ONTLOGIES & DESCRIPTION LOGICS

Parcours IA - Représentation des connaissances

Meghyn Bienvenu (LaBRI - CNRS & Université de Bordeaux)
REASONING IN EXPRESSIVE DLS
Tableau method: popular approach for reasoning in expressive DLs
 - implemented in state-of-the-art DL reasoners

Tableau algorithms are used to decide satisfiability
 - solve other tasks (e.g. entailment) by reducing them to satisfiability
Tableau method: popular approach for reasoning in expressive DLs

- implemented in *state-of-the-art DL reasoners*

Tableau algorithms are used to decide *satisfiability*

- solve other tasks (e.g. entailment) by reducing them to satisfiability

Idea: to determine whether a given (concept or KB) Ψ is satisfiable, **try to construct a (representation of a) model** of Ψ

- if we succeed, then we have shown that Ψ is satisfiable
- if we fail despite having *considered all possibilities*, then we have proven that Ψ is unsatisfiable
Recall that \textit{ALC} concepts are built using the following constructors:

\[\top \quad \bot \quad \neg \quad \sqcap \quad \sqcup \quad \forall r.C \quad \exists r.C \]
Recall that \(\mathcal{ALC} \) concepts are built using the following constructors:

\[
\top \quad \bot \quad \neg \quad \sqcup \quad \sqcap \quad \forall r.C \quad \exists r.C
\]

We say that an \(\mathcal{ALC} \) concept \(C \) is in **negation normal form (NNF)** if the symbol \(\neg \) only appears directly in front of atomic concepts.

- **in NNF**: \(A \sqcap \neg B, \exists r.\neg A, \neg A \sqcup \neg B \)
- **not in NNF**: \(\neg(A \sqcap B), \exists r.\neg(\forall s.B), A \sqcup \neg\forall r.B, \neg\top \)
Recall that \mathcal{ALC} concepts are built using the following constructors:

$\top \perp \neg \sqcup \sqcap \forall r. C \ \exists r. C$

We say that an \mathcal{ALC} concept C is in negation normal form (NNF) if the symbol \neg only appears directly in front of atomic concepts.

- in NNF: $A \sqcap \neg B, \exists r. \neg A, \neg A \sqcup \neg B$
- not in NNF: $\neg (A \sqcap B), \exists r. \neg (\forall s. B), A \sqcup \neg \forall r. B, \neg \top$

Fact. Every \mathcal{ALC} concept C can be transformed into an equivalent concept in NNF in linear time by applying the following rewrite rules:

- $\neg \top \leadsto \bot$
- $\neg (C \sqcap D) \leadsto \neg C \sqcup \neg D$
- $\neg (\forall r. C) \leadsto \exists r. \neg C$
- $\neg \bot \leadsto \top$
- $\neg (C \sqcup D) \leadsto \neg C \sqcap \neg D$
- $\neg (\exists r. C) \leadsto \forall r. \neg C$

Note: say C and D are equivalent if the empty TBox entails $C \equiv D$.

4/33
We begin by presenting a tableau algorithm for deciding satisfiability of \mathcal{ALC}-concepts (in NNF) w.r.t. the empty TBox

Procedure for testing satisfiability of C_0:
- We work with a set S of ABoxes
- Initially, S contains a single ABox $\{C_0(a_0)\}$
We begin by presenting a tableau algorithm for deciding satisfiability of \mathcal{ALC}-concepts (in NNF) w.r.t. the empty TBox.

Procedure for testing satisfiability of C_0:
- We work with a set S of ABoxes
- Initially, S contains a single ABox $\{C_0(a_0)\}$
- At each stage, we apply a tableau rule to some $\mathcal{A} \in S$
 (note: rules are detailed on next slide)
Satisfiability of ALC-concepts via tableau

We begin by presenting a tableau algorithm for deciding satisfiability of ALC-concepts (in NNF) w.r.t. the empty TBox

Procedure for testing satisfiability of C_0:

- We work with a set S of ABoxes
- Initially, S contains a single ABox $\{C_0(a_0)\}$
- At each stage, we apply a tableau rule to some $A \in S$ (note: rules are detailed on next slide)
- A rule application involves replacing A by one or two ABoxes that extend A with new assertions
We begin by presenting a tableau algorithm for deciding satisfiability of \(\text{ALC} \)-concepts (in NNF) w.r.t. the empty TBox

Procedure for testing satisfiability of \(C_0 \):

- We work with a set \(S \) of ABoxes
- Initially, \(S \) contains a single ABox \(\{C_0(a_0)\} \)
- At each stage, we **apply a tableau rule** to some \(A \in S \) (note: rules are detailed on next slide)
- A rule application involves replacing \(A \) by one or two ABoxes that extend \(A \) with new assertions
- **Stop applying rules when either:**
 - every \(A \in S \) contains a **clash**, i.e. an assertion \(\bot(b) \) or a pair of assertions \(\{B(b), \neg B(b)\} \)
 - some \(A \in S \) is **clash-free and complete**: no rule can be applied to \(A \)
We begin by presenting a tableau algorithm for deciding satisfiability of \(\mathcal{ALC}\)-concepts (in NNF) w.r.t. the empty TBox.

Procedure for testing satisfiability of \(C_0\):

- We work with a set \(S\) of ABoxes.
- Initially, \(S\) contains a single ABox \(\{C_0(a_0)\}\).
- At each stage, we **apply a tableau rule** to some \(\mathcal{A} \in S\) (note: rules are detailed on next slide).
- A rule application involves replacing \(\mathcal{A}\) by one or two ABoxes that extend \(\mathcal{A}\) with new assertions.
- **Stop applying rules when either:**
 - every \(\mathcal{A} \in S\) contains a **clash**, i.e. an assertion \(\bot(b)\) or a pair of assertions \(\{B(b), \neg B(b)\}\).
 - some \(\mathcal{A} \in S\) is **clash-free** and **complete**: no rule can be applied to \(\mathcal{A}\).
- Return ‘yes, satisfiable’ if some \(\mathcal{A} \in S\) is clash-free, else “no”.
□-rule: if \((C_1 \sqcap C_2)(a) \in \mathcal{A}\) and \(\{C_1(a), C_2(a)\} \not\subseteq \mathcal{A}\) then replace \(\mathcal{A}\) with \(\mathcal{A} \cup \{C_1(a), C_2(a)\}\)
Tableau Rules for ALC

\(\square \)-rule: if \((C_1 \cap C_2)(a) \in \mathcal{A} \) and \(\{C_1(a), C_2(a)\} \not\subseteq \mathcal{A} \) then replace \(\mathcal{A} \) with \(\mathcal{A} \cup \{C_1(a), C_2(a)\} \)

\(\square \)-rule: if \((C_1 \cup C_2)(a) \in \mathcal{A} \) and \(\{C_1(a), C_2(a)\} \cap \mathcal{A} = \emptyset \) then replace \(\mathcal{A} \) with \(\mathcal{A} \cup \{C_1(a)\} \) and \(\mathcal{A} \cup \{C_2(a)\} \)
\(\sqcap\)-rule: \[\text{if } (C_1 \sqcap C_2)(a) \in \mathcal{A} \text{ and } \{C_1(a), C_2(a)\} \not\subseteq \mathcal{A}\]
then replace \(\mathcal{A}\) with \(\mathcal{A} \cup \{C_1(a), C_2(a)\}\)

\(\sqcup\)-rule: \[\text{if } (C_1 \sqcup C_2)(a) \in \mathcal{A} \text{ and } \{C_1(a), C_2(a)\} \cap \mathcal{A} = \emptyset\]
then replace \(\mathcal{A}\) with \(\mathcal{A} \cup \{C_1(a)\}\) \text{ and } \(\mathcal{A} \cup \{C_2(a)\}\)

\(\forall\)-rule: \[\text{if } \{\forall r. C(a), r(a, b)\} \in \mathcal{A} \text{ and } C(b) \not\in \mathcal{A}\]
then replace \(\mathcal{A}\) with \(\mathcal{A} \cup \{C(b)\}\)
\(\square \)-rule: if \((C_1 \sqcap C_2)(a) \in A\) and \(\{C_1(a), C_2(a)\} \not\subseteq A\) then replace \(A\) with \(A \cup \{C_1(a), C_2(a)\}\)

\(\square \)-rule: if \((C_1 \sqcup C_2)(a) \in A\) and \(\{C_1(a), C_2(a)\} \cap A = \emptyset\) then replace \(A\) with \(A \cup \{C_1(a)\}\) and \(A \cup \{C_2(a)\}\)

\(\forall \)-rule: if \(\{\forall r. C(a), r(a, b)\} \in A\) and \(C(b) \notin A\) then replace \(A\) with \(A \cup \{C(b)\}\)

\(\exists \)-rule: if \(\{\exists r. C(a)\} \in A\) and no \(b\) with \(\{r(a, b), C(b)\} \subseteq A\), then pick a new individual name \(d\) and replace \(A\) with \(A \cup \{r(a, d), C(d)\}\)
Test satisfiability of concept \(C = (A \cup B) \cap ((\neg B \cup D) \cap \neg A) \)
Test satisfiability of concept \(C = (A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A) \)

Start with \(S = \{ A_0 \} \) where \(A_0 = \{((A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A))(a_0) \} \).
Test satisfiability of concept $C = (A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A)$

Start with $S = \{ \mathcal{A}_0 \}$ where $\mathcal{A}_0 = \{ ((A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A))(a_0) \}$.

