ONTOLOGIES & DESCRIPTION LOGICS

Parcours IA - Représentation des connaissances

Meghyn Bienvenu (LaBRI - CNRS & Université de Bordeaux)

REASONING IN EXPRESSIVE DLS

Tableau method: popular approach for reasoning in expressive DLs

implemented in state-of-the-art DL reasoners

Tableau algorithms are used to decide satisfiability

 solve other tasks (e.g. entailment) by reducing them to satisfiability Tableau method: popular approach for reasoning in expressive DLs

implemented in state-of-the-art DL reasoners

Tableau algorithms are used to decide satisfiability

 solve other tasks (e.g. entailment) by reducing them to satisfiability

Idea: to determine whether a given (concept or KB) Ψ is satisfiable, try to construct a (representation of a) model of Ψ

- $\cdot\,$ if we succeed, then we have shown that Ψ is satisfiable
- · if we fail despite having considered all possibilities, then we have proven that Ψ is unsatisfiable

Recall that \mathcal{ALC} concepts are built using the following constructors:

 $\top \bot \neg \sqcup \sqcap \forall r.C \exists r.C$

Recall that \mathcal{ALC} concepts are built using the following constructors:

 $\top \perp \neg \sqcup \sqcap \forall r.C \exists r.C$

We say that an ALC concept C is in **negation normal form (NNF)** if the symbol \neg only appears directly in front of atomic concepts.

- · in NNF: $A \sqcap \neg B$, $\exists r. \neg A$, $\neg A \sqcup \neg B$
- not in NNF: \neg ($A \sqcap B$), $\exists r. \neg$ ($\forall s.B$), $A \sqcup \neg \forall r.B, \neg \top$

Recall that \mathcal{ALC} concepts are built using the following constructors:

 $\top \perp \neg \sqcup \sqcap \forall r.C \exists r.C$

We say that an ALC concept C is in **negation normal form (NNF)** if the symbol \neg only appears directly in front of atomic concepts.

- · in NNF: $A \sqcap \neg B$, $\exists r. \neg A$, $\neg A \sqcup \neg B$
- · not in NNF: \neg ($A \sqcap B$), $\exists r. \neg$ ($\forall s.B$), $A \sqcup \neg \forall r.B, \neg \top$

Fact. Every *ALC* concept *C* can be **transformed into an equivalent concept in NNF** in linear time by applying the following rewrite rules:

$$\neg \top \rightsquigarrow \bot \qquad \neg (C \sqcap D) \rightsquigarrow \neg C \sqcup \neg D \qquad \neg (\forall r.C) \rightsquigarrow \exists r.\neg C$$
$$\neg \bot \rightsquigarrow \top \qquad \neg (C \sqcup D) \rightsquigarrow \neg C \sqcap \neg D \qquad \neg (\exists r.C) \rightsquigarrow \forall r.\neg C$$

Note: say C and D are equivalent if the empty TBox entails $C \equiv D$.

Procedure for testing satisfiability of C_0 :

- $\cdot\,$ We work with a set S of ABoxes
- Initially, S contains a single ABox $\{C_0(a_0)\}$

- $\cdot\,$ We work with a set S of ABoxes
- · Initially, S contains a single ABox $\{C_0(a_0)\}$
- At each stage, we **apply a tableau rule** to some $A \in S$ (note: rules are detailed on next slide)

- $\cdot\,$ We work with a set S of ABoxes
- · Initially, S contains a single ABox $\{C_0(a_0)\}$
- At each stage, we **apply a tableau rule** to some $A \in S$ (note: rules are detailed on next slide)
- \cdot A rule application involves replacing ${\cal A}$ by one or two ABoxes that extend ${\cal A}$ with new assertions

- $\cdot\,$ We work with a set S of ABoxes
- · Initially, S contains a single ABox $\{C_0(a_0)\}$
- At each stage, we **apply a tableau rule** to some $A \in S$ (note: rules are detailed on next slide)
- \cdot A rule application involves replacing ${\cal A}$ by one or two ABoxes that extend ${\cal A}$ with new assertions
- Stop applying rules when either:
 - every $A \in S$ contains a clash, i.e. an assertion $\bot(b)$ or a pair of assertions $\{B(b), \neg B(b)\}$
 - $\cdot \;$ some $\mathcal{A} \in \mathsf{S}$ is clash-free and complete: no rule can be applied to \mathcal{A}

- $\cdot\,$ We work with a set S of ABoxes
- · Initially, S contains a single ABox $\{C_0(a_0)\}$
- At each stage, we **apply a tableau rule** to some $A \in S$ (note: rules are detailed on next slide)
- \cdot A rule application involves replacing ${\cal A}$ by one or two ABoxes that extend ${\cal A}$ with new assertions
- Stop applying rules when either:
 - every $A \in S$ contains a clash, i.e. an assertion $\bot(b)$ or a pair of assertions $\{B(b), \neg B(b)\}$
 - $\cdot \;$ some $\mathcal{A} \in \mathsf{S}$ is clash-free and complete: no rule can be applied to \mathcal{A}
- · Return 'yes, satisfiable' if some $A \in S$ is clash-free, else "no".

$\begin{array}{ll} \sqcap \text{-rule:} & \text{if } (C_1 \sqcap C_2)(a) \in \mathcal{A} \text{ and } \{C_1(a), C_2(a)\} \not\subseteq \mathcal{A} \\ & \text{then replace } \mathcal{A} \text{ with } \mathcal{A} \cup \{C_1(a), C_2(a)\} \end{array}$

$\square\text{-rule:} \quad \text{if } (C_1 \sqcap C_2)(a) \in \mathcal{A} \text{ and } \{C_1(a), C_2(a)\} \not\subseteq \mathcal{A} \\ \text{then replace } \mathcal{A} \text{ with } \mathcal{A} \cup \{C_1(a), C_2(a)\} \end{cases}$

□-rule: if $(C_1 \sqcup C_2)(a) \in A$ and $\{C_1(a), C_2(a)\} \cap A = \emptyset$ then replace A with $A \cup \{C_1(a)\}$ and $A \cup \{C_2(a)\}$

- $\square \text{-rule:} \quad \text{if } (C_1 \sqcap C_2)(a) \in \mathcal{A} \text{ and } \{C_1(a), C_2(a)\} \not\subseteq \mathcal{A} \\ \text{then replace } \mathcal{A} \text{ with } \mathcal{A} \cup \{C_1(a), C_2(a)\}$
- **□-rule:** if $(C_1 \sqcup C_2)(a) \in \mathcal{A}$ and $\{C_1(a), C_2(a)\} \cap \mathcal{A} = \emptyset$ then replace \mathcal{A} with $\mathcal{A} \cup \{C_1(a)\}$ and $\mathcal{A} \cup \{C_2(a)\}$
- $\forall \text{-rule:} \quad \text{if } \{\forall r.C(a), r(a, b)\} \in \mathcal{A} \text{ and } C(b) \notin \mathcal{A} \\ \text{then replace } \mathcal{A} \text{ with } \mathcal{A} \cup \{C(b)\} \}$

□-rule:	if $(C_1 \sqcap C_2)(a) \in \mathcal{A}$ and $\{C_1(a), C_2(a)\} \not\subseteq \mathcal{A}$	
	then replace $\mathcal A$ with $\mathcal A\cup\{\mathcal C_1(a),\mathcal C_2(a)\}$	

- **□-rule:** if $(C_1 \sqcup C_2)(a) \in \mathcal{A}$ and $\{C_1(a), C_2(a)\} \cap \mathcal{A} = \emptyset$ then replace \mathcal{A} with $\mathcal{A} \cup \{C_1(a)\}$ and $\mathcal{A} \cup \{C_2(a)\}$
- $\forall \text{-rule:} \quad \text{if } \{\forall r.C(a), r(a, b)\} \in \mathcal{A} \text{ and } C(b) \notin \mathcal{A} \\ \text{then replace } \mathcal{A} \text{ with } \mathcal{A} \cup \{C(b)\} \\ \end{cases}$
- ∃-rule: if $\{\exists r.C(a)\} \in A$ and no *b* with $\{r(a,b), C(b)\} \subseteq A$, then **pick a new individual name** *d* and replace A with $A \cup \{r(a,d), C(d)\}$

Start with $S = \{A_0\}$ where $A_0 = \{(A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A))(a_0)\}.$

Start with $S = \{ \mathcal{A}_0 \}$ where $\mathcal{A}_0 = \{ ((A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A))(a_0) \}$. Apply \sqcap -rule to \mathcal{A}_0 : get $S = \{ \mathcal{A}'_0 \}$ where $\mathcal{A}'_0 = \mathcal{A}_0 \cup \{ (A \sqcup B)(a_0), ((\neg B \sqcup D) \sqcap \neg A)(a_0) \} \}$.

