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TABLEAU METHOD

: popular approach for reasoning in
- implemented in state-of-the-art DL reasoners

Tableau algorithms are used to decide satisfiability

- solve other tasks (e.g. entailment) by reducing them to
satisfiability

Idea: to determine whether a given (concept or KB) W is satisfiable,
try to construct a (representation of a) model of W
- if we succeed, then we have shown that W is satisfiable

- if we fail despite having considered all possibilities,
then we have proven that ¥ is unsatisfiable

3/33



ALC CONCEPTS

Recall that ALC concepts are built using the following constructors:

T L - U0 n vrC 3acC

4/33



ALC CONCEPTS

Recall that ALC concepts are built using the following constructors:

T L - U0 n vrC 3acC

We say that an ALC concept C is in negation normal form (NNF) if
the symbol — only appears directly in front of atomic concepts.

- iIn NNF:An—B, 3r—A, -AU —B
:=(AMB), 3r.—(Vs.B), ALI=Vr.B, =T

4/33



ALC CONCEPTS

Recall that ALC concepts are built using the following constructors:

T L - U0 n vrC 3acC

We say that an ALC concept C is in negation normal form (NNF) if
the symbol — only appears directly in front of atomic concepts.
- in NNF: Amn =B, 3r.—A, AL —-B

:=(AMB), 3r.—(Vs.B), ALI=Vr.B, =T

Fact. Every ALC concept C can be transformed into an equivalent
conceptin NNF in linear time by applying the following rewrite rules:
=T~ L —(CM D)~ =CuU-D =(Vr.C) ~» 3r.=C
~1Ll~T  =(CUD)~ =CM=D  =(3r.C) ~ Vr.—C

Note: say C and D are equivalent if the empty TBox entails C = D.
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SATISFIABILITY OF ALC-CONCEPTS VIA TABLEAU

We begin by presenting a tableau algorithm for deciding
satisfiability of ALC-concepts (in NNF) w.r.t. the empty TBox

Procedure for testing satisfiability of Cy:
- We work with a set S of ABoxes
- Initially, S contains a single ABox {Co(ao)}
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We begin by presenting a tableau algorithm for deciding
satisfiability of ALC-concepts (in NNF) w.r.t. the empty TBox

Procedure for testing satisfiability of Cy:
- We work with a set S of ABoxes
- Initially, S contains a single ABox {Co(ao)}
- At each stage, we tosome AeS
(note: rules are detailed on next slide)
- Arule application involves replacing A by one or two ABoxes that
extend A with new assertions
- Stop applying rules when either:
- every A € S contains a clash, i.e. an assertion _L(b) or a pair of
assertions {B(b), ~B(b)}
- some A € S is clash-free and complete: no rule can be applied to A

- Return ‘yes, satisfiable’ if some A € S is clash-free, else “no”.
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TABLEAU RULES FOR ALC

if (GG G)(a) e Aand {G(a),G(a)} £ A
then replace A with AU {C(a), Cx(a)}
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then replace A with AU {C(a), Cx(a)}

L-rule:  if (GUG)(a) € Aand {Gi(a),G(a)}NnA=10
then replace A with AU {C(a))} and AU {C,(a))}

V-rule: if {Vr.C(a),r(a,b)} € Aand C(b) ¢ A
then replace A with AU {C(b))}
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TABLEAU RULES FOR ALC

L-rule:

V-rule:

J-rule:

if (GG G)(a) e Aand {G(a),G(a)} £ A
then replace A with AU {C(a), Cx(a)}

if (GGUG)(a) e Aand {G(a),G(a)}NnA=1D
then replace A with AU {C(a))} and AU {C,(a))}

if {vr.C(a),r(a,b)} € Aand C(b) ¢ A
then replace A with AU {C(b))}

if {3r.C(a)} € A and no b with {r(a, b),C(b)} C A,
then pick a new individual name d and
replace A with AU {r(a,d),C(d)}
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FIRST EXAMPLE: [T AND L

Test satisfiability of concept C=(AUB)M((—BL D) M —A)
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Startwith S = { Ay } where Ay = { ((AL B) M ((—B L D) M —A))(do) }.