Apply \sqcap-rule to \mathcal{A}_0:
get $S = \{ \mathcal{A}'_0 \}$ where $\mathcal{A}'_0 = \mathcal{A}_0 \cup \{(A \sqcup B)(a_0), ((\neg B \sqcup D) \sqcap \neg A)(a_0)\}$.
Test satisfiability of concept $C = (A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A)$.

Start with $S = \{ A_0 \}$ where $A_0 = \{ ((A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A)) (a_0) \}$. Apply \(\sqcap \)-rule to A_0:
get $S = \{ A'_0 \}$ where $A'_0 = A_0 \cup \{ (A \sqcup B)(a_0), ((\neg B \sqcup D) \sqcap \neg A)(a_0) \}$.

Apply \(\sqcap \)-rule to A'_0:
get $S = \{ A'_1, A'_2 \}$ where $A'_1 = A'_0 \cup \{ (A \sqcup B)(a_0), (\neg B \sqcup D)(a_0) \}$, $A'_2 = A'_0 \cup \{ (\neg B \sqcup D)(a_0), (\neg A)(a_0) \}$.

Apply \(\sqcup \)-rule to A'_2:
get $S = \{ A'_2, A'_3, A'_4 \}$ where $A'_3 = A'_2 \cup \{ (\neg B)(a_0) \}$, $A'_4 = A'_2 \cup \{ D(a_0) \}$.

Apply \(\sqcap \)-rule to A'_3:
get $S = \{ A''_1, A'_2, A'_4 \}$.
Test satisfiability of concept $C = (A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A)$

Start with $S = \{ A_0 \}$ where $A_0 = \{ ((A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A))(a_0) \}$.

Apply \sqcap-rule to A_0:
get $S = \{ A'_0 \}$ where $A'_0 = A_0 \cup \{ (A \sqcup B)(a_0), ((\neg B \sqcup D) \sqcap \neg A)(a_0) \}$.

Apply \sqcup-rule to A'_0:
get $S = \{ A_1, A_2 \}$ where $A_1 = A'_0 \cup \{ A(a_0) \}$ and $A_2 = A'_0 \cup \{ B(a_0) \}$.

FIRST EXAMPLE: □ AND ⊓

Test satisfiability of concept $C = (A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A)$

Start with $S = \{ \mathcal{A}_0 \}$ where $\mathcal{A}_0 = \{ ((A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A))(a_0) \}$.

Apply □-rule to \mathcal{A}_0:
get $S = \{ \mathcal{A}_1, \mathcal{A}_2 \}$ where $\mathcal{A}_1 = \mathcal{A}_0 \cup \{ A(a_0) \}$ and $\mathcal{A}_2 = \mathcal{A}_0 \cup \{ B(a_0) \}$.
Test satisfiability of concept $C = (A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A)$

Start with $S = \{ A_0 \}$ where $A_0 = \{ ((A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A))(a_0) \}$.

Apply \sqcap-rule to A_0:
get $S = \{ A_0' \}$ where $A_0' = A_0 \cup \{ (A \sqcup B)(a_0), ((\neg B \sqcup D) \sqcap \neg A)(a_0) \}$.

Apply \sqcup-rule to A_0':
get $S = \{ A_1, A_2 \}$ where $A_1 = A_0' \cup \{ A(a_0) \}$ and $A_2 = A_0' \cup \{ B(a_0) \}$.

Apply \sqcap-rule to A_1:
get $S = \{ A_1', A_2 \}$ where $A_1' = A_1 \cup \{ ((\neg B \sqcup D)(a_0), \neg A(a_0) \}$
FIRST EXAMPLE: \(\sqcap \) AND \(\sqcup \)

Test satisfiability of concept \(C = (A \sqcup B) \sqcap (\neg B \sqcup D) \sqcap \neg A \)

Start with \(S = \{ A_0 \} \) where \(A_0 = \{ (A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A))(a_0) \} \).

Apply \(\sqcap \)-rule to \(A_0 \):
get \(S = \{ A'_0 \} \) where \(A'_0 = A_0 \cup \{ (A \sqcup B)(a_0), ((\neg B \sqcup D) \sqcap \neg A)(a_0) \} \} \).

Apply \(\sqcup \)-rule to \(A'_0 \):
get \(S = \{ A_1, A_2 \} \) where \(A_1 = A'_0 \cup \{ A(a_0) \} \) and \(A_2 = A'_0 \cup \{ B(a_0) \} \).

Apply \(\sqcap \)-rule to \(A_1 \):
get \(S = \{ A'_1, A_2 \} \) where \(A'_1 = A_1 \cup \{ (\neg B \sqcup D)(a_0), \neg A(a_0) \} \).

\(A'_1 \) contains clash \(\{ A(a_0), \neg A(a_0) \} \)!
Test satisfiability of concept \[C = (A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A) \]

Start with \(S = \{ A_0 \} \) where \(A_0 = \{ ((A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A))(a_0) \} \).

Apply □-rule to \(A_0 \):
get \(S = \{ A'_0 \} \) where \(A'_0 = A_0 \cup \{(A \sqcup B)(a_0), ((\neg B \sqcup D) \sqcap \neg A)(a_0)\} \).

Apply ⊓-rule to \(A'_0 \):
get \(S = \{ A_1, A_2 \} \) where \(A_1 = A'_0 \cup \{A(a_0)\} \) and \(A_2 = A'_0 \cup \{B(a_0)\} \).

Apply □-rule to \(A_1 \):
get \(S = \{ A'_1, A_2 \} \) where \(A'_1 = A_1 \cup \{(\neg B \sqcup D)(a_0), \neg A(a_0)\} \).
Test satisfiability of concept \(C = (A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A) \)

Start with \(S = \{ A_0 \} \) where \(A_0 = \{ ((A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A))(a_0) \} \).

Apply \(\sqcap \)-rule to \(A_0 \):
get \(S = \{ A'_0 \} \) where \(A'_0 = A_0 \cup \{(A \sqcup B)(a_0), ((\neg B \sqcup D) \sqcap \neg A)(a_0)\} \).

Apply \(\sqcup \)-rule to \(A'_0 \):
get \(S = \{ A_1, A_2 \} \) where \(A_1 = A'_0 \cup \{A(a_0)\} \) and \(A_2 = A'_0 \cup \{B(a_0)\} \).

Apply \(\sqcap \)-rule to \(A_1 \):
get \(S = \{ A'_1, A_2 \} \) where \(A'_1 = A_1 \cup \{(\neg B \sqcup D)(a_0), \neg A(a_0)\} \)

Apply \(\sqcap \)-rule to \(A_2 \):
get \(S = \{ A'_1, A'_2 \} \) where \(A'_2 = A_2 \cup \{(\neg B \sqcup D)(a_0), \neg A(a_0)\} \)
Test satisfiability of concept $C = (A \sqcup B) \cap ((\neg B \sqcup D) \cap \neg A)$

Start with $S = \{ \mathcal{A}_0 \}$ where $\mathcal{A}_0 = \{ ((A \sqcup B) \cap ((\neg B \sqcup D) \cap \neg A)) (a_0) \}$.

Apply \sqcap-rule to \mathcal{A}_0:
get $S = \{ \mathcal{A}'_0 \}$ where $\mathcal{A}'_0 = \mathcal{A}_0 \cup \{(A \sqcup B)(a_0), ((\neg B \sqcup D) \cap \neg A)(a_0)\}$.

Apply \sqcup-rule to \mathcal{A}'_0:
get $S = \{ \mathcal{A}_1, \mathcal{A}_2 \}$ where $\mathcal{A}_1 = \mathcal{A}'_0 \cup \{A(a_0)\}$ and $\mathcal{A}_2 = \mathcal{A}'_0 \cup \{B(a_0)\}$.

Apply \sqcap-rule to \mathcal{A}_1:
get $S = \{ \mathcal{A}'_1, \mathcal{A}_2 \}$ where $\mathcal{A}'_1 = \mathcal{A}_1 \cup \{((\neg B \sqcup D)(a_0), \neg A(a_0)\}$

Apply \sqcap-rule to \mathcal{A}_2:
get $S = \{ \mathcal{A}'_1, \mathcal{A}'_2 \}$ where $\mathcal{A}'_2 = \mathcal{A}_2 \cup \{((\neg B \sqcup D)(a_0), \neg A(a_0)\}$
FIRST EXAMPLE: ⊢ AND □

Test satisfiability of concept $C = (A ∪ B) ∩ ((¬B ∪ D) ∩ ¬A)$

Start with $S = \{ A_0 \}$ where $A_0 = \{ ((A ∪ B) ∩ ((¬B ∪ D) ∩ ¬A))(a_0) \}$.

