
ontologies &
description logics
Parcours IA - Représentation des connaissances

Meghyn Bienvenu (LaBRI - CNRS & Université de Bordeaux)

reasoning with lightweight dls

lightweight ontology languages

Some applications require very large ontologies and/or data

Scalability concerns led to proposal of DLs with lower complexity

EL family of DLs (basis for OWL 2 EL)
∙ designed to allow efficient reasoning with large ontologies
∙ key technique: saturation (∼ forward chaining)

DL-Lite family of DLs (basis for OWL 2 QL)
∙ designed for ontology-mediated query answering
∙ key technique: query rewriting (∼ backward chaining)

3/21

reasoning in el

the el family: simpler logics for scalable reasoning

The logic EL and its extensions are designed for applications
requiring very large ontologies.

This family of DLs is well suited for biomedical applications.

Examples of large biomedical ontologies:
∙ GO (Gene Ontology), around 20,000 concepts
∙ NCI (cancer ontology), around 30,000 concepts
∙ SNOMED (medical ontology), over 350,000 concepts (!)

Pericarditis � Inflammation � ∃loc.Pericardium
Pericardium � Tissue � ∃partOf.Heart Inflammation � Disease

Disease � ∃loc.∃partOf.Heart � HeartDisease

5/21

syntax of el

In EL, complex concepts are built as follows:

C := ⊤ | A | C1 ⊓ C2 | ∃r.C

Only concept inclusions C1 ⊑ C2 in the TBox

Some possible extensions:
∙ ⊥ (to express disjoint classes)
∙ domain restrictions dom(r) ⊑ C
∙ range restrictions range(r) ⊑ C
∙ complex role inclusions r1 ◦ ... ◦ rn ⊑ rn+1 (transitivity:r ◦ r ⊑ r)

OWL 2 EL profile includes all these extensions

We will focus on plain EL (without these extensions)

6/21

syntax of el

In EL, complex concepts are built as follows:

C := ⊤ | A | C1 ⊓ C2 | ∃r.C

Only concept inclusions C1 ⊑ C2 in the TBox

Some possible extensions:
∙ ⊥ (to express disjoint classes)
∙ domain restrictions dom(r) ⊑ C
∙ range restrictions range(r) ⊑ C
∙ complex role inclusions r1 ◦ ... ◦ rn ⊑ rn+1 (transitivity:r ◦ r ⊑ r)

OWL 2 EL profile includes all these extensions

We will focus on plain EL (without these extensions)

6/21

syntax of el

In EL, complex concepts are built as follows:

C := ⊤ | A | C1 ⊓ C2 | ∃r.C

Only concept inclusions C1 ⊑ C2 in the TBox

Some possible extensions:
∙ ⊥ (to express disjoint classes)
∙ domain restrictions dom(r) ⊑ C
∙ range restrictions range(r) ⊑ C
∙ complex role inclusions r1 ◦ ... ◦ rn ⊑ rn+1 (transitivity:r ◦ r ⊑ r)

OWL 2 EL profile includes all these extensions

We will focus on plain EL (without these extensions)
6/21

normal form for el tboxes

T is in normal form if it contains only inclusions of the forms:

A ⊑ B A1 ⊓ A2 ⊑ B A ⊑ ∃r.B ∃r.A ⊑ B

where A,A1,A2,B are concept names (or ⊤).

Use term basic axioms for such inclusions, and basic assertions to
refer to non-complex assertions

Theorem: for every EL TBox T , we can construct in PTIME a TBox T ′

in normal form (possibly using new concept names) such that:
∙ for every inclusion C ⊑ D which uses only concept names from T ,
we have T |= C ⊑ D iff T ′ |= C ⊑ D

∙ for every ABox A and assertion α that only uses concept names
from (T ,A), we have T ,A |= α iff T ′,A |= α

7/21

normal form for el tboxes

T is in normal form if it contains only inclusions of the forms:

A ⊑ B A1 ⊓ A2 ⊑ B A ⊑ ∃r.B ∃r.A ⊑ B

where A,A1,A2,B are concept names (or ⊤).