Start with $S = \{ \mathcal{A}_0 \}$ where $\mathcal{A}_0 = \{ ((A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A))(a_0) \}$. Apply \sqcap -rule to \mathcal{A}_0 : get $S = \{ \mathcal{A}'_0 \}$ where $\mathcal{A}'_0 = \mathcal{A}_0 \cup \{ (A \sqcup B)(a_0), ((\neg B \sqcup D) \sqcap \neg A)(a_0) \} \}$. Test satisfiability of concept $C = (A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A)$ Start with $S = \{A_0\}$ where $A_0 = \{(A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A))(a_0)\}$. Apply \sqcap -rule to A_0 : get $S = \{A'_0\}$ where $A'_0 = A_0 \cup \{(A \sqcup B)(a_0), ((\neg B \sqcup D) \sqcap \neg A)(a_0)\}\}$. Apply \sqcup -rule to A'_0 : get $S = \{A_1, A_2\}$ where $A_1 = A'_0 \cup \{A(a_0)\}$ and $A_2 = A'_0 \cup \{B(a_0)\}$. Test satisfiability of concept $C = (A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A)$ Start with $S = \{A_0\}$ where $A_0 = \{(A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A))(a_0)\}$. Apply \sqcap -rule to A_0 : get $S = \{A'_0\}$ where $A'_0 = A_0 \cup \{(A \sqcup B)(a_0), ((\neg B \sqcup D) \sqcap \neg A)(a_0)\}\}$. Apply \sqcup -rule to A'_0 : get $S = \{A_1, A_2\}$ where $A_1 = A'_0 \cup \{A(a_0)\}$ and $A_2 = A'_0 \cup \{B(a_0)\}$. Test satisfiability of concept $C = (A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A)$ Start with $S = \{A_0\}$ where $A_0 = \{(A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A))(a_0)\}$. Apply \sqcap -rule to A_0 : get $S = \{A'_0\}$ where $A'_0 = A_0 \cup \{(A \sqcup B)(a_0), ((\neg B \sqcup D) \sqcap \neg A)(a_0)\}\}$. Apply \sqcup -rule to A'_0 : get $S = \{A_1, A_2\}$ where $A_1 = A'_0 \cup \{A(a_0)\}$ and $A_2 = A'_0 \cup \{B(a_0)\}$. Apply \sqcap -rule to A_1 : get $S = \{A'_1, A_2\}$ where $A'_1 = A_1 \cup \{(\neg B \sqcup D)(a_0), \neg A(a_0)\}$ Test satisfiability of concept $C = (A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A)$ Start with $S = \{A_0\}$ where $A_0 = \{(A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A))(a_0)\}$. Apply \sqcap -rule to \mathcal{A}_{0} : get S = { \mathcal{A}'_0 } where $\mathcal{A}'_0 = \mathcal{A}_0 \cup \{(A \sqcup B)(a_0), ((\neg B \sqcup D) \sqcap \neg A)(a_0)\}\}.$ Apply \sqcup -rule to \mathcal{A}'_0 : get S = { A_1, A_2 } where $A_1 = A'_0 \cup \{A(a_0)\}$ and $A_2 = A'_0 \cup \{B(a_0)\}$. Apply \sqcap -rule to \mathcal{A}_1 : get S = { $\mathcal{A}'_1, \mathcal{A}_2$ } where $\mathcal{A}'_1 = \mathcal{A}_1 \cup \{(\neg B \sqcup D)(a_0), \neg A(a_0)\}$ \mathcal{A}'_1 contains clash { $A(a_0), \neg A(a_0)$ }!

Test satisfiability of concept $C = (A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A)$ Start with $S = \{A_0\}$ where $A_0 = \{(A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A))(a_0)\}$. Apply \sqcap -rule to A_0 : get $S = \{A'_0\}$ where $A'_0 = A_0 \cup \{(A \sqcup B)(a_0), ((\neg B \sqcup D) \sqcap \neg A)(a_0)\}\}$. Apply \sqcup -rule to A'_0 : get $S = \{A_1, A_2\}$ where $A_1 = A'_0 \cup \{A(a_0)\}$ and $A_2 = A'_0 \cup \{B(a_0)\}$. Apply \sqcap -rule to A_1 : get $S = \{A'_1, A_2\}$ where $A'_1 = A_1 \cup \{(\neg B \sqcup D)(a_0), \neg A(a_0)\}$ Test satisfiability of concept $C = (A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A)$ Start with $S = \{A_0\}$ where $A_0 = \{(A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A))(a_0)\}$. Apply \sqcap -rule to \mathcal{A}_{0} : get S = { \mathcal{A}'_0 } where $\mathcal{A}'_0 = \mathcal{A}_0 \cup \{(A \sqcup B)(a_0), ((\neg B \sqcup D) \sqcap \neg A)(a_0)\}\}.$ Apply \sqcup -rule to \mathcal{A}'_0 : get S = { A_1, A_2 } where $A_1 = A'_0 \cup \{A(a_0)\}$ and $A_2 = A'_0 \cup \{B(a_0)\}$. Apply \sqcap -rule to \mathcal{A}_1 : get S = { $\mathcal{A}'_1, \mathcal{A}_2$ } where $\mathcal{A}'_1 = \mathcal{A}_1 \cup \{(\neg B \sqcup D)(a_0), \neg A(a_0)\}$ Apply \sqcap -rule to \mathcal{A}_2 : get S = { A'_1, A'_2 } where $A'_2 = A_2 \cup \{ (\neg B \sqcup D)(a_0), \neg A(a_0) \}$

Test satisfiability of concept $C = (A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A)$ Start with $S = \{A_0\}$ where $A_0 = \{(A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A))(a_0)\}$. Apply \sqcap -rule to \mathcal{A}_{0} : get S = { \mathcal{A}'_0 } where $\mathcal{A}'_0 = \mathcal{A}_0 \cup \{(A \sqcup B)(a_0), ((\neg B \sqcup D) \sqcap \neg A)(a_0)\}\}.$ Apply \sqcup -rule to \mathcal{A}'_{0} : get S = { A_1, A_2 } where $A_1 = A'_0 \cup \{A(a_0)\}$ and $A_2 = A'_0 \cup \{B(a_0)\}$. Apply \sqcap -rule to \mathcal{A}_1 : get S = { $\mathcal{A}'_1, \mathcal{A}_2$ } where $\mathcal{A}'_1 = \mathcal{A}_1 \cup \{(\neg B \sqcup D)(a_0), \neg A(a_0)\}$ Apply \sqcap -rule to \mathcal{A}_2 : get S = { $\mathcal{A}'_1, \mathcal{A}'_2$ } where $\mathcal{A}'_2 = \mathcal{A}_2 \cup \{(\neg B \sqcup D)(a_0), \neg A(a_0)\}$

Test satisfiability of concept $C = (A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A)$ Start with $S = \{A_0\}$ where $A_0 = \{(A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A))(a_0)\}$. Apply \sqcap -rule to \mathcal{A}_{0} : get S = { \mathcal{A}'_0 } where $\mathcal{A}'_0 = \mathcal{A}_0 \cup \{(A \sqcup B)(a_0), ((\neg B \sqcup D) \sqcap \neg A)(a_0)\}\}.$ Apply \sqcup -rule to \mathcal{A}'_{0} : get S = { A_1, A_2 } where $A_1 = A'_0 \cup \{A(a_0)\}$ and $A_2 = A'_0 \cup \{B(a_0)\}$. Apply \sqcap -rule to \mathcal{A}_1 : get S = { $\mathcal{A}'_1, \mathcal{A}_2$ } where $\mathcal{A}'_1 = \mathcal{A}_1 \cup \{(\neg B \sqcup D)(a_0), \neg A(a_0)\}$ Apply \sqcap -rule to A_2 : get S = { $\mathcal{A}'_1, \mathcal{A}'_2$ } where $\mathcal{A}'_2 = \mathcal{A}_2 \cup \{(\neg B \sqcup D)(a_0), \neg A(a_0)\}$ Apply \sqcup -rule to \mathcal{A}'_2 : get S = { $\mathcal{A}'_1, \mathcal{A}_3, \mathcal{A}_4$ } where $\mathcal{A}_3 = \mathcal{A}'_2 \cup \{\neg B(a_0)\}, \mathcal{A}_4 = \mathcal{A}'_2 \cup \{D(a_0)\}$

Test satisfiability of concept $C = (A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A)$ Start with $S = \{A_0\}$ where $A_0 = \{(A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A))(a_0)\}$. Apply \sqcap -rule to \mathcal{A}_{0} : get S = { \mathcal{A}'_0 } where $\mathcal{A}'_0 = \mathcal{A}_0 \cup \{(A \sqcup B)(a_0), ((\neg B \sqcup D) \sqcap \neg A)(a_0)\}\}.$ Apply \sqcup -rule to \mathcal{A}'_{0} : get S = { A_1, A_2 } where $A_1 = A'_0 \cup \{A(a_0)\}$ and $A_2 = A'_0 \cup \{B(a_0)\}$. Apply \sqcap -rule to \mathcal{A}_1 : get S = { $\mathcal{A}'_1, \mathcal{A}_2$ } where $\mathcal{A}'_1 = \mathcal{A}_1 \cup \{(\neg B \sqcup D)(a_0), \neg A(a_0)\}$ Apply \sqcap -rule to \mathcal{A}_2 : get S = { $\mathcal{A}'_1, \mathcal{A}'_2$ } where $\mathcal{A}'_2 = \mathcal{A}_2 \cup \{(\neg B \sqcup D)(a_0), \neg A(a_0)\}$ Apply \sqcup -rule to \mathcal{A}'_2 : get S = { $\mathcal{A}'_1, \mathcal{A}_3, \mathcal{A}_4$ } where $\mathcal{A}_3 = \mathcal{A}'_2 \cup \{\neg B(a_0)\}, \mathcal{A}_4 = \mathcal{A}'_2 \cup \{D(a_0)\}$ \mathcal{A}_3 contains clash { $B(a_0), \neg B(a_0)$ }!

Test satisfiability of concept $C = (A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A)$ Start with $S = \{A_0\}$ where $A_0 = \{(A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A))(a_0)\}$. Apply \sqcap -rule to \mathcal{A}_0 : get S = { \mathcal{A}'_0 } where $\mathcal{A}'_0 = \mathcal{A}_0 \cup \{(A \sqcup B)(a_0), ((\neg B \sqcup D) \sqcap \neg A)(a_0)\}\}.$ Apply \sqcup -rule to \mathcal{A}'_{0} : get S = { $\mathcal{A}_1, \mathcal{A}_2$ } where $\mathcal{A}_1 = \mathcal{A}'_0 \cup \{A(a_0)\}$ and $\mathcal{A}_2 = \mathcal{A}'_0 \cup \{B(a_0)\}$. Apply \sqcap -rule to A_1 : get S = { $\mathcal{A}'_1, \mathcal{A}_2$ } where $\mathcal{A}'_1 = \mathcal{A}_1 \cup \{(\neg B \sqcup D)(a_0), \neg A(a_0)\}$ Apply \sqcap -rule to \mathcal{A}_2 : get S = { $\mathcal{A}'_1, \mathcal{A}'_2$ } where $\mathcal{A}'_2 = \mathcal{A}_2 \cup \{(\neg B \sqcup D)(a_0), \neg A(a_0)\}$ Apply \sqcup -rule to \mathcal{A}_2' : get S = { A'_1, A_3, A_4 } where $A_3 = A'_2 \cup \{\neg B(a_0)\}, A_4 = A'_2 \cup \{D(a_0)\}$ \mathcal{A}_{4} is complete, so we can stop.

Test satisfiability of concept $C = (A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A)$ Start with $S = \{A_0\}$ where $A_0 = \{(A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A))(a_0)\}$. Apply \sqcap -rule to \mathcal{A}_{0} : get S = { \mathcal{A}'_0 } where $\mathcal{A}'_0 = \mathcal{A}_0 \cup \{(A \sqcup B)(a_0), ((\neg B \sqcup D) \sqcap \neg A)(a_0)\}\}.$ Apply \sqcup -rule to \mathcal{A}'_{0} : get S = { A_1, A_2 } where $A_1 = A'_0 \cup \{A(a_0)\}$ and $A_2 = A'_0 \cup \{B(a_0)\}$. Apply \sqcap -rule to \mathcal{A}_1 : get S = { $\mathcal{A}'_1, \mathcal{A}_2$ } where $\mathcal{A}'_1 = \mathcal{A}_1 \cup \{(\neg B \sqcup D)(a_0), \neg A(a_0)\}$ Apply \sqcap -rule to \mathcal{A}_2 : get S = { $\mathcal{A}'_1, \mathcal{A}'_2$ } where $\mathcal{A}'_2 = \mathcal{A}_2 \cup \{(\neg B \sqcup D)(a_0), \neg A(a_0)\}$ Apply \sqcup -rule to \mathcal{A}_2' : get S = { A'_1, A_3, A_4 } where $A_3 = A'_2 \cup \{\neg B(a_0)\}, A_4 = A'_2 \cup \{D(a_0)\}$ A_4 is complete and contains no clash $\Rightarrow C_0$ is satisfiable

$$(A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A) (a_0)$$

PREVIOUS EXAMPLE IN GRAPHICAL FORMAT

$$(A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A) (a_0)$$
$$((\neg B \sqcup D) \sqcap \neg A) (a_0) \qquad \square-\mathbf{rule}$$
$$(A \sqcup B) (a_0)$$

PREVIOUS EXAMPLE IN GRAPHICAL FORMAT

$$(A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A) (a_0)$$
$$((\neg B \sqcup D) \sqcap \neg A) (a_0)$$
$$(A \sqcup B) (a_0)$$
$$A (a_0)$$
$$\square - \mathbf{rule} (\neg B \sqcup D) (a_0)$$
$$\neg A (a_0)$$

$$(A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A) (a_0)$$

$$((\neg B \sqcup D) \sqcap \neg A) (a_0)$$

$$(A \sqcup B) (a_0)$$

$$A (a_0)$$

$$(\neg B \sqcup D) (a_0)$$

$$\neg A (a_0)$$

$$B (a_0)$$

$$(\neg B \sqcup D) (a_0)$$

$$\neg A (a_0)$$

$$\neg A (a_0)$$

Test satisfiability of concept $C = (A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A)$

$$(A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A) (a_0)$$

$$((\neg B \sqcup D) \sqcap \neg A) (a_0)$$

$$(A \sqcup B) (a_0)$$

$$A (a_0)$$

$$(\neg B \sqcup D) (a_0)$$

$$(\neg B \sqcup D) (a_0)$$

$$\neg A (a_0)$$

$$\neg B (a_0)$$

$$D (a_0) \sqcup -rule$$

Test satisfiability of concept $C = (A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A)$

$$(A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A) (a_0)$$

$$((\neg B \sqcup D) \sqcap \neg A) (a_0)$$

$$(A \sqcup B) (a_0)$$

$$A (a_0)$$

$$(\neg B \sqcup D) (a_0)$$

$$\neg A (a_0)$$

$$\neg B (a_0)$$

$$(\neg B \sqcup D) (a_0)$$

$$\neg A (a_0)$$

$$D (a_0)$$

Test satisfiability of concept $C = (A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A)$

$$(A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A) (a_0)$$

$$((\neg B \sqcup D) \sqcap \neg A) (a_0)$$

$$(A \sqcup B) (a_0)$$

$$(A \sqcup B) (a_0)$$

$$(\neg B \sqcup D) (a_0)$$

$$(\neg B \sqcup D)$$

$$(\neg B \sqcup$$

In our example, we had the complete and clash-free ABox A_4 :

$$((A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A))(a_0) (A \sqcup B)(a_0) ((\neg B \sqcup D) \sqcap \neg A)(a_0) B(a_0) (\neg B \sqcup D)(a_0) \neg A(a_0) D(a_0)$$