Apply M-rule to Ag:
get S = { A} } where Aj = Ao U {(AU B)(ao), ((—BU D) M —=A)(ao)}}

Apply U-rule to Aj:
get S ={ A, A, } where 4, = Ay U {A(ao)} and A, = A U {B(ao)}.

Apply M-rule to A;:
get S ={ A}, A, } where A] = A, U {(=BL D)(ao), ~A(ao)}

Apply M-rule to Aj:

get S = { A}, A, } where A}, = A, U{(-BL D)(ao),~A(ao)}

Apply U-rule to Aj:

get S = { A}, A3, Ay } where A3 = A, U {-B(ao)}, As = A, U {D(ap)}
A, is complete, so we can stop.
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FIRST EXAMPLE: [T AND L

Test satisfiability of concept C= (AUB) M ((—=BUD) M —=A)

Startwith S = { Ay } where Ay = { ((AL B) M ((—B L D) M —A))(do) }.

Apply M-rule to Ay:

get S = { A} } where Aj = Ay U {(AU B)(ao), ((—BUD) M —=A)(ao)}}
Apply U-rule to Aj:

get S = { A, A, } where Ay = Aj U {A(ap)} and A, = Ay U {B(ap)}
Apply M-rule to A;:

get S = { A}, A, } where A} = A, U {(=BU D)(ap), -~A(ao)}

Apply M-rule to Aj:

get S = { A}, A, } where A}, = A, U{(-BL D)(ao),~A(ao)}

Apply U-rule to Aj:

get S = { A}, A3, A, } where A3 = A, U {-B(ao)}, As = A5 U {D(ao)}
A, is complete and contains no clash = (; is satisfiable
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PREVIOUS EXAMPLE IN GRAPHICAL FORMAT
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PREVIOUS EXAMPLE IN GRAPHICAL FORMAT

Test satisfiability of concept C=(AUB)M((—-BL D) M —A)
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EXAMPLE: WITNESSING INTERPRETATION

In our example, we had the complete and clash-free ABox Aj;:

((AUB) N ((~BLD)N=A))(a0) (ALIB)(ao)
((-BUD)M—A)(@0) B(ao) (=BLD)(@) -—A(ao) D(ao)

Can build from A, the interpretation Z with:

- AT = {ao} use individuals from A,
AT =19 since A, does not contain A(ao)
- BT = DT = {ap} since A, contains B(ap) and D(ao)

We can verify that (AL B) M ((=B U D) M -A)Z = {ao}.

- 7 witnesses the satisfiability of Co = (AU B) M ((—B L D) M —A)
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ANOTHER EXAMPLE: VV AND

Let's use the tableau procedure to test satisfiability of

C=drAnNvVr.—-A
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Let's use the tableau procedure to test satisfiability of
C=drAnVr.—A

Start with S = { Ap } where Ay = {(3r.ANVr.—A)(ap) }.

Apply M-rule to Ay:

get S = { A} } where Aj = Ao U {(3r.A)(ao), (Yr.—A)(ao)}}
Apply F-rule to Aj:

get S = { Aj } where Af = Aj U {r(ao, a),A(a1)}.

Apply V-rule to Aj:

get S = { A} } where Ay = Aj U {-A(a1)}.