Apply ⊢-rule to A_0:
get $S = \{ A'_0 \}$ where $A'_0 = A_0 ∪ \{ (A ∪ B)(a_0), ((¬B ∪ D) ∩ ¬A)(a_0) \}$.

Apply ⊤-rule to A'_0:
get $S = \{ A_1, A_2 \}$ where $A_1 = A'_0 ∪ \{ A(a_0) \}$ and $A_2 = A'_0 ∪ \{ B(a_0) \}$.

Apply ⊢-rule to A_1:
get $S = \{ A'_1, A_2 \}$ where $A'_1 = A_1 ∪ \{ (¬B ∪ D)(a_0), ¬A(a_0) \}$

Apply ⊢-rule to A_2:
get $S = \{ A'_1, A'_2 \}$ where $A'_2 = A_2 ∪ \{ (¬B ∪ D)(a_0), ¬A(a_0) \}$

Apply ⊤-rule to A'_2:
get $S = \{ A'_1, A_3, A_4 \}$ where $A_3 = A'_2 ∪ \{ ¬B(a_0) \}$, $A_4 = A'_2 ∪ \{ D(a_0) \}$
Test satisfiability of concept \[C = (A \sqcup B) \cap ((\neg B \sqcup D) \cap \neg A) \]

Start with \(S = \{ A_0 \} \) where \(A_0 = \{ ((A \sqcup B) \cap ((\neg B \sqcup D) \cap \neg A))(a_0) \} \).

Apply \(\sqcap \)-rule to \(A_0 \):
get \(S = \{ A'_0 \} \) where \(A'_0 = A_0 \cup \{(A \sqcup B)(a_0), ((\neg B \sqcup D) \cap \neg A)(a_0)\} \).

Apply \(\sqcup \)-rule to \(A'_0 \):
get \(S = \{ A_1, A_2 \} \) where \(A_1 = A'_0 \cup \{A(a_0)\} \) and \(A_2 = A'_0 \cup \{B(a_0)\} \).

Apply \(\sqcap \)-rule to \(A_1 \):
get \(S = \{ A'_1, A_2 \} \) where \(A'_1 = A_1 \cup \{((\neg B \sqcup D)(a_0), \neg A(a_0))\} \).

Apply \(\sqcap \)-rule to \(A_2 \):
get \(S = \{ A'_1, A'_2 \} \) where \(A'_2 = A_2 \cup \{((\neg B \sqcup D)(a_0), \neg A(a_0))\} \).

Apply \(\sqcup \)-rule to \(A'_2 \):
get \(S = \{ A'_1, A_3, A_4 \} \) where \(A_3 = A'_2 \cup \{\neg B(a_0)\}, A_4 = A'_2 \cup \{D(a_0)\} \)

\(A_3 \) contains clash \(\{B(a_0), \neg B(a_0)\} \)!
Test satisfiability of concept \(C = (A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A) \)

Start with \(S = \{ A_0 \} \) where \(A_0 = \{ ((A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A))(a_0) \} \).

Apply \(\sqcap \)-rule to \(A_0 \):
get \(S = \{ A'_0 \} \) where \(A'_0 = A_0 \cup \{ (A \sqcup B)(a_0), ((\neg B \sqcup D) \sqcap \neg A)(a_0) \} \).

Apply \(\sqcup \)-rule to \(A'_0 \):
get \(S = \{ A_1, A_2 \} \) where \(A_1 = A'_0 \cup \{ A(a_0) \} \) and \(A_2 = A'_0 \cup \{ B(a_0) \} \).

Apply \(\sqcap \)-rule to \(A_1 \):
get \(S = \{ A'_1, A_2 \} \) where \(A'_1 = A_1 \cup \{ (\neg B \sqcup D)(a_0), \neg A(a_0) \} \)

Apply \(\sqcap \)-rule to \(A_2 \):
get \(S = \{ A'_1, A'_2 \} \) where \(A'_2 = A_2 \cup \{ (\neg B \sqcup D)(a_0), \neg A(a_0) \} \)

Apply \(\sqcup \)-rule to \(A'_2 \):
get \(S = \{ A'_1, A_3, A_4 \} \) where \(A_3 = A'_2 \cup \{ \neg B(a_0) \}, A_4 = A'_2 \cup \{ D(a_0) \} \)

\(A_4 \) is complete, so we can stop.
FIRST EXAMPLE: □ AND ⊓

Test satisfiability of concept

\[C = (A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A) \]

Start with \(S = \{ A_0 \} \) where \(A_0 = \{ ((A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A))(a_0) \} \).

Apply □-rule to \(A_0 \):
get \(S = \{ A'_0 \} \) where \(A'_0 = A_0 \cup \{(A \sqcup B)(a_0), ((\neg B \sqcup D) \sqcap \neg A)(a_0)\} \).

Apply ⊓-rule to \(A'_0 \):
get \(S = \{ A_1, A_2 \} \) where \(A_1 = A'_0 \cup \{A(a_0)\} \) and \(A_2 = A'_0 \cup \{B(a_0)\} \).

Apply □-rule to \(A_1 \):
get \(S = \{ A'_1, A_2 \} \) where \(A'_1 = A_1 \cup \{((\neg B \sqcup D)(a_0), \neg A(a_0)\} \)

Apply □-rule to \(A_2 \):
get \(S = \{ A'_1, A'_2 \} \) where \(A'_2 = A_2 \cup \{((\neg B \sqcup D)(a_0), \neg A(a_0)\} \)

Apply ⊓-rule to \(A'_2 \):
get \(S = \{ A'_1, A_3, A_4 \} \) where \(A_3 = A'_2 \cup \{\neg B(a_0)\}, A_4 = A'_2 \cup \{D(a_0)\} \)

\(A_4 \) is complete and contains no clash \(\Rightarrow C_0 \) is satisfiable
Test satisfiability of concept

\[C = (A \sqcup B) \cap ((\neg B \sqcup D) \cap \neg A) \]

\[(A \sqcup B) \cap ((\neg B \sqcup D) \cap \neg A) \ (a_0) \]
Test satisfiability of concept: \[C = (A \sqcup B) \cap ((\neg B \sqcup D) \cap \neg A) \]

\[
\begin{align*}
(A \sqcup B) \cap ((\neg B \sqcup D) \cap \neg A) & (a_0) \\
((\neg B \sqcup D) \cap \neg A) & (a_0) \\
(A \sqcup B) & (a_0)
\end{align*}
\]

\(\sqcap \)-rule
Test satisfiability of concept \(C = (A \sqcup B) \cap ((\neg B \sqcup D) \cap \neg A) \)

\[
\begin{align*}
(A \sqcup B) \cap ((\neg B \sqcup D) \cap \neg A) & (a_0) \\
((\neg B \sqcup D) \cap \neg A) & (a_0) \\
(A \sqcup B) & (a_0) \\
A & (a_0) & B & (a_0) \\
& & & \square\text{-rule}
\end{align*}
\]
Test satisfiability of concept \(C = (A \sqcup B) \cap ((\neg B \sqcup D) \cap \neg A) \)

\[
(A \sqcup B) \cap ((\neg B \sqcup D) \cap \neg A) \quad (a_0) \\
((\neg B \sqcup D) \cap \neg A) \quad (a_0) \\
(A \sqcup B) \quad (a_0)
\]

\(-\text{-rule} \quad (\neg B \sqcup D) \quad (a_0) \\
\neg A \quad (a_0) \\
A \quad (a_0) \\
B \quad (a_0)
Test satisfiability of concept $C = (A \sqcup B) \cap ((\neg B \sqcup D) \cap \neg A)$

\[
(A \sqcup B) \cap ((\neg B \sqcup D) \cap \neg A) (a_0) \\
((\neg B \sqcup D) \cap \neg A) (a_0) \\
(A \sqcup B) (a_0)
\]

$A (a_0)$

$(\neg B \sqcup D) (a_0)$

$\neg A (a_0)$

$B (a_0)$

$(\neg B \sqcup D) (a_0)$

$\neg A (a_0)$

\sqcap-rule
Test satisfiability of concept $C = (A \sqcup B) \cap ((\neg B \sqcup D) \cap \neg A)$

\[
(A \sqcup B) \cap ((\neg B \sqcup D) \cap \neg A) (a_0)
\]

\[
((\neg B \sqcup D) \cap \neg A) (a_0)
\]

\[
(A \sqcup B) (a_0)
\]

\[
A (a_0)
\]

\[
(\neg B \sqcup D) (a_0)
\]

\[
\neg A (a_0)
\]

\[
B (a_0)
\]

\[
(\neg B \sqcup D) (a_0)
\]

\[
\neg A (a_0)
\]

\[
\neg B (a_0)
\]

\[
D (a_0)
\]

\[\sqcup\text{-rule}\]
Test satisfiability of concept \(C = (A \sqcup B) \cap ((\neg B \sqcup D) \cap \neg A) \)
Test satisfiability of concept $C = (A \sqcup B) \cap ((\neg B \sqcup D) \cap \neg A)$

\[
\begin{align*}
(A \sqcup B) \cap ((\neg B \sqcup D) \cap \neg A) & (a_0) \\
((\neg B \sqcup D) \cap \neg A) & (a_0) \\
(A \sqcup B) & (a_0)
\end{align*}
\]
In our example, we had the complete and clash-free ABox \mathcal{A}_4:

\[
((A \sqcup B) \cap ((\neg B \sqcup D) \cap \neg A))(a_0) \quad (A \sqcup B)(a_0)
\]
\[
((\neg B \sqcup D) \cap \neg A)(a_0) \quad B(a_0) \quad (\neg B \sqcup D)(a_0) \quad \neg A(a_0) \quad D(a_0)
\]

Can build from \mathcal{A}_4 the interpretation \mathcal{I} with:

- $\Delta^\mathcal{I} = \{a_0\}$ use individuals from \mathcal{A}_4
- $A^\mathcal{I} = \emptyset$ since \mathcal{A}_4 does not contain $A(a_0)$
- $B^\mathcal{I} = D^\mathcal{I} = \{a_0\}$ since \mathcal{A}_4 contains $B(a_0)$ and $D(a_0)$

We can verify that $(A \sqcup B) \cap ((\neg B \sqcup D) \cap \neg A)^\mathcal{I} = \{a_0\}$.

- \mathcal{I} witnesses the satisfiability of $C_0 = (A \sqcup B) \cap ((\neg B \sqcup D) \cap \neg A)$
Let’s use the tableau procedure to test satisfiability of

\[C = \exists r. A \land \forall r. \neg A \]
Let’s use the tableau procedure to test satisfiability of

\[C = \exists r.A \sqcap \forall r.\neg A \]

Start with \(S = \{ \mathcal{A}_0 \} \) where \(\mathcal{A}_0 = \{ (\exists r.A \sqcap \forall r.\neg A)(a_0) \} \).
Let's use the tableau procedure to test satisfiability of

\[C = \exists r. A \sqcap \forall r. \neg A \]

Start with \(S = \{ A_0 \} \) where \(A_0 = \{ (\exists r. A \sqcap \forall r. \neg A)(a_0) \} \).

Apply \(\sqcap \)-rule to \(A_0 \):

get \(S = \{ A'_0 \} \) where \(A'_0 = A_0 \cup \{ (\exists r. A)(a_0), (\forall r. \neg A)(a_0) \} \).
Let’s use the tableau procedure to test satisfiability of

$$C = \exists r. A \cap \forall r. \neg A$$

Start with $S = \{ A_0 \}$ where $A_0 = \{ (\exists r. A \cap \forall r. \neg A)(a_0) \}$.

Apply \cap-rule to A_0:
get $S = \{ A'_0 \}$ where $A'_0 = A_0 \cup \{ (\exists r. A)(a_0), (\forall r. \neg A)(a_0) \}$.
Let’s use the tableau procedure to test satisfiability of

\[
C = \exists r.A \sqcap \forall r.\neg A
\]

Start with \(S = \{ A_0 \} \) where \(A_0 = \{ (\exists r.A \sqcap \forall r.\neg A)(a_0) \} \).

Apply \(\sqcap \)-rule to \(A_0 \):
get \(S = \{ A'_0 \} \) where \(A'_0 = A_0 \cup \{ (\exists r.A)(a_0), (\forall r.\neg A)(a_0) \} \).

Apply \(\exists \)-rule to \(A'_0 \):
get \(S = \{ A''_0 \} \) where \(A''_0 = A'_0 \cup \{ r(a_0, a_1), A(a_1) \} \).
Let’s use the tableau procedure to test satisfiability of

\[C = \exists r. A \sqcap \forall r. \neg A \]

Start with \(S = \{ \mathcal{A}_0 \} \) where \(\mathcal{A}_0 = \{ (\exists r. A \sqcap \forall r. \neg A)(a_0) \} \).

Apply \(\sqcap \)-rule to \(\mathcal{A}_0 \):
get \(S = \{ \mathcal{A}' \} \) where \(\mathcal{A}' = \mathcal{A}_0 \cup \{ (\exists r. A)(a_0), (\forall r. \neg A)(a_0) \} \).

Apply \(\exists \)-rule to \(\mathcal{A}' \):
get \(S = \{ \mathcal{A}'' \} \) where \(\mathcal{A}'' = \mathcal{A}' \cup \{ r(a_0, a_1), A(a_1) \} \).
ANOTHER EXAMPLE: ∀ AND ∃

Let’s use the tableau procedure to test satisfiability of

\[C = \exists r. A \sqcap \forall r. \neg A \]

Start with \(S = \{ A_0 \} \) where \(A_0 = \{ (\exists r. A \sqcap \forall r. \neg A)(a_0) \} \).

Apply \(\sqcap \)-rule to \(A_0 \):
get \(S = \{ A'_0 \} \) where \(A'_0 = A_0 \cup \{ (\exists r. A)(a_0), (\forall r. \neg A)(a_0) \} \).

Apply \(\exists \)-rule to \(A'_0 \):
get \(S = \{ A''_0 \} \) where \(A''_0 = A'_0 \cup \{ r(a_0, a_1), A(a_1) \} \).

Apply \(\forall \)-rule to \(A''_0 \):
get \(S = \{ A'''_0 \} \) where \(A'''_0 = A''_0 \cup \{ \neg A(a_1) \} \).
ANOTHER EXAMPLE: \forall AND \exists

Let’s use the tableau procedure to test satisfiability of

$$C = \exists r. A \land \forall r. \neg A$$

Start with $S = \{ A_0 \}$ where $A_0 = \{ (\exists r. A \land \forall r. \neg A)(a_0) \}$.

Apply \land-rule to A_0:
get $S = \{ A'_0 \}$ where $A'_0 = A_0 \cup \{ (\exists r. A)(a_0), (\forall r. \neg A)(a_0) \}$.

Apply \exists-rule to A'_0:
get $S = \{ A''_0 \}$ where $A''_0 = A'_0 \cup \{ r(a_0, a_1), A(a_1) \}$.

Apply \forall-rule to A''_0:
get $S = \{ A'''_0 \}$ where $A'''_0 = A''_0 \cup \{ \neg A(a_1) \}$.

A'''_0 contains clash $\{ A(a_1), \neg A(a_1) \}$!
Let’s use the tableau procedure to test satisfiability of

\[C = \exists r. A \land \forall r. \neg A \]

Start with \(S = \{ \mathcal{A}_0 \} \) where \(\mathcal{A}_0 = \{ (\exists r. A \land \forall r. \neg A)(a_0) \} \).

Apply \(\land \)-rule to \(\mathcal{A}_0 \):
get \(S = \{ \mathcal{A}'_0 \} \) where \(\mathcal{A}'_0 = \mathcal{A}_0 \cup \{ (\exists r. A)(a_0), (\forall r. \neg A)(a_0) \} \).

Apply \(\exists \)-rule to \(\mathcal{A}'_0 \):
get \(S = \{ \mathcal{A}''_0 \} \) where \(\mathcal{A}''_0 = \mathcal{A}'_0 \cup \{ r(a_0, a_1), A(a_1) \} \).

Apply \(\forall \)-rule to \(\mathcal{A}''_0 \):
get \(S = \{ \mathcal{A}'''_0 \} \) where \(\mathcal{A}'''_0 = \mathcal{A}''_0 \cup \{ \neg A(a_1) \} \).

The only ABox in \(S \) contains a clash \(\Rightarrow C_0 \) is unsatisfiable
Test satisfiability of concept $C = \exists r. A \sqcap \forall r. \neg A$

$(\exists r. A \sqcap \forall r. \neg A)(a_0)$
Test satisfiability of concept $C = \exists r. A \land \forall r. \neg A$

$(\exists r. A \land \forall r. \neg A)(a_0)$

$(\exists r. A)(a_0) \quad \Box\text{-rule}$

$(\forall r. \neg A)(a_0)$
Test satisfiability of concept \[C = \exists r. A \sqcap \forall r. \neg A \]

\[
(\exists r. A \sqcap \forall r. \neg A)(a_0)
\]

\[
(\exists r. A)(a_0)
\]

\[
(\forall r. \neg A)(a_0)
\]

\[
r(a_0, a_1) \quad \exists\text{-rule}
\]

\[
A(a_1)
\]
Test satisfiability of concept \(C = \exists r. A \sqcap \forall r. \neg A \)

\[
(\exists r. A \sqcap \forall r. \neg A)(a_0)
= (\exists r. A)(a_0)
= (\forall r. \neg A)(a_0)
= r(a_0, a_1)
= A(a_1)
= \neg A(a_1) \quad \forall\text{-rule}
\]
Test satisfiability of concept $C = \exists r. A \sqcap \forall r. \neg A$

$(\exists r. A \sqcap \forall r. \neg A)(a_0)$

$(\exists r. A)(a_0)$

$(\forall r. \neg A)(a_0)$

$r(a_0, a_1)$

$A(a_1)$

$\neg A(a_1)$

\times
Test satisfiability of concept $C = \exists r. A \sqcap \forall r. \neg A$

$(\exists r. A \sqcap \forall r. \neg A)(a_0)$

$(\exists r. A)(a_0)$

$(\forall r. \neg A)(a_0)$

$r(a_0, a_1)$

$A(a_1)$

$\neg A(a_1)$

x

Conclude that C is unsatisfiable
Suppose that we consider a slightly different concept

\[C_0 = \exists r. A \sqcap \forall r. \neg B \]

Now the algorithm yields the following complete, clash-free ABox:

\[(\exists r. A \sqcap \forall r. \neg B)(a_0) (\exists r. A)(a_0) (\forall r. \neg B)(a_0) r(a_0, a_1) A(a_1) \neg B(a_1)\]
Suppose that we consider a slightly different concept

\[C_0 = \exists r. A \sqcap \forall r. \lnot B \]

Now the algorithm yields the following complete, clash-free ABox:

\[
(\exists r. A \sqcap \forall r. \lnot B)(a_0) \quad (\exists r. A)(a_0) \quad (\forall r. \lnot B)(a_0) \quad r(a_0, a_1) \quad A(a_1) \quad \lnot B(a_1)
\]

Corresponding interpretation \(I \):

- \(\Delta^I = \{a_0, a_1\} \)
- \(A^I = \{a_1\} \)
- \(B^I = \emptyset \)
- \(r^I = \{(a_0, a_1)\} \)

Can check that \(I \) is such that \(C^I_0 = \{a_0\} \).
Let’s call our tableau algorithm CSat (for concept satisfiability).

To show that CSat is a decision procedure, we must show:

Termination: The algorithm CSat always terminates.

Soundness: CSat outputs “yes” on input $C_0 \Rightarrow C_0$ is satisfiable.

Completeness: C_0 satisfiable $\Rightarrow \text{CSat}$ will output “yes”.
Subconcepts of a concept:

\[
\begin{align*}
\text{sub}(A) &= \{A\} \\
\text{sub}(\neg C) &= \{\neg C\} \cup \text{sub}(C) \\
\text{sub}(\exists r. C) &= \{\exists r. C\} \cup \text{sub}(C) \\
\text{sub}(\forall r. C) &= \{\forall r. C\} \cup \text{sub}(C) \\
\text{sub}(C_1 \sqcup C_2) &= \{C_1 \sqcup C_2\} \cup \text{sub}(C_1) \cup \text{sub}(C_2) \\
\text{sub}(C_1 \sqcap C_2) &= \{C_1 \sqcap C_2\} \cup \text{sub}(C_1) \cup \text{sub}(C_2)
\end{align*}
\]
Subconcepts of a concept:

\[\text{sub}(A) = \{A\} \]
\[\text{sub}(\neg C) = \{\neg C\} \cup \text{sub}(C) \]
\[\text{sub}(\exists r. C) = \{\exists r. C\} \cup \text{sub}(C) \]
\[\text{sub}(\forall r. C) = \{\forall r. C\} \cup \text{sub}(C) \]
\[\text{sub}(C_1 \sqcup C_2) = \{C_1 \sqcup C_2\} \cup \text{sub}(C_1) \cup \text{sub}(C_2) \]
\[\text{sub}(C_1 \sqcap C_2) = \{C_1 \sqcap C_2\} \cup \text{sub}(C_1) \cup \text{sub}(C_2) \]

Role depth of a concept:

\[\text{depth}(A) = \text{depth}(\top) = \text{depth}(\bot) = 0 \]
\[\text{depth}(\neg C) = \text{depth}(C) \]
\[\text{depth}(\exists r. C) = \text{depth}(\forall r. C) = \text{depth}(C) + 1 \]
\[\text{depth}(C_1 \sqcup C_2) = \text{depth}(C_1 \sqcap C_2) = \max(\text{depth}(C_1), \text{depth}(C_2)) \]
Subconcepts of a concept: $|\text{sub}(C)| \leq |C|$

\[
\begin{align*}
\text{sub}(A) &= \{A\} \\
\text{sub}(\neg C) &= \{\neg C\} \cup \text{sub}(C) \\
\text{sub}(\exists r.C) &= \{\exists r.C\} \cup \text{sub}(C) \\
\text{sub}(\forall r.C) &= \{\forall r.C\} \cup \text{sub}(C) \\
\text{sub}(C_1 \sqcup C_2) &= \{C_1 \sqcup C_2\} \cup \text{sub}(C_1) \cup \text{sub}(C_2) \\
\text{sub}(C_1 \sqcap C_2) &= \{C_1 \sqcap C_2\} \cup \text{sub}(C_1) \cup \text{sub}(C_2)
\end{align*}
\]

Role depth of a concept: $\text{depth}(C) \leq |C|$

\[
\begin{align*}
\text{depth}(A) &= \text{depth}(\top) = \text{depth}(\bot) = 0 \\
\text{depth}(\neg C) &= \text{depth}(C) \\
\text{depth}(\exists r.C) &= \text{depth}(\forall r.C) = \text{depth}(C) + 1 \\
\text{depth}(C_1 \sqcup C_2) &= \text{depth}(C_1 \sqcap C_2) = \max(\text{depth}(C_1), \text{depth}(C_2))
\end{align*}
\]
Suppose we run \texttt{CSat} starting from $S = \{\{C_0(a_0)\}\}$.

Suppose we run \texttt{CSat} starting from \(S = \{ \{ C_0(a_0) \} \} \).

We observe that for every ABox \(\mathcal{A} \) generated by the procedure:
Suppose we run \textsf{CSat} starting from $S = \{C_0(a_0)\}$.

We observe that for every ABox \mathcal{A} generated by the procedure:

1. if $D(b) \in \mathcal{A}$, then $D \in \text{sub}(C_0)$
Suppose we run **CSat** starting from \(S = \{\{C_0(a_0)\}\} \).

We observe that for every ABox \(\mathcal{A} \) generated by the procedure:

1. If \(D(b) \in \mathcal{A} \), then \(D \in \text{sub}(C_0) \)

 - \(\mathcal{A} \) contains at most \(|C_0| \) concept assertions per individual
Suppose we run \textbf{CSat} starting from \(S = \{ \{ C_0(a_0) \} \} \).

We observe that for every ABox \(\mathcal{A} \) generated by the procedure:

1. if \(D(b) \in \mathcal{A} \), then \(D \in \text{sub}(C_0) \)

 \(\cdot \) \(\mathcal{A} \) contains at most \(|C_0|\) concept assertions per individual

2. the set of role assertions in \(\mathcal{A} \) forms a tree
Suppose we run CSat starting from $S = \{C_0(a_0)\}$.

We observe that for every ABox A generated by the procedure:

1. if $D(b) \in A$, then $D \in \text{sub}(C_0)$
 - A contains at most $|C_0|$ concept assertions per individual
2. the set of role assertions in A forms a tree
3. if $D(b) \in A$ and the unique path from a_0 to b has length k, then $\text{depth}(D) \leq \text{depth}(C_0) - k$
Suppose we run \texttt{CSat} starting from $S = \{\{C_0(a_0)\}\}$.

We observe that for every ABox \mathcal{A} generated by the procedure:

1. if $D(b) \in \mathcal{A}$, then $D \in \text{sub}(C_0)$

 $\cdot \mathcal{A}$ contains at most $|C_0|$ concept assertions per individual

2. the set of role assertions in \mathcal{A} forms a tree

3. if $D(b) \in \mathcal{A}$ and the unique path from a_0 to b has length k,

 then $\text{depth}(D) \leq \text{depth}(C_0) - k$

 \cdot each individual in \mathcal{A} is at distance $\leq \text{depth}(C_0)$ from a_0
Suppose we run **CSat** starting from $S = \{\{C_0(a_0)\}\}$.

We observe that for every ABox A generated by the procedure:

1. if $D(b) \in A$, then $D \in \text{sub}(C_0)$
 - A contains at most $|C_0|$ concept assertions per individual
2. the set of role assertions in A forms a tree
3. if $D(b) \in A$ and the unique path from a_0 to b has length k, then $\text{depth}(D) \leq \text{depth}(C_0) - k$
 - each individual in A is at distance $\leq \text{depth}(C_0)$ from a_0
4. for every individual b in A, there are at most $|C_0|$ individuals c such that $r(b, c) \in A$ for some r (at most one per existential concept)
Suppose we run \textbf{CSat} starting from \(S = \{\{C_0(a_0)\}\} \).

We observe that for every ABox \(\mathcal{A} \) generated by the procedure:

1. if \(D(b) \in \mathcal{A} \), then \(D \in \text{sub}(C_0) \)
 - \(\mathcal{A} \) contains at most \(|C_0| \) concept assertions per individual
2. the set of role assertions in \(\mathcal{A} \) forms a tree
3. if \(D(b) \in \mathcal{A} \) and the unique path from \(a_0 \) to \(b \) has length \(k \),
 then \(\text{depth}(D) \leq \text{depth}(C_0) - k \)
 - each individual in \(\mathcal{A} \) is at distance \(\leq \text{depth}(C_0) \) from \(a_0 \)
4. for every individual \(b \) in \(\mathcal{A} \), there are at most \(|C_0| \) individuals \(c \)
 such that \(r(b, c) \in \mathcal{A} \) for some \(r \) (at most one per existential concept)

Thus: \textbf{bound on the size of ABoxes} generated by the procedure
Suppose we run \texttt{CSat} starting from \(S = \{\{C_0(a_0)\}\} \).

We observe that for every ABox \(\mathcal{A} \) generated by the procedure:

1. if \(D(b) \in \mathcal{A} \), then \(D \in \text{sub}(C_0) \)

 \(\cdot \) \(\mathcal{A} \) contains at most \(|C_0| \) concept assertions per individual

2. the set of role assertions in \(\mathcal{A} \) forms a tree

3. if \(D(b) \in \mathcal{A} \) and the unique path from \(a_0 \) to \(b \) has length \(k \),

 \(\text{then depth}(D) \leq \text{depth}(C_0) - k \)

 \(\cdot \) each individual in \(\mathcal{A} \) is at distance \(\leq \text{depth}(C_0) \) from \(a_0 \)

4. for every individual \(b \) in \(\mathcal{A} \), there are at most \(|C_0| \) individuals \(c \)

 such that \(r(b, c) \in \mathcal{A} \) for some \(r \) (at most one per existential concept)

Thus: \textbf{bound on the size of ABoxes} generated by the procedure

The tableau procedure \textbf{only adds assertions} to ABoxes

\(\Rightarrow \) \textbf{eventually all ABoxes will contain a clash or will be complete}
Suppose that CSat returns “yes” on input C_0.

Then S must contain a complete and clash-free ABox \mathcal{A}.
Suppose that CSat returns “yes” on input C_0.

Then S must contain a complete and clash-free ABox \mathcal{A}.

Use \mathcal{A} to define an interpretation \mathcal{I} as follows:

- $\Delta^{\mathcal{I}} = \{a \mid a \text{ is an individual in } \mathcal{A}\}$
- $A^{\mathcal{I}} = \{a \mid A(a) \in \mathcal{A}\}$
- $r^{\mathcal{I}} = \{(a, b) \mid r(a, b) \in \mathcal{A}\}$

Claim: \mathcal{I} is such that $C_0^{\mathcal{I}} \neq \emptyset$
Suppose that \texttt{CSat} returns “yes” on input \(C_0 \).

Then \(S \) must contain a \textbf{complete and clash-free ABox} \(\mathcal{A} \).

Use \(\mathcal{A} \) to define an interpretation \(\mathcal{I} \) as follows:

\begin{itemize}
 \item \(\Delta^\mathcal{I} = \{ a \mid a \text{ is an individual in } \mathcal{A} \} \)
 \item \(A^\mathcal{I} = \{ a \mid A(a) \in \mathcal{A} \} \)
 \item \(r^\mathcal{I} = \{ (a, b) \mid r(a, b) \in \mathcal{A} \} \)
\end{itemize}

\textbf{Claim:} \(\mathcal{I} \) is such that \(C_0^\mathcal{I} \neq \emptyset \)

To show the claim, we prove by induction on the size of concepts:

\[D(b) \in \mathcal{A} \quad \Rightarrow \quad b \in D^\mathcal{I} \]
Base case: $D = A$ or $D = \neg A$ or $D = T$ or $D = \bot$
Base case: $D = A$ or $D = \neg A$ or $D = \top$ or $D = \bot$

If $D = A$, then $b \in A^I$.
If $D = \neg A$, then $A(b) \notin A$, so $b \in \neg A^I$.
If $D = \top$, trivially $b \in \top^I = \Delta^I$. Cannot have $D = \bot$ since clash-free.

Induction hypothesis (IH): suppose holds whenever $|D| \leq k$

Induction step: show statement holds for D with $|D| = k + 1$

Again, many cases to consider:

- $D = E \cap F$: since A is complete, it must contain both $E(b)$ and $F(b)$. Applying the IH, we get $b \in E^I$ and $b \in F^I$, hence $b \in (E \cap F)^I$
- $D = \exists r.E$: since A is complete, there exists c such that $r(b, c) \in A$ and $E(c) \in A$. Then $(b, c) \in r^I$. From IH, get $c \in E^I$, so $b \in (\exists r.E)^I$
- $D = E \cup F$: **left as practice**
- $D = \forall R.E$: **left as practice**
Suppose that the concept C_0 is satisfiable.

Then the ABox $\{C_0(a_0)\}$ must be satisfiable too.
Suppose that the concept C_0 is satisfiable.

Then the ABox $\{C_0(a_0)\}$ must be satisfiable too.

We observe that the tableau rules are satisfiability-preserving:

- If an ABox \mathcal{A} is satisfiable and \mathcal{A}' is the result of applying a rule to \mathcal{A}, then \mathcal{A}' is also satisfiable.
- If \mathcal{A} is satisfiable and \mathcal{A}_1 and \mathcal{A}_2 are obtained when applying a rule to \mathcal{A}, then either \mathcal{A}_1 is satisfiable or \mathcal{A}_2 is satisfiable.
Suppose that the concept C_0 is satisfiable.

Then the ABox $\{C_0(a_0)\}$ must be satisfiable too.

We observe that the tableau rules are satisfiability-preserving:

- If an ABox \mathcal{A} is satisfiable and \mathcal{A}' is the result of applying a rule to \mathcal{A}, then \mathcal{A}' is also satisfiable.

- If \mathcal{A} is satisfiable and \mathcal{A}_1 and \mathcal{A}_2 are obtained when applying a rule to \mathcal{A}, then either \mathcal{A}_1 is satisfiable or \mathcal{A}_2 is satisfiable.

We start with a satisfiable ABox and the rules are satisfiability-preserving, so eventually we will reach a complete, satisfiable (thus: clash-free) ABox and output ‘yes’.
Bad news: our algorithm may require exponential time and space...

To see why, consider what happens if we run \texttt{CSat} on the concept

\[\bigcap_{0 \leq i < n} \forall r \ldots \forall r. (\exists r.B \sqcap \exists r.\neg B) \]

\textit{i times}
Bad news: our algorithm may require exponential time and space...

To see why, consider what happens if we run CSat on the concept

$$\bigcap_{0 \leq i < n} \forall r \ldots \forall r. (\exists r.B \sqcap \exists r. \neg B)$$

i times

Good news: can modify algorithm so it runs in polynomial space

- instead of set of ABoxes, keep only 1 ABox in memory at a time
 - when apply the \sqcup-rule, first examine A_1, then afterwards examine A_2
 - remember that second disjunct stills needs to be checked
- explore the children of an individual one at a time
 - possible because no interaction between the different “branches”
 - store which $\exists r.C$ concepts have been tested, which are left to do
- this allows us to keep at most $|C_0|$ individuals in memory at a time
Hierarchy of complexity classes

\[\text{PTIME} \subseteq \text{NP} \subseteq \ldots \subseteq \text{PSPACE} \subseteq \text{EXPTIME} \subseteq \text{NEXPTIME} \subseteq \ldots \subseteq \text{EXPSPACE} \ldots \]

(it is believed that all inclusions are strict)
Hierarchy of complexity classes

\[\text{PTIME} \subseteq \text{NP} \subseteq \ldots \subseteq \text{PSPACE} \subseteq \text{EXPTIME} \subseteq \text{NEXPTIME} \subseteq \ldots \subseteq \text{EXPSPACE} \ldots \]

(it is believed that all inclusions are strict)

PSPACE = class of decision problems solvable in polynomial space

PSPACE-complete problems = hardest problems in PSPACE
Hierarchy of complexity classes

\[
\text{PTIME} \subseteq \text{NP} \subseteq \ldots \subseteq \text{PSPACE} \subseteq \text{EXPTIME} \subseteq \text{NEXPTIME} \subseteq \ldots \subseteq \text{EXPSPACE} \ldots
\]

(it is believed that all inclusions are strict)

\text{PSPACE} = \text{class of decision problems solvable in polynomial space}

PSPACE-complete problems = hardest problems in PSPACE

Theorem: \(\mathcal{ALC}\) concept satisfiability (no TBox) is PSPACE-complete.

- Membership in PSPACE shown using modified tableau procedure
- Hardness for PSPACE shown by giving a reduction from some known PSPACE-hard problem (e.g. QBF validity)
Now we want to modify the algorithm to handle KB satisfiability.