Can build from \mathcal{A}_4 the interpretation $\mathcal I$ with:

 $\begin{array}{l} \cdot \ \Delta^{\mathcal{I}} = \{a_0\} & \text{use individuals from } \mathcal{A}_4 \\ \cdot \ A^{\mathcal{I}} = \emptyset & \text{since } \mathcal{A}_4 \text{ does not contain } A(a_0) \\ \cdot \ B^{\mathcal{I}} = D^{\mathcal{I}} = \{a_0\} & \text{since } \mathcal{A}_4 \text{ contains } B(a_0) \text{ and } D(a_0) \end{array}$

We can verify that $(A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A)^{\mathcal{I}} = \{a_0\}.$

· \mathcal{I} witnesses the satisfiability of $C_0 = (A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A)$

 $C = \exists r. A \sqcap \forall r. \neg A$

 $C = \exists r. A \sqcap \forall r. \neg A$

Start with $S = \{ \mathcal{A}_0 \}$ where $\mathcal{A}_0 = \{ (\exists r. A \sqcap \forall r. \neg A)(a_0) \}.$

 $C = \exists r. A \sqcap \forall r. \neg A$

Start with $S = \{ \mathcal{A}_0 \}$ where $\mathcal{A}_0 = \{ (\exists r.A \sqcap \forall r.\neg A)(a_0) \}.$

Apply \sqcap -rule to \mathcal{A}_0 : get $S = \{ \mathcal{A}'_0 \}$ where $\mathcal{A}'_0 = \mathcal{A}_0 \cup \{ (\exists r.A)(a_0), (\forall r.\neg A)(a_0) \} \}$.

 $C = \exists r. A \sqcap \forall r. \neg A$

Start with $S = \{A_0\}$ where $A_0 = \{(\exists r.A \sqcap \forall r.\neg A)(a_0)\}$. Apply \sqcap -rule to A_0 :

get $S = \{ \mathcal{A}'_0 \}$ where $\mathcal{A}'_0 = \mathcal{A}_0 \cup \{ (\exists r.A)(a_0), (\forall r.\neg A)(a_0) \} \}.$

 $C = \exists r. A \sqcap \forall r. \neg A$

Start with $S = \{ A_0 \}$ where $A_0 = \{ (\exists r.A \sqcap \forall r.\neg A)(a_0) \}.$

Apply \sqcap -rule to \mathcal{A}_0 : get $S = \{ \mathcal{A}'_0 \}$ where $\mathcal{A}'_0 = \mathcal{A}_0 \cup \{ (\exists r.\mathcal{A})(a_0), (\forall r.\neg \mathcal{A})(a_0) \} \}$. Apply \exists -rule to \mathcal{A}'_0 : get $S = \{ \mathcal{A}''_0 \}$ where $\mathcal{A}''_0 = \mathcal{A}'_0 \cup \{ r(a_0, a_1), \mathcal{A}(a_1) \}$.

 $C = \exists r. A \sqcap \forall r. \neg A$

Start with $S = \{ A_0 \}$ where $A_0 = \{ (\exists r.A \sqcap \forall r.\neg A)(a_0) \}.$

Apply \sqcap -rule to \mathcal{A}_0 : get $S = \{ \mathcal{A}'_0 \}$ where $\mathcal{A}'_0 = \mathcal{A}_0 \cup \{ (\exists r.A)(a_0), (\forall r. \neg A)(a_0) \} \}$. Apply \exists -rule to \mathcal{A}'_0 : get $S = \{ \mathcal{A}''_0 \}$ where $\mathcal{A}''_0 = \mathcal{A}'_0 \cup \{ r(a_0, a_1), A(a_1) \}$.

 $C = \exists r. A \sqcap \forall r. \neg A$

Start with $S = \{ \mathcal{A}_0 \}$ where $\mathcal{A}_0 = \{ (\exists r.A \sqcap \forall r.\neg A)(a_0) \}$. Apply \sqcap -rule to \mathcal{A}_0 : get $S = \{ \mathcal{A}'_0 \}$ where $\mathcal{A}'_0 = \mathcal{A}_0 \cup \{ (\exists r.A)(a_0), (\forall r.\neg A)(a_0) \} \}$. Apply \exists -rule to \mathcal{A}'_0 : get $S = \{ \mathcal{A}''_0 \}$ where $\mathcal{A}''_0 = \mathcal{A}'_0 \cup \{ r(a_0, a_1), A(a_1) \}$. Apply \forall -rule to \mathcal{A}''_0 : get $S = \{ \mathcal{A}''_0 \}$ where $\mathcal{A}''_0 = \mathcal{A}''_0 \cup \{ \neg A(a_1) \}$.

 $C = \exists r. A \sqcap \forall r. \neg A$

Start with $S = \{A_0\}$ where $A_0 = \{(\exists r.A \sqcap \forall r.\neg A)(a_0)\}$. Apply \sqcap -rule to A_0 : get $S = \{A'_0\}$ where $A'_0 = A_0 \cup \{(\exists r.A)(a_0), (\forall r.\neg A)(a_0)\}\}$. Apply \exists -rule to A'_0 : get $S = \{A''_0\}$ where $A''_0 = A'_0 \cup \{r(a_0, a_1), A(a_1)\}$. Apply \forall -rule to A''_0 : get $S = \{A'''_0\}$ where $A'''_0 = A''_0 \cup \{\neg A(a_1)\}$. A'''_0 contains clash $\{A(a_1), \neg A(a_1)\}$!

 $C = \exists r. A \sqcap \forall r. \neg A$

Start with $S = \{\mathcal{A}_0\}$ where $\mathcal{A}_0 = \{(\exists r.A \sqcap \forall r.\neg A)(a_0)\}$. Apply \sqcap -rule to \mathcal{A}_0 : get $S = \{\mathcal{A}'_0\}$ where $\mathcal{A}'_0 = \mathcal{A}_0 \cup \{(\exists r.A)(a_0), (\forall r.\neg A)(a_0)\}\}$. Apply \exists -rule to \mathcal{A}'_0 : get $S = \{\mathcal{A}''_0\}$ where $\mathcal{A}''_0 = \mathcal{A}'_0 \cup \{r(a_0, a_1), A(a_1)\}$. Apply \forall -rule to \mathcal{A}''_0 : get $S = \{\mathcal{A}''_0\}$ where $\mathcal{A}''_0 = \mathcal{A}''_0 \cup \{\neg A(a_1)\}$.