The only ABox in S contains a clash = (g is unsatisfiable

10/33



PREVIOUS EXAMPLE IN GRAPHICAL FORMAT

Test satisfiability of concept C= 3IrAMVr.—-A
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PREVIOUS EXAMPLE IN GRAPHICAL FORMAT

Test satisfiability of concept C= 3IrAMVr.—-A

(Fr.AnVr.—A)(ap)
(@r.4) (a0)
(Vr.—~A)(ao)
r(ag,a)
A(ay)
—A (a1)

X

Conclude that
11/33



FURTHER EXAMPLE WITH V AND J

Suppose that we consider a slightly different concept

Co=3dr. ANVr.—B

Now the algorithm yields the following complete, clash-free ABox:

(FrAnvr.=B)(ao) (3rA)(ao) (Vr.—=B)(ao) r(ag,a1) A(ar) —B(aq)
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FURTHER EXAMPLE WITH V AND J

Suppose that we consider a slightly different concept

Co=3dr. ANVr.—B

Now the algorithm yields the following complete, clash-free ABox:

(FrAnvr.=B)(ao) (3rA)(ao) (Vr.—=B)(ao) r(ag,a1) A(ar) —B(aq)

Corresponding interpretation Z:

: AI =5 {00701}
AT ={a}
BT =

- rF = {(ao, m)}

Can check that Z is such that & = {ao} .
12/33



PROPERTIES OF THE TABLEAU ALGORITHM

Let’s call our tableau algorithm CSat (for concept satisfiability).

To show that CSat is a decision procedure, we must show:
Termination: The algorithm CSat always terminates.
. CSat outputs “yes” on input Cy = (g is satisfiable.

Completeness: Cy satisfiable = CSat will output “yes”.
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PRELIMINARY DEFINITIONS

Subconcepts of a concept:
sub(4) = {A}
sub(=C) = {=C} Usub(C)
sub(3r.C) = {3r.C} Usub(C)
sub(vr.C) = {¥vr.C} Usub(C)
sub(G U G) = {G UG} Usub(G)Usub(G)
sub(G M G) ={G NG} Usub(G)Usub(G)

14/33



PRELIMINARY DEFINITIONS

Subconcepts of a concept:

sub(4) = {A}
sub(=C) = {=C} Usub(C)

)
sub(3r.C) = {3r.C} Usub(C)
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PRELIMINARY DEFINITIONS

Subconcepts of a concept: |sub(C)| < |C|
sub(4) = {A}
sub(=C) = {=C} Usub(C)
sub(3r.C) = {3r.C} Usub(C)
sub(vr.C) = {¥vr.C} Usub(C)
sub(G U G) = {G UG} Usub(G)Usub(G)
sub(G M G) ={G NG} Usub(G)Usub(G)

Role depth of a concept: depth(C) < |C|

depth(A) = depth(T) = depth(L) =
depth(=C) = depth(C)
depth(3r.C) = depth(vr.C) = depth(C) + 1
depth(G U G) = depth(G M ;) = max(depth(Cy), depth((,))
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TERMINATION OF CSAT

Suppose we run CSat starting from S = {{Co(ao)}}.
We observe that for every ABox .A generated by the procedure:

1. if D(b) € A, then D € sub(Co)
- A contains at most |Co| concept assertions per individual

2. the set of role assertions in A forms a tree

3. if D(b) € A and the unique path from ag to b has length k,
then depth(D) < depth(Co) — kR
- each individual in A is at distance < depth(Co) from ao

4. for every individual b in A, there are at most |Gyl individuals ¢
such that r(b, c) € A for some r (at most one per existential concept)

Thus: generated by the procedure

The tableau procedure only adds assertions to ABoxes

= eventually all ABoxes will contain a clash or will be complete
15/33
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SOUNDNESS OF CSAT (1)

Suppose that CSat returns “yes” on input Co.

Then S must contain a complete and clash-free ABox A.

Use A to define an interpretation Z as follows:

- AT ={a| ais anindividual in A}
- AT = {a| A(q) € A}
- ={(a,b) | r(a,b) € A}

Claim: Z is such that CT # 0)

To show the claim, we prove by induction on the size of concepts:

D(bye A = beD?

16/33



SOUNDNESS OF CSAT (2)

Basecase: D=AorD=-AorD=TorD=_1
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SOUNDNESS OF CSAT (2)

Basecase:D=AorD=-AorD=TorD=_1

If D=A, then b € AZ.