Adding an ABox is easy: simply start with \(\{A\} \) instead of \(\{C_0(a_0)\} \).
Now we want to modify the algorithm to handle KB satisfiability.

Adding an ABox is easy: simply start with \(\{ \mathcal{A} \} \) instead of \(\{ C_0(a_0) \} \)

Adding a TBox is a bit more tricky...

Idea: if \(C \sqsubseteq D \), then every element must satisfy either \(\neg C \) or \(D \)
Now we want to modify the algorithm to handle KB satisfiability.

Adding an ABox is easy: simply start with \(\{A\} \) instead of \(\{C_0(a_0)\} \).

Adding a TBox is a bit more tricky...

Idea: if \(C \sqsubseteq D \), then every element must satisfy either \(\neg C \) or \(D \).

Concretely, we might try adding the following rule:

TBox rule if \(a \) is in \(A \), \(C \sqsubseteq D \in T \), & \((\text{NNF}(\neg C) \sqcup \text{NNF}(D))(a) \notin A \) then replace \(A \) with \(A \cup \{(\text{NNF}(\neg C) \sqcup \text{NNF}(D))(a)\} \).
Let’s try the modified procedure on the KB $\left(\{F \sqsubseteq \exists S.F\}, \{F(a)\}\right)$.
EXAMPLE: NON-TERMINATION

Let’s try the modified procedure on the KB \((\{F \sqsubseteq \exists S.F\}, \{F(a)\}) \)

Seems we have a problem... How can we ensure termination?
Basic idea: if two individuals “look the same”, then it is unnecessary to explore both of them.
Basic idea: if two individuals “look the same”, then it is unnecessary to explore both of them

Formally: given individuals a, b from \mathcal{A}, we say that b blocks a if:

- $\{C \mid C(a) \in \mathcal{A}\} \subseteq \{C \mid C(b) \in \mathcal{A}\}$
- b was present in \mathcal{A} before a was introduced

Say that individual a is blocked (in \mathcal{A}) if some b blocks a.
Basic idea: if two individuals “look the same”, then it is unnecessary to explore both of them

Formally: given individuals a, b from \mathcal{A}, we say that b **blocks** a if:

- $\{C \mid C(a) \in \mathcal{A}\} \subseteq \{C \mid C(b) \in \mathcal{A}\}$
- b was present in \mathcal{A} before a was introduced

Say that individual a **is blocked** (in \mathcal{A}) if some b blocks a.

Modify rules so that they **only apply to unblocked individuals**.
TABLEAU RULES FOR KBS

□-rule: if $(C_1 \sqcap C_2)(a) \in \mathcal{A}$, a is not blocked, and \(\{C_1(a), C_2(a)\} \not\subseteq \mathcal{A} \), then replace \mathcal{A} with $\mathcal{A} \cup \{C_1(a), C_2(a)\}$

⊓-rule: if $(C_1 \sqcup C_2)(a) \in \mathcal{A}$, a is not blocked, and \(\{C_1(a), C_2(a)\} \cap \mathcal{A} = \emptyset \), then replace \mathcal{A} with $\mathcal{A} \cup \{C_1(a)\}$ and $\mathcal{A} \cup \{C_2(a)\}$

∀-rule: if $\{\forall r. C(a), r(a, b)\} \in \mathcal{A}$, a is not blocked, and $C(b) \not\in \mathcal{A}$, then replace \mathcal{A} with $\mathcal{A} \cup \{C(b)\}$

∃-rule: if $\{\exists r. C(a)\} \in \mathcal{A}$, a is not blocked, and no $\{r(a, b), C(b)\} \subseteq \mathcal{A}$, then pick a new individual name d and replace \mathcal{A} with $\mathcal{A} \cup \{r(a, d), C(d)\}$

⊑-rule: if a appears in \mathcal{A} and a is not blocked, $C \sqsubseteq D \in \mathcal{T}$, and $(\text{NNF}(\neg C) \sqcup \text{NNF}(D))(a) \not\in \mathcal{A}$, then replace \mathcal{A} with $\mathcal{A} \cup \{(\text{NNF}(\neg C) \sqcup \text{NNF}(D))(a)\}$
Let’s try blocking on the problematic KB $\langle \{ F \subseteq \exists s. F \}, \{ F(a) \} \rangle$.
Let’s try blocking on the problematic KB \((\{F \sqsubseteq \exists s.F\}, \{F(a)\})\)

\[
\begin{align*}
\neg F(a_0) &\quad (\exists s. F)(a_0) \\
\neg F(a_0) &\quad F(a_1)
\end{align*}
\]

\(a_1\) is blocked by \(a_0\)
Let’s try blocking on the problematic KB $\{F \subseteq \exists s.F\}, \{F(a)\}$

We obtain a complete and clash-free ABox \Rightarrow the KB is satisfiable
Consider the TBox $\mathcal{T} = \{A \sqsubseteq \exists r.A, A \sqsubseteq B, \exists r.B \sqsubseteq D\}$ and suppose we want to test whether $\mathcal{T} \models A \sqsubseteq D$.

We can do this by running the algorithm on $(\mathcal{T}, \{(A \sqcap \neg D)(a_0)\})$. Result: the KB is unsatisfiable $\Rightarrow \mathcal{T} \models A \sqsubseteq D$. Observe: individual can be blocked, then later become unblocked.
Consider the TBox $\mathcal{T} = \{A \sqsubseteq \exists r.A, A \sqsubseteq B, \exists r.B \sqsubseteq D\}$ and suppose we want to test whether $\mathcal{T} \models A \sqsubseteq D$.

We can do this by running the algorithm on $(\mathcal{T}, \{(A \sqcap \neg D)(a_0)\})$.

Result: the KB is unsatisfiable \Rightarrow $\mathcal{T} \models A \sqsubseteq D$
Consider the TBox $\mathcal{T} = \{A \sqsubseteq \exists r.A, A \sqsubseteq B, \exists r.B \sqsubseteq D\}$ and suppose we want to test whether $\mathcal{T} \models A \sqsubseteq D$.

We can do this by running the algorithm on $(\mathcal{T}, \{(A \sqcap \neg D)(a_0)\})$.

Result: the KB is unsatisfiable $\Rightarrow \mathcal{T} \models A \sqsubseteq D$

Observe: individual can be blocked, then later become unblocked
Let’s call our new tableau algorithm **KBSat** (for KB satisfiability).

Termination: The algorithm **KBSat** always terminates.
- similar to before: bound the size of generated ABoxes
Let’s call our new tableau algorithm **KBSat** (for KB satisfiability).

Termination: The algorithm **KBSat** always terminates.
- similar to before: bound the size of generated ABoxes

Soundness: **KBSat** outputs “yes” on \((\mathcal{T}, \mathcal{A}) \Rightarrow (\mathcal{T}, \mathcal{A})\) is satisfiable.
- again, we use complete, clash-free ABox to build a model
- tricky part: need to handle the blocked individuals
Let’s call our new tableau algorithm \textit{KBSat} (for KB satisfiability).

Termination: The algorithm \textit{KBSat} always terminates.
- similar to before: bound the size of generated ABoxes

Soundness: \textit{KBSat} outputs “yes” on \((\mathcal{T}, \mathcal{A}) \Rightarrow (\mathcal{T}, \mathcal{A})\) is satisfiable.
- again, we use complete, clash-free ABox to build a model
- tricky part: need to handle the blocked individuals

Completeness: \((\mathcal{T}, \mathcal{A})\) satisfiable \(\Rightarrow\) \textit{KBSat} will output “yes”.
- again, show rules satisfiability-preserving
Let’s call our new tableau algorithm **KBSat** (for KB satisfiability).

Termination: The algorithm **KBSat** always terminates.
- similar to before: bound the size of generated ABoxes

Soundness: **KBSat** outputs “yes” on \((T, A) \Rightarrow (T, A)\) is satisfiable.
- again, we use complete, clash-free ABox to build a model
- tricky part: need to handle the blocked individuals

Completeness: \((T, A)\) satisfiable \(\Rightarrow\) **KBSat** will output “yes”.
- again, show rules satisfiability-preserving

So: **KBSat** is a decision procedure for KB satisfiability.
Tableau procedure takes **exponential time and space**
- can have **exponentially long ‘branches’** to explore

Complexity results tell us this is **unavoidable in worst case**:

Theorem: In \mathcal{ALC}, KB satisfiability is **EXPTIME-complete**
- for highly expressive DLs (\rightarrow OWL 2): complexity even higher
Despite high worst-case complexity, tableau algorithms for \mathcal{ALC} and other expressive DLs can work well in practice.
Despite high worst-case complexity, tableau algorithms for ALC and other expressive DLs can work well in practice.

However, good performance crucially depends on optimizations!
Despite high worst-case complexity, tableau algorithms for \mathcal{ALC} and other expressive DLs can work well in practice.

However, good performance crucially depends on optimizations!

