ONTOLOGIES \& DESCRIPTION LOGICS

Parcours IA - Représentation des connaissances

Meghyn Bienvenu (LaBRI - CNRS \& Université de Bordeaux)

REASONING IN EXPRESSIVE DLS

TABLEAU METHOD

Tableau method: popular approach for reasoning in expressive DLs

- implemented in state-of-the-art DL reasoners

Tableau algorithms are used to decide satisfiability

- solve other tasks (e.g. entailment) by reducing them to satisfiability

TABLEAU METHOD

Tableau method: popular approach for reasoning in expressive DLs

- implemented in state-of-the-art DL reasoners

Tableau algorithms are used to decide satisfiability

- solve other tasks (e.g. entailment) by reducing them to satisfiability

Idea: to determine whether a given (concept or KB) Ψ is satisfiable, try to construct a (representation of a) model of Ψ

- if we succeed, then we have shown that Ψ is satisfiable
- if we fail despite having considered all possibilities, then we have proven that ψ is unsatisfiable

ALC CONCEPTS

Recall that $\mathcal{A L C}$ concepts are built using the following constructors:

$$
\lceil\perp \neg \quad \sqcup \quad \sqcap \quad \forall r . C \quad \exists r . C
$$

ALC CONCEPTS

Recall that $\mathcal{A L C}$ concepts are built using the following constructors:

$$
\top \perp \neg \quad \perp \quad \sqcap \quad \forall r . C \quad \exists r . C
$$

We say that an $\mathcal{A L C}$ concept C is in negation normal form (NNF) if the symbol \neg only appears directly in front of atomic concepts.

- in NNF: $A \sqcap \neg B, \exists r . \neg A, \neg A \sqcup \neg B$
- not in NNF: $\neg(A \sqcap B), \exists r . \neg(\forall s . B), A \sqcup \neg \forall r . B, \neg \top$

ALC CONCEPTS

Recall that $\mathcal{A L C}$ concepts are built using the following constructors:

$$
\top \perp \neg \quad \perp \quad \sqcap \quad \forall r . C \quad \exists r . C
$$

We say that an $\mathcal{A L C}$ concept C is in negation normal form (NNF) if the symbol \neg only appears directly in front of atomic concepts.

- in NNF: $A \sqcap \neg B, \exists r . \neg A, \neg A \sqcup \neg B$
- not in NNF: $\neg(A \sqcap B), \exists r . \neg(\forall s . B), A \sqcup \neg \forall r . B, \neg \top$

Fact. Every $\mathcal{A L C}$ concept C can be transformed into an equivalent concept in NNF in linear time by applying the following rewrite rules:

$$
\begin{array}{lll}
\neg T \rightsquigarrow \perp & \neg(C \sqcap D) \rightsquigarrow \neg C \sqcup \neg D & \neg(\forall r . C) \rightsquigarrow \exists r . \neg C \\
\neg \perp \rightsquigarrow T & \neg(C \sqcup D) \rightsquigarrow \neg C \sqcap \neg D & \neg(\exists r . C) \rightsquigarrow \forall r . \neg C
\end{array}
$$

Note: say C and D are equivalent if the empty TBox entails $C \equiv D$.

SATISFIABILITY OF ALC-CONCEPTS VIA TABLEAU

We begin by presenting a tableau algorithm for deciding satisfiability of $\mathcal{A L C}$-concepts (in NNF) w.r.t. the empty TBox

Procedure for testing satisfiability of C_{0} :

- We work with a set S of ABoxes
- Initially, S contains a single ABox $\left\{C_{0}\left(a_{0}\right)\right\}$

SATISFIABILITY OF ALC-CONCEPTS VIA TABLEAU

We begin by presenting a tableau algorithm for deciding satisfiability of $\mathcal{A L C}$-concepts (in NNF) w.r.t. the empty TBox

Procedure for testing satisfiability of C_{0} :

- We work with a set S of ABoxes
- Initially, S contains a single ABox $\left\{C_{0}\left(a_{0}\right)\right\}$
- At each stage, we apply a tableau rule to some $\mathcal{A} \in S$ (note: rules are detailed on next slide)

SATISFIABILITY OF ALC-CONCEPTS VIA TABLEAU

We begin by presenting a tableau algorithm for deciding satisfiability of $\mathcal{A L C}$-concepts (in NNF) w.r.t. the empty TBox

Procedure for testing satisfiability of C_{0} :

- We work with a set S of ABoxes
- Initially, S contains a single ABox $\left\{C_{0}\left(a_{0}\right)\right\}$
- At each stage, we apply a tableau rule to some $\mathcal{A} \in S$
(note: rules are detailed on next slide)
- A rule application involves replacing \mathcal{A} by one or two ABoxes that extend \mathcal{A} with new assertions

SATISFIABILITY OF ALC-CONCEPTS VIA TABLEAU

We begin by presenting a tableau algorithm for deciding satisfiability of $\mathcal{A L C}$-concepts (in NNF) w.r.t. the empty TBox

Procedure for testing satisfiability of C_{0} :

- We work with a set S of ABoxes
- Initially, S contains a single ABox $\left\{C_{0}\left(a_{0}\right)\right\}$
- At each stage, we apply a tableau rule to some $\mathcal{A} \in S$ (note: rules are detailed on next slide)
- A rule application involves replacing \mathcal{A} by one or two ABoxes that extend \mathcal{A} with new assertions
- Stop applying rules when either:
- every $\mathcal{A} \in S$ contains a clash, i.e. an assertion $\perp(b)$ or a pair of assertions $\{B(b), \neg B(b)\}$
- some $\mathcal{A} \in S$ is clash-free and complete: no rule can be applied to \mathcal{A}

SATISFIABILITY OF ALC-CONCEPTS VIA TABLEAU

We begin by presenting a tableau algorithm for deciding satisfiability of $\mathcal{A L C}$-concepts (in NNF) w.r.t. the empty TBox

Procedure for testing satisfiability of C_{0} :

- We work with a set S of ABoxes
- Initially, S contains a single ABox $\left\{C_{0}\left(a_{0}\right)\right\}$
- At each stage, we apply a tableau rule to some $\mathcal{A} \in S$
(note: rules are detailed on next slide)
- A rule application involves replacing \mathcal{A} by one or two ABoxes that extend \mathcal{A} with new assertions
- Stop applying rules when either:
- every $\mathcal{A} \in S$ contains a clash, i.e. an assertion $\perp(b)$ or a pair of assertions $\{B(b), \neg B(b)\}$
- some $\mathcal{A} \in S$ is clash-free and complete: no rule can be applied to \mathcal{A}
- Return 'yes, satisfiable' if some $\mathcal{A} \in S$ is clash-free, else "no".

TABLEAU RULES FOR ALC

\sqcap-rule: \quad if $\left(C_{1} \sqcap C_{2}\right)(a) \in \mathcal{A}$ and $\left\{C_{1}(a), C_{2}(a)\right\} \nsubseteq \mathcal{A}$ then replace \mathcal{A} with $\mathcal{A} \cup\left\{C_{1}(a), C_{2}(a)\right\}$

TABLEAU RULES FOR ALC

\sqcap-rule: \quad if $\left(C_{1} \sqcap C_{2}\right)(a) \in \mathcal{A}$ and $\left\{C_{1}(a), C_{2}(a)\right\} \nsubseteq \mathcal{A}$ then replace \mathcal{A} with $\mathcal{A} \cup\left\{C_{1}(a), C_{2}(a)\right\}$

ப-rule: if $\left(C_{1} \sqcup C_{2}\right)(a) \in \mathcal{A}$ and $\left\{C_{1}(a), C_{2}(a)\right\} \cap \mathcal{A}=\emptyset$ then replace \mathcal{A} with $\left.\mathcal{A} \cup\left\{C_{1}(a)\right)\right\}$ and $\left.\mathcal{A} \cup\left\{C_{2}(a)\right)\right\}$

TABLEAU RULES FOR ALC

\sqcap-rule: \quad if $\left(C_{1} \sqcap C_{2}\right)(a) \in \mathcal{A}$ and $\left\{C_{1}(a), C_{2}(a)\right\} \nsubseteq \mathcal{A}$ then replace \mathcal{A} with $\mathcal{A} \cup\left\{C_{1}(a), C_{2}(a)\right\}$
\sqcup-rule: \quad if $\left(C_{1} \sqcup C_{2}\right)(a) \in \mathcal{A}$ and $\left\{C_{1}(a), C_{2}(a)\right\} \cap \mathcal{A}=\emptyset$ then replace \mathcal{A} with $\left.\mathcal{A} \cup\left\{C_{1}(a)\right)\right\}$ and $\left.\mathcal{A} \cup\left\{C_{2}(a)\right)\right\}$
\forall-rule: \quad if $\{\forall r . C(a), r(a, b)\} \in \mathcal{A}$ and $C(b) \notin \mathcal{A}$ then replace \mathcal{A} with $\mathcal{A} \cup\{C(b))\}$

TABLEAU RULES FOR ALC

Π-rule: \quad if $\left(C_{1} \sqcap C_{2}\right)(a) \in \mathcal{A}$ and $\left\{C_{1}(a), C_{2}(a)\right\} \nsubseteq \mathcal{A}$ then replace \mathcal{A} with $\mathcal{A} \cup\left\{C_{1}(a), C_{2}(a)\right\}$

ப-rule: if $\left(C_{1} \sqcup C_{2}\right)(a) \in \mathcal{A}$ and $\left\{C_{1}(a), C_{2}(a)\right\} \cap \mathcal{A}=\emptyset$ then replace \mathcal{A} with $\left.\mathcal{A} \cup\left\{C_{1}(a)\right)\right\}$ and $\left.\mathcal{A} \cup\left\{C_{2}(a)\right)\right\}$
\forall-rule: \quad if $\{\forall r . C(a), r(a, b)\} \in \mathcal{A}$ and $C(b) \notin \mathcal{A}$ then replace \mathcal{A} with $\mathcal{A} \cup\{C(b))\}$
\exists-rule: if $\{\exists r . C(a)\} \in \mathcal{A}$ and no b with $\{r(a, b), C(b)\} \subseteq \mathcal{A}$, then pick a new individual name d and replace \mathcal{A} with $\mathcal{A} \cup\{r(a, d), C(d)\}$

FIRST EXAMPLE: \sqcap AND \sqcup

Test satisfiability of concept $C=(A \sqcup B) \sqcap((\neg B \sqcup D) \sqcap \neg A)$

FIRST EXAMPLE: \sqcap AND \sqcup

Test satisfiability of concept $C=(A \sqcup B) \sqcap((\neg B \sqcup D) \sqcap \neg A)$
Start with $S=\left\{\mathcal{A}_{0}\right\}$ where $\mathcal{A}_{0}=\left\{((A \sqcup B) \sqcap((\neg B \sqcup D) \sqcap \neg A))\left(a_{0}\right)\right\}$.

FIRST EXAMPLE: \sqcap AND \sqcup

Test satisfiability of concept $C=(A \sqcup B) \sqcap((\neg B \sqcup D) \sqcap \neg A)$
Start with $S=\left\{\mathcal{A}_{0}\right\}$ where $\mathcal{A}_{0}=\left\{((A \sqcup B) \sqcap((\neg B \sqcup D) \sqcap \neg A))\left(a_{0}\right)\right\}$. Apply \sqcap-rule to \mathcal{A}_{0} :
get $S=\left\{\mathcal{A}_{0}^{\prime}\right\}$ where $\left.\mathcal{A}_{0}^{\prime}=\mathcal{A}_{0} \cup\left\{(A \sqcup B)\left(a_{0}\right),((\neg B \sqcup D) \sqcap \neg A)\left(a_{0}\right)\right\}\right\}$.

FIRST EXAMPLE: \sqcap AND \sqcup

Test satisfiability of concept $C=(A \sqcup B) \sqcap((\neg B \sqcup D) \sqcap \neg A)$
Start with $S=\left\{\mathcal{A}_{0}\right\}$ where $\mathcal{A}_{0}=\left\{((A \sqcup B) \sqcap((\neg B \sqcup D) \sqcap \neg A))\left(a_{0}\right)\right\}$. Apply \sqcap-rule to \mathcal{A}_{0} :
get $S=\left\{\mathcal{A}_{0}^{\prime}\right\}$ where $\left.\mathcal{A}_{0}^{\prime}=\mathcal{A}_{0} \cup\left\{(A \sqcup B)\left(a_{0}\right),((\neg B \sqcup D) \sqcap \neg A)\left(a_{0}\right)\right\}\right\}$.

FIRST EXAMPLE: \sqcap AND \sqcup

Test satisfiability of concept $C=(A \sqcup B) \sqcap((\neg B \sqcup D) \sqcap \neg A)$
Start with $S=\left\{\mathcal{A}_{0}\right\}$ where $\mathcal{A}_{0}=\left\{((A \sqcup B) \sqcap((\neg B \sqcup D) \sqcap \neg A))\left(a_{0}\right)\right\}$. Apply \sqcap-rule to \mathcal{A}_{0} :
get $S=\left\{\mathcal{A}_{0}^{\prime}\right\}$ where $\left.\mathcal{A}_{0}^{\prime}=\mathcal{A}_{0} \cup\left\{(A \sqcup B)\left(a_{0}\right),((\neg B \sqcup D) \sqcap \neg A)\left(a_{0}\right)\right\}\right\}$.
Apply \sqcup-rule to \mathcal{A}_{0}^{\prime} :
get $S=\left\{\mathcal{A}_{1}, \mathcal{A}_{2}\right\}$ where $\mathcal{A}_{1}=\mathcal{A}_{0}^{\prime} \cup\left\{A\left(a_{0}\right)\right\}$ and $\mathcal{A}_{2}=\mathcal{A}_{0}^{\prime} \cup\left\{B\left(a_{0}\right)\right\}$.

FIRST EXAMPLE: \sqcap AND \sqcup

Test satisfiability of concept $C=(A \sqcup B) \sqcap((\neg B \sqcup D) \sqcap \neg A)$
Start with $S=\left\{\mathcal{A}_{0}\right\}$ where $\mathcal{A}_{0}=\left\{((A \sqcup B) \sqcap((\neg B \sqcup D) \sqcap \neg A))\left(a_{0}\right)\right\}$. Apply \sqcap-rule to \mathcal{A}_{0} :
get $S=\left\{\mathcal{A}_{0}^{\prime}\right\}$ where $\left.\mathcal{A}_{0}^{\prime}=\mathcal{A}_{0} \cup\left\{(A \sqcup B)\left(a_{0}\right),((\neg B \sqcup D) \sqcap \neg A)\left(a_{0}\right)\right\}\right\}$.
Apply \sqcup-rule to \mathcal{A}_{0}^{\prime} :
get $S=\left\{\mathcal{A}_{1}, \mathcal{A}_{2}\right\}$ where $\mathcal{A}_{1}=\mathcal{A}_{0}^{\prime} \cup\left\{A\left(a_{0}\right)\right\}$ and $\mathcal{A}_{2}=\mathcal{A}_{0}^{\prime} \cup\left\{B\left(a_{0}\right)\right\}$.

FIRST EXAMPLE: \sqcap AND \sqcup

Test satisfiability of concept $C=(A \sqcup B) \sqcap((\neg B \sqcup D) \sqcap \neg A)$
Start with $S=\left\{\mathcal{A}_{0}\right\}$ where $\mathcal{A}_{0}=\left\{((A \sqcup B) \sqcap((\neg B \sqcup D) \sqcap \neg A))\left(a_{0}\right)\right\}$. Apply \sqcap-rule to \mathcal{A}_{0} :
get $S=\left\{\mathcal{A}_{0}^{\prime}\right\}$ where $\left.\mathcal{A}_{0}^{\prime}=\mathcal{A}_{0} \cup\left\{(A \sqcup B)\left(a_{0}\right),((\neg B \sqcup D) \sqcap \neg A)\left(a_{0}\right)\right\}\right\}$.
Apply \sqcup-rule to \mathcal{A}_{0}^{\prime} :
get $S=\left\{\mathcal{A}_{1}, \mathcal{A}_{2}\right\}$ where $\mathcal{A}_{1}=\mathcal{A}_{0}^{\prime} \cup\left\{A\left(a_{0}\right)\right\}$ and $\mathcal{A}_{2}=\mathcal{A}_{0}^{\prime} \cup\left\{B\left(a_{0}\right)\right\}$.
Apply \sqcap-rule to \mathcal{A}_{1} :
get $S=\left\{\mathcal{A}_{1}^{\prime}, \mathcal{A}_{2}\right\}$ where $\mathcal{A}_{1}^{\prime}=\mathcal{A}_{1} \cup\left\{(\neg B \sqcup D)\left(a_{0}\right), \neg A\left(a_{0}\right)\right\}$

FIRST EXAMPLE: \square AND \sqcup

Test satisfiability of concept $C=(A \sqcup B) \sqcap((\neg B \sqcup D) \sqcap \neg A)$
Start with $S=\left\{\mathcal{A}_{0}\right\}$ where $\mathcal{A}_{0}=\left\{((A \sqcup B) \sqcap((\neg B \sqcup D) \sqcap \neg A))\left(a_{0}\right)\right\}$. Apply \sqcap-rule to \mathcal{A}_{0} :
get $S=\left\{\mathcal{A}_{0}^{\prime}\right\}$ where $\left.\mathcal{A}_{0}^{\prime}=\mathcal{A}_{0} \cup\left\{(A \sqcup B)\left(a_{0}\right),((\neg B \sqcup D) \sqcap \neg A)\left(a_{0}\right)\right\}\right\}$.
Apply \sqcup-rule to \mathcal{A}_{0}^{\prime} :
get $S=\left\{\mathcal{A}_{1}, \mathcal{A}_{2}\right\}$ where $\mathcal{A}_{1}=\mathcal{A}_{0}^{\prime} \cup\left\{A\left(a_{0}\right)\right\}$ and $\mathcal{A}_{2}=\mathcal{A}_{0}^{\prime} \cup\left\{B\left(a_{0}\right)\right\}$.
Apply \sqcap-rule to \mathcal{A}_{1} :
get $S=\left\{\mathcal{A}_{1}^{\prime}, \mathcal{A}_{2}\right\}$ where $\mathcal{A}_{1}^{\prime}=\mathcal{A}_{1} \cup\left\{(\neg B \sqcup D)\left(a_{0}\right), \neg A\left(a_{0}\right)\right\}$
\mathcal{A}_{1}^{\prime} contains clash $\left\{A\left(a_{0}\right), \neg A\left(a_{0}\right)\right\}$!

FIRST EXAMPLE: \sqcap AND \sqcup

Test satisfiability of concept $C=(A \sqcup B) \sqcap((\neg B \sqcup D) \sqcap \neg A)$
Start with $S=\left\{\mathcal{A}_{0}\right\}$ where $\mathcal{A}_{0}=\left\{((A \sqcup B) \sqcap((\neg B \sqcup D) \sqcap \neg A))\left(a_{0}\right)\right\}$. Apply \sqcap-rule to \mathcal{A}_{0} :
get $S=\left\{\mathcal{A}_{0}^{\prime}\right\}$ where $\left.\mathcal{A}_{0}^{\prime}=\mathcal{A}_{0} \cup\left\{(A \sqcup B)\left(a_{0}\right),((\neg B \sqcup D) \sqcap \neg A)\left(a_{0}\right)\right\}\right\}$.
Apply \sqcup-rule to \mathcal{A}_{0}^{\prime} :
get $S=\left\{\mathcal{A}_{1}, \mathcal{A}_{2}\right\}$ where $\mathcal{A}_{1}=\mathcal{A}_{0}^{\prime} \cup\left\{A\left(a_{0}\right)\right\}$ and $\mathcal{A}_{2}=\mathcal{A}_{0}^{\prime} \cup\left\{B\left(a_{0}\right)\right\}$.
Apply \sqcap-rule to \mathcal{A}_{1} :
get $S=\left\{\mathcal{A}_{1}^{\prime}, \mathcal{A}_{2}\right\}$ where $\mathcal{A}_{1}^{\prime}=\mathcal{A}_{1} \cup\left\{(\neg B \sqcup D)\left(a_{0}\right), \neg A\left(a_{0}\right)\right\}$

FIRST EXAMPLE: \sqcap AND \sqcup

Test satisfiability of concept $C=(A \sqcup B) \sqcap((\neg B \sqcup D) \sqcap \neg A)$
Start with $S=\left\{\mathcal{A}_{0}\right\}$ where $\mathcal{A}_{0}=\left\{((A \sqcup B) \sqcap((\neg B \sqcup D) \sqcap \neg A))\left(a_{0}\right)\right\}$. Apply \sqcap-rule to \mathcal{A}_{0} :
get $S=\left\{\mathcal{A}_{0}^{\prime}\right\}$ where $\left.\mathcal{A}_{0}^{\prime}=\mathcal{A}_{0} \cup\left\{(A \sqcup B)\left(a_{0}\right),((\neg B \sqcup D) \sqcap \neg A)\left(a_{0}\right)\right\}\right\}$.
Apply \sqcup-rule to \mathcal{A}_{0}^{\prime} :
get $S=\left\{\mathcal{A}_{1}, \mathcal{A}_{2}\right\}$ where $\mathcal{A}_{1}=\mathcal{A}_{0}^{\prime} \cup\left\{A\left(a_{0}\right)\right\}$ and $\mathcal{A}_{2}=\mathcal{A}_{0}^{\prime} \cup\left\{B\left(a_{0}\right)\right\}$.
Apply \sqcap-rule to \mathcal{A}_{1} :
get $S=\left\{\mathcal{A}_{1}^{\prime}, \mathcal{A}_{2}\right\}$ where $\mathcal{A}_{1}^{\prime}=\mathcal{A}_{1} \cup\left\{(\neg B \sqcup D)\left(a_{0}\right), \neg A\left(a_{0}\right)\right\}$
Apply \sqcap-rule to \mathcal{A}_{2} :
get $S=\left\{\mathcal{A}_{1}^{\prime}, \mathcal{A}_{2}^{\prime}\right\}$ where $\mathcal{A}_{2}^{\prime}=\mathcal{A}_{2} \cup\left\{(\neg B \sqcup D)\left(a_{0}\right), \neg A\left(a_{0}\right)\right\}$

FIRST EXAMPLE: \sqcap AND \sqcup

Test satisfiability of concept $\quad C=(A \sqcup B) \sqcap((\neg B \sqcup D) \sqcap \neg A)$
Start with $S=\left\{\mathcal{A}_{0}\right\}$ where $\mathcal{A}_{0}=\left\{((A \sqcup B) \sqcap((\neg B \sqcup D) \sqcap \neg A))\left(a_{0}\right)\right\}$.
Apply \sqcap-rule to \mathcal{A}_{0} :
get $S=\left\{\mathcal{A}_{0}^{\prime}\right\}$ where $\left.\mathcal{A}_{0}^{\prime}=\mathcal{A}_{0} \cup\left\{(A \sqcup B)\left(a_{0}\right),((\neg B \sqcup D) \sqcap \neg A)\left(a_{0}\right)\right\}\right\}$.
Apply \sqcup-rule to \mathcal{A}_{0}^{\prime} :
get $S=\left\{\mathcal{A}_{1}, \mathcal{A}_{2}\right\}$ where $\mathcal{A}_{1}=\mathcal{A}_{0}^{\prime} \cup\left\{A\left(a_{0}\right)\right\}$ and $\mathcal{A}_{2}=\mathcal{A}_{0}^{\prime} \cup\left\{B\left(a_{0}\right)\right\}$.
Apply \sqcap-rule to \mathcal{A}_{1} :
get $S=\left\{\mathcal{A}_{1}^{\prime}, \mathcal{A}_{2}\right\}$ where $\mathcal{A}_{1}^{\prime}=\mathcal{A}_{1} \cup\left\{(\neg B \sqcup D)\left(a_{0}\right), \neg A\left(a_{0}\right)\right\}$
Apply \sqcap-rule to \mathcal{A}_{2} :
get $S=\left\{\mathcal{A}_{1}^{\prime}, \mathcal{A}_{2}^{\prime}\right\}$ where $\mathcal{A}_{2}^{\prime}=\mathcal{A}_{2} \cup\left\{(\neg B \sqcup D)\left(a_{0}\right), \neg A\left(a_{0}\right)\right\}$

FIRST EXAMPLE: \sqcap AND \sqcup

Test satisfiability of concept $C=(A \sqcup B) \sqcap((\neg B \sqcup D) \sqcap \neg A)$
Start with $S=\left\{\mathcal{A}_{0}\right\}$ where $\mathcal{A}_{0}=\left\{((A \sqcup B) \sqcap((\neg B \sqcup D) \sqcap \neg A))\left(a_{0}\right)\right\}$. Apply \sqcap-rule to \mathcal{A}_{0} :
get $S=\left\{\mathcal{A}_{0}^{\prime}\right\}$ where $\left.\mathcal{A}_{0}^{\prime}=\mathcal{A}_{0} \cup\left\{(A \sqcup B)\left(a_{0}\right),((\neg B \sqcup D) \sqcap \neg A)\left(a_{0}\right)\right\}\right\}$.
Apply \sqcup-rule to \mathcal{A}_{0}^{\prime} :
get $S=\left\{\mathcal{A}_{1}, \mathcal{A}_{2}\right\}$ where $\mathcal{A}_{1}=\mathcal{A}_{0}^{\prime} \cup\left\{A\left(a_{0}\right)\right\}$ and $\mathcal{A}_{2}=\mathcal{A}_{0}^{\prime} \cup\left\{B\left(a_{0}\right)\right\}$.
Apply \sqcap-rule to \mathcal{A}_{1} :
get $S=\left\{\mathcal{A}_{1}^{\prime}, \mathcal{A}_{2}\right\}$ where $\mathcal{A}_{1}^{\prime}=\mathcal{A}_{1} \cup\left\{(\neg B \sqcup D)\left(a_{0}\right), \neg A\left(a_{0}\right)\right\}$
Apply \sqcap-rule to \mathcal{A}_{2} :
get $S=\left\{\mathcal{A}_{1}^{\prime}, \mathcal{A}_{2}^{\prime}\right\}$ where $\mathcal{A}_{2}^{\prime}=\mathcal{A}_{2} \cup\left\{(\neg B \sqcup D)\left(a_{0}\right), \neg A\left(a_{0}\right)\right\}$
Apply \sqcup-rule to \mathcal{A}_{2}^{\prime} :
get $S=\left\{\mathcal{A}_{1}^{\prime}, \mathcal{A}_{3}, \mathcal{A}_{4}\right\}$ where $\mathcal{A}_{3}=\mathcal{A}_{2}^{\prime} \cup\left\{\neg B\left(a_{0}\right)\right\}, \mathcal{A}_{4}=\mathcal{A}_{2}^{\prime} \cup\left\{D\left(a_{0}\right)\right\}$

FIRST EXAMPLE: \sqcap AND \sqcup

Test satisfiability of concept $C=(A \sqcup B) \sqcap((\neg B \sqcup D) \sqcap \neg A)$
Start with $S=\left\{\mathcal{A}_{0}\right\}$ where $\mathcal{A}_{0}=\left\{((A \sqcup B) \sqcap((\neg B \sqcup D) \sqcap \neg A))\left(a_{0}\right)\right\}$.
Apply \sqcap-rule to \mathcal{A}_{0} :
get $S=\left\{\mathcal{A}_{0}^{\prime}\right\}$ where $\left.\mathcal{A}_{0}^{\prime}=\mathcal{A}_{0} \cup\left\{(A \sqcup B)\left(a_{0}\right),((\neg B \sqcup D) \sqcap \neg A)\left(a_{0}\right)\right\}\right\}$.
Apply \sqcup-rule to \mathcal{A}_{0}^{\prime} :
get $S=\left\{\mathcal{A}_{1}, \mathcal{A}_{2}\right\}$ where $\mathcal{A}_{1}=\mathcal{A}_{0}^{\prime} \cup\left\{A\left(a_{0}\right)\right\}$ and $\mathcal{A}_{2}=\mathcal{A}_{0}^{\prime} \cup\left\{B\left(a_{0}\right)\right\}$.
Apply \sqcap-rule to \mathcal{A}_{1} :
get $S=\left\{\mathcal{A}_{1}^{\prime}, \mathcal{A}_{2}\right\}$ where $\mathcal{A}_{1}^{\prime}=\mathcal{A}_{1} \cup\left\{(\neg B \sqcup D)\left(a_{0}\right), \neg A\left(a_{0}\right)\right\}$
Apply \square-rule to \mathcal{A}_{2} :
get $S=\left\{\mathcal{A}_{1}^{\prime}, \mathcal{A}_{2}^{\prime}\right\}$ where $\mathcal{A}_{2}^{\prime}=\mathcal{A}_{2} \cup\left\{(\neg B \sqcup D)\left(a_{0}\right), \neg A\left(a_{0}\right)\right\}$
Apply \sqcup-rule to \mathcal{A}_{2}^{\prime} :
get $S=\left\{\mathcal{A}_{1}^{\prime}, \mathcal{A}_{3}, \mathcal{A}_{4}\right\}$ where $\mathcal{A}_{3}=\mathcal{A}_{2}^{\prime} \cup\left\{\neg B\left(a_{0}\right)\right\}, \mathcal{A}_{4}=\mathcal{A}_{2}^{\prime} \cup\left\{D\left(a_{0}\right)\right\}$ \mathcal{A}_{3} contains clash $\left\{B\left(a_{0}\right), \neg B\left(a_{0}\right)\right\}$!

FIRST EXAMPLE: \sqcap AND \sqcup

Test satisfiability of concept $C=(A \sqcup B) \sqcap((\neg B \sqcup D) \sqcap \neg A)$
Start with $S=\left\{\mathcal{A}_{0}\right\}$ where $\mathcal{A}_{0}=\left\{((A \sqcup B) \sqcap((\neg B \sqcup D) \sqcap \neg A))\left(a_{0}\right)\right\}$.
Apply \square-rule to \mathcal{A}_{0} :
get $S=\left\{\mathcal{A}_{0}^{\prime}\right\}$ where $\left.\mathcal{A}_{0}^{\prime}=\mathcal{A}_{0} \cup\left\{(A \sqcup B)\left(a_{0}\right),((\neg B \sqcup D) \sqcap \neg A)\left(a_{0}\right)\right\}\right\}$.
Apply \sqcup-rule to \mathcal{A}_{0}^{\prime} :
get $S=\left\{\mathcal{A}_{1}, \mathcal{A}_{2}\right\}$ where $\mathcal{A}_{1}=\mathcal{A}_{0}^{\prime} \cup\left\{A\left(a_{0}\right)\right\}$ and $\mathcal{A}_{2}=\mathcal{A}_{0}^{\prime} \cup\left\{B\left(a_{0}\right)\right\}$.
Apply \sqcap-rule to \mathcal{A}_{1} :
get $S=\left\{\mathcal{A}_{1}^{\prime}, \mathcal{A}_{2}\right\}$ where $\mathcal{A}_{1}^{\prime}=\mathcal{A}_{1} \cup\left\{(\neg B \sqcup D)\left(a_{0}\right), \neg A\left(a_{0}\right)\right\}$
Apply \sqcap-rule to \mathcal{A}_{2} :
get $S=\left\{\mathcal{A}_{1}^{\prime}, \mathcal{A}_{2}^{\prime}\right\}$ where $\mathcal{A}_{2}^{\prime}=\mathcal{A}_{2} \cup\left\{(\neg B \sqcup D)\left(a_{0}\right), \neg A\left(a_{0}\right)\right\}$
Apply \sqcup-rule to \mathcal{A}_{2}^{\prime} :
get $S=\left\{\mathcal{A}_{1}^{\prime}, \mathcal{A}_{3}, \mathcal{A}_{4}\right\}$ where $\mathcal{A}_{3}=\mathcal{A}_{2}^{\prime} \cup\left\{\neg B\left(a_{0}\right)\right\}, \mathcal{A}_{4}=\mathcal{A}_{2}^{\prime} \cup\left\{D\left(a_{0}\right)\right\}$
\mathcal{A}_{4} is complete, so we can stop.

FIRST EXAMPLE: \sqcap AND \sqcup

Test satisfiability of concept $C=(A \sqcup B) \sqcap((\neg B \sqcup D) \sqcap \neg A)$
Start with $S=\left\{\mathcal{A}_{0}\right\}$ where $\mathcal{A}_{0}=\left\{((A \sqcup B) \sqcap((\neg B \sqcup D) \sqcap \neg A))\left(a_{0}\right)\right\}$.
Apply \sqcap-rule to \mathcal{A}_{0} :
get $S=\left\{\mathcal{A}_{0}^{\prime}\right\}$ where $\left.\mathcal{A}_{0}^{\prime}=\mathcal{A}_{0} \cup\left\{(A \sqcup B)\left(a_{0}\right),((\neg B \sqcup D) \sqcap \neg A)\left(a_{0}\right)\right\}\right\}$.
Apply \sqcup-rule to \mathcal{A}_{0}^{\prime} :
get $S=\left\{\mathcal{A}_{1}, \mathcal{A}_{2}\right\}$ where $\mathcal{A}_{1}=\mathcal{A}_{0}^{\prime} \cup\left\{A\left(a_{0}\right)\right\}$ and $\mathcal{A}_{2}=\mathcal{A}_{0}^{\prime} \cup\left\{B\left(a_{0}\right)\right\}$.
Apply \sqcap-rule to \mathcal{A}_{1} :
get $S=\left\{\mathcal{A}_{1}^{\prime}, \mathcal{A}_{2}\right\}$ where $\mathcal{A}_{1}^{\prime}=\mathcal{A}_{1} \cup\left\{(\neg B \sqcup D)\left(a_{0}\right), \neg A\left(a_{0}\right)\right\}$
Apply \sqcap-rule to \mathcal{A}_{2} :
get $S=\left\{\mathcal{A}_{1}^{\prime}, \mathcal{A}_{2}^{\prime}\right\}$ where $\mathcal{A}_{2}^{\prime}=\mathcal{A}_{2} \cup\left\{(\neg B \sqcup D)\left(a_{0}\right), \neg A\left(a_{0}\right)\right\}$
Apply \sqcup-rule to \mathcal{A}_{2}^{\prime} :
get $S=\left\{\mathcal{A}_{1}^{\prime}, \mathcal{A}_{3}, \mathcal{A}_{4}\right\}$ where $\mathcal{A}_{3}=\mathcal{A}_{2}^{\prime} \cup\left\{\neg B\left(a_{0}\right)\right\}, \mathcal{A}_{4}=\mathcal{A}_{2}^{\prime} \cup\left\{D\left(a_{0}\right)\right\}$
\mathcal{A}_{4} is complete and contains no clash $\Rightarrow C_{0}$ is satisfiable

PREVIOUS EXAMPLE IN GRAPHICAL FORMAT

Test satisfiability of concept $C=(A \sqcup B) \sqcap((\neg B \sqcup D) \sqcap \neg A)$

$$
(A \sqcup B) \sqcap((\neg B \sqcup D) \sqcap \neg A)\left(a_{0}\right)
$$

PREVIOUS EXAMPLE IN GRAPHICAL FORMAT

Test satisfiability of concept $C=(A \sqcup B) \sqcap((\neg B \sqcup D) \sqcap \neg A)$

$$
\begin{array}{cr}
(A \sqcup B) \sqcap((\neg B \sqcup D) \sqcap \neg A)\left(a_{0}\right) & \\
((\neg B \sqcup D) \sqcap \neg A)\left(a_{0}\right) & \sqcap \text {-rule } \\
& (A \sqcup B)\left(a_{0}\right)
\end{array}
$$

PREVIOUS EXAMPLE IN GRAPHICAL FORMAT

Test satisfiability of concept $C=(A \sqcup B) \sqcap((\neg B \sqcup D) \sqcap \neg A)$

PREVIOUS EXAMPLE IN GRAPHICAL FORMAT

Test satisfiability of concept $C=(A \sqcup B) \sqcap((\neg B \sqcup D) \sqcap \neg A)$
$(A \sqcup B) \sqcap((\neg B \sqcup D) \sqcap \neg A)\left(a_{0}\right)$
$((\neg B \sqcup D) \sqcap \neg A)\left(a_{0}\right)$
$(A \sqcup B)\left(a_{0}\right)$
П-rule $\begin{gathered}\left(a_{0}\right) \\ (\neg B \sqcup D)\left(a_{0}\right) \\ \neg A\left(a_{0}\right)\end{gathered}$

PREVIOUS EXAMPLE IN GRAPHICAL FORMAT

Test satisfiability of concept $C=(A \sqcup B) \sqcap((\neg B \sqcup D) \sqcap \neg A)$

PREVIOUS EXAMPLE IN GRAPHICAL FORMAT

Test satisfiability of concept $C=(A \sqcup B) \sqcap((\neg B \sqcup D) \sqcap \neg A)$

PREVIOUS EXAMPLE IN GRAPHICAL FORMAT

Test satisfiability of concept $C=(A \sqcup B) \sqcap((\neg B \sqcup D) \sqcap \neg A)$

PREVIOUS EXAMPLE IN GRAPHICAL FORMAT

Test satisfiability of concept $C=(A \sqcup B) \sqcap((\neg B \sqcup D) \sqcap \neg A)$

$$
\begin{gathered}
(A \sqcup B) \sqcap((\neg B \sqcup D) \sqcap \neg A)\left(a_{0}\right) \\
((\neg B \sqcup D) \sqcap \neg A)\left(a_{0}\right) \\
(A \sqcup B)\left(a_{0}\right)
\end{gathered}
$$

EXAMPLE: WITNESSING INTERPRETATION

In our example, we had the complete and clash-free ABox \mathcal{A}_{4} :

$$
\begin{aligned}
& ((A \sqcup B) \sqcap((\neg B \sqcup D) \sqcap \neg A))\left(a_{0}\right) \quad(A \sqcup B)\left(a_{0}\right) \\
& ((\neg B \sqcup D) \sqcap \neg A)\left(a_{0}\right) \quad B\left(a_{0}\right) \quad(\neg B \sqcup D)\left(a_{0}\right) \quad \neg A\left(a_{0}\right) \quad D\left(a_{0}\right)
\end{aligned}
$$

Can build from \mathcal{A}_{4} the interpretation \mathcal{I} with:

$$
\begin{array}{ll}
\cdot \Delta^{\mathcal{I}}=\left\{a_{0}\right\} & \text { use individuals from } \mathcal{A}_{4} \\
\cdot A^{\mathcal{I}}=\emptyset & \text { since } \mathcal{A}_{4} \text { does not contain } A\left(a_{0}\right) \\
\cdot B^{\mathcal{I}}=D^{\mathcal{I}}=\left\{a_{0}\right\} & \text { since } \mathcal{A}_{4} \text { contains } B\left(a_{0}\right) \text { and } D\left(a_{0}\right)
\end{array}
$$

We can verify that $(A \sqcup B) \sqcap((\neg B \sqcup D) \sqcap \neg A)^{\mathcal{I}}=\left\{a_{0}\right\}$.

- I witnesses the satisfiability of $C_{0}=(A \sqcup B) \sqcap((\neg B \sqcup D) \sqcap \neg A)$

ANOTHER EXAMPLE: \forall AND \exists

Let's use the tableau procedure to test satisfiability of

$$
C=\exists r . A \sqcap \forall r . \neg A
$$

ANOTHER EXAMPLE: \forall AND \exists

Let's use the tableau procedure to test satisfiability of

$$
C=\exists r . A \sqcap \forall r . \neg A
$$

Start with $S=\left\{\mathcal{A}_{0}\right\}$ where $\mathcal{A}_{0}=\left\{(\exists r . A \sqcap \forall r . \neg A)\left(a_{0}\right)\right\}$.

ANOTHER EXAMPLE: \forall AND \exists

Let's use the tableau procedure to test satisfiability of

$$
C=\exists r . A \sqcap \forall r . \neg A
$$

Start with $S=\left\{\mathcal{A}_{0}\right\}$ where $\mathcal{A}_{0}=\left\{(\exists r . A \sqcap \forall r . \neg A)\left(a_{0}\right)\right\}$.
Apply \sqcap-rule to \mathcal{A}_{0} :
get $S=\left\{\mathcal{A}_{0}^{\prime}\right\}$ where $\left.\mathcal{A}_{0}^{\prime}=\mathcal{A}_{0} \cup\left\{(\exists r . A)\left(a_{0}\right),(\forall r . \neg A)\left(a_{0}\right)\right\}\right\}$.

ANOTHER EXAMPLE: \forall AND \exists

Let's use the tableau procedure to test satisfiability of

$$
C=\exists r . A \sqcap \forall r . \neg A
$$

Start with $S=\left\{\mathcal{A}_{0}\right\}$ where $\mathcal{A}_{0}=\left\{(\exists r . A \sqcap \forall r . \neg A)\left(a_{0}\right)\right\}$.
Apply \sqcap-rule to \mathcal{A}_{0} :
get $S=\left\{\mathcal{A}_{0}^{\prime}\right\}$ where $\left.\mathcal{A}_{0}^{\prime}=\mathcal{A}_{0} \cup\left\{(\exists r . A)\left(a_{0}\right),(\forall r . \neg A)\left(a_{0}\right)\right\}\right\}$.

ANOTHER EXAMPLE: \forall AND \exists

Let's use the tableau procedure to test satisfiability of

$$
C=\exists r . A \sqcap \forall r . \neg A
$$

Start with $S=\left\{\mathcal{A}_{0}\right\}$ where $\mathcal{A}_{0}=\left\{(\exists r . A \sqcap \forall r . \neg A)\left(a_{0}\right)\right\}$.
Apply \sqcap-rule to \mathcal{A}_{0} :
get $S=\left\{\mathcal{A}_{0}^{\prime}\right\}$ where $\left.\mathcal{A}_{0}^{\prime}=\mathcal{A}_{0} \cup\left\{(\exists r . A)\left(a_{0}\right),(\forall r . \neg A)\left(a_{0}\right)\right\}\right\}$.
Apply \exists-rule to \mathcal{A}_{0}^{\prime} :
get $S=\left\{\mathcal{A}_{0}^{\prime \prime}\right\}$ where $\mathcal{A}_{0}^{\prime \prime}=\mathcal{A}_{0}^{\prime} \cup\left\{r\left(a_{0}, a_{1}\right), A\left(a_{1}\right)\right\}$.

ANOTHER EXAMPLE: \forall AND \exists

Let's use the tableau procedure to test satisfiability of

$$
C=\exists r . A \sqcap \forall r . \neg A
$$

Start with $S=\left\{\mathcal{A}_{0}\right\}$ where $\mathcal{A}_{0}=\left\{(\exists r . A \sqcap \forall r . \neg A)\left(a_{0}\right)\right\}$.
Apply \sqcap-rule to \mathcal{A}_{0} :
get $S=\left\{\mathcal{A}_{0}^{\prime}\right\}$ where $\left.\mathcal{A}_{0}^{\prime}=\mathcal{A}_{0} \cup\left\{(\exists r . A)\left(a_{0}\right),(\forall r . \neg A)\left(a_{0}\right)\right\}\right\}$.
Apply \exists-rule to \mathcal{A}_{0}^{\prime} :
get $S=\left\{\mathcal{A}_{0}^{\prime \prime}\right\}$ where $\mathcal{A}_{0}^{\prime \prime}=\mathcal{A}_{0}^{\prime} \cup\left\{r\left(a_{0}, a_{1}\right), A\left(a_{1}\right)\right\}$.

ANOTHER EXAMPLE: \forall AND \exists

Let's use the tableau procedure to test satisfiability of

$$
C=\exists r . A \sqcap \forall r . \neg A
$$

Start with $S=\left\{\mathcal{A}_{0}\right\}$ where $\mathcal{A}_{0}=\left\{(\exists r . A \sqcap \forall r . \neg A)\left(a_{0}\right)\right\}$.
Apply \sqcap-rule to \mathcal{A}_{0} :
get $S=\left\{\mathcal{A}_{0}^{\prime}\right\}$ where $\left.\mathcal{A}_{0}^{\prime}=\mathcal{A}_{0} \cup\left\{(\exists r . A)\left(a_{0}\right),(\forall r . \neg A)\left(a_{0}\right)\right\}\right\}$.
Apply \exists-rule to \mathcal{A}_{0}^{\prime} :
get $S=\left\{\mathcal{A}_{0}^{\prime \prime}\right\}$ where $\mathcal{A}_{0}^{\prime \prime}=\mathcal{A}_{0}^{\prime} \cup\left\{r\left(a_{0}, a_{1}\right), A\left(a_{1}\right)\right\}$.
Apply \forall-rule to $\mathcal{A}_{0}^{\prime \prime}$:
get $S=\left\{\mathcal{A}_{0}^{\prime \prime \prime}\right\}$ where $\mathcal{A}_{0}^{\prime \prime \prime}=\mathcal{A}_{0}^{\prime \prime} \cup\left\{\neg A\left(a_{1}\right)\right\}$.

ANOTHER EXAMPLE: \forall AND \exists

Let's use the tableau procedure to test satisfiability of

$$
C=\exists r . A \sqcap \forall r . \neg A
$$

Start with $S=\left\{\mathcal{A}_{0}\right\}$ where $\mathcal{A}_{0}=\left\{(\exists r . A \sqcap \forall r . \neg A)\left(a_{0}\right)\right\}$.
Apply \sqcap-rule to \mathcal{A}_{0} :
get $S=\left\{\mathcal{A}_{0}^{\prime}\right\}$ where $\left.\mathcal{A}_{0}^{\prime}=\mathcal{A}_{0} \cup\left\{(\exists r . A)\left(a_{0}\right),(\forall r . \neg A)\left(a_{0}\right)\right\}\right\}$.
Apply \exists-rule to \mathcal{A}_{0}^{\prime} :
get $S=\left\{\mathcal{A}_{0}^{\prime \prime}\right\}$ where $\mathcal{A}_{0}^{\prime \prime}=\mathcal{A}_{0}^{\prime} \cup\left\{r\left(a_{0}, a_{1}\right), A\left(a_{1}\right)\right\}$.
Apply \forall-rule to $\mathcal{A}_{0}^{\prime \prime}$:
get $S=\left\{\mathcal{A}_{0}^{\prime \prime \prime}\right\}$ where $\mathcal{A}_{0}^{\prime \prime \prime}=\mathcal{A}_{0}^{\prime \prime} \cup\left\{\neg A\left(a_{1}\right)\right\}$.
$\mathcal{A}_{0}^{\prime \prime \prime}$ contains clash $\left\{A\left(a_{1}\right), \neg A\left(a_{1}\right)\right\}$!

ANOTHER EXAMPLE: \forall AND \exists

Let's use the tableau procedure to test satisfiability of

$$
C=\exists r . A \sqcap \forall r . \neg A
$$

Start with $S=\left\{\mathcal{A}_{0}\right\}$ where $\mathcal{A}_{0}=\left\{(\exists r . A \sqcap \forall r . \neg A)\left(a_{0}\right)\right\}$.
Apply \sqcap-rule to \mathcal{A}_{0} :
get $S=\left\{\mathcal{A}_{0}^{\prime}\right\}$ where $\left.\mathcal{A}_{0}^{\prime}=\mathcal{A}_{0} \cup\left\{(\exists r . A)\left(a_{0}\right),(\forall r . \neg A)\left(a_{0}\right)\right\}\right\}$.
Apply \exists-rule to \mathcal{A}_{0}^{\prime} :
get $S=\left\{\mathcal{A}_{0}^{\prime \prime}\right\}$ where $\mathcal{A}_{0}^{\prime \prime}=\mathcal{A}_{0}^{\prime} \cup\left\{r\left(a_{0}, a_{1}\right), A\left(a_{1}\right)\right\}$.
Apply \forall-rule to $\mathcal{A}_{0}^{\prime \prime}$:
get $S=\left\{\mathcal{A}_{0}^{\prime \prime \prime}\right\}$ where $\mathcal{A}_{0}^{\prime \prime \prime}=\mathcal{A}_{0}^{\prime \prime} \cup\left\{\neg A\left(a_{1}\right)\right\}$.

The only $A B$ ox in S contains a clash $\Rightarrow C_{0}$ is unsatisfiable

PREVIOUS EXAMPLE IN GRAPHICAL FORMAT

Test satisfiability of concept $C=\exists r . A \sqcap \forall r . \neg A$

$$
(\exists r . A \sqcap \forall r . \neg A)\left(a_{0}\right)
$$

PREVIOUS EXAMPLE IN GRAPHICAL FORMAT

Test satisfiability of concept $C=\exists r . A \sqcap \forall r . \neg A$

$$
\begin{aligned}
& (\exists r . A \sqcap \forall r . \neg A)\left(a_{0}\right) \\
& \quad(\exists r . A)\left(a_{0}\right) \quad \sqcap-\mathbf{r u l e} \\
& \quad(\forall r . \neg A)\left(a_{0}\right)
\end{aligned}
$$

PREVIOUS EXAMPLE IN GRAPHICAL FORMAT

Test satisfiability of concept $C=\exists r . A \sqcap \forall r . \neg A$

$$
\begin{aligned}
& (\exists r . A \sqcap \forall r . \neg A)\left(a_{0}\right) \\
& \quad(\exists r . A)\left(a_{0}\right) \\
& \quad(\forall r . \neg A)\left(a_{0}\right) \\
& \quad r\left(a_{0}, a_{1}\right) \quad \exists \text {-rule } \\
& \quad A\left(a_{1}\right)
\end{aligned}
$$

PREVIOUS EXAMPLE IN GRAPHICAL FORMAT

Test satisfiability of concept $C=\exists r . A \sqcap \forall r . \neg A$

$$
\begin{aligned}
& (\exists r . A \sqcap \forall r . \neg A)\left(a_{0}\right) \\
& \quad(\exists r . A)\left(a_{0}\right) \\
& (\forall r . \neg A)\left(a_{0}\right) \\
& r\left(a_{0}, a_{1}\right) \\
& \quad A\left(a_{1}\right) \\
& \quad \neg A\left(a_{1}\right) \quad \forall-\mathbf{r u l e}
\end{aligned}
$$

PREVIOUS EXAMPLE IN GRAPHICAL FORMAT

Test satisfiability of concept $C=\exists r . A \sqcap \forall r . \neg A$

$$
\begin{gathered}
(\exists r . A \sqcap \forall r . \neg A)\left(a_{0}\right) \\
(\exists r . A)\left(a_{0}\right) \\
(\forall r . \neg A)\left(a_{0}\right) \\
r\left(a_{0}, a_{1}\right) \\
A\left(a_{1}\right) \\
\neg A\left(a_{1}\right)
\end{gathered}
$$

PREVIOUS EXAMPLE IN GRAPHICAL FORMAT

Test satisfiability of concept $C=\exists r . A \sqcap \forall r . \neg A$

$$
\begin{gathered}
(\exists r . A \sqcap \forall r . \neg A)\left(a_{0}\right) \\
(\exists r . A)\left(a_{0}\right) \\
(\forall r . \neg A)\left(a_{0}\right) \\
r\left(a_{0}, a_{1}\right) \\
A\left(a_{1}\right) \\
\neg A\left(a_{1}\right)
\end{gathered}
$$

Conclude that C is unsatisfiable

FURTHER EXAMPLE WITH \forall AND \exists

Suppose that we consider a slightly different concept

$$
C_{0}=\exists r \cdot A \sqcap \forall r . \neg B
$$

Now the algorithm yields the following complete, clash-free ABox:

$$
(\exists r . A \sqcap \forall r . \neg B)\left(a_{0}\right) \quad(\exists r . A)\left(a_{0}\right) \quad(\forall r . \neg B)\left(a_{0}\right) \quad r\left(a_{0}, a_{1}\right) \quad A\left(a_{1}\right) \quad \neg B\left(a_{1}\right)
$$

FURTHER EXAMPLE WITH \forall AND \exists

Suppose that we consider a slightly different concept

$$
C_{0}=\exists r \cdot A \sqcap \forall r . \neg B
$$

Now the algorithm yields the following complete, clash-free ABox:

$$
(\exists r . A \sqcap \forall r . \neg B)\left(a_{0}\right) \quad(\exists r . A)\left(a_{0}\right) \quad(\forall r . \neg B)\left(a_{0}\right) \quad r\left(a_{0}, a_{1}\right) \quad A\left(a_{1}\right) \quad \neg B\left(a_{1}\right)
$$

Corresponding interpretation \mathcal{I} :

$$
\begin{aligned}
\cdot & \Delta^{\mathcal{I}}=\left\{a_{0}, a_{1}\right\} \\
\cdot & A^{\mathcal{I}}=\left\{a_{1}\right\} \\
\cdot & B^{\mathcal{I}}=\emptyset \\
\cdot & r^{\mathcal{I}}=\left\{\left(a_{0}, a_{1}\right)\right\}
\end{aligned}
$$

Can check that \mathcal{I} is such that $\mathcal{C}_{0}^{\mathcal{I}}=\left\{a_{0}\right\}$.

PROPERTIES OF THE TABLEAU ALGORITHM

Let's call our tableau algorithm CSat (for concept satisfiability).

To show that CSat is a decision procedure, we must show:
Termination: The algorithm CSat always terminates.
Soundness: CSat outputs "yes" on input $C_{0} \Rightarrow C_{0}$ is satisfiable.
Completeness: C_{0} satisfiable \Rightarrow CSat will output "yes".

PRELIMINARY DEFINITIONS

Subconcepts of a concept:

$$
\begin{aligned}
\operatorname{sub}(A) & =\{A\} \\
\operatorname{sub}(\neg C) & =\{\neg C\} \cup \operatorname{sub}(C) \\
\operatorname{sub}(\exists r . C) & =\{\exists r . C\} \cup \operatorname{sub}(C) \\
\operatorname{sub}(\forall r . C) & =\{\forall r . C\} \cup \operatorname{sub}(C) \\
\operatorname{sub}\left(C_{1} \sqcup C_{2}\right) & =\left\{C_{1} \sqcup C_{2}\right\} \cup \operatorname{sub}\left(C_{1}\right) \cup \operatorname{sub}\left(C_{2}\right) \\
\operatorname{sub}\left(C_{1} \sqcap C_{2}\right) & =\left\{C_{1} \sqcap C_{2}\right\} \cup \operatorname{sub}\left(C_{1}\right) \cup \operatorname{sub}\left(C_{2}\right)
\end{aligned}
$$

PRELIMINARY DEFINITIONS

Subconcepts of a concept:

$$
\begin{aligned}
\operatorname{sub}(A) & =\{A\} \\
\operatorname{sub}(\neg C) & =\{\neg C\} \cup \operatorname{sub}(C) \\
\operatorname{sub}(\exists r . C) & =\{\exists r . C\} \cup \operatorname{sub}(C) \\
\operatorname{sub}(\forall r . C) & =\{\forall r . C\} \cup \operatorname{sub}(C) \\
\operatorname{sub}\left(C_{1} \sqcup C_{2}\right) & =\left\{C_{1} \sqcup C_{2}\right\} \cup \operatorname{sub}\left(C_{1}\right) \cup \operatorname{sub}\left(C_{2}\right) \\
\operatorname{sub}\left(C_{1} \sqcap C_{2}\right) & =\left\{C_{1} \sqcap C_{2}\right\} \cup \operatorname{sub}\left(C_{1}\right) \cup \operatorname{sub}\left(C_{2}\right)
\end{aligned}
$$

Role depth of a concept:

$$
\begin{aligned}
\operatorname{depth}(A) & =\operatorname{depth}(T)=\operatorname{depth}(\perp)=0 \\
\operatorname{depth}(\neg C) & =\operatorname{depth}(C) \\
\operatorname{depth}(\exists r . C) & =\operatorname{depth}(\forall r \cdot C)=\operatorname{depth}(C)+1 \\
\operatorname{depth}\left(C_{1} \sqcup C_{2}\right) & =\operatorname{depth}\left(C_{1} \sqcap C_{2}\right)=\max \left(\operatorname{depth}\left(C_{1}\right), \operatorname{depth}\left(C_{2}\right)\right)
\end{aligned}
$$

PRELIMINARY DEFINITIONS

Subconcepts of a concept: $\quad|\operatorname{sub}(C)| \leq|C|$

$$
\begin{aligned}
\operatorname{sub}(A) & =\{A\} \\
\operatorname{sub}(\neg C) & =\{\neg C\} \cup \operatorname{sub}(C) \\
\operatorname{sub}(\exists r . C) & =\{\exists r . C\} \cup \operatorname{sub}(C) \\
\operatorname{sub}(\forall r . C) & =\{\forall r . C\} \cup \operatorname{sub}(C) \\
\operatorname{sub}\left(C_{1} \sqcup C_{2}\right) & =\left\{C_{1} \sqcup C_{2}\right\} \cup \operatorname{sub}\left(C_{1}\right) \cup \operatorname{sub}\left(C_{2}\right) \\
\operatorname{sub}\left(C_{1} \sqcap C_{2}\right) & =\left\{C_{1} \sqcap C_{2}\right\} \cup \operatorname{sub}\left(C_{1}\right) \cup \operatorname{sub}\left(C_{2}\right)
\end{aligned}
$$

Role depth of a concept: \quad depth $(C) \leq|C|$

$$
\begin{aligned}
\operatorname{depth}(A) & =\operatorname{depth}(\top)=\operatorname{depth}(\perp)=0 \\
\operatorname{depth}(\neg C) & =\operatorname{depth}(C) \\
\operatorname{depth}(\exists r \cdot C) & =\operatorname{depth}(\forall r \cdot C)=\operatorname{depth}(C)+1 \\
\operatorname{depth}\left(C_{1} \sqcup C_{2}\right) & =\operatorname{depth}\left(C_{1} \sqcap C_{2}\right)=\max \left(\operatorname{depth}\left(C_{1}\right), \operatorname{depth}\left(C_{2}\right)\right)
\end{aligned}
$$

TERMINATION OF CSAT

Suppose we run CSat starting from $S=\left\{\left\{C_{0}\left(a_{0}\right)\right\}\right\}$.

TERMINATION OF CSAT

Suppose we run CSat starting from $S=\left\{\left\{C_{0}\left(a_{0}\right)\right\}\right\}$.
We observe that for every ABox \mathcal{A} generated by the procedure:

TERMINATION OF CSAT

Suppose we run CSat starting from $S=\left\{\left\{C_{0}\left(a_{0}\right)\right\}\right\}$.
We observe that for every ABox \mathcal{A} generated by the procedure:

1. if $D(b) \in \mathcal{A}$, then $D \in \operatorname{sub}\left(C_{0}\right)$

TERMINATION OF CSAT

Suppose we run CSat starting from $S=\left\{\left\{C_{0}\left(a_{0}\right)\right\}\right\}$.
We observe that for every $\operatorname{ABox} \mathcal{A}$ generated by the procedure:

1. if $D(b) \in \mathcal{A}$, then $D \in \operatorname{sub}\left(C_{0}\right)$

- \mathcal{A} contains at most $\left|C_{0}\right|$ concept assertions per individual

TERMINATION OF CSAT

Suppose we run CSat starting from $S=\left\{\left\{C_{0}\left(a_{0}\right)\right\}\right\}$.
We observe that for every $\operatorname{ABox} \mathcal{A}$ generated by the procedure:

1. if $D(b) \in \mathcal{A}$, then $D \in \operatorname{sub}\left(C_{0}\right)$

- \mathcal{A} contains at most $\left|C_{0}\right|$ concept assertions per individual

2. the set of role assertions in \mathcal{A} forms a tree

TERMINATION OF CSAT

Suppose we run CSat starting from $S=\left\{\left\{C_{0}\left(a_{0}\right)\right\}\right\}$.
We observe that for every $\operatorname{ABox} \mathcal{A}$ generated by the procedure:

1. if $D(b) \in \mathcal{A}$, then $D \in \operatorname{sub}\left(C_{0}\right)$

- \mathcal{A} contains at most $\left|C_{0}\right|$ concept assertions per individual

2. the set of role assertions in \mathcal{A} forms a tree
3. if $D(b) \in \mathcal{A}$ and the unique path from a_{0} to b has length k, then $\operatorname{depth}(D) \leq \operatorname{depth}\left(C_{0}\right)-k$

TERMINATION OF CSAT

Suppose we run CSat starting from $S=\left\{\left\{C_{0}\left(a_{0}\right)\right\}\right\}$.
We observe that for every $\operatorname{ABox} \mathcal{A}$ generated by the procedure:

1. if $D(b) \in \mathcal{A}$, then $D \in \operatorname{sub}\left(C_{0}\right)$

- \mathcal{A} contains at most $\left|C_{0}\right|$ concept assertions per individual

2. the set of role assertions in \mathcal{A} forms a tree
3. if $D(b) \in \mathcal{A}$ and the unique path from a_{0} to b has length k, then $\operatorname{depth}(D) \leq \operatorname{depth}\left(C_{0}\right)-k$

- each individual in \mathcal{A} is at distance $\leq \operatorname{depth}\left(C_{0}\right)$ from a_{0}

TERMINATION OF CSAT

Suppose we run CSat starting from $S=\left\{\left\{C_{0}\left(a_{0}\right)\right\}\right\}$.
We observe that for every ABox \mathcal{A} generated by the procedure:

1. if $D(b) \in \mathcal{A}$, then $D \in \operatorname{sub}\left(C_{0}\right)$

- \mathcal{A} contains at most $\left|C_{0}\right|$ concept assertions per individual

2. the set of role assertions in \mathcal{A} forms a tree
3. if $D(b) \in \mathcal{A}$ and the unique path from a_{0} to b has length k, then $\operatorname{depth}(D) \leq \operatorname{depth}\left(C_{0}\right)-k$

- each individual in \mathcal{A} is at distance $\leq \operatorname{depth}\left(C_{0}\right)$ from a_{0}

4. for every individual b in \mathcal{A}, there are at most $\left|C_{0}\right|$ individuals c such that $r(b, c) \in \mathcal{A}$ for some r (at most one per existential concept)

TERMINATION OF CSAT

Suppose we run CSat starting from $S=\left\{\left\{C_{0}\left(a_{0}\right)\right\}\right\}$.
We observe that for every $\operatorname{ABox} \mathcal{A}$ generated by the procedure:

1. if $D(b) \in \mathcal{A}$, then $D \in \operatorname{sub}\left(C_{0}\right)$

- \mathcal{A} contains at most $\left|C_{0}\right|$ concept assertions per individual

2. the set of role assertions in \mathcal{A} forms a tree
3. if $D(b) \in \mathcal{A}$ and the unique path from a_{0} to b has length k, then $\operatorname{depth}(D) \leq \operatorname{depth}\left(C_{0}\right)-k$

- each individual in \mathcal{A} is at distance $\leq \operatorname{depth}\left(C_{0}\right)$ from a_{0}

4. for every individual b in \mathcal{A}, there are at most $\left|C_{0}\right|$ individuals c such that $r(b, c) \in \mathcal{A}$ for some r (at most one per existential concept)

Thus: bound on the size of ABoxes generated by the procedure

TERMINATION OF CSAT

Suppose we run CSat starting from $S=\left\{\left\{C_{0}\left(a_{0}\right)\right\}\right\}$.
We observe that for every $\operatorname{ABox} \mathcal{A}$ generated by the procedure:

1. if $D(b) \in \mathcal{A}$, then $D \in \operatorname{sub}\left(C_{0}\right)$

- \mathcal{A} contains at most $\left|C_{0}\right|$ concept assertions per individual

2. the set of role assertions in \mathcal{A} forms a tree
3. if $D(b) \in \mathcal{A}$ and the unique path from a_{0} to b has length k, then $\operatorname{depth}(D) \leq \operatorname{depth}\left(C_{0}\right)-k$

- each individual in \mathcal{A} is at distance $\leq \operatorname{depth}\left(C_{0}\right)$ from a_{0}

4. for every individual b in \mathcal{A}, there are at most $\left|C_{0}\right|$ individuals c such that $r(b, c) \in \mathcal{A}$ for some r (at most one per existential concept)

Thus: bound on the size of ABoxes generated by the procedure
The tableau procedure only adds assertions to ABoxes
\Rightarrow eventually all ABoxes will contain a clash or will be complete

SOUNDNESS OF CSAT (1)

Suppose that CSat returns "yes" on input C_{0}.
Then S must contain a complete and clash-free ABox \mathcal{A}.

SOUNDNESS OF CSAT (1)

Suppose that CSat returns "yes" on input C_{0}.
Then S must contain a complete and clash-free ABox \mathcal{A}.
Use \mathcal{A} to define an interpretation \mathcal{I} as follows:

- $\Delta^{\mathcal{I}}=\{a \mid a$ is an individual in $\mathcal{A}\}$
- $A^{\mathcal{I}}=\{a \mid A(a) \in \mathcal{A}\}$
- $r^{\mathcal{I}}=\{(a, b) \mid r(a, b) \in \mathcal{A}\}$

Claim: \mathcal{I} is such that $C_{0}^{\mathcal{I}} \neq \emptyset$

SOUNDNESS OF CSAT (1)

Suppose that CSat returns "yes" on input C_{0}.
Then S must contain a complete and clash-free ABox \mathcal{A}.
Use \mathcal{A} to define an interpretation \mathcal{I} as follows:

- $\Delta^{\mathcal{I}}=\{a \mid a$ is an individual in $\mathcal{A}\}$
- $A^{\mathcal{I}}=\{a \mid A(a) \in \mathcal{A}\}$
- $r^{\mathcal{I}}=\{(a, b) \mid r(a, b) \in \mathcal{A}\}$

Claim: \mathcal{I} is such that $C_{0}^{\mathcal{I}} \neq \emptyset$
To show the claim, we prove by induction on the size of concepts:

$$
D(b) \in \mathcal{A} \quad \Rightarrow \quad b \in D^{\mathcal{I}}
$$

SOUNDNESS OF CSAT (2)

Base case: $D=A$ or $D=\neg A$ or $D=T$ or $D=\perp$

SOUNDNESS OF CSAT (2)

Base case: $D=A$ or $D=\neg A$ or $D=T$ or $D=\perp$
If $D=A$, then $b \in A^{\mathcal{I}}$.
If $D=\neg A$, then $A(b) \notin \mathcal{A}$, so $b \in \neg A^{\mathcal{I}}$.
If $D=T$, trivially $b \in \top^{\mathcal{I}}=\Delta^{\mathcal{I}}$. Cannot have $D=\perp$ since clash-free.
Induction hypothesis (IH): suppose holds whenever $|D| \leq k$
Induction step: show statement holds for D with $|D|=k+1$
Again, many cases to consider:

- $D=E \sqcap F$: since \mathcal{A} is complete, it must contain both $E(b)$ and $F(b)$. Applying the IH , we get $b \in E^{\mathcal{I}}$ and $b \in F^{\mathcal{I}}$, hence $b \in(E \sqcap F)^{\mathcal{I}}$
- $D=\exists r . E$: since \mathcal{A} is complete, there exists c such that $r(b, c) \in \mathcal{A}$ and $E(c) \in \mathcal{A}$. Then $(b, c) \in r^{\mathcal{I}}$. From $I H$, get $c \in E^{\mathcal{I}}$, so $b \in(\exists r . E)^{\mathcal{I}}$
- $D=E \sqcup F$: left as practice
- $D=\forall R$.E: left as practice

COMPLETENESS OF CSAT

Suppose that the concept C_{0} is satisfiable.
Then the ABox $\left\{C_{0}\left(a_{0}\right)\right\}$ must be satisfiable too.

COMPLETENESS OF CSAT

Suppose that the concept C_{0} is satisfiable.
Then the ABox $\left\{C_{0}\left(a_{0}\right)\right\}$ must be satisfiable too.
We observe that the tableau rules are satisfiability-preserving:

- If an ABox \mathcal{A} is satisfiable and \mathcal{A}^{\prime} is the result of applying a rule to \mathcal{A}, then \mathcal{A}^{\prime} is also satisfiable.
- If \mathcal{A} is satisfiable and \mathcal{A}_{1} and \mathcal{A}_{2} are obtained when applying a rule to \mathcal{A}, then either \mathcal{A}_{1} is satisfiable or \mathcal{A}_{2} is satisfiable.

COMPLETENESS OF CSAT

Suppose that the concept C_{0} is satisfiable.
Then the ABox $\left\{C_{0}\left(a_{0}\right)\right\}$ must be satisfiable too.
We observe that the tableau rules are satisfiability-preserving:

- If an ABox \mathcal{A} is satisfiable and \mathcal{A}^{\prime} is the result of applying a rule to \mathcal{A}, then \mathcal{A}^{\prime} is also satisfiable.
- If \mathcal{A} is satisfiable and \mathcal{A}_{1} and \mathcal{A}_{2} are obtained when applying a rule to \mathcal{A}, then either \mathcal{A}_{1} is satisfiable or \mathcal{A}_{2} is satisfiable.

We start with a satisfiable ABox and the rules are satisfiability-preserving, so eventually we will reach a complete, satisfiable (thus: clash-free) ABox and output 'yes'.

COMPLEXITY OF CSAT

Bad news: our algorithm may require exponential time and space...
To see why, consider what happens if we run CSat on the concept

$$
\prod_{0 \leq i<n} \underbrace{\forall r \ldots . \forall r .}_{i \text { times }}(\exists r . B \sqcap \exists r . \neg B)
$$

COMPLEXITY OF CSAT

Bad news: our algorithm may require exponential time and space...
To see why, consider what happens if we run CSat on the concept

$$
\prod_{0 \leq i<n} \underbrace{\forall r \ldots . \forall r .}_{i \text { times }}(\exists r . B \sqcap \exists r . \neg B)
$$

Good news: can modify algorithm so it runs in polynomial space

- instead of set of ABoxes, keep only 1 ABox in memory at a time
- when apply the \sqcup-rule, first examine \mathcal{A}_{1}, then afterwards examine \mathcal{A}_{2}
- remember that second disjunct stills needs to be checked
- explore the children of an individual one at a time
- possible because no interaction between the different "branches"
- store which $\exists r . C$ concepts have been tested, which are left to do
- this allows us to keep at most $\left|C_{0}\right|$ individuals in memory at a time

COMPLEXITY OF ALC CONCEPT SATISFIABILITY

Hierarchy of complexity classes

$$
\text { PTIME } \subseteq N P \subseteq \ldots \subseteq P S P A C E \subseteq E X P T I M E \subseteq N E X P T I M E \subseteq \ldots \subseteq E X P S P A C E ~ . . .
$$

(it is believed that all inclusions are strict)

COMPLEXITY OF ALC CONCEPT SATISFIABILITY

Hierarchy of complexity classes

$$
\text { PTIME } \subseteq N P \subseteq \ldots \subseteq P S P A C E \subseteq E X P T I M E \subseteq N E X P T I M E \subseteq \ldots \subseteq E X P S P A C E ~ . . .
$$

(it is believed that all inclusions are strict)
PSPACE = class of decision problems solvable in polynomial space
PSPACE-complete problems $=$ hardest problems in PSPACE

COMPLEXITY OF ALC CONCEPT SATISFIABILITY

Hierarchy of complexity classes

$$
\text { PTIME } \subseteq N P \subseteq \ldots \subseteq P S P A C E \subseteq E X P T I M E \subseteq N E X P T I M E \subseteq \ldots \subseteq E X P S P A C E ~ . . .
$$

(it is believed that all inclusions are strict)
PSPACE = class of decision problems solvable in polynomial space
PSPACE-complete problems $=$ hardest problems in PSPACE
Theorem: $\mathcal{A L C}$ concept satisfiability (no TBox) is PSPACE-complete.

- Membership in PSPACE shown using modified tableau procedure
- Hardness for PSPACE shown by giving a reduction from some known PSPACE-hard problem (e.g. QBF validity)

EXTENSION TO KB SATISFIABILITY

Now we want to modify the algorithm to handle KB satisfability.
Adding an ABox is easy: simply start with $\{\mathcal{A}\}$ instead of $\left\{C_{0}\left(a_{0}\right)\right\}$

EXTENSION TO KB SATISFIABILITY

Now we want to modify the algorithm to handle KB satisfability.
Adding an ABox is easy: simply start with $\{\mathcal{A}\}$ instead of $\left\{C_{0}\left(a_{0}\right)\right\}$
Adding a TBox is a bit more tricky...
Idea: if $C \sqsubseteq D$, then every element must satisfy either $\neg C$ or D

EXTENSION TO KB SATISFIABILITY

Now we want to modify the algorithm to handle KB satisfability.
Adding an ABox is easy: simply start with $\{\mathcal{A}\}$ instead of $\left\{C_{0}\left(a_{0}\right)\right\}$
Adding a TBox is a bit more tricky...
Idea: if $C \sqsubseteq D$, then every element must satisfy either $\neg C$ or D
Concretely, we might try adding the following rule:

> TBox rule if a is in $\mathcal{A}, C \sqsubseteq D \in \mathcal{T}, \&(\operatorname{NNF}(\neg C) \sqcup \operatorname{NNF}(D))(a) \notin \mathcal{A}$ then replace \mathcal{A} with $\mathcal{A} \cup\{(\operatorname{NNF}(\neg C) \sqcup \operatorname{NNF}(D))(a)\}$

EXAMPLE: NON-TERMINATION

Let's try the modified procedure on the KB $(\{F \sqsubseteq \exists S . F\},\{F(a)\})$

EXAMPLE: NON-TERMINATION

Let's try the modified procedure on the KB $(\{F \sqsubseteq \exists S . F\},\{F(a)\})$

Seems we have a problem... How can we ensure termination?

BLOCKING

Basic idea: if two individuals "look the same", then it is unnecessary to explore both of them

BLOCKING

Basic idea: if two individuals "look the same", then it is unnecessary to explore both of them

Formally: given individuals a, b from \mathcal{A}, we say that b blocks a if:

- $\{C \mid C(a) \in \mathcal{A}\} \subseteq\{C \mid C(b) \in \mathcal{A}\}$
- b was present in \mathcal{A} before a was introduced

Say that individual a is blocked (in \mathcal{A}) if some b blocks a.

BLOCKING

Basic idea: if two individuals "look the same", then it is unnecessary to explore both of them

Formally: given individuals a, b from \mathcal{A}, we say that b blocks a if:

- $\{C \mid C(a) \in \mathcal{A}\} \subseteq\{C \mid C(b) \in \mathcal{A}\}$
- b was present in \mathcal{A} before a was introduced

Say that individual a is blocked (in \mathcal{A}) if some b blocks a.
Modify rules so that they only apply to unblocked individuals.

TABLEAU RULES FOR KBS

\sqcap-rule: if $\left(C_{1} \sqcap C_{2}\right)(a) \in \mathcal{A}$, a is not blocked, and $\left\{C_{1}(a), C_{2}(a)\right\} \nsubseteq \mathcal{A}$, then replace \mathcal{A} with $\mathcal{A} \cup\left\{C_{1}(a), C_{2}(a)\right\}$
\sqcup-rule: if $\left(C_{1} \sqcup C_{2}\right)(a) \in \mathcal{A}$, a is not blocked, and $\left\{C_{1}(a), C_{2}(a)\right\} \cap \mathcal{A}=\emptyset$, then replace \mathcal{A} with $\left.\mathcal{A} \cup\left\{C_{1}(a)\right)\right\}$ and $\left.\mathcal{A} \cup\left\{C_{2}(a)\right)\right\}$
\forall-rule: if $\{\forall r . C(a), r(a, b)\} \in \mathcal{A}$, a is not blocked, and $C(b) \notin \mathcal{A}$, then replace \mathcal{A} with $\mathcal{A} \cup\{C(b))\}$
\exists-rule: if $\{\exists r . C(a)\} \in \mathcal{A}$, a is not blocked, and no $\{r(a, b), C(b)\} \subseteq \mathcal{A}$, then pick a new individual name d and replace \mathcal{A} with $\mathcal{A} \cup\{r(a, d), C(d)\}$
\sqsubseteq-rule: if a appears in \mathcal{A} and a is not blocked, $C \sqsubseteq D \in \mathcal{T}$, and $(\operatorname{NNF}(\neg C) \sqcup \operatorname{NNF}(D))(a) \notin \mathcal{A}$, then replace \mathcal{A} with $\mathcal{A} \cup\{(\operatorname{NNF}(\neg C) \sqcup \operatorname{NNF}(D))(a)\}$

EXAMPLE: BLOCKING

Let's try blocking on the problematic KB $(\{F \sqsubseteq \exists s . F\},\{F(a)\})$

EXAMPLE: BLOCKING

Let's try blocking on the problematic KB $(\{F \sqsubseteq \exists s . F\},\{F(a)\})$

$$
\begin{gathered}
F\left(a_{0}\right) \\
(\neg F \sqcup \exists s . F)\left(a_{0}\right) \\
\neg F\left(a_{0}\right) \left\lvert\, \begin{array}{l}
(\exists s . F)\left(a_{0}\right) \\
s\left(a_{0}, a_{1}\right) \\
F\left(a_{1}\right) \\
a_{1} \text { is blocked by } a_{0}
\end{array}\right.
\end{gathered}
$$

EXAMPLE: BLOCKING

Let's try blocking on the problematic KB $(\{F \sqsubseteq \exists s . F\},\{F(a)\})$

$$
\begin{gathered}
F\left(a_{0}\right) \\
(\neg F \sqcup \exists s . F)\left(a_{0}\right) \\
\neg F\left(a_{0}\right) \left\lvert\, \begin{array}{l}
(\exists s . F)\left(a_{0}\right) \\
s\left(a_{0}, a_{1}\right) \\
F\left(a_{1}\right) \\
a_{1} \text { is blocked by } a_{0}
\end{array}\right.
\end{gathered}
$$

We obtain a complete and clash-free $A B o x \Rightarrow$ the $K B$ is satisfiable

ANOTHER BLOCKING EXAMPLE

Consider the TBox $\mathcal{T}=\{A \sqsubseteq \exists r . A, A \sqsubseteq B, \exists r . B \sqsubseteq D\}$ and suppose we want to test whether $\mathcal{T} \models A \sqsubseteq D$.

We can do this by running the algorithm on $\left(\mathcal{T},\left\{(A \sqcap \neg D)\left(a_{0}\right)\right\}\right)$.

ANOTHER BLOCKING EXAMPLE

Consider the TBox $\mathcal{T}=\{A \sqsubseteq \exists r . A, A \sqsubseteq B, \exists r . B \sqsubseteq D\}$ and suppose we want to test whether $\mathcal{T} \models A \sqsubseteq D$.

We can do this by running the algorithm on $\left(\mathcal{T},\left\{(A \sqcap \neg D)\left(a_{0}\right)\right\}\right)$.

Result: the KB is unsatisfiable $\Rightarrow \mathcal{T} \models A \sqsubseteq D$

ANOTHER BLOCKING EXAMPLE

Consider the TBox $\mathcal{T}=\{A \sqsubseteq \exists r . A, A \sqsubseteq B, \exists r . B \sqsubseteq D\}$ and suppose we want to test whether $\mathcal{T} \models A \sqsubseteq D$.

We can do this by running the algorithm on $\left(\mathcal{T},\left\{(A \sqcap \neg D)\left(a_{0}\right)\right\}\right)$.

Result: the KB is unsatisfiable $\Rightarrow \mathcal{T} \models A \sqsubseteq D$
Observe: individual can be blocked, then later become unblocked

PROPERTIES OF KBSAT

Let's call our new tableau algorithm KBSat (for KB satisfiability).
Termination: The algorithm KBSat always terminates.

- similar to before: bound the size of generated ABoxes

PROPERTIES OF KBSAT

Let's call our new tableau algorithm KBSat (for KB satisfiability).
Termination: The algorithm KBSat always terminates.

- similar to before: bound the size of generated ABoxes

Soundness: KBSat outputs "yes" on $(\mathcal{T}, \mathcal{A}) \Rightarrow(\mathcal{T}, \mathcal{A})$ is satisfiable.

- again, we use complete, clash-free ABox to build a model
- tricky part: need to handle the blocked individuals

PROPERTIES OF KBSAT

Let's call our new tableau algorithm KBSat (for KB satisfiability).
Termination: The algorithm KBSat always terminates.

- similar to before: bound the size of generated ABoxes

Soundness: KBSat outputs "yes" on $(\mathcal{T}, \mathcal{A}) \Rightarrow(\mathcal{T}, \mathcal{A})$ is satisfiable.

- again, we use complete, clash-free ABox to build a model
- tricky part: need to handle the blocked individuals

Completeness: $(\mathcal{T}, \mathcal{A})$ satisfiable \Rightarrow KBSat will output "yes".

- again, show rules satisfiability-preserving

PROPERTIES OF KBSAT

Let's call our new tableau algorithm KBSat (for KB satisfiability).
Termination: The algorithm KBSat always terminates.