If D = —A, then A(b) € A, so b € -AT.

If D =T, trivially b € TZ = AZ. Cannot have D = L since clash-free.

Induction hypothesis (IH): suppose holds whenever |D| < k

Induction step: show statement holds for D with |D| = k + 1
Again, many cases to consider:

- D=EMF: since Ais complete, it must contain both E(b) and F(b).
Applying the IH, we get b € EZ and b € F£, hence b € (EM F)?

- D =3r.E: since Ais complete, there exists ¢ such that r(b,c) € A
and E(c) € A. Then (b,c) € rf. From IH, get c € EZ, so b € (3r.E)?

- D =EUF: left as practice

- D =VR.E: left as practice
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Then the ABox {Co(ap)} must be satisfiable too.

18/33



COMPLETENESS OF CSAT

Suppose that the

Then the ABox {Cy(ap)} must be satisfiable too.
We observe that the tableau rules are satisfiability-preserving:

- If an ABox A is satisfiable and A’ is the result of applying a rule to
A, then A’ is also satisfiable.

- If Ais satisfiable and A, and A, are obtained when applying a
rule to A, then either A, is satisfiable or A, is satisfiable.
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COMPLETENESS OF CSAT

Suppose that the

Then the ABox {Cy(ap)} must be satisfiable too.
We observe that the tableau rules are satisfiability-preserving:

- If an ABox A is satisfiable and A’ is the result of applying a rule to
A, then A’ is also satisfiable.

- If Ais satisfiable and A, and A, are obtained when applying a

rule to A, then either A, is satisfiable or A, is satisfiable.

We start with a satisfiable ABox and the rules are
satisfiability-preserving, so eventually we will reach a complete,
satisfiable (thus: clash-free) ABox and output ‘yes'.
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COMPLEXITY OF CSAT

Bad news: our algorithm may require exponential time and space...

To see why, consider what happens if we run CSat on the concept

[] vr...vr,(3rBM3r.-B)
0<i<n  jtimes
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COMPLEXITY OF CSAT

Bad news: our algorithm may require exponential time and space...

To see why, consider what happens if we run CSat on the concept

[] vr...vr,(3rBM3r.-B)
0<i<n  jtimes

Good news: can modify algorithm so it runs in polynomial space

- instead of set of ABoxes, keep only 1 ABox in memory at a time
- when apply the U-rule, first examine Aj, then afterwards examine A,
- remember that second disjunct stills needs to be checked

- possible because no interaction between the different “branches”
- store which 3r.C concepts have been tested, which are left to do

- this allows us to keep at most |Gy individuals in memory at a time
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COMPLEXITY OF ALC CONCEPT SATISFIABILITY

Hierarchy of complexity classes
PTIMECNPC... C PSPACE CEXPTIME C NEXPTIMEC... CEXPSPACE ...

(it is believed that all inclusions are strict)
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COMPLEXITY OF ALC CONCEPT SATISFIABILITY

Hierarchy of complexity classes
PTIMECNPC...C PSPACE CEXPTIMECNEXPTIMEC... CEXPSPACE ...
(it is believed that all inclusions are strict)
PSPACE = class of decision problems solvable in polynomial space
PSPACE-complete problems = hardest problems in PSPACE

Theorem: ALC concept satisfiability (no TBox) is PSPACE-complete.

- Membership in PSPACE shown using modified tableau procedure

- Hardness for PSPACE shown by giving a reduction from some
known PSPACE-hard problem (e.g. QBF validity)
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EXTENSION TO KB SATISFIABILITY
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Adding an ABox is easy: simply start with {A} instead of {Co(ao)}
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EXTENSION TO KB SATISFIABILITY

Now we want to modify the algorithm to handle KB satisfability.
Adding an ABox is easy: simply start with {A} instead of {Co(ao)}
Adding a TBox is a bit more tricky...