Many types of optimizations:

- explore only one branch of one ABox at a time
Despite high worst-case complexity, tableau algorithms for \mathcal{ALC} and other expressive DLs can work well in practice.

However, good performance crucially depends on optimizations!

Many types of optimizations:

- explore only one branch of one ABox at a time
- strategies / heuristics for choosing next rule to apply
Despite high worst-case complexity, tableau algorithms for \mathcal{ALC} and other expressive DLs can work well in practice.

However, good performance crucially depends on optimizations!

Many types of optimizations:

- explore only one branch of one ABox at a time
- strategies / heuristics for choosing next rule to apply
- caching of results to reduce redundant computation
Despite high worst-case complexity, tableau algorithms for ALC and other expressive DLs can work well in practice.

However, good performance crucially depends on optimizations!

Many types of optimizations:

- explore only one branch of one ABox at a time
- strategies / heuristics for choosing next rule to apply
- caching of results to reduce redundant computation
- examine source of conflicts to prune search space (backjumping)
Despite high worst-case complexity, tableau algorithms for \mathcal{ALC} and other expressive DLs can work well in practice.

However, good performance crucially depends on optimizations!

Many types of optimizations:

- explore only one branch of one ABox at a time
- strategies / heuristics for choosing next rule to apply
- caching of results to reduce redundant computation
- examine source of conflicts to prune search space (backjumping)
- reduce number of \sqcap’s created by TBox inclusions (absorption)
Despite high worst-case complexity, tableau algorithms for \mathcal{ALC} and other expressive DLs can work well in practice.

However, good performance crucially depends on optimizations!

Many types of optimizations:

- explore only one branch of one ABox at a time
- strategies / heuristics for choosing next rule to apply
- caching of results to reduce redundant computation
- examine source of conflicts to prune search space (backjumping)
- reduce number of \sqcap’s created by TBox inclusions (absorption)
- reduce number of satisfiability checks during classification
When $\mathcal{T} = \{C_i \sqsubseteq D_i \mid 1 \leq i \leq n\}$, we get n disjunctions per individual:

$$(\text{NNF}(\neg C_1) \sqcup \text{NNF}(D_1))(a), \ldots, (\text{NNF}(\neg C_n) \sqcup \text{NNF}(D_n))(a)$$
When $\mathcal{T} = \{C_i \sqsubseteq D_i \mid 1 \leq i \leq n\}$, we get n disjunctions per individual:

$$(\text{NNF}(\neg C_1) \sqcup \text{NNF}(D_1))(a), \ldots, (\text{NNF}(\neg C_n) \sqcup \text{NNF}(D_n))(a)$$

Observation: if have $A \sqsubseteq D$ with A a concept name

- if don’t have $A(a)$, can satisfy the inclusion by choosing $\neg A(a)$
- if have $A(a)$, then must have $D(a)$
When $\mathcal{T} = \{C_i \sqsubseteq D_i \mid 1 \leq i \leq n\}$, we get n disjunctions per individual:

$$(\text{NNF}(\neg C_1) \sqcup \text{NNF}(D_1))(a), \ldots, (\text{NNF}(\neg C_n) \sqcup \text{NNF}(D_n))(a)$$

Observation: if have $A \sqsubseteq D$ with A a concept name

- if don’t have $A(a)$, can satisfy the inclusion by choosing $\neg A(a)$
- if have $A(a)$, then must have $D(a)$

So for inclusions with atomic left-hand side, can replace \sqsubseteq-rule by:

\sqsubseteq^{at}-rule: if $A(a) \in \mathcal{A}$, a is not blocked, $A \sqsubseteq D \in \mathcal{T}$ (with A atomic), and $D(a) \not\in \mathcal{A}$, then replace \mathcal{A} with $\mathcal{A} \cup \{D(a)\}$
When \(T = \{ C_i \subseteq D_i \mid 1 \leq i \leq n \} \), we get \(n \) disjunctions per individual:

\[
(\text{NNF}(\neg C_1) \sqcup \text{NNF}(D_1))(a), \ldots, (\text{NNF}(\neg C_n) \sqcup \text{NNF}(D_n))(a)
\]

Observation: if have \(A \subseteq D \) with \(A \) a concept name
- if don’t have \(A(a) \), can satisfy the inclusion by choosing \(\neg A(a) \)
- if have \(A(a) \), then must have \(D(a) \)

So for *inclusions with atomic left-hand side*, can replace \(\sqsubseteq \)-rule by:

\[\sqsubseteq^{at} \text{-rule: } \text{if } A(a) \in A, a \text{ is not blocked, } A \subseteq D \in T \text{ (with } A \text{ atomic), and } D(a) \not\in A, \text{ then replace } A \text{ with } A \cup \{D(a)\}\]

Good news: we’ve lowered the number of disjunctions!
Second observation: can transform some inclusions with complex concept on left into equivalent inclusions with atomic left-hand side.
Second observation: can transform some inclusions with complex concept on left into equivalent inclusions with atomic left-hand side

\[(A \sqcap C) \sqsubseteq D \quad \leadsto \quad A \sqsubseteq (\neg C \sqcup D)\]
Second observation: can transform some inclusions with complex concept on left into equivalent inclusions with atomic left-hand side

\[(A \cap C) \sqsubseteq D \quad \leadsto \quad A \sqsubseteq (\neg C \cup D)\]

Absorption technique:

1. preprocess the TBox by replacing inclusions with equivalent inclusions with atomic concept on left, whenever possible
2. when running tableau algorithm
 - use new \(\sqsubseteq^{at}\)-rule for inclusions \(A \sqsubseteq D\) with \(A\) a concept name
 - use regular \(\sqsubseteq\)-rule for the other TBox inclusions
Let’s use absorption on the KB \((\mathcal{T}, \{A(a)\})\) with:

\[
\{ \ A \sqsubseteq \exists r.B \quad B \sqsubseteq D \quad \exists r.D \sqsubseteq \neg A \ \}
\]
Let’s use absorption on the KB \((\mathcal{T}, \{A(a)\})\) with:

\[
\{ \ A \sqsubseteq \exists r. B \quad B \sqsubseteq D \quad \exists r. D \sqsubseteq \neg A \ \}
\]

- first two inclusions in \(\mathcal{T}\) already have concept name on left
- third inclusion in \(\mathcal{T}\) can be equivalently written as \(A \sqsubseteq \forall r. \neg D\)
- so: only need to use \(\sqsubseteq^{at}\)-rule
Let’s use absorption on the KB \((\mathcal{T}, \{A(a)\}) \) with:

\[
\{ \quad A \sqsubseteq \exists r.B \quad B \sqsubseteq D \quad \exists r.D \sqsubseteq \neg A \quad \}
\]

- first two inclusions in \(\mathcal{T} \) already have concept name on left
- third inclusion in \(\mathcal{T} \) can be equivalently written as \(A \sqsubseteq \forall r.\neg D \)
- so: only need to use \(\sqsubseteq^{at} \)-rule

Result: avoid disjunction, algorithm terminates much faster!
Classification: find all pairs of concept names A, B with $\mathcal{T} \models A \sqsubseteq B$

Naïve approach: test satisfiability of $A \sqcap \neg B$ w.r.t. \mathcal{T} for all pairs A, B

· but \mathcal{T} may contain hundreds or thousands of concept names....
Classification: find all pairs of concept names A, B with $\mathcal{T} \models A \sqsubseteq B$

Naïve approach: test satisfiability of $A \sqcap \neg B$ w.r.t. \mathcal{T} for all pairs A, B
- but \mathcal{T} may contain *hundreds or thousands of concept names*....

Each check is costly \Rightarrow want to reduce number of checks
Classification: **find all pairs of concept names** A, B with $\mathcal{T} \models A \sqsubseteq B$

Naïve approach: test satisfiability of $A \sqcap \neg B$ w.r.t. \mathcal{T} for all pairs A, B

· but \mathcal{T} may contain *hundreds or thousands of concept names*....

Each check is costly \Rightarrow **want to reduce number of checks**

Some ideas:

· **some cases are obvious**
 · $A \sqsubseteq A$ and inclusions that are explicitly stated in \mathcal{T}
Classification: find all pairs of concept names A, B with $\mathcal{T} \models A \sqsubseteq B$

Naïve approach: test satisfiability of $A \sqcap \neg B$ w.r.t. \mathcal{T} for all pairs A, B

- but \mathcal{T} may contain hundreds or thousands of concept names....

Each check is costly ⇒ want to reduce number of checks

Some ideas:

- some cases are obvious
 - $A \sqsubseteq A$ and inclusions that are explicitly stated in \mathcal{T}
- use simple reasoning to obtain new (non-)entailments
 - if know $\mathcal{T} \models A \sqsubseteq B$ and $\mathcal{T} \models B \sqsubseteq D$, then $\mathcal{T} \models A \sqsubseteq D$
 - if know $\mathcal{T} \models A \sqsubseteq B$ and $\mathcal{T} \not\models A \sqsubseteq D$, then $\mathcal{T} \not\models B \sqsubseteq D$