Use term basic axioms for such inclusions, and basic assertions to
refer to non-complex assertions

Theorem: for every EL TBox T , we can construct in PTIME a TBox T ′

in normal form (possibly using new concept names) such that:
∙ for every inclusion C ⊑ D which uses only concept names from T ,
we have T |= C ⊑ D iff T ′ |= C ⊑ D

∙ for every ABox A and assertion α that only uses concept names
from (T ,A), we have T ,A |= α iff T ′,A |= α

7/21

normalization procedure

Exhaustively apply the following normalization rules to T : (any order)

D̂ ⊑ Ê ⇝ D̂ ⊑ Anew Anew ⊑ Ê

C ⊓ D̂ ⊑ B ⇝ D̂ ⊑ Anew C ⊓ Anew ⊑ B

D̂ ⊓ C ⊑ B ⇝ D̂ ⊑ Anew Anew ⊓ C ⊑ B

∃r.D̂ ⊑ B ⇝ D̂ ⊑ Anew ∃r.Anew ⊑ B

B ⊑ ∃r.D̂ ⇝ B ⊑ ∃r.Anew Anew ⊑ D̂
B ⊑ D ⊓ E ⇝ B ⊑ D B ⊑ E

where:
∙ C,D, E are arbitrary EL concepts,
∙ D̂, Ê are neither concept names nor ⊤,
∙ B is a concept name,
∙ Anew is a fresh (new) concept name 8/21

example: normalization

Applying the fourth rule to ∃r.(∃s.A ⊓ H) ⊑ B ⊓ D

∃s.A ⊓ H ⊑ E ∃r.E ⊑ B ⊓ D

Use third rule to transform ∃s.A ⊓ H ⊑ E into

∃s.A ⊑ F F ⊓ H ⊑ E

Last rule used to replace ∃r.E ⊑ B ⊓ D by

∃r.E ⊑ B ∃r.E ⊑ D

End result:

∃s.A ⊑ F F ⊓ H ⊑ E ∃r.E ⊑ B ∃r.E ⊑ D

9/21

saturation rules for el

Rules for deriving ontology axioms

A⊑ A
O1

A⊑⊤
O2 A⊑ B B⊑ D

A⊑ D
O3

A⊑ B1 A⊑ B2 B1 ⊓ B2 ⊑ D
A⊑ D

O4 A⊑ ∃r.B1 B1 ⊑ B2 ∃r.B2 ⊑ D
A⊑ D

O5

Rules for deriving assertions

A⊑ B A(c)
B(c)

D1
A1 ⊓ A2 ⊑ B A1(c) A2(c)

B(c)
D2

∃r.A⊑ B r(c,d) A(d)
B(c)

D3

Premises = axioms / assertions above the line

Conclusion = axiom / assertion below the line
10/21

saturation procedure

Assume w.l.o.g. that start from KB whose TBox is in normal form &
whose ABox contains ⊤(a) for each of its individuals a

Instantiated rule:
∙ obtained from one of the ‘abstract’ saturation rules by replacing
A,B,D by EL-concepts and r by some role name

∙ must only contain basic axioms & assertions (important!)

Instantiated rule with premises α1, . . . , αn and conclusion β is
applicable in K if {α1, . . . , αn} ⊆ K and β ̸∈ K
∙ in this case, can apply the rule by adding β to K

Saturation procedure: exhaustively apply instantiated rules until no
rule is applicable

11/21

saturation procedure

Assume w.l.o.g. that start from KB whose TBox is in normal form &
whose ABox contains ⊤(a) for each of its individuals a

Instantiated rule:
∙ obtained from one of the ‘abstract’ saturation rules by replacing
A,B,D by EL-concepts and r by some role name

∙ must only contain basic axioms & assertions (important!)

Instantiated rule with premises α1, . . . , αn and conclusion β is
applicable in K if {α1, . . . , αn} ⊆ K and β ̸∈ K
∙ in this case, can apply the rule by adding β to K

Saturation procedure: exhaustively apply instantiated rules until no
rule is applicable

11/21

saturation procedure

Assume w.l.o.g. that start from KB whose TBox is in normal form &
whose ABox contains ⊤(a) for each of its individuals a

Instantiated rule:
∙ obtained from one of the ‘abstract’ saturation rules by replacing
A,B,D by EL-concepts and r by some role name

∙ must only contain basic axioms & assertions (important!)

Instantiated rule with premises α1, . . . , αn and conclusion β is
applicable in K if {α1, . . . , αn} ⊆ K and β ̸∈ K
∙ in this case, can apply the rule by adding β to K

Saturation procedure: exhaustively apply instantiated rules until no
rule is applicable

11/21

example: saturation rules

TBox T contains axioms:

(1) ∃hasIngred.Spicy⊑Spicy (2) Spicy ⊓ Dish⊑SpicyDish
(3) ArrabSauce⊑∃hasIngred.Chili (4) Chili⊑Spicy

ABox A contains:

(5) Dish(p) (6) hasIngred(p, s) (7) ArrabSauce(s)

Saturation procedure adds the following axioms and assertions:

(8) ArrabSauce⊑ Spicy using (1), (3), (4) and rule T5
(9) Spicy(s) using (7), (8), and rule A1
(10) Spicy(p) using (1), (6), (9), and rule A3
(11) SpicyDish(p) using (2), (5), (10), and rule A2

Examining the result, return p as answer to instance query
q(x) = SpicyDish(x)

12/21

example: saturation rules

TBox T contains axioms:

(1) ∃hasIngred.Spicy⊑Spicy (2) Spicy ⊓ Dish⊑SpicyDish
(3) ArrabSauce⊑∃hasIngred.Chili (4) Chili⊑Spicy

ABox A contains:

(5) Dish(p) (6) hasIngred(p, s) (7) ArrabSauce(s)

Saturation procedure adds the following axioms and assertions:

(8) ArrabSauce⊑ Spicy using (1), (3), (4) and rule T5
(9) Spicy(s) using (7), (8), and rule A1
(10) Spicy(p) using (1), (6), (9), and rule A3
(11) SpicyDish(p) using (2), (5), (10), and rule A2

Examining the result, return p as answer to instance query
q(x) = SpicyDish(x)

12/21

example: saturation rules

TBox T contains axioms:

(1) ∃hasIngred.Spicy⊑Spicy (2) Spicy ⊓ Dish⊑SpicyDish
(3) ArrabSauce⊑∃hasIngred.Chili (4) Chili⊑Spicy

ABox A contains:

(5) Dish(p) (6) hasIngred(p, s) (7) ArrabSauce(s)

Saturation procedure adds the following axioms and assertions:

(8) ArrabSauce⊑ Spicy using (1), (3), (4) and rule T5
(9) Spicy(s) using (7), (8), and rule A1
(10) Spicy(p) using (1), (6), (9), and rule A3
(11) SpicyDish(p) using (2), (5), (10), and rule A2

Examining the result, return p as answer to instance query
q(x) = SpicyDish(x)

12/21

using saturated kb for reasoning

Denote by sat(K) or sat(T ,A) (resp. sat(T)) result of exhaustively
applying saturation rules to KB K = (T ,A) (resp. TBox T)

To find all instances of concept name A w.r.t. K = (T ,A):
1. Normalize T , yielding T ′, then construct sat(T ′,A)

2. Return all individuals c such that A(c) ∈ sat(T ′,A).

To test whether T |= A ⊑ B (A,B concept names):
1. Normalize T , yielding T ′, then construct sat(T ′)

(can alternatively construct sat(T ′,A) if have an ABox A)
2. Check if sat(T ′) contains A ⊑ B, return yes if so, else no.

What about assertions / inclusions involving complex concepts?
∙ Use new concept names to represent complex concepts, e.g. if C is
a complex concept, add XC ⊑ C and C ⊑ XC to T (with XC fresh).

∙ Proceed as above but use XC in place of C.

13/21

using saturated kb for reasoning

Denote by sat(K) or sat(T ,A) (resp. sat(T)) result of exhaustively
applying saturation rules to KB K = (T ,A) (resp. TBox T)

To find all instances of concept name A w.r.t. K = (T ,A):
1. Normalize T , yielding T ′, then construct sat(T ′,A)

2. Return all individuals c such that A(c) ∈ sat(T ′,A).

To test whether T |= A ⊑ B (A,B concept names):
1. Normalize T , yielding T ′, then construct sat(T ′)

(can alternatively construct sat(T ′,A) if have an ABox A)
2. Check if sat(T ′) contains A ⊑ B, return yes if so, else no.

What about assertions / inclusions involving complex concepts?
∙ Use new concept names to represent complex concepts, e.g. if C is
a complex concept, add XC ⊑ C and C ⊑ XC to T (with XC fresh).

∙ Proceed as above but use XC in place of C.

13/21

using saturated kb for reasoning

Denote by sat(K) or sat(T ,A) (resp. sat(T)) result of exhaustively
applying saturation rules to KB K = (T ,A) (resp. TBox T)

To find all instances of concept name A w.r.t. K = (T ,A):
1. Normalize T , yielding T ′, then construct sat(T ′,A)

2. Return all individuals c such that A(c) ∈ sat(T ′,A).

To test whether T |= A ⊑ B (A,B concept names):
1. Normalize T , yielding T ′, then construct sat(T ′)

(can alternatively construct sat(T ′,A) if have an ABox A)
2. Check if sat(T ′) contains A ⊑ B, return yes if so, else no.

What about assertions / inclusions involving complex concepts?
∙ Use new concept names to represent complex concepts, e.g. if C is
a complex concept, add XC ⊑ C and C ⊑ XC to T (with XC fresh).

∙ Proceed as above but use XC in place of C.

13/21

using saturated kb for reasoning

Denote by sat(K) or sat(T ,A) (resp. sat(T)) result of exhaustively
applying saturation rules to KB K = (T ,A) (resp. TBox T)

To find all instances of concept name A w.r.t. K = (T ,A):
1. Normalize T , yielding T ′, then construct sat(T ′,A)

2. Return all individuals c such that A(c) ∈ sat(T ′,A).

To test whether T |= A ⊑ B (A,B concept names):
1. Normalize T , yielding T ′, then construct sat(T ′)

(can alternatively construct sat(T ′,A) if have an ABox A)
2. Check if sat(T ′) contains A ⊑ B, return yes if so, else no.

What about assertions / inclusions involving complex concepts?
∙ Use new concept names to represent complex concepts, e.g. if C is
a complex concept, add XC ⊑ C and C ⊑ XC to T (with XC fresh).

∙ Proceed as above but use XC in place of C.
13/21

properties of saturation procedure

Theorem. All exhaustive sequences of rule applications lead to a
unique saturated KB.

Theorem. The saturated KB sat(K) can be constructed in polynomial
time in |K|

Theorem. The saturation procedure is correct and complete for
axiom entailment and instance checking involving concept names.
Specifically:

∙ for every concept inclusion A ⊑ B (with A,B concept names):
T |= A ⊑ B iff A ⊑ B ∈ sat(K) iff A ⊑ B ∈ sat(T)

∙ for every ABox assertion α = A(b) with A a concept name:
K |= A(b) iff A(b) ∈ sat(K)

Next slides: sketch proofs for correctness and completeness

14/21

properties of saturation procedure

Theorem. All exhaustive sequences of rule applications lead to a
unique saturated KB.

Theorem. The saturated KB sat(K) can be constructed in polynomial
time in |K|

Theorem. The saturation procedure is correct and complete for
axiom entailment and instance checking involving concept names.
Specifically:

∙ for every concept inclusion A ⊑ B (with A,B concept names):
T |= A ⊑ B iff A ⊑ B ∈ sat(K) iff A ⊑ B ∈ sat(T)

∙ for every ABox assertion α = A(b) with A a concept name:
K |= A(b) iff A(b) ∈ sat(K)

Next slides: sketch proofs for correctness and completeness

14/21

properties of saturation procedure

Theorem. All exhaustive sequences of rule applications lead to a
unique saturated KB.

Theorem. The saturated KB sat(K) can be constructed in polynomial
time in |K|

Theorem. The saturation procedure is correct and complete for
axiom entailment and instance checking involving concept names.
Specifically:

∙ for every concept inclusion A ⊑ B (with A,B concept names):
T |= A ⊑ B iff A ⊑ B ∈ sat(K) iff A ⊑ B ∈ sat(T)

∙ for every ABox assertion α = A(b) with A a concept name:
K |= A(b) iff A(b) ∈ sat(K)

Next slides: sketch proofs for correctness and completeness
14/21

correctness of saturation

Aim to show that:
∙ if A ⊑ B ∈ sat(K), then T |= A ⊑ B
∙ if A(b) ∈ sat(K), then K |= A(b)

As sat(K) is the result of a sequence of rule applications, it suffices
to show the following lemma:

Lemma. If a saturation rule application produces β from the
premises α1, . . . , αn, and K |= αi (1 ≤ i ≤ n), then K |= β.

Proof sketch:
∙ trivial for rules T1 and T2 (produced axioms hold in any model)
∙ easy arguments for other rules, e.g. for T3:
∙ suppose K |= A ⊑ B and K |= B ⊑ D, take any model I of K and e ∈ AI ,
must have e ∈ BI due to A ⊑ B, hence e ∈ DI due to B ⊑ D, yielding
I |= A ⊑ D as required

15/21

correctness of saturation

Aim to show that:
∙ if A ⊑ B ∈ sat(K), then T |= A ⊑ B
∙ if A(b) ∈ sat(K), then K |= A(b)

As sat(K) is the result of a sequence of rule applications, it suffices
to show the following lemma:

Lemma. If a saturation rule application produces β from the
premises α1, . . . , αn, and K |= αi (1 ≤ i ≤ n), then K |= β.

Proof sketch:
∙ trivial for rules T1 and T2 (produced axioms hold in any model)
∙ easy arguments for other rules, e.g. for T3:
∙ suppose K |= A ⊑ B and K |= B ⊑ D, take any model I of K and e ∈ AI ,
must have e ∈ BI due to A ⊑ B, hence e ∈ DI due to B ⊑ D, yielding
I |= A ⊑ D as required

15/21

correctness of saturation

Aim to show that:
∙ if A ⊑ B ∈ sat(K), then T |= A ⊑ B
∙ if A(b) ∈ sat(K), then K |= A(b)

As sat(K) is the result of a sequence of rule applications, it suffices
to show the following lemma:

Lemma. If a saturation rule application produces β from the
premises α1, . . . , αn, and K |= αi (1 ≤ i ≤ n), then K |= β.

Proof sketch:
∙ trivial for rules T1 and T2 (produced axioms hold in any model)
∙ easy arguments for other rules, e.g. for T3:
∙ suppose K |= A ⊑ B and K |= B ⊑ D, take any model I of K and e ∈ AI ,
must have e ∈ BI due to A ⊑ B, hence e ∈ DI due to B ⊑ D, yielding
I |= A ⊑ D as required

15/21

completeness of saturation 1/3

We prove the contrapositive, namely:
∙ if A ⊑ B ̸∈ sat(K), then T ̸|= A ⊑ B
∙ if A(b) ̸∈ sat(K), then K ̸|= