3eRwFOIYTqIALV1CHO2hAEwgIeIZXeLOU9WK9Wx/z1hUrnzmCP7A+fwDPU4+y</latexit>

Conclude that C is unsatisfiable

11/33

previous example in graphical format

Test satisfiability of concept C = ∃r.A ⊓ ∀r.¬A

A (a1)

¬A (a1)

✘

(9r.A u 8r.¬A)(a0)
<latexit sha1_base64="STR7qMdNn/Psm3PXWFYZA64szvo=">AAACFnicbVA9SwNBEN3z2/gVtbRZDEIsDHdR0DJqYxnBJELuCHObSVzc2zt398Rw5FfY+FdsLBSxFTv/jZuPQhMfDDzem2FmXpgIro3rfjszs3PzC4tLy7mV1bX1jfzmVl3HqWJYY7GI1XUIGgWXWDPcCLxOFEIUCmyEt+cDv3GPSvNYXplegkEEXck7nIGxUit/UPTxwa7RVJXoKfX1HYOE+p1YgRADzZfYpaf7tAgtd7+VL7gldwg6TbwxKZAxqq38l9+OWRqhNEyA1k3PTUyQgTKcCezn/FRjAuwWuti0VEKEOsiGb/XpnlXa1J5iSxo6VH9PZBBp3YtC2xmBudGT3kD8z2umpnMSZFwmqUHJRos6qaAmpoOMaJsrZEb0LAGmuL2VshtQwIxNMmdD8CZfnib1csk7LJUvjwqVs3EcS2SH7JIi8cgxqZALUiU1wsgjeSav5M15cl6cd+dj1DrjjGe2yR84nz/jNJyn</latexit>

(9r.A)(a0)
<latexit sha1_base64="k1R98jLCN9hlCIvRIG5pMHcnDcs=">AAAB/XicbVDLSsNAFL3xWesrPnZuBovQbkJSBV1W3bisYB/QhjCZTtqhkwczE7GG4q+4caGIW//DnX/jtM1CWw9cOJxzL/fe4yecSWXb38bS8srq2npho7i5tb2za+7tN2WcCkIbJOaxaPtYUs4i2lBMcdpOBMWhz2nLH15P/NY9FZLF0Z0aJdQNcT9iASNYackzD8td+qDXSCQsdFlBZezZFc8s2ZY9BVokTk5KkKPumV/dXkzSkEaKcCxlx7ET5WZYKEY4HRe7qaQJJkPcpx1NIxxS6WbT68foRCs9FMRCV6TQVP09keFQylHo684Qq4Gc9ybif14nVcGFm7EoSRWNyGxRkHKkYjSJAvWYoETxkSaYCKZvRWSABSZKB1bUITjzLy+SZtVyTq3q7VmpdpXHUYAjOIYyOHAONbiBOjSAwCM8wyu8GU/Gi/FufMxal4x85gD+wPj8AXSHk0Y=</latexit>

(8r.¬A)(a0)
<latexit sha1_base64="IuqpHHKM1rlX0zCo6kvq+1e2mBg=">AAACAnicbVBNS8NAEN3Ur1q/op7Ey2IR2ktJqqDHqhePFewHNKFstpN26WYTdjdCKcWLf8WLB0W8+iu8+W/ctjlo64OBx3szzMwLEs6UdpxvK7eyura+kd8sbG3v7O7Z+wdNFaeSQoPGPJbtgCjgTEBDM82hnUggUcChFQxvpn7rAaRisbjXowT8iPQFCxkl2khd+6jkhbEknGNZwZ6APr4q4xLpOuWuXXQqzgx4mbgZKaIM9a795fVimkYgNOVEqY7rJNofE6kZ5TApeKmChNAh6UPHUEEiUP549sIEnxqlh80ppoTGM/X3xJhESo2iwHRGRA/UojcV//M6qQ4v/TETSapB0PmiMOVYx3iaB+4xCVTzkSGESmZuxXRAJKHapFYwIbiLLy+TZrXinlWqd+fF2nUWRx4doxNUQi66QDV0i+qogSh6RM/oFb1ZT9aL9W59zFtzVjZziP7A+vwBuUyVDg==</latexit>

r(a0, a1)
<latexit sha1_base64="y6LD5ra8Ossl/Lb1JFr7T+vuXcc=">AAAB8XicbVBNS8NAEJ34WetX1aOXYBEqSEmqoMeiF48V7Ae2IUy2m3bpZhN2N0IJ/RdePCji1X/jzX/jts1BWx8MPN6bYWZekHCmtON8Wyura+sbm4Wt4vbO7t5+6eCwpeJUEtokMY9lJ0BFORO0qZnmtJNIilHAaTsY3U799hOVisXiQY8T6kU4ECxkBLWRHmUFfeccfffML5WdqjODvUzcnJQhR8MvffX6MUkjKjThqFTXdRLtZSg1I5xOir1U0QTJCAe0a6jAiCovm108sU+N0rfDWJoS2p6pvycyjJQaR4HpjFAP1aI3Ff/zuqkOr72MiSTVVJD5ojDlto7t6ft2n0lKNB8bgkQyc6tNhiiRaBNS0YTgLr68TFq1qntRrd1flus3eRwFOIYTqIALV1CHO2hAEwgIeIZXeLOU9WK9Wx/z1hUrnzmCP7A+fwDPU4+y</latexit>

Conclude that C is unsatisfiable

11/33

previous example in graphical format

Test satisfiability of concept C = ∃r.A ⊓ ∀r.¬A

A (a1)

¬A (a1)

✘

(9r.A u 8r.¬A)(a0)
<latexit sha1_base64="STR7qMdNn/Psm3PXWFYZA64szvo=">AAACFnicbVA9SwNBEN3z2/gVtbRZDEIsDHdR0DJqYxnBJELuCHObSVzc2zt398Rw5FfY+FdsLBSxFTv/jZuPQhMfDDzem2FmXpgIro3rfjszs3PzC4tLy7mV1bX1jfzmVl3HqWJYY7GI1XUIGgWXWDPcCLxOFEIUCmyEt+cDv3GPSvNYXplegkEEXck7nIGxUit/UPTxwa7RVJXoKfX1HYOE+p1YgRADzZfYpaf7tAgtd7+VL7gldwg6TbwxKZAxqq38l9+OWRqhNEyA1k3PTUyQgTKcCezn/FRjAuwWuti0VEKEOsiGb/XpnlXa1J5iSxo6VH9PZBBp3YtC2xmBudGT3kD8z2umpnMSZFwmqUHJRos6qaAmpoOMaJsrZEb0LAGmuL2VshtQwIxNMmdD8CZfnib1csk7LJUvjwqVs3EcS2SH7JIi8cgxqZALUiU1wsgjeSav5M15cl6cd+dj1DrjjGe2yR84nz/jNJyn</latexit>

(9r.A)(a0)
<latexit sha1_base64="k1R98jLCN9hlCIvRIG5pMHcnDcs=">AAAB/XicbVDLSsNAFL3xWesrPnZuBovQbkJSBV1W3bisYB/QhjCZTtqhkwczE7GG4q+4caGIW//DnX/jtM1CWw9cOJxzL/fe4yecSWXb38bS8srq2npho7i5tb2za+7tN2WcCkIbJOaxaPtYUs4i2lBMcdpOBMWhz2nLH15P/NY9FZLF0Z0aJdQNcT9iASNYackzD8td+qDXSCQsdFlBZezZFc8s2ZY9BVokTk5KkKPumV/dXkzSkEaKcCxlx7ET5WZYKEY4HRe7qaQJJkPcpx1NIxxS6WbT68foRCs9FMRCV6TQVP09keFQylHo684Qq4Gc9ybif14nVcGFm7EoSRWNyGxRkHKkYjSJAvWYoETxkSaYCKZvRWSABSZKB1bUITjzLy+SZtVyTq3q7VmpdpXHUYAjOIYyOHAONbiBOjSAwCM8wyu8GU/Gi/FufMxal4x85gD+wPj8AXSHk0Y=</latexit>

(8r.¬A)(a0)
<latexit sha1_base64="IuqpHHKM1rlX0zCo6kvq+1e2mBg=">AAACAnicbVBNS8NAEN3Ur1q/op7Ey2IR2ktJqqDHqhePFewHNKFstpN26WYTdjdCKcWLf8WLB0W8+iu8+W/ctjlo64OBx3szzMwLEs6UdpxvK7eyura+kd8sbG3v7O7Z+wdNFaeSQoPGPJbtgCjgTEBDM82hnUggUcChFQxvpn7rAaRisbjXowT8iPQFCxkl2khd+6jkhbEknGNZwZ6APr4q4xLpOuWuXXQqzgx4mbgZKaIM9a795fVimkYgNOVEqY7rJNofE6kZ5TApeKmChNAh6UPHUEEiUP549sIEnxqlh80ppoTGM/X3xJhESo2iwHRGRA/UojcV//M6qQ4v/TETSapB0PmiMOVYx3iaB+4xCVTzkSGESmZuxXRAJKHapFYwIbiLLy+TZrXinlWqd+fF2nUWRx4doxNUQi66QDV0i+qogSh6RM/oFb1ZT9aL9W59zFtzVjZziP7A+vwBuUyVDg==</latexit>

r(a0, a1)
<latexit sha1_base64="y6LD5ra8Ossl/Lb1JFr7T+vuXcc=">AAAB8XicbVBNS8NAEJ34WetX1aOXYBEqSEmqoMeiF48V7Ae2IUy2m3bpZhN2N0IJ/RdePCji1X/jzX/jts1BWx8MPN6bYWZekHCmtON8Wyura+sbm4Wt4vbO7t5+6eCwpeJUEtokMY9lJ0BFORO0qZnmtJNIilHAaTsY3U799hOVisXiQY8T6kU4ECxkBLWRHmUFfeccfffML5WdqjODvUzcnJQhR8MvffX6MUkjKjThqFTXdRLtZSg1I5xOir1U0QTJCAe0a6jAiCovm108sU+N0rfDWJoS2p6pvycyjJQaR4HpjFAP1aI3Ff/zuqkOr72MiSTVVJD5ojDlto7t6ft2n0lKNB8bgkQyc6tNhiiRaBNS0YTgLr68TFq1qntRrd1flus3eRwFOIYTqIALV1CHO2hAEwgIeIZXeLOU9WK9Wx/z1hUrnzmCP7A+fwDPU4+y</latexit>

Conclude that C is unsatisfiable
11/33

further example with ∀ and ∃

Suppose that we consider a slightly different concept

C0 = ∃r.A ⊓ ∀r.¬B

Now the algorithm yields the following complete, clash-free ABox:

(∃r.A ⊓ ∀r.¬B)(a0) (∃r.A)(a0) (∀r.¬B)(a0) r(a0,a1) A(a1) ¬B(a1)

Corresponding interpretation I :

∙ ∆I = {a0,a1}
∙ AI = {a1}
∙ BI = ∅
∙ rI = {(a0,a1)}

Can check that I is such that CI0 = {a0} .

12/33

further example with ∀ and ∃

Suppose that we consider a slightly different concept

C0 = ∃r.A ⊓ ∀r.¬B

Now the algorithm yields the following complete, clash-free ABox:

(∃r.A ⊓ ∀r.¬B)(a0) (∃r.A)(a0) (∀r.¬B)(a0) r(a0,a1) A(a1) ¬B(a1)

Corresponding interpretation I :

∙ ∆I = {a0,a1}
∙ AI = {a1}
∙ BI = ∅
∙ rI = {(a0,a1)}

Can check that I is such that CI0 = {a0} .
12/33

properties of the tableau algorithm

Let’s call our tableau algorithm CSat (for concept satisfiability).

To show that CSat is a decision procedure, we must show:

Termination: The algorithm CSat always terminates.

Soundness: CSat outputs “yes” on input C0 ⇒ C0 is satisfiable.

Completeness: C0 satisfiable⇒ CSat will output “yes”.

13/33

preliminary definitions

Subconcepts of a concept:

sub(A) = {A}
sub(¬C) = {¬C} ∪ sub(C)
sub(∃r.C) = {∃r.C} ∪ sub(C)
sub(∀r.C) = {∀r.C} ∪ sub(C)

sub(C1 ⊔ C2) = {C1 ⊔ C2} ∪ sub(C1) ∪ sub(C2)
sub(C1 ⊓ C2) = {C1 ⊓ C2} ∪ sub(C1) ∪ sub(C2)

Role depth of a concept:

depth(A) = depth(⊤) = depth(⊥) = 0
depth(¬C) = depth(C)
depth(∃r.C) = depth(∀r.C) = depth(C) + 1

depth(C1 ⊔ C2) = depth(C1 ⊓ C2) = max(depth(C1),depth(C2))

14/33

preliminary definitions

Subconcepts of a concept:

sub(A) = {A}
sub(¬C) = {¬C} ∪ sub(C)
sub(∃r.C) = {∃r.C} ∪ sub(C)
sub(∀r.C) = {∀r.C} ∪ sub(C)

sub(C1 ⊔ C2) = {C1 ⊔ C2} ∪ sub(C1) ∪ sub(C2)
sub(C1 ⊓ C2) = {C1 ⊓ C2} ∪ sub(C1) ∪ sub(C2)

Role depth of a concept:

depth(A) = depth(⊤) = depth(⊥) = 0
depth(¬C) = depth(C)
depth(∃r.C) = depth(∀r.C) = depth(C) + 1

depth(C1 ⊔ C2) = depth(C1 ⊓ C2) = max(depth(C1),depth(C2))

14/33

preliminary definitions

Subconcepts of a concept: |sub(C)| ≤ |C|

sub(A) = {A}
sub(¬C) = {¬C} ∪ sub(C)
sub(∃r.C) = {∃r.C} ∪ sub(C)
sub(∀r.C) = {∀r.C} ∪ sub(C)

sub(C1 ⊔ C2) = {C1 ⊔ C2} ∪ sub(C1) ∪ sub(C2)
sub(C1 ⊓ C2) = {C1 ⊓ C2} ∪ sub(C1) ∪ sub(C2)

Role depth of a concept: depth(C) ≤ |C|

depth(A) = depth(⊤) = depth(⊥) = 0
depth(¬C) = depth(C)
depth(∃r.C) = depth(∀r.C) = depth(C) + 1

depth(C1 ⊔ C2) = depth(C1 ⊓ C2) = max(depth(C1),depth(C2))

14/33

termination of csat

Suppose we run CSat starting from S = {{C0(a0)}}.

We observe that for every ABox A generated by the procedure:

1. if D(b) ∈ A, then D ∈ sub(C0)
∙ A contains at most |C0| concept assertions per individual

2. the set of role assertions in A forms a tree
3. if D(b) ∈ A and the unique path from a0 to b has length k,
then depth(D) ≤ depth(C0)− k
∙ each individual in A is at distance ≤ depth(C0) from a0

4. for every individual b in A, there are at most |C0| individuals c
such that r(b, c) ∈ A for some r (at most one per existential concept)

Thus: bound on the size of ABoxes generated by the procedure

The tableau procedure only adds assertions to ABoxes
⇒ eventually all ABoxes will contain a clash or will be complete

15/33

termination of csat

Suppose we run CSat starting from S = {{C0(a0)}}.

We observe that for every ABox A generated by the procedure:

1. if D(b) ∈ A, then D ∈ sub(C0)
∙ A contains at most |C0| concept assertions per individual

2. the set of role assertions in A forms a tree
3. if D(b) ∈ A and the unique path from a0 to b has length k,
then depth(D) ≤ depth(C0)− k
∙ each individual in A is at distance ≤ depth(C0) from a0

4. for every individual b in A, there are at most |C0| individuals c
such that r(b, c) ∈ A for some r (at most one per existential concept)

Thus: bound on the size of ABoxes generated by the procedure

The tableau procedure only adds assertions to ABoxes
⇒ eventually all ABoxes will contain a clash or will be complete

15/33

termination of csat

Suppose we run CSat starting from S = {{C0(a0)}}.

We observe that for every ABox A generated by the procedure:

1. if D(b) ∈ A, then D ∈ sub(C0)

∙ A contains at most |C0| concept assertions per individual
2. the set of role assertions in A forms a tree
3. if D(b) ∈ A and the unique path from a0 to b has length k,
then depth(D) ≤ depth(C0)− k
∙ each individual in A is at distance ≤ depth(C0) from a0

4. for every individual b in A, there are at most |C0| individuals c
such that r(b, c) ∈ A for some r (at most one per existential concept)

Thus: bound on the size of ABoxes generated by the procedure

The tableau procedure only adds assertions to ABoxes
⇒ eventually all ABoxes will contain a clash or will be complete

15/33

termination of csat

Suppose we run CSat starting from S = {{C0(a0)}}.

We observe that for every ABox A generated by the procedure:

1. if D(b) ∈ A, then D ∈ sub(C0)
∙ A contains at most |C0| concept assertions per individual

2. the set of role assertions in A forms a tree
3. if D(b) ∈ A and the unique path from a0 to b has length k,
then depth(D) ≤ depth(C0)− k
∙ each individual in A is at distance ≤ depth(C0) from a0

4. for every individual b in A, there are at most |C0| individuals c
such that r(b, c) ∈ A for some r (at most one per existential concept)

Thus: bound on the size of ABoxes generated by the procedure

The tableau procedure only adds assertions to ABoxes
⇒ eventually all ABoxes will contain a clash or will be complete

15/33

termination of csat

Suppose we run CSat starting from S = {{C0(a0)}}.

We observe that for every ABox A generated by the procedure:

1. if D(b) ∈ A, then D ∈ sub(C0)
∙ A contains at most |C0| concept assertions per individual

2. the set of role assertions in A forms a tree

3. if D(b) ∈ A and the unique path from a0 to b has length k,
then depth(D) ≤ depth(C0)− k
∙ each individual in A is at distance ≤ depth(C0) from a0

4. for every individual b in A, there are at most |C0| individuals c
such that r(b, c) ∈ A for some r (at most one per existential concept)

Thus: bound on the size of ABoxes generated by the procedure

The tableau procedure only adds assertions to ABoxes
⇒ eventually all ABoxes will contain a clash or will be complete

15/33

termination of csat

Suppose we run CSat starting from S = {{C0(a0)}}.

We observe that for every ABox A generated by the procedure:

1. if D(b) ∈ A, then D ∈ sub(C0)
∙ A contains at most |C0| concept assertions per individual

2. the set of role assertions in A forms a tree
3. if D(b) ∈ A and the unique path from a0 to b has length k,
then depth(D) ≤ depth(C0)− k

∙ each individual in A is at distance ≤ depth(C0) from a0
4. for every individual b in A, there are at most |C0| individuals c
such that r(b, c) ∈ A for some r (at most one per existential concept)

Thus: bound on the size of ABoxes generated by the procedure

The tableau procedure only adds assertions to ABoxes
⇒ eventually all ABoxes will contain a clash or will be complete

15/33

termination of csat

Suppose we run CSat starting from S = {{C0(a0)}}.

We observe that for every ABox A generated by the procedure:

1. if D(b) ∈ A, then D ∈ sub(C0)
∙ A contains at most |C0| concept assertions per individual

2. the set of role assertions in A forms a tree
3. if D(b) ∈ A and the unique path from a0 to b has length k,
then depth(D) ≤ depth(C0)− k
∙ each individual in A is at distance ≤ depth(C0) from a0

4. for every individual b in A, there are at most |C0| individuals c
such that r(b, c) ∈ A for some r (at most one per existential concept)

Thus: bound on the size of ABoxes generated by the procedure

The tableau procedure only adds assertions to ABoxes
⇒ eventually all ABoxes will contain a clash or will be complete

15/33

termination of csat

Suppose we run CSat starting from S = {{C0(a0)}}.

We observe that for every ABox A generated by the procedure:

1. if D(b) ∈ A, then D ∈ sub(C0)
∙ A contains at most |C0| concept assertions per individual

2. the set of role assertions in A forms a tree
3. if D(b) ∈ A and the unique path from a0 to b has length k,
then depth(D) ≤ depth(C0)− k
∙ each individual in A is at distance ≤ depth(C0) from a0

4. for every individual b in A, there are at most |C0| individuals c
such that r(b, c) ∈ A for some r (at most one per existential concept)

Thus: bound on the size of ABoxes generated by the procedure

The tableau procedure only adds assertions to ABoxes
⇒ eventually all ABoxes will contain a clash or will be complete

15/33

termination of csat

Suppose we run CSat starting from S = {{C0(a0)}}.

We observe that for every ABox A generated by the procedure:

1. if D(b) ∈ A, then D ∈ sub(C0)
∙ A contains at most |C0| concept assertions per individual

2. the set of role assertions in A forms a tree
3. if D(b) ∈ A and the unique path from a0 to b has length k,
then depth(D) ≤ depth(C0)− k
∙ each individual in A is at distance ≤ depth(C0) from a0

4. for every individual b in A, there are at most |C0| individuals c
such that r(b, c) ∈ A for some r (at most one per existential concept)

Thus: bound on the size of ABoxes generated by the procedure

The tableau procedure only adds assertions to ABoxes
⇒ eventually all ABoxes will contain a clash or will be complete

15/33

termination of csat

Suppose we run CSat starting from S = {{C0(a0)}}.

We observe that for every ABox A generated by the procedure:

1. if D(b) ∈ A, then D ∈ sub(C0)
∙ A contains at most |C0| concept assertions per individual

2. the set of role assertions in A forms a tree
3. if D(b) ∈ A and the unique path from a0 to b has length k,
then depth(D) ≤ depth(C0)− k
∙ each individual in A is at distance ≤ depth(C0) from a0

4. for every individual b in A, there are at most |C0| individuals c
such that r(b, c) ∈ A for some r (at most one per existential concept)

Thus: bound on the size of ABoxes generated by the procedure

The tableau procedure only adds assertions to ABoxes
⇒ eventually all ABoxes will contain a clash or will be complete

15/33

soundness of csat (1)

Suppose that CSat returns “yes” on input C0.

Then S must contain a complete and clash-free ABox A.

Use A to define an interpretation I as follows:

∙ ∆I = {a | a is an individual in A}

∙ AI = {a | A(a) ∈ A}

∙ rI = {(a,b) | r(a,b) ∈ A}

Claim: I is such that CI0 ̸= ∅

To show the claim, we prove by induction on the size of concepts:

D(b) ∈ A ⇒ b ∈ DI

16/33

soundness of csat (1)

Suppose that CSat returns “yes” on input C0.

Then S must contain a complete and clash-free ABox A.

Use A to define an interpretation I as follows:

∙ ∆I = {a | a is an individual in A}

∙ AI = {a | A(a) ∈ A}

∙ rI = {(a,b) | r(a,b) ∈ A}

Claim: I is such that CI0 ̸= ∅

To show the claim, we prove by induction on the size of concepts:

D(b) ∈ A ⇒ b ∈ DI

16/33

soundness of csat (1)

Suppose that CSat returns “yes” on input C0.

Then S must contain a complete and clash-free ABox A.

Use A to define an interpretation I as follows:

∙ ∆I = {a | a is an individual in A}

∙ AI = {a | A(a) ∈ A}

∙ rI = {(a,b) | r(a,b) ∈ A}

Claim: I is such that CI0 ̸= ∅

To show the claim, we prove by induction on the size of concepts:

D(b) ∈ A ⇒ b ∈ DI

16/33

soundness of csat (2)

Base case: D = A or D = ¬A or D = ⊤ or D = ⊥

If D = A, then b ∈ AI .
If D = ¬A, then A(b) ̸∈ A, so b ∈ ¬AI .
If D = ⊤, trivially b ∈ ⊤I = ∆I . Cannot have D = ⊥ since clash-free.

Induction hypothesis (IH): suppose holds whenever |D| ≤ k

Induction step: show statement holds for D with |D| = k+ 1
Again, many cases to consider:

∙ D = E ⊓ F: since A is complete, it must contain both E(b) and F(b).
Applying the IH, we get b ∈ EI and b ∈ FI , hence b ∈ (E ⊓ F)I

∙ D = ∃r.E: since A is complete, there exists c such that r(b, c) ∈ A
and E(c) ∈ A. Then (b, c) ∈ rI . From IH, get c ∈ EI , so b ∈ (∃r.E)I

∙ D = E ⊔ F: left as practice
∙ D = ∀R.E: left as practice

17/33

soundness of csat (2)

Base case: D = A or D = ¬A or D = ⊤ or D = ⊥
If D = A, then b ∈ AI .
If D = ¬A, then A(b) ̸∈ A, so b ∈ ¬AI .
If D = ⊤, trivially b ∈ ⊤I = ∆I . Cannot have D = ⊥ since clash-free.

Induction hypothesis (IH): suppose holds whenever |D| ≤ k

Induction step: show statement holds for D with |D| = k+ 1
Again, many cases to consider:

∙ D = E ⊓ F: since A is complete, it must contain both E(b) and F(b).
Applying the IH, we get b ∈ EI and b ∈ FI , hence b ∈ (E ⊓ F)I

∙ D = ∃r.E: since A is complete, there exists c such that r(b, c) ∈ A
and E(c) ∈ A. Then (b, c) ∈ rI . From IH, get c ∈ EI , so b ∈ (∃r.E)I

∙ D = E ⊔ F: left as practice
∙ D = ∀R.E: left as practice

17/33

completeness of csat

Suppose that the concept C0 is satisfiable.

Then the ABox {C0(a0)} must be satisfiable too.

We observe that the tableau rules are satisfiability-preserving:

∙ If an ABox A is satisfiable and A′ is the result of applying a rule to
A, then A′ is also satisfiable.

∙ If A is satisfiable and A1 and A2 are obtained when applying a
rule to A, then either A1 is satisfiable or A2 is satisfiable.

We start with a satisfiable ABox and the rules are
satisfiability-preserving, so eventually we will reach a complete,
satisfiable (thus: clash-free) ABox and output ‘yes’.

18/33

completeness of csat

Suppose that the concept C0 is satisfiable.

Then the ABox {C0(a0)} must be satisfiable too.

We observe that the tableau rules are satisfiability-preserving:

∙ If an ABox A is satisfiable and A′ is the result of applying a rule to
A, then A′ is also satisfiable.

∙ If A is satisfiable and A1 and A2 are obtained when applying a
rule to A, then either A1 is satisfiable or A2 is satisfiable.

We start with a satisfiable ABox and the rules are
satisfiability-preserving, so eventually we will reach a complete,
satisfiable (thus: clash-free) ABox and output ‘yes’.

18/33

completeness of csat

Suppose that the concept C0 is satisfiable.

Then the ABox {C0(a0)} must be satisfiable too.

We observe that the tableau rules are satisfiability-preserving:

∙ If an ABox A is satisfiable and A′ is the result of applying a rule to
A, then A′ is also satisfiable.

∙ If A is satisfiable and A1 and A2 are obtained when applying a
rule to A, then either A1 is satisfiable or A2 is satisfiable.

We start with a satisfiable ABox and the rules are
satisfiability-preserving, so eventually we will reach a complete,
satisfiable (thus: clash-free) ABox and output ‘yes’.

18/33

complexity of csat

Bad news: our algorithm may require exponential time and space...

To see why, consider what happens if we run CSat on the concept
l

0≤i<n

∀r. . . .∀r.︸ ︷︷ ︸
i times

(∃r.B ⊓ ∃r.¬B)

Good news: can modify algorithm so it runs in polynomial space

∙ instead of set of ABoxes, keep only 1 ABox in memory at a time
∙ when apply the ⊔-rule, first examine A1, then afterwards examine A2

∙ remember that second disjunct stills needs to be checked
∙ explore the children of an individual one at a time
∙ possible because no interaction between the different “branches”
∙ store which ∃r.C concepts have been tested, which are left to do

∙ this allows us to keep at most |C0| individuals in memory at a time

19/33

complexity of csat

Bad news: our algorithm may require exponential time and space...

To see why, consider what happens if we run CSat on the concept
l

0≤i<n

∀r. . . .∀r.︸ ︷︷ ︸
i times

(∃r.B ⊓ ∃r.¬B)

Good news: can modify algorithm so it runs in polynomial space

∙ instead of set of ABoxes, keep only 1 ABox in memory at a time
∙ when apply the ⊔-rule, first examine A1, then afterwards examine A2

∙ remember that second disjunct stills needs to be checked
∙ explore the children of an individual one at a time
∙ possible because no interaction between the different “branches”
∙ store which ∃r.C concepts have been tested, which are left to do

∙ this allows us to keep at most |C0| individuals in memory at a time
19/33

complexity of alc concept satisfiability

Hierarchy of complexity classes

PTIME⊆NP⊆ ...⊆ PSPACE⊆EXPTIME⊆NEXPTIME⊆ ...⊆EXPSPACE ...

(it is believed that all inclusions are strict)

PSPACE = class of decision problems solvable in polynomial space

PSPACE-complete problems = hardest problems in PSPACE

Theorem: ALC concept satisfiability (no TBox) is PSPACE-complete.

∙ Membership in PSPACE shown using modified tableau procedure

∙ Hardness for PSPACE shown by giving a reduction from some
known PSPACE-hard problem (e.g. QBF validity)

20/33

complexity of alc concept satisfiability

Hierarchy of complexity classes

PTIME⊆NP⊆ ...⊆ PSPACE⊆EXPTIME⊆NEXPTIME⊆ ...⊆EXPSPACE ...

(it is believed that all inclusions are strict)

PSPACE = class of decision problems solvable in polynomial space

PSPACE-complete problems = hardest problems in PSPACE

Theorem: ALC concept satisfiability (no TBox) is PSPACE-complete.

∙ Membership in PSPACE shown using modified tableau procedure

∙ Hardness for PSPACE shown by giving a reduction from some
known PSPACE-hard problem (e.g. QBF validity)

20/33

complexity of alc concept satisfiability

Hierarchy of complexity classes

PTIME⊆NP⊆ ...⊆ PSPACE⊆EXPTIME⊆NEXPTIME⊆ ...⊆EXPSPACE ...

(it is believed that all inclusions are strict)

PSPACE = class of decision problems solvable in polynomial space

PSPACE-complete problems = hardest problems in PSPACE

Theorem: ALC concept satisfiability (no TBox) is PSPACE-complete.

∙ Membership in PSPACE shown using modified tableau procedure

∙ Hardness for PSPACE shown by giving a reduction from some
known PSPACE-hard problem (e.g. QBF validity)

20/33

extension to kb satisfiability

Now we want to modify the algorithm to handle KB satisfability.

Adding an ABox is easy: simply start with {A} instead of {C0(a0)}

Adding a TBox is a bit more tricky...

Idea: if C ⊑ D, then every element must satisfy either ¬C or D

Concretely, we might try adding the following rule:

TBox rule if a is in A, C ⊑ D ∈ T , & (NNF(¬C) ⊔ NNF(D)) (a) ̸∈ A
then replace A with A ∪ {(NNF(¬C) ⊔ NNF(D))(a)}

21/33

extension to kb satisfiability

Now we want to modify the algorithm to handle KB satisfability.

Adding an ABox is easy: simply start with {A} instead of {C0(a0)}

Adding a TBox is a bit more tricky...

Idea: if C ⊑ D, then every element must satisfy either ¬C or D

Concretely, we might try adding the following rule:

TBox rule if a is in A, C ⊑ D ∈ T , & (NNF(¬C) ⊔ NNF(D)) (a) ̸∈ A
then replace A with A ∪ {(NNF(¬C) ⊔ NNF(D))(a)}

21/33

extension to kb satisfiability

Now we want to modify the algorithm to handle KB satisfability.

Adding an ABox is easy: simply start with {A} instead of {C0(a0)}

Adding a TBox is a bit more tricky...

Idea: if C ⊑ D, then every element must satisfy either ¬C or D

Concretely, we might try adding the following rule:

TBox rule if a is in A, C ⊑ D ∈ T , & (NNF(¬C) ⊔ NNF(D)) (a) ̸∈ A
then replace A with A ∪ {(NNF(¬C) ⊔ NNF(D))(a)}

21/33

example: non-termination

Let’s try the modified procedure on the KB ({F ⊑ ∃S.F}, {F(a)})

Seems we have a problem... How can we ensure termination?

22/33

example: non-termination

Let’s try the modified procedure on the KB ({F ⊑ ∃S.F}, {F(a)})

Seems we have a problem... How can we ensure termination?

22/33

blocking

Basic idea: if two individuals “look the same”, then it is unnecessary
to explore both of them

Formally: given individuals a,b from A, we say that b blocks a if:

∙ {C | C(a) ∈ A} ⊆ {C | C(b) ∈ A}

∙ b was present in A before a was introduced

Say that individual a is blocked (in A) if some b blocks a.

Modify rules so that they only apply to unblocked individuals.

23/33

blocking

Basic idea: if two individuals “look the same”, then it is unnecessary
to explore both of them

Formally: given individuals a,b from A, we say that b blocks a if:

∙ {C | C(a) ∈ A} ⊆ {C | C(b) ∈ A}

∙ b was present in A before a was introduced

Say that individual a is blocked (in A) if some b blocks a.

Modify rules so that they only apply to unblocked individuals.

23/33

blocking

Basic idea: if two individuals “look the same”, then it is unnecessary
to explore both of them

Formally: given individuals a,b from A, we say that b blocks a if:

∙ {C | C(a) ∈ A} ⊆ {C | C(b) ∈ A}

∙ b was present in A before a was introduced

Say that individual a is blocked (in A) if some b blocks a.

Modify rules so that they only apply to unblocked individuals.

23/33

tableau rules for kbs

⊓-rule: if (C1 ⊓ C2)(a) ∈ A, a is not blocked, and {C1(a), C2(a)} ̸⊆ A,
then replace A with A ∪ {C1(a), C2(a)}

⊔-rule: if (C1 ⊔ C2)(a) ∈ A, a is not blocked, and {C1(a), C2(a)} ∩ A = ∅,
then replace A with A ∪ {C1(a))} and A ∪ {C2(a))}

∀-rule: if {∀r.C(a), r(a,b)} ∈ A, a is not blocked, and C(b) ̸∈ A,
then replace A with A ∪ {C(b))}

∃-rule: if {∃r.C(a)} ∈ A, a is not blocked, and no {r(a,b), C(b)} ⊆ A,
then pick a new individual name d and replace A with
A ∪ {r(a,d), C(d)}

⊑-rule: if a appears in A and a is not blocked, C ⊑ D ∈ T , and
(NNF(¬C) ⊔ NNF(D))(a) ̸∈ A,
then replace A with A ∪ {(NNF(¬C) ⊔ NNF(D))(a)}

24/33

example: blocking

Let’s try blocking on the problematic KB ({F ⊑ ∃s.F}, {F(a)})

We obtain a complete and clash-free ABox⇒ the KB is satisfiable

25/33

example: blocking

Let’s try blocking on the problematic KB ({F ⊑ ∃s.F}, {F(a)})

We obtain a complete and clash-free ABox⇒ the KB is satisfiable

25/33

example: blocking

Let’s try blocking on the problematic KB ({F ⊑ ∃s.F}, {F(a)})

We obtain a complete and clash-free ABox⇒ the KB is satisfiable

25/33

another blocking example

Consider the TBox T = {A ⊑ ∃r.A,A ⊑ B,∃r.B ⊑ D} and suppose we
want to test whether T |= A ⊑ D.

We can do this by running the algorithm on (T , {(A ⊓ ¬D)(a0)}).

Result: the KB is unsatisfiable⇒ T |= A ⊑ D

Observe: individual can be blocked, then later become unblocked

26/33

another blocking example

Consider the TBox T = {A ⊑ ∃r.A,A ⊑ B,∃r.B ⊑ D} and suppose we
want to test whether T |= A ⊑ D.

We can do this by running the algorithm on (T , {(A ⊓ ¬D)(a0)}).

Result: the KB is unsatisfiable⇒ T |= A ⊑ D

Observe: individual can be blocked, then later become unblocked

26/33

another blocking example

Consider the TBox T = {A ⊑ ∃r.A,A ⊑ B,∃r.B ⊑ D} and suppose we
want to test whether T |= A ⊑ D.

We can do this by running the algorithm on (T , {(A ⊓ ¬D)(a0)}).

Result: the KB is unsatisfiable⇒ T |= A ⊑ D

Observe: individual can be blocked, then later become unblocked
26/33

properties of kbsat

Let’s call our new tableau algorithm KBSat (for KB satisfiability).

Termination: The algorithm KBSat always terminates.
∙ similar to before: bound the size of generated ABoxes

Soundness: KBSat outputs “yes” on (T ,A) ⇒ (T ,A) is satisfiable.
∙ again, we use complete, clash-free ABox to build a model
∙ tricky part: need to handle the blocked individuals

Completeness: (T ,A) satisfiable⇒ KBSat will output “yes”.
∙ again, show rules satisfiability-preserving

So: KBSat is a decision procedure for KB satisfiability.

27/33

properties of kbsat

Let’s call our new tableau algorithm KBSat (for KB satisfiability).

Termination: The algorithm KBSat always terminates.
∙ similar to before: bound the size of generated ABoxes

Soundness: KBSat outputs “yes” on (T ,A) ⇒ (T ,A) is satisfiable.
∙ again, we use complete, clash-free ABox to build a model
∙ tricky part: need to handle the blocked individuals

Completeness: (T ,A) satisfiable⇒ KBSat will output “yes”.
∙ again, show rules satisfiability-preserving

So: KBSat is a decision procedure for KB satisfiability.

27/33

properties of kbsat

Let’s call our new tableau algorithm KBSat (for KB satisfiability).

Termination: The algorithm KBSat always terminates.
∙ similar to before: bound the size of generated ABoxes

Soundness: KBSat outputs “yes” on (T ,A) ⇒ (T ,A) is satisfiable.
∙ again, we use complete, clash-free ABox to build a model
∙ tricky part: need to handle the blocked individuals

Completeness: (T ,A) satisfiable⇒ KBSat will output “yes”.
∙ again, show rules satisfiability-preserving

So: KBSat is a decision procedure for KB satisfiability.

27/33

properties of kbsat

Let’s call our new tableau algorithm KBSat (for KB satisfiability).

Termination: The algorithm KBSat always terminates.
∙ similar to before: bound the size of generated ABoxes

Soundness: KBSat outputs “yes” on (T ,A) ⇒ (T ,A) is satisfiable.
∙ again, we use complete, clash-free ABox to build a model
∙ tricky part: need to handle the blocked individuals

Completeness: (T ,A) satisfiable⇒ KBSat will output “yes”.
∙ again, show rules satisfiability-preserving

So: KBSat is a decision procedure for KB satisfiability.