The only ABox in *S* contains a clash $\Rightarrow C_0$ is unsatisfiable

Test satisfiability of concept $C = \exists r.A \sqcap \forall r. \neg A$

$$(\exists r.A \sqcap \forall r.\neg A)(a_0)$$

Test satisfiability of concept $C = \exists r.A \sqcap \forall r. \neg A$

$$(\exists r.A \sqcap \forall r. \neg A)(a_0)$$
$$(\exists r.A)(a_0) \qquad \Box \textbf{-rule}$$
$$(\forall r. \neg A)(a_0)$$

Test satisfiability of concept $C = \exists r.A \sqcap \forall r.\neg A$

```
(\exists r.A \sqcap \forall r. \neg A)(a_0)(\exists r.A)(a_0)(\forall r. \neg A)(a_0)r(a_0, a_1) \quad \exists \text{-rule}A(a_1)
```

Test satisfiability of concept $C = \exists r.A \sqcap \forall r.\neg A$

```
(\exists r.A \sqcap \forall r.\neg A)(a_0)(\exists r.A)(a_0)(\forall r.\neg A)(a_0)r(a_0, a_1)A(a_1)\neg A(a_1) \qquad \forall-\mathbf{rule}
```

Test satisfiability of concept $C = \exists r.A \sqcap \forall r.\neg A$

$$(\exists r.A \sqcap \forall r.\neg A)(a_0)$$
$$(\exists r.A)(a_0)$$
$$(\forall r.\neg A)(a_0)$$
$$r(a_0, a_1)$$
$$A(a_1)$$
$$\neg A(a_1)$$
$$\checkmark$$

Test satisfiability of concept $C = \exists r.A \sqcap \forall r.\neg A$

1

$$(\exists r.A \sqcap \forall r. \neg A)(a_0)$$
$$(\exists r.A)(a_0)$$
$$(\forall r. \neg A)(a_0)$$
$$r(a_0, a_1)$$
$$A(a_1)$$
$$\neg A(a_1)$$
$$\bigstar$$

Conclude that *C* is unsatisfiable

Suppose that we consider a slightly different concept

 $C_0 = \exists r. A \sqcap \forall r. \neg \mathbf{B}$

Now the algorithm yields the following complete, clash-free ABox:

 $(\exists r. A \sqcap \forall r. \neg B)(a_0)$ $(\exists r. A)(a_0)$ $(\forall r. \neg B)(a_0)$ $r(a_0, a_1)$ $A(a_1)$ $\neg B(a_1)$

Suppose that we consider a slightly different concept

 $C_0 = \exists r. A \sqcap \forall r. \neg B$

Now the algorithm yields the following complete, clash-free ABox:

 $(\exists r. A \sqcap \forall r. \neg B)(a_0)$ $(\exists r. A)(a_0)$ $(\forall r. \neg B)(a_0)$ $r(a_0, a_1)$ $A(a_1)$ $\neg B(a_1)$

Corresponding interpretation \mathcal{I} :

- $\cdot \Delta^{\mathcal{I}} = \{a_0, a_1\}$ $\cdot A^{\mathcal{I}} = \{a_1\}$
- $\cdot B^{\mathcal{I}} = \emptyset$
- $\cdot r^{\mathcal{I}} = \{(a_0, a_1)\}$

Can check that \mathcal{I} is such that $C_0^{\mathcal{I}} = \{a_0\}$.

Let's call our tableau algorithm CSat (for concept satisfiability).

To show that CSat is a decision procedure, we must show:

Termination: The algorithm CSat always terminates.

Soundness: **CSat** outputs "yes" on input $C_0 \Rightarrow C_0$ is satisfiable.

Completeness: C_0 satisfiable \Rightarrow **CSat** will output "yes".

Subconcepts of a concept:

 $sub(A) = \{A\}$ $sub(\neg C) = \{\neg C\} \cup sub(C)$ $sub(\exists r.C) = \{\exists r.C\} \cup sub(C)$ $sub(\forall r.C) = \{\forall r.C\} \cup sub(C)$ $sub(C_1 \sqcup C_2) = \{C_1 \sqcup C_2\} \cup sub(C_1) \cup sub(C_2)$ $sub(C_1 \sqcap C_2) = \{C_1 \sqcap C_2\} \cup sub(C_1) \cup sub(C_2)$

Subconcepts of a concept:

$$sub(A) = \{A\}$$

$$sub(\neg C) = \{\neg C\} \cup sub(C)$$

$$sub(\exists r.C) = \{\exists r.C\} \cup sub(C)$$

$$sub(\forall r.C) = \{\forall r.C\} \cup sub(C)$$

$$sub(C_1 \sqcup C_2) = \{C_1 \sqcup C_2\} \cup sub(C_1) \cup sub(C_2)$$

$$sub(C_1 \sqcap C_2) = \{C_1 \sqcap C_2\} \cup sub(C_1) \cup sub(C_2)$$

Role depth of a concept:

 $depth(A) = depth(\top) = depth(\bot) = 0$ $depth(\neg C) = depth(C)$ $depth(\exists r.C) = depth(\forall r.C) = depth(C) + 1$ $depth(C_1 \sqcup C_2) = depth(C_1 \sqcap C_2) = max(depth(C_1), depth(C_2))$ Subconcepts of a concept: $|sub(C)| \le |C|$ $sub(A) = \{A\}$ $sub(\neg C) = \{\neg C\} \cup sub(C)$

 $sub(\exists r.C) = \{\exists r.C\} \cup sub(C)$

 $\operatorname{sub}(\forall r.C) = \{\forall r.C\} \cup \operatorname{sub}(C)$

 $sub(C_1 \sqcup C_2) = \{C_1 \sqcup C_2\} \cup sub(C_1) \cup sub(C_2)$

 $sub(C_1 \sqcap C_2) = \{C_1 \sqcap C_2\} \cup sub(C_1) \cup sub(C_2)$

Role depth of a concept: $depth(C) \le |C|$

 $depth(A) = depth(\top) = depth(\bot) = 0$ $depth(\neg C) = depth(C)$ $depth(\exists r.C) = depth(\forall r.C) = depth(C) + 1$ $depth(C_1 \sqcup C_2) = depth(C_1 \sqcap C_2) = max(depth(C_1), depth(C_2))$

We observe that for every ABox $\mathcal A$ generated by the procedure:

1. if $D(b) \in \mathcal{A}$, then $D \in sub(C_0)$

- 1. if $D(b) \in \mathcal{A}$, then $D \in sub(C_0)$
 - $\cdot \mathcal{A}$ contains at most $|C_0|$ concept assertions per individual

- 1. if $D(b) \in \mathcal{A}$, then $D \in sub(C_0)$
 - $\cdot \ \mathcal{A}$ contains at most $|C_0|$ concept assertions per individual
- 2. the set of role assertions in ${\mathcal A}$ forms a tree

- 1. if $D(b) \in \mathcal{A}$, then $D \in sub(C_0)$
 - $\cdot \ \mathcal{A}$ contains at most $|C_0|$ concept assertions per individual
- 2. the set of role assertions in ${\cal A}$ forms a tree
- 3. if $D(b) \in \mathcal{A}$ and the unique path from a_0 to b has length k, then depth $(D) \leq depth(C_0) k$

- 1. if $D(b) \in \mathcal{A}$, then $D \in sub(C_0)$
 - $\cdot \ \mathcal{A}$ contains at most $|C_0|$ concept assertions per individual
- 2. the set of role assertions in ${\boldsymbol{\mathcal{A}}}$ forms a tree
- 3. if $D(b) \in A$ and the unique path from a_0 to b has length k, then depth $(D) \leq depth(C_0) k$
 - \cdot each individual in \mathcal{A} is at distance \leq depth(C_0) from a_0

- 1. if $D(b) \in \mathcal{A}$, then $D \in sub(C_0)$
 - $\cdot \ \mathcal{A}$ contains at most $|C_0|$ concept assertions per individual
- 2. the set of role assertions in ${\cal A}$ forms a tree
- 3. if $D(b) \in A$ and the unique path from a_0 to b has length k, then depth $(D) \leq depth(C_0) k$
 - · each individual in A is at distance \leq depth(C_0) from a_0
- 4. for every individual b in A, there are at most $|C_0|$ individuals c such that $r(b,c) \in A$ for some r (at most one per existential concept)

We observe that for every ABox $\mathcal A$ generated by the procedure:

- 1. if $D(b) \in \mathcal{A}$, then $D \in sub(C_0)$
 - $\cdot \ \mathcal{A}$ contains at most $|C_0|$ concept assertions per individual
- 2. the set of role assertions in ${\cal A}$ forms a tree
- 3. if $D(b) \in A$ and the unique path from a_0 to b has length k, then depth $(D) \leq depth(C_0) k$
 - \cdot each individual in A is at distance \leq depth(C_0) from a_0
- 4. for every individual *b* in A, there are at most $|C_0|$ individuals *c* such that $r(b, c) \in A$ for some *r* (at most one per existential concept)

Thus: bound on the size of ABoxes generated by the procedure

We observe that for every ABox $\mathcal A$ generated by the procedure:

- 1. if $D(b) \in \mathcal{A}$, then $D \in sub(C_0)$
 - $\cdot \ \mathcal{A}$ contains at most $|C_0|$ concept assertions per individual
- 2. the set of role assertions in ${\cal A}$ forms a tree
- 3. if $D(b) \in A$ and the unique path from a_0 to b has length k, then depth $(D) \leq depth(C_0) k$
 - \cdot each individual in A is at distance \leq depth(C_0) from a_0
- 4. for every individual *b* in A, there are at most $|C_0|$ individuals *c* such that $r(b, c) \in A$ for some *r* (at most one per existential concept)

Thus: bound on the size of ABoxes generated by the procedure

The tableau procedure only adds assertions to ABoxes

 \Rightarrow eventually all ABoxes will contain a clash or will be complete

Suppose that **CSat** returns "yes" on input C_0 .

Then S must contain a complete and clash-free ABox A.

Suppose that **CSat** returns "yes" on input C_0 .

Then S must contain a complete and clash-free ABox A.

Use \mathcal{A} to define an interpretation \mathcal{I} as follows:

$$\cdot \Delta^{\mathcal{I}} = \{a \mid a \text{ is an individual in } \mathcal{A}\}$$

$$\cdot A^{\mathcal{I}} = \{a \mid A(a) \in \mathcal{A}\}$$

$$\cdot r^{\mathcal{I}} = \{(a, b) \mid r(a, b) \in \mathcal{A}\}$$

Claim: \mathcal{I} is such that $C_0^{\mathcal{I}} \neq \emptyset$

Suppose that **CSat** returns "yes" on input C_0 .

Then S must contain a complete and clash-free ABox A.

Use \mathcal{A} to define an interpretation \mathcal{I} as follows:

$$\cdot \Delta^{\mathcal{I}} = \{a \mid a \text{ is an individual in } \mathcal{A}\}$$

$$\cdot A^{\mathcal{I}} = \{a \mid A(a) \in \mathcal{A}\}$$

$$\cdot r^{\mathcal{I}} = \{(a, b) \mid r(a, b) \in \mathcal{A}\}$$

Claim: \mathcal{I} is such that $C_0^{\mathcal{I}} \neq \emptyset$

To show the claim, we prove by induction on the size of concepts:

$$D(b) \in \mathcal{A} \quad \Rightarrow \quad b \in D^{\mathcal{I}}$$

SOUNDNESS OF CSAT (2)

Base case: D = A or $D = \neg A$ or $D = \top$ or $D = \bot$

Base case: D = A or $D = \neg A$ or $D = \top$ or $D = \bot$ If D = A, then $b \in A^{\mathcal{I}}$. If $D = \neg A$, then $A(b) \notin A$, so $b \in \neg A^{\mathcal{I}}$. If $D = \top$, trivially $b \in \top^{\mathcal{I}} = \Delta^{\mathcal{I}}$. Cannot have $D = \bot$ since clash-free.

Induction hypothesis (IH): suppose holds whenever $|D| \le k$

Induction step: show statement holds for *D* with |D| = k + 1Again, many cases to consider:

- $D = E \sqcap F$: since \mathcal{A} is complete, it must contain both E(b) and F(b). Applying the IH, we get $b \in E^{\mathcal{I}}$ and $b \in F^{\mathcal{I}}$, hence $b \in (E \sqcap F)^{\mathcal{I}}$
- · $D = \exists r.E$: since \mathcal{A} is complete, there exists c such that $r(b, c) \in \mathcal{A}$ and $E(c) \in \mathcal{A}$. Then $(b, c) \in r^{\mathcal{I}}$. From IH, get $c \in E^{\mathcal{I}}$, so $b \in (\exists r.E)^{\mathcal{I}}$
- $\cdot D = E \sqcup F$: left as practice
- · $D = \forall R.E$: left as practice

Suppose that the **concept** *C*⁰ **is satisfiable**.

Then the ABox $\{C_0(a_0)\}$ must be satisfiable too.

Suppose that the **concept** *C*⁰ **is satisfiable**.

Then the ABox $\{C_0(a_0)\}$ must be satisfiable too.

We observe that the tableau rules are satisfiability-preserving:

- If an ABox A is satisfiable and A' is the result of applying a rule to A, then A' is also satisfiable.
- If A is satisfiable and A_1 and A_2 are obtained when applying a rule to A, then either A_1 is satisfiable or A_2 is satisfiable.

Suppose that the **concept** *C*⁰ **is satisfiable**.

Then the ABox $\{C_0(a_0)\}$ must be satisfiable too.

We observe that the tableau rules are satisfiability-preserving:

- If an ABox A is satisfiable and A' is the result of applying a rule to A, then A' is also satisfiable.
- If A is satisfiable and A_1 and A_2 are obtained when applying a rule to A, then either A_1 is satisfiable or A_2 is satisfiable.

We start with a satisfiable ABox and the rules are satisfiability-preserving, so eventually we will **reach a complete**, **satisfiable (thus: clash-free) ABox** and output 'yes'. Bad news: our algorithm may require exponential time and space...

To see why, consider what happens if we run CSat on the concept

$$\prod_{0 \le i < n} \underbrace{\forall r. \ldots \forall r.}_{i \text{ times}} (\exists r.B \sqcap \exists r.\neg B)$$

Bad news: our algorithm may require exponential time and space...

To see why, consider what happens if we run CSat on the concept

$$\prod_{0 \le i < n} \underbrace{\forall r. \ldots \forall r}_{i \text{ times}} (\exists r. B \sqcap \exists r. \neg B)$$

Good news: can modify algorithm so it runs in polynomial space

- · instead of set of ABoxes, keep only 1 ABox in memory at a time
 - \cdot when apply the \sqcup -rule, first examine \mathcal{A}_1 , then afterwards examine \mathcal{A}_2
 - \cdot remember that second disjunct stills needs to be checked
- explore the children of an individual one at a time
 - · possible because no interaction between the different "branches"
 - \cdot store which $\exists r.C$ concepts have been tested, which are left to do
- $\cdot\,$ this allows us to keep at most $|C_0|$ individuals in memory at a time

Hierarchy of complexity classes

```
\mathsf{PTIME} \subseteq \mathsf{NP} \subseteq ... \subseteq \mathsf{PSPACE} \subseteq \mathsf{EXPTIME} \subseteq \mathsf{NEXPTIME} \subseteq ... \subseteq \mathsf{EXPSPACE} ...
```

(it is believed that all inclusions are strict)

Hierarchy of complexity classes

```
\mathsf{PTIME} \subseteq \mathsf{NP} \subseteq ... \subseteq \mathsf{PSPACE} \subseteq \mathsf{EXPTIME} \subseteq \mathsf{NEXPTIME} \subseteq ... \subseteq \mathsf{EXPSPACE} ...
```

(it is believed that all inclusions are strict)

PSPACE = class of decision **problems solvable in polynomial space**

PSPACE-complete problems = hardest problems in PSPACE

Hierarchy of complexity classes

```
\mathsf{PTIME} \subseteq \mathsf{NP} \subseteq ... \subseteq \mathsf{PSPACE} \subseteq \mathsf{EXPTIME} \subseteq \mathsf{NEXPTIME} \subseteq ... \subseteq \mathsf{EXPSPACE} ...
```

(it is believed that all inclusions are strict)

PSPACE = class of decision **problems solvable in polynomial space** PSPACE-complete problems = hardest problems in PSPACE

Theorem: *ALC* concept satisfiability (no TBox) is PSPACE-complete.

- $\cdot\,$ Membership in PSPACE shown using modified tableau procedure
- Hardness for PSPACE shown by giving a reduction from some known PSPACE-hard problem (e.g. QBF validity)

Now we want to modify the algorithm to handle KB satisfability.

Adding an ABox is easy: simply start with $\{A\}$ instead of $\{C_0(a_0)\}$

Now we want to modify the algorithm to handle KB satisfability.