- similar to before: bound the size of generated ABoxes

Soundness: KBSat outputs "yes" on $(\mathcal{T}, \mathcal{A}) \Rightarrow(\mathcal{T}, \mathcal{A})$ is satisfiable.

- again, we use complete, clash-free ABox to build a model
- tricky part: need to handle the blocked individuals

Completeness: $(\mathcal{T}, \mathcal{A})$ satisfiable \Rightarrow KBSat will output "yes".

- again, show rules satisfiability-preserving

So: KBSat is a decision procedure for KB satisfiability.

COMPLEXITY OF REASONING IN EXPRESSIVE DLS

Tableau procedure takes exponential time and space

- can have exponentially long 'branches' to explore

Complexity results tell us this is unavoidable in worst case:

Theorem: In $\mathcal{A L C}$, KB satisfiability is EXPTIME-complete

- for highly expressive DLs (\rightsquigarrow OWL 2): complexity even higher

OPTIMIZATIONS

Despite high worst-case complexity, tableau algorithms for $\mathcal{A L C}$ and other expressive DLs can work well in practice.

OPTIMIZATIONS

Despite high worst-case complexity, tableau algorithms for $\mathcal{A L C}$ and other expressive DLs can work well in practice.

However, good performance crucially depends on optimizations!

OPTIMIZATIONS

Despite high worst-case complexity, tableau algorithms for $\mathcal{A L C}$ and other expressive DLs can work well in practice.

However, good performance crucially depends on optimizations!
Many types of optimizations:

- explore only one branch of one ABox at a time

OPTIMIZATIONS

Despite high worst-case complexity, tableau algorithms for $\mathcal{A L C}$ and other expressive DLs can work well in practice.

However, good performance crucially depends on optimizations!
Many types of optimizations:

- explore only one branch of one ABox at a time
- strategies / heuristics for choosing next rule to apply

OPTIMIZATIONS

Despite high worst-case complexity, tableau algorithms for $\mathcal{A L C}$ and other expressive DLs can work well in practice.

However, good performance crucially depends on optimizations!
Many types of optimizations:

- explore only one branch of one ABox at a time
- strategies / heuristics for choosing next rule to apply
- caching of results to reduce redundant computation

OPTIMIZATIONS

Despite high worst-case complexity, tableau algorithms for $\mathcal{A L C}$ and other expressive DLs can work well in practice.

However, good performance crucially depends on optimizations!
Many types of optimizations:

- explore only one branch of one ABox at a time
- strategies / heuristics for choosing next rule to apply
- caching of results to reduce redundant computation
- examine source of conflicts to prune search space (backjumping)

OPTIMIZATIONS

Despite high worst-case complexity, tableau algorithms for $\mathcal{A L C}$ and other expressive DLs can work well in practice.

However, good performance crucially depends on optimizations!
Many types of optimizations:

- explore only one branch of one ABox at a time
- strategies / heuristics for choosing next rule to apply
- caching of results to reduce redundant computation
- examine source of conflicts to prune search space (backjumping)
- reduce number of \sqcup 's created by TBox inclusions (absorption)

OPTIMIZATIONS

Despite high worst-case complexity, tableau algorithms for $\mathcal{A L C}$ and other expressive DLs can work well in practice.

However, good performance crucially depends on optimizations!
Many types of optimizations:

- explore only one branch of one ABox at a time
- strategies / heuristics for choosing next rule to apply
- caching of results to reduce redundant computation
- examine source of conflicts to prune search space (backjumping)
- reduce number of ப's created by TBox inclusions (absorption)
- reduce number of satisfiability checks during classification

ABSORPTION (1)

When $\mathcal{T}=\left\{C_{i} \sqsubseteq D_{i} \mid 1 \leq i \leq n\right\}$, we get n disjunctions per individual:

$$
\left(\operatorname{NNF}\left(\neg C_{1}\right) \sqcup \operatorname{NNF}\left(D_{1}\right)\right)(a), \ldots,\left(\operatorname{NNF}\left(\neg C_{n}\right) \sqcup \operatorname{NNF}\left(D_{n}\right)\right)(a)
$$

ABSORPTION (1)

When $\mathcal{T}=\left\{C_{i} \sqsubseteq D_{i} \mid 1 \leq i \leq n\right\}$, we get n disjunctions per individual:

$$
\left(\operatorname{NNF}\left(\neg C_{1}\right) \sqcup \operatorname{NNF}\left(D_{1}\right)\right)(a), \ldots,\left(\operatorname{NNF}\left(\neg C_{n}\right) \sqcup \operatorname{NNF}\left(D_{n}\right)\right)(a)
$$

Observation: if have $A \sqsubseteq D$ with A a concept name

- if don't have $A(a)$, can satisfy the inclusion by choosing $\neg A(a)$
- if have $A(a)$, then must have $D(a)$

ABSORPTION (1)

When $\mathcal{T}=\left\{C_{i} \sqsubseteq D_{i} \mid 1 \leq i \leq n\right\}$, we get n disjunctions per individual:

$$
\left(\operatorname{NNF}\left(\neg C_{1}\right) \sqcup \operatorname{NNF}\left(D_{1}\right)\right)(a), \ldots,\left(\operatorname{NNF}\left(\neg C_{n}\right) \sqcup \operatorname{NNF}\left(D_{n}\right)\right)(a)
$$

Observation: if have $A \sqsubseteq D$ with A a concept name

- if don't have $A(a)$, can satisfy the inclusion by choosing $\neg A(a)$
- if have $A(a)$, then must have $D(a)$

So for inclusions with atomic left-hand side, can replace $\sqsubseteq-r u l e ~ b y: ~$
$\sqsubseteq^{a t}$-rule: if $A(a) \in \mathcal{A}$, a is not blocked, $A \sqsubseteq D \in \mathcal{T}$ (with A atomic), and $D(a) \notin \mathcal{A}$, then replace \mathcal{A} with $\mathcal{A} \cup\{D(a)\}$

ABSORPTION (1)

When $\mathcal{T}=\left\{C_{i} \sqsubseteq D_{i} \mid 1 \leq i \leq n\right\}$, we get n disjunctions per individual:

$$
\left(\operatorname{NNF}\left(\neg C_{1}\right) \sqcup \operatorname{NNF}\left(D_{1}\right)\right)(a), \ldots,\left(\operatorname{NNF}\left(\neg C_{n}\right) \sqcup \operatorname{NNF}\left(D_{n}\right)\right)(a)
$$

Observation: if have $A \sqsubseteq D$ with A a concept name

- if don't have $A(a)$, can satisfy the inclusion by choosing $\neg A(a)$
- if have $A(a)$, then must have $D(a)$

So for inclusions with atomic left-hand side, can replace $\sqsubseteq-r u l e ~ b y: ~$

$$
\begin{aligned}
& \sqsubseteq^{a t} \text {-rule: if } A(a) \in \mathcal{A}, a \text { is not blocked, } A \sqsubseteq D \in \mathcal{T} \text { (with } A \text { atomic), } \\
& \text { and } D(a) \notin \mathcal{A} \text {, then replace } \mathcal{A} \text { with } \mathcal{A} \cup\{D(a)\}
\end{aligned}
$$

Good news: we've lowered the number of disjunctions!

Second observation: can transform some inclusions with complex concept on left into equivalent inclusions with atomic left-hand side

Second observation: can transform some inclusions with complex concept on left into equivalent inclusions with atomic left-hand side

$$
(A \sqcap C) \sqsubseteq D \quad \rightsquigarrow \quad A \sqsubseteq(\neg C \sqcup D)
$$

ABSORPTION (2)

Second observation: can transform some inclusions with complex concept on left into equivalent inclusions with atomic left-hand side

$$
(A \sqcap C) \sqsubseteq D \quad \rightsquigarrow \quad A \sqsubseteq(\neg C \sqcup D)
$$

Absorption technique:

1. preprocess the TBox by replacing inclusions with equivalent inclusions with atomic concept on left, whenever possible
2. when running tableau algorithm

- use new $\sqsubseteq^{a t}$-rule for inclusions $A \sqsubseteq D$ with A a concept name
- use regular \sqsubseteq-rule for the other TBox inclusions

EXAMPLE: ABSORPTION

Let's use absorption on the $\operatorname{KB}(\mathcal{T},\{A(a)\})$ with:

$$
\{\quad A \sqsubseteq \exists r . B \quad B \sqsubseteq D \quad \exists r . D \sqsubseteq \neg A \quad\}
$$

EXAMPLE: ABSORPTION

Let's use absorption on the $\mathrm{KB}(\mathcal{T},\{A(a)\})$ with:

$$
\{\quad A \sqsubseteq \exists r \cdot B \quad B \sqsubseteq D \quad \exists r \cdot D \sqsubseteq \neg A \quad\}
$$

- first two inclusions in \mathcal{T} already have concept name on left
- third inclusion in \mathcal{T} can be equivalently written as $A \sqsubseteq \forall r . \neg D$
- so: only need to use $\sqsubseteq^{a t}$-rule

EXAMPLE: ABSORPTION

Let's use absorption on the $\operatorname{KB}(\mathcal{T},\{A(a)\})$ with:

$$
\{\quad A \sqsubseteq \exists r \cdot B \quad B \sqsubseteq D \quad \exists r \cdot D \sqsubseteq \neg A \quad\}
$$

- first two inclusions in \mathcal{T} already have concept name on left
- third inclusion in \mathcal{T} can be equivalently written as $A \sqsubseteq \forall r . \neg D$
- so: only need to use $\sqsubseteq^{a t}$-rule

Result: avoid disjunction, algorithm terminates much faster!

OPTIMIZATIONS FOR CLASSIFICATION

Classification: find all pairs of concept names A, B with $\mathcal{T} \models A \sqsubseteq B$

Naïve approach: test satisfiability of $A \sqcap \neg B$ w.r.t. \mathcal{T} for all pairs A, B

- but \mathcal{T} may contain hundreds or thousands of concept names....

OPTIMIZATIONS FOR CLASSIFICATION

Classification: find all pairs of concept names A, B with $\mathcal{T} \models A \sqsubseteq B$
Naïve approach: test satisfiability of $A \sqcap \neg B$ w.r.t. \mathcal{T} for all pairs A, B

- but \mathcal{T} may contain hundreds or thousands of concept names....

Each check is costly \Rightarrow want to reduce number of checks

OPTIMIZATIONS FOR CLASSIFICATION

Classification: find all pairs of concept names A, B with $\mathcal{T} \models A \sqsubseteq B$
Naïve approach: test satisfiability of $A \sqcap \neg B$ w.r.t. \mathcal{T} for all pairs A, B

- but \mathcal{T} may contain hundreds or thousands of concept names....

Each check is costly \Rightarrow want to reduce number of checks
Some ideas:

- some cases are obvious
- $A \sqsubseteq A$ and inclusions that are explicitly stated in \mathcal{T}

OPTIMIZATIONS FOR CLASSIFICATION

Classification: find all pairs of concept names A, B with $\mathcal{T} \models A \sqsubseteq B$
Naïve approach: test satisfiability of $A \sqcap \neg B$ w.r.t. \mathcal{T} for all pairs A, B

- but \mathcal{T} may contain hundreds or thousands of concept names....

Each check is costly \Rightarrow want to reduce number of checks
Some ideas:

- some cases are obvious
- A $\sqsubseteq A$ and inclusions that are explicitly stated in \mathcal{T}
- use simple reasoning to obtain new (non-)entailments
- if know $\mathcal{T} \models A \sqsubseteq B$ and $\mathcal{T} \models B \sqsubseteq D$, then $\mathcal{T} \models A \sqsubseteq D$
- if know $\mathcal{T} \models A \sqsubseteq B$ and $\mathcal{T} \not \models A \sqsubseteq D$, then $\mathcal{T} \not \vDash B \sqsubseteq D$