Idea: if C C D, then every element must satisfy either —C or D
Concretely, we might try adding the following rule:

ifaisin A4, CCDeT,&(NNF(=C) LUNNF(D))(a) ¢ A
then replace A with AU {(NNF(=C) LUNNF(D))(a)}

21/33



EXAMPLE: NON-TERMINATION

Let's try the modified procedure on the KB ({F C 3S.F}, {F(a)})
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EXAMPLE: NON-TERMINATION

Let's try the modified procedure on the KB ({F C 3S.F}, {F(a)})

Seems we have a problem... How can we ensure termination?
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Basic idea: if two individuals “look the same”, then it is unnecessary
to explore both of them
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- {C| C(a) e A} C{C| C(b) € A}

- b was present in A before a was introduced

Say that individual a is blocked (in .A) if some b blocks a.

23/33



BLOCKING

Basic idea: if two individuals “look the same”, then it is unnecessary
to explore both of them

Formally: given individuals a, b from A, we say that b blocks a if:
- {C| C(a) e A} C{C| C(b) € A}

- b was present in A before a was introduced
Say that individual a is blocked (in .A) if some b blocks a.

Modify rules so that they only apply to unblocked individuals.
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TABLEAU RULES FOR KBS

M-rule: if (G, G)(a) € A, ,and {G(a),G(a)} € A,
then replace A with AU {C(a), Cy(a)}

U-rule: if (G UG)(a) € A, ,and {Ci(a),G(a)} N A =0,
then replace A with AU {G(a))} and AU {C,(a))}

V-rule: if {vr.C(a),r(a,b)} € A, ,and C(b) € A,
then replace A with AU {C(b))}

F-rule: if {3r.C(a)} € A4, ,and no {r(a,b),C(b)} C A,

then pick a new individual name d and replace A with
Au{r(a,d),C(d)}

C-rule: if a appearsin A and ,CCDeT,and
(NNF(=C) LUNNF(D))(a) & A,
then replace A with AU {(NNF(—C) UNNF(D))(a)}
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EXAMPLE: BLOCKING

Let's try blocking on the problematic KB ({F C 3s.F}, {F(a)})
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EXAMPLE: BLOCKING

Let's try blocking on the problematic KB ({F C 3s.F}, {F(a)})

(=F U 3s.F)(ao)
~F(ao) | (3s.F)a0)

x s(ao, ay)

F(ay) -

a1 is blocked by ag

We obtain a = the KB is satisfiable
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ANOTHER BLOCKING EXAMPLE

Consider the TBox 7 = {AC 3r.A,A C B,3r.B C D} and suppose we
want to test whether 7 = A C D.

We can do this by running the algorithm on (7, {(AM=D)(ap)}).
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ANOTHER BLOCKING EXAMPLE

Consider the TBox 7 = {AC 3r.A,A C B,3r.B C D} and suppose we
want to test whether 7 = A C D.

We can do this by running the algorithm on (7, {(AM=D)(ap)}).

Result: the = TEALCD

Observe: individual can be blocked, then later become unblocked
26/33



PROPERTIES OF KBSAT

Let’s call our new tableau algorithm KBSat (for KB satisfiability).

: The algorithm KBSat always terminates.
- similar to before: bound the size of generated ABoxes
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PROPERTIES OF KBSAT

Let’s call our new tableau algorithm KBSat (for KB satisfiability).

: The algorithm KBSat always terminates.
- similar to before: bound the size of generated ABoxes

Soundness: KBSat outputs “yes” on (T,.A) = (T, A) is satisfiable.
- again, we use complete, clash-free ABox to build a model
- tricky part: need to handle the blocked individuals

Completeness: (T,.A) satisfiable = KBSat will output “yes”.
- again, show rules satisfiability-preserving

So: KBSat is a decision procedure for KB satisfiability.