Adding an ABox is easy: simply start with $\{A\}$ instead of $\{C_0(a_0)\}$

Adding a TBox is a bit more tricky...

Idea: if $C \sqsubseteq D$, then every element must satisfy either $\neg C$ or D

Now we want to modify the algorithm to handle KB satisfability.

Adding an ABox is easy: simply start with $\{A\}$ instead of $\{C_0(a_0)\}$

Adding a TBox is a bit more tricky...

Idea: if $C \sqsubseteq D$, then every element must satisfy either $\neg C$ or D

Concretely, we might try adding the following rule:

TBox rule if a is in $\mathcal{A}, C \sqsubseteq D \in \mathcal{T}, \& (\mathsf{NNF}(\neg C) \sqcup \mathsf{NNF}(D))(a) \notin \mathcal{A}$ then replace \mathcal{A} with $\mathcal{A} \cup \{(\mathsf{NNF}(\neg C) \sqcup \mathsf{NNF}(D))(a)\}$

Let's try the modified procedure on the KB $({F \sqsubseteq \exists S.F}, {F(a)})$

Let's try the modified procedure on the KB $({F \sqsubseteq \exists S.F}, {F(a)})$

Seems we have a problem... How can we ensure termination?

Basic idea: if two individuals "look the same", then it is unnecessary to explore both of them

Basic idea: if two individuals "look the same", then it is unnecessary to explore both of them

Formally: given individuals a, b from A, we say that b blocks a if:

- $\cdot \ \{C \mid C(a) \in \mathcal{A}\} \subseteq \{C \mid C(b) \in \mathcal{A}\}$
- \cdot *b* was present in \mathcal{A} before *a* was introduced

Say that individual a is blocked (in A) if some b blocks a.

Basic idea: if two individuals "look the same", then it is unnecessary to explore both of them

Formally: given individuals a, b from A, we say that b blocks a if:

- $\cdot \ \{C \mid C(a) \in \mathcal{A}\} \subseteq \{C \mid C(b) \in \mathcal{A}\}$
- \cdot *b* was present in \mathcal{A} before *a* was introduced

Say that individual a is blocked (in A) if some b blocks a.

Modify rules so that they only apply to unblocked individuals.

□-rule: if $(C_1 \sqcap C_2)(a) \in A$, *a* is not blocked, and $\{C_1(a), C_2(a)\} \not\subseteq A$, then replace A with $A \cup \{C_1(a), C_2(a)\}$

- □-rule: if $(C_1 \sqcup C_2)(a) \in A$, *a* is not blocked, and $\{C_1(a), C_2(a)\} \cap A = \emptyset$, then replace A with $A \cup \{C_1(a)\}$ and $A \cup \{C_2(a)\}$
- \forall -rule: if { $\forall r.C(a), r(a, b)$ } $\in A$, *a* is not blocked, and $C(b) \notin A$, then replace A with $A \cup \{C(b)\}$ }
- ∃-rule: if $\{\exists r.C(a)\} \in A$, *a* is not blocked, and no $\{r(a,b), C(b)\} \subseteq A$, then pick a new individual name *d* and replace *A* with $A \cup \{r(a,d), C(d)\}$

□-rule: if *a* appears in \mathcal{A} and *a* is not blocked, $C \sqsubseteq D \in \mathcal{T}$, and $(NNF(\neg C) \sqcup NNF(D))(a) \notin \mathcal{A}$, then replace \mathcal{A} with $\mathcal{A} \cup \{(NNF(\neg C) \sqcup NNF(D))(a)\}$

Let's try blocking on the problematic KB $({F \sqsubseteq \exists s.F}, {F(a)})$

Let's try blocking on the problematic KB $({F \sqsubseteq \exists s.F}, {F(a)})$

$$F(a_{0}) \leftarrow (\neg F \sqcup \exists s.F)(a_{0})$$
$$\neg F(a_{0}) \qquad (\exists s.F)(a_{0})$$
$$(\exists s.F)(a_{0})$$
$$s(a_{0}, a_{1})$$
$$F(a_{1})$$
$$a_{1} \text{ is blocked by } a_{0}$$

Let's try blocking on the problematic KB $({F \sqsubseteq \exists s.F}, {F(a)})$

$$F(a_{0}) \bullet$$

$$(\neg F \sqcup \exists s.F)(a_{0})$$

$$\neg F(a_{0}) \qquad (\exists s.F)(a_{0})$$

$$s(a_{0}, a_{1})$$

$$F(a_{1})$$

$$a_{1} \text{ is blocked by } a_{0}$$

We obtain a complete and clash-free ABox \Rightarrow the KB is satisfiable

Consider the TBox $\mathcal{T} = \{A \sqsubseteq \exists r.A, A \sqsubseteq B, \exists r.B \sqsubseteq D\}$ and suppose we want to test whether $\mathcal{T} \models A \sqsubseteq D$.

We can do this by running the algorithm on $(\mathcal{T}, \{(A \sqcap \neg D)(a_0)\})$.

Consider the TBox $\mathcal{T} = \{A \sqsubseteq \exists r.A, A \sqsubseteq B, \exists r.B \sqsubseteq D\}$ and suppose we want to test whether $\mathcal{T} \models A \sqsubseteq D$.

We can do this by running the algorithm on $(\mathcal{T}, \{(A \sqcap \neg D)(a_0)\})$.

Result: the **KB** is unsatisfiable $\Rightarrow \mathcal{T} \models A \sqsubseteq D$

Consider the TBox $\mathcal{T} = \{A \sqsubseteq \exists r.A, A \sqsubseteq B, \exists r.B \sqsubseteq D\}$ and suppose we want to test whether $\mathcal{T} \models A \sqsubseteq D$.

We can do this by running the algorithm on $(\mathcal{T}, \{(A \sqcap \neg D)(a_0)\})$.

Result: the **KB** is unsatisfiable $\Rightarrow \mathcal{T} \models A \sqsubseteq D$

Observe: individual can be blocked, then later become unblocked

Termination: The algorithm KBSat always terminates.

 $\cdot\,$ similar to before: bound the size of generated ABoxes

Termination: The algorithm KBSat always terminates.

 $\cdot\,$ similar to before: bound the size of generated ABoxes

Soundness: KBSat outputs "yes" on $(\mathcal{T}, \mathcal{A}) \Rightarrow (\mathcal{T}, \mathcal{A})$ is satisfiable.

- $\cdot\,$ again, we use complete, clash-free ABox to build a model
- $\cdot\,$ tricky part: need to handle the blocked individuals

Termination: The algorithm KBSat always terminates.

 $\cdot\,$ similar to before: bound the size of generated ABoxes

Soundness: KBSat outputs "yes" on $(\mathcal{T}, \mathcal{A}) \Rightarrow (\mathcal{T}, \mathcal{A})$ is satisfiable.

- $\cdot\,$ again, we use complete, clash-free ABox to build a model
- $\cdot\,$ tricky part: need to handle the blocked individuals

Completeness: $(\mathcal{T}, \mathcal{A})$ satisfiable \Rightarrow **KBSat** will output "yes".

 $\cdot\,$ again, show rules satisfiability-preserving

Termination: The algorithm KBSat always terminates.

 $\cdot\,$ similar to before: bound the size of generated ABoxes

Soundness: KBSat outputs "yes" on $(\mathcal{T}, \mathcal{A}) \Rightarrow (\mathcal{T}, \mathcal{A})$ is satisfiable.

- $\cdot\,$ again, we use complete, clash-free ABox to build a model
- $\cdot\,$ tricky part: need to handle the blocked individuals

Completeness: $(\mathcal{T}, \mathcal{A})$ satisfiable \Rightarrow KBSat will output "yes".

· again, show rules satisfiability-preserving

So: KBSat is a decision procedure for KB satisfiability.

Tableau procedure takes exponential time and space

 $\cdot\,$ can have exponentially long 'branches' to explore

Complexity results tell us this is unavoidable in worst case:

Theorem: In *ALC*, KB satisfiability is **EXPTIME-complete**

for highly expressive DLs (→ OWL 2): complexity even higher

However, good performance crucially depends on optimizations!

However, good performance crucially depends on optimizations!

Many types of optimizations:

 $\cdot\,$ explore only one branch of one ABox at a time

However, good performance crucially depends on optimizations!

Many types of optimizations:

- $\cdot\,$ explore only one branch of one ABox at a time
- \cdot strategies / heuristics for choosing next rule to apply

However, good performance crucially depends on optimizations!

- $\cdot\,$ explore only one branch of one ABox at a time
- \cdot strategies / heuristics for choosing next rule to apply
- $\cdot\,$ caching of results to reduce redundant computation

However, good performance crucially depends on optimizations!

- $\cdot\,$ explore only one branch of one ABox at a time
- $\cdot\,$ strategies / heuristics for choosing next rule to apply
- $\cdot\,$ caching of results to reduce redundant computation
- examine source of conflicts to prune search space (backjumping)

However, good performance crucially depends on optimizations!

- $\cdot\,$ explore only one branch of one ABox at a time
- $\cdot\,$ strategies / heuristics for choosing next rule to apply
- $\cdot\,$ caching of results to reduce redundant computation
- · examine source of conflicts to prune search space (backjumping)
- $\cdot\,$ reduce number of \sqcup 's created by TBox inclusions (absorption)

However, good performance crucially depends on optimizations!

- $\cdot\,$ explore only one branch of one ABox at a time
- $\cdot\,$ strategies / heuristics for choosing next rule to apply
- $\cdot\,$ caching of results to reduce redundant computation
- · examine source of conflicts to prune search space (backjumping)
- \cdot reduce number of \sqcup 's created by TBox inclusions (absorption)
- $\cdot\,$ reduce number of satisfiability checks during classification

 $(\mathsf{NNF}(\neg C_1) \sqcup \mathsf{NNF}(\mathsf{D}_1))(a), \dots, (\mathsf{NNF}(\neg C_n) \sqcup \mathsf{NNF}(\mathsf{D}_n))(a)$

 $(\mathsf{NNF}(\neg C_1) \sqcup \mathsf{NNF}(\mathsf{D}_1))(a), \ldots, (\mathsf{NNF}(\neg C_n) \sqcup \mathsf{NNF}(\mathsf{D}_n))(a)$

Observation: if have $A \sqsubseteq D$ with A a concept name

- · if don't have A(a), can satisfy the inclusion by choosing $\neg A(a)$
- if have A(a), then must have D(a)

 $(\mathsf{NNF}(\neg C_1) \sqcup \mathsf{NNF}(\mathsf{D}_1))(a), \ldots, (\mathsf{NNF}(\neg C_n) \sqcup \mathsf{NNF}(\mathsf{D}_n))(a)$

Observation: if have $A \sqsubseteq D$ with A a concept name

- · if don't have A(a), can satisfy the inclusion by choosing $\neg A(a)$
- if have A(a), then must have D(a)

So for inclusions with atomic left-hand side, can replace \sqsubseteq -rule by:

 \sqsubseteq^{at} -rule: if $A(a) \in A$, a is not blocked, $A \sqsubseteq D \in \mathcal{T}$ (with A atomic), and $D(a) \notin A$, then replace A with $A \cup \{D(a)\}$

 $(\mathsf{NNF}(\neg C_1) \sqcup \mathsf{NNF}(\mathsf{D}_1))(a), \dots, (\mathsf{NNF}(\neg C_n) \sqcup \mathsf{NNF}(\mathsf{D}_n))(a)$

Observation: if have $A \sqsubseteq D$ with A a concept name

- · if don't have A(a), can satisfy the inclusion by choosing $\neg A(a)$
- if have A(a), then must have D(a)

So for inclusions with atomic left-hand side, can replace \sqsubseteq -rule by:

 \sqsubseteq^{at} -rule: if $A(a) \in A$, a is not blocked, $A \sqsubseteq D \in \mathcal{T}$ (with A atomic), and $D(a) \notin A$, then replace A with $A \cup \{D(a)\}$

Good news: we've lowered the number of disjunctions!

Second observation: can transform some inclusions with complex concept on left into equivalent inclusions with atomic left-hand side

Second observation: can transform some inclusions with complex concept on left into equivalent inclusions with atomic left-hand side

$$(A \sqcap C) \sqsubseteq D \quad \rightsquigarrow \quad A \sqsubseteq (\neg C \sqcup D)$$

Second observation: can transform some inclusions with complex concept on left into equivalent inclusions with atomic left-hand side

$$(A \sqcap C) \sqsubseteq D \quad \rightsquigarrow \quad A \sqsubseteq (\neg C \sqcup D)$$

Absorption technique:

- 1. **preprocess the TBox** by replacing inclusions with equivalent inclusions with atomic concept on left, whenever possible
- 2. when running tableau algorithm
 - use new \sqsubseteq^{at} -rule for inclusions $A \sqsubseteq D$ with A a concept name
 - $\cdot\,$ use regular $\sqsubseteq-$ rule for the other TBox inclusions

Let's use absorption on the KB $(\mathcal{T}, \{A(a)\})$ with:

$$\{ A \sqsubseteq \exists r.B \quad B \sqsubseteq D \quad \exists r.D \sqsubseteq \neg A \}$$

Let's use absorption on the KB $(\mathcal{T}, \{A(a)\})$ with:

$$\{ A \sqsubseteq \exists r.B \quad B \sqsubseteq D \quad \exists r.D \sqsubseteq \neg A \}$$

- $\cdot\,$ first two inclusions in ${\cal T}$ already have concept name on left
- \cdot third inclusion in \mathcal{T} can be equivalently written as $A \sqsubseteq \forall r. \neg D$
- · so: only need to use \sqsubseteq^{at} -rule

Let's use absorption on the KB $(\mathcal{T}, \{A(a)\})$ with:

$$\{ A \sqsubseteq \exists r.B \quad B \sqsubseteq D \quad \exists r.D \sqsubseteq \neg A \}$$

- $\cdot\,$ first two inclusions in ${\cal T}$ already have concept name on left
- · third inclusion in \mathcal{T} can be equivalently written as $A \sqsubseteq \forall r. \neg D$
- · so: only need to use \sqsubseteq^{at} -rule

Result: avoid disjunction, algorithm terminates much faster!

Naïve approach: test satisfiability of $A \sqcap \neg B$ w.r.t. \mathcal{T} for all pairs A, B

 \cdot but ${\mathcal T}$ may contain hundreds or thousands of concept names....

Naïve approach: test satisfiability of $A \sqcap \neg B$ w.r.t. \mathcal{T} for all pairs A, B

 \cdot but ${\mathcal T}$ may contain hundreds or thousands of concept names....

Each check is costly \Rightarrow want to reduce number of checks

Naïve approach: test satisfiability of $A \sqcap \neg B$ w.r.t. \mathcal{T} for all pairs A, B

 \cdot but ${\mathcal T}$ may contain hundreds or thousands of concept names....

Each check is costly \Rightarrow want to reduce number of checks

Some ideas:

- some cases are obvious
 - $\cdot \ \ A \sqsubseteq A$ and inclusions that are explicitly stated in $\mathcal T$

Naïve approach: test satisfiability of $A \sqcap \neg B$ w.r.t. \mathcal{T} for all pairs A, B

 \cdot but ${\mathcal T}$ may contain hundreds or thousands of concept names....

Each check is costly \Rightarrow want to reduce number of checks

Some ideas:

- some cases are obvious
 - $\cdot \ \ A \sqsubseteq A$ and inclusions that are explicitly stated in $\mathcal T$
- · use simple reasoning to obtain new (non-)entailments
 - · if know $\mathcal{T} \models A \sqsubseteq B$ and $\mathcal{T} \models B \sqsubseteq D$, then $\mathcal{T} \models A \sqsubseteq D$
 - · if know $\mathcal{T} \models A \sqsubseteq B$ and $\mathcal{T} \nvDash A \sqsubseteq D$, then $\mathcal{T} \nvDash B \sqsubseteq D$