27/33

complexity of reasoning in expressive dls

Tableau procedure takes exponential time and space
∙ can have exponentially long ‘branches’ to explore

Complexity results tell us this is unavoidable in worst case:

Theorem: In ALC, KB satisfiability is EXPTIME-complete
∙ for highly expressive DLs (⇝ OWL 2): complexity even higher

28/33

optimizations

Despite high worst-case complexity, tableau algorithms for ALC and
other expressive DLs can work well in practice.

However, good performance crucially depends on optimizations!

Many types of optimizations:

∙ explore only one branch of one ABox at a time

∙ strategies / heuristics for choosing next rule to apply

∙ caching of results to reduce redundant computation

∙ examine source of conflicts to prune search space (backjumping)

∙ reduce number of ⊔’s created by TBox inclusions (absorption)

∙ reduce number of satisfiability checks during classification

29/33

optimizations

Despite high worst-case complexity, tableau algorithms for ALC and
other expressive DLs can work well in practice.

However, good performance crucially depends on optimizations!

Many types of optimizations:

∙ explore only one branch of one ABox at a time

∙ strategies / heuristics for choosing next rule to apply

∙ caching of results to reduce redundant computation

∙ examine source of conflicts to prune search space (backjumping)

∙ reduce number of ⊔’s created by TBox inclusions (absorption)

∙ reduce number of satisfiability checks during classification

29/33

optimizations

Despite high worst-case complexity, tableau algorithms for ALC and
other expressive DLs can work well in practice.

However, good performance crucially depends on optimizations!

Many types of optimizations:

∙ explore only one branch of one ABox at a time

∙ strategies / heuristics for choosing next rule to apply

∙ caching of results to reduce redundant computation

∙ examine source of conflicts to prune search space (backjumping)

∙ reduce number of ⊔’s created by TBox inclusions (absorption)

∙ reduce number of satisfiability checks during classification

29/33

optimizations

Despite high worst-case complexity, tableau algorithms for ALC and
other expressive DLs can work well in practice.

However, good performance crucially depends on optimizations!

Many types of optimizations:

∙ explore only one branch of one ABox at a time

∙ strategies / heuristics for choosing next rule to apply

∙ caching of results to reduce redundant computation

∙ examine source of conflicts to prune search space (backjumping)

∙ reduce number of ⊔’s created by TBox inclusions (absorption)

∙ reduce number of satisfiability checks during classification

29/33

optimizations

Despite high worst-case complexity, tableau algorithms for ALC and
other expressive DLs can work well in practice.

However, good performance crucially depends on optimizations!

Many types of optimizations:

∙ explore only one branch of one ABox at a time

∙ strategies / heuristics for choosing next rule to apply

∙ caching of results to reduce redundant computation

∙ examine source of conflicts to prune search space (backjumping)

∙ reduce number of ⊔’s created by TBox inclusions (absorption)

∙ reduce number of satisfiability checks during classification

29/33

optimizations

Despite high worst-case complexity, tableau algorithms for ALC and
other expressive DLs can work well in practice.

However, good performance crucially depends on optimizations!

Many types of optimizations:

∙ explore only one branch of one ABox at a time

∙ strategies / heuristics for choosing next rule to apply

∙ caching of results to reduce redundant computation

∙ examine source of conflicts to prune search space (backjumping)

∙ reduce number of ⊔’s created by TBox inclusions (absorption)

∙ reduce number of satisfiability checks during classification

29/33

optimizations

Despite high worst-case complexity, tableau algorithms for ALC and
other expressive DLs can work well in practice.

However, good performance crucially depends on optimizations!

Many types of optimizations:

∙ explore only one branch of one ABox at a time

∙ strategies / heuristics for choosing next rule to apply

∙ caching of results to reduce redundant computation

∙ examine source of conflicts to prune search space (backjumping)

∙ reduce number of ⊔’s created by TBox inclusions (absorption)

∙ reduce number of satisfiability checks during classification

29/33

optimizations

Despite high worst-case complexity, tableau algorithms for ALC and
other expressive DLs can work well in practice.

However, good performance crucially depends on optimizations!

Many types of optimizations:

∙ explore only one branch of one ABox at a time

∙ strategies / heuristics for choosing next rule to apply

∙ caching of results to reduce redundant computation

∙ examine source of conflicts to prune search space (backjumping)

∙ reduce number of ⊔’s created by TBox inclusions (absorption)

∙ reduce number of satisfiability checks during classification

29/33

absorption (1)

When T = {Ci ⊑ Di | 1 ≤ i ≤ n}, we get n disjunctions per individual:

(NNF(¬C1) ⊔ NNF(D1))(a), . . . , (NNF(¬Cn) ⊔ NNF(Dn))(a)

Observation: if have A ⊑ D with A a concept name
∙ if don’t have A(a), can satisfy the inclusion by choosing ¬A(a)
∙ if have A(a), then must have D(a)

So for inclusions with atomic left-hand side, can replace ⊑-rule by:

⊑at-rule: if A(a) ∈ A, a is not blocked, A ⊑ D ∈ T (with A atomic),
and D(a) ̸∈ A, then replace A with A ∪ {D(a)}

Good news: we’ve lowered the number of disjunctions!

30/33

absorption (1)

When T = {Ci ⊑ Di | 1 ≤ i ≤ n}, we get n disjunctions per individual:

(NNF(¬C1) ⊔ NNF(D1))(a), . . . , (NNF(¬Cn) ⊔ NNF(Dn))(a)

Observation: if have A ⊑ D with A a concept name
∙ if don’t have A(a), can satisfy the inclusion by choosing ¬A(a)
∙ if have A(a), then must have D(a)

So for inclusions with atomic left-hand side, can replace ⊑-rule by:

⊑at-rule: if A(a) ∈ A, a is not blocked, A ⊑ D ∈ T (with A atomic),
and D(a) ̸∈ A, then replace A with A ∪ {D(a)}

Good news: we’ve lowered the number of disjunctions!

30/33

absorption (1)

When T = {Ci ⊑ Di | 1 ≤ i ≤ n}, we get n disjunctions per individual:

(NNF(¬C1) ⊔ NNF(D1))(a), . . . , (NNF(¬Cn) ⊔ NNF(Dn))(a)

Observation: if have A ⊑ D with A a concept name
∙ if don’t have A(a), can satisfy the inclusion by choosing ¬A(a)
∙ if have A(a), then must have D(a)

So for inclusions with atomic left-hand side, can replace ⊑-rule by:

⊑at-rule: if A(a) ∈ A, a is not blocked, A ⊑ D ∈ T (with A atomic),
and D(a) ̸∈ A, then replace A with A ∪ {D(a)}

Good news: we’ve lowered the number of disjunctions!

30/33

absorption (1)

When T = {Ci ⊑ Di | 1 ≤ i ≤ n}, we get n disjunctions per individual:

(NNF(¬C1) ⊔ NNF(D1))(a), . . . , (NNF(¬Cn) ⊔ NNF(Dn))(a)

Observation: if have A ⊑ D with A a concept name
∙ if don’t have A(a), can satisfy the inclusion by choosing ¬A(a)
∙ if have A(a), then must have D(a)

So for inclusions with atomic left-hand side, can replace ⊑-rule by:

⊑at-rule: if A(a) ∈ A, a is not blocked, A ⊑ D ∈ T (with A atomic),
and D(a) ̸∈ A, then replace A with A ∪ {D(a)}

Good news: we’ve lowered the number of disjunctions!

30/33

absorption (2)

Second observation: can transform some inclusions with complex
concept on left into equivalent inclusions with atomic left-hand side

(A ⊓ C) ⊑ D ⇝ A ⊑ (¬C ⊔ D)

Absorption technique:

1. preprocess the TBox by replacing inclusions with equivalent
inclusions with atomic concept on left, whenever possible

2. when running tableau algorithm
∙ use new ⊑at-rule for inclusions A ⊑ D with A a concept name
∙ use regular ⊑-rule for the other TBox inclusions

31/33

absorption (2)

Second observation: can transform some inclusions with complex
concept on left into equivalent inclusions with atomic left-hand side

(A ⊓ C) ⊑ D ⇝ A ⊑ (¬C ⊔ D)

Absorption technique:

1. preprocess the TBox by replacing inclusions with equivalent
inclusions with atomic concept on left, whenever possible

2. when running tableau algorithm
∙ use new ⊑at-rule for inclusions A ⊑ D with A a concept name
∙ use regular ⊑-rule for the other TBox inclusions

31/33

absorption (2)

Second observation: can transform some inclusions with complex
concept on left into equivalent inclusions with atomic left-hand side

(A ⊓ C) ⊑ D ⇝ A ⊑ (¬C ⊔ D)

Absorption technique:

1. preprocess the TBox by replacing inclusions with equivalent
inclusions with atomic concept on left, whenever possible

2. when running tableau algorithm
∙ use new ⊑at-rule for inclusions A ⊑ D with A a concept name
∙ use regular ⊑-rule for the other TBox inclusions

31/33

example: absorption

Let’s use absorption on the KB (T , {A(a)}) with:

{ A ⊑ ∃r.B B ⊑ D ∃r.D ⊑ ¬A }

∙ first two inclusions in T already have concept name on left

∙ third inclusion in T can be equivalently written as A ⊑ ∀r.¬D

∙ so: only need to use ⊑at-rule

Result: avoid disjunction, algorithm terminates much faster!

32/33

example: absorption

Let’s use absorption on the KB (T , {A(a)}) with:

{ A ⊑ ∃r.B B ⊑ D ∃r.D ⊑ ¬A }

∙ first two inclusions in T already have concept name on left

∙ third inclusion in T can be equivalently written as A ⊑ ∀r.¬D

∙ so: only need to use ⊑at-rule

Result: avoid disjunction, algorithm terminates much faster!

32/33

example: absorption

Let’s use absorption on the KB (T , {A(a)}) with:

{ A ⊑ ∃r.B B ⊑ D ∃r.D ⊑ ¬A }

∙ first two inclusions in T already have concept name on left

∙ third inclusion in T can be equivalently written as A ⊑ ∀r.¬D

∙ so: only need to use ⊑at-rule

Result: avoid disjunction, algorithm terminates much faster!
32/33

optimizations for classification

Classification: find all pairs of concept names A,B with T |= A ⊑ B

Naïve approach: test satisfiability of A ⊓ ¬B w.r.t. T for all pairs A,B

∙ but T may contain hundreds or thousands of concept names....

Each check is costly⇒ want to reduce number of checks

Some ideas:

∙ some cases are obvious
∙ A ⊑ A and inclusions that are explicitly stated in T

∙ use simple reasoning to obtain new (non-)entailments
∙ if know T |= A ⊑ B and T |= B ⊑ D, then T |= A ⊑ D
∙ if know T |= A ⊑ B and T ̸|= A ⊑ D, then T ̸|= B ⊑ D

33/33

optimizations for classification

Classification: find all pairs of concept names A,B with T |= A ⊑ B

Naïve approach: test satisfiability of A ⊓ ¬B w.r.t. T for all pairs A,B

∙ but T may contain hundreds or thousands of concept names....

Each check is costly⇒ want to reduce number of checks

Some ideas:

∙ some cases are obvious
∙ A ⊑ A and inclusions that are explicitly stated in T

∙ use simple reasoning to obtain new (non-)entailments
∙ if know T |= A ⊑ B and T |= B ⊑ D, then T |= A ⊑ D
∙ if know T |= A ⊑ B and T ̸|= A ⊑ D, then T ̸|= B ⊑ D

33/33

optimizations for classification

Classification: find all pairs of concept names A,B with T |= A ⊑ B

Naïve approach: test satisfiability of A ⊓ ¬B w.r.t. T for all pairs A,B

∙ but T may contain hundreds or thousands of concept names....

Each check is costly⇒ want to reduce number of checks

Some ideas:

∙ some cases are obvious
∙ A ⊑ A and inclusions that are explicitly stated in T

∙ use simple reasoning to obtain new (non-)entailments
∙ if know T |= A ⊑ B and T |= B ⊑ D, then T |= A ⊑ D
∙ if know T |= A ⊑ B and T ̸|= A ⊑ D, then T ̸|= B ⊑ D

33/33

optimizations for classification

Classification: find all pairs of concept names A,B with T |= A ⊑ B

Naïve approach: test satisfiability of A ⊓ ¬B w.r.t. T for all pairs A,B

∙ but T may contain hundreds or thousands of concept names....

Each check is costly⇒ want to reduce number of checks

Some ideas:

∙ some cases are obvious
∙ A ⊑ A and inclusions that are explicitly stated in T

∙ use simple reasoning to obtain new (non-)entailments
∙ if know T |= A ⊑ B and T |= B ⊑ D, then T |= A ⊑ D
∙ if know T |= A ⊑ B and T ̸|= A ⊑ D, then T ̸|= B ⊑ D

33/33

	Reasoning in Expressive DLs