27/33



COMPLEXITY OF REASONING IN EXPRESSIVE DLS

Tableau procedure takes exponential time and space
- can have exponentially long ‘branches’ to explore

Complexity results tell us this is unavoidable in worst case:

Theorem: In ALC, KB satisfiability is EXPTIME-complete
- for highly expressive DLs (~ OWL 2): complexity even higher
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OPTIMIZATIONS

Despite high worst-case complexity, for ALC and
other expressive DLs
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OPTIMIZATIONS

Despite high worst-case complexity, for ALC and
other expressive DLs

However, good performance crucially depends on optimizations!

Many types of optimizations:

- explore only one branch of one ABox at a time

- strategies / heuristics for choosing next rule to apply

- caching of results to reduce redundant computation

- examine source of conflicts to prune search space (backjumping)
- reduce number of LI's created by TBox inclusions (absorption)

- reduce number of satisfiability checks during classification

29/33



ABSORPTION (1)

When T ={C;C D; | 1< i< n}, we get n disjunctions per individual:
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- if have A(a), then must have D(a)

So for inclusions with atomic left-hand side, can replace C-rule by:

C%-rule: if A(a) € A, ais not blocked, AC D € T (with A atomic),
and D(a) ¢ A, then replace A with AU {D(a)}
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ABSORPTION (1)

When T ={C;C D; | 1< i< n}, we get n disjunctions per individual:

Observation: if have A = D with A a concept name
- if don't have A(a), can satisfy the inclusion by choosing —A(a)
- if have A(a), then must have D(a)

So for inclusions with atomic left-hand side, can replace C-rule by:

C%-rule: if A(a) € A, ais not blocked, AC D € T (with A atomic),
and D(a) ¢ A, then replace A with AU {D(a)}

Good news: we've lowered the number of disjunctions!
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ABSORPTION (2)

Second observation: can transform some inclusions with complex
concept on left into equivalent inclusions with atomic left-hand side
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Second observation: can transform some inclusions with complex
concept on left into equivalent inclusions with atomic left-hand side

(ANC)ED ~ ALC(-CuUD)
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ABSORPTION (2)

Second observation: can transform some inclusions with complex
concept on left into equivalent inclusions with atomic left-hand side

(ANC)CD ~ ALC(-CUD)

Absorption technique:

1. preprocess the TBox by replacing inclusions with equivalent
inclusions with atomic concept on left, whenever possible

2. when running tableau algorithm
- use new C%-rule for inclusions A C D with A a concept name

- use regular C-rule for the other TBox inclusions
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EXAMPLE: ABSORPTION

Let's use absorption on the KB (7, {A(a)}) with:

{ AC3rB BCLD 3IrDC-A }
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EXAMPLE: ABSORPTION

Let's use absorption on the KB (7, {A(a)}) with:
{ AC3rB BCLD 3IrDC-A }

- first two inclusions in 7 already have concept name on left
- third inclusion in T can be equivalently written as A C Vr.—D

- s0: only need to use C%-rule
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EXAMPLE: ABSORPTION

Let's use absorption on the KB (7, {A(a)}) with:
{ AC3rB BCLD 3IrDC-A }

- first two inclusions in 7 already have concept name on left
- third inclusion in T can be equivalently written as A C Vr.—D

- s0: only need to use C%-rule

Result: avoid disjunction, algorithm terminates much faster!
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OPTIMIZATIONS FOR CLASSIFICATION

Classification:

Naive approach: test satisfiability of Am =B w.rt. 7 for all pairs A, B

- but T may contain hundreds or thousands of concept names....
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OPTIMIZATIONS FOR CLASSIFICATION

Classification:

Naive approach: test satisfiability of Am =B w.rt. 7 for all pairs A, B

- but T may contain hundreds or thousands of concept names....

Each check is costly = want to reduce number of checks

Some ideas:

- some cases are obvious
- A C Aand inclusions that are explicitly stated in 7

- use simple reasoning to obtain new (non-)entailments
- ifknowTEACBandT EBLCD, thenT EACD
- ifknow7T EACBand T AL D, thenT B D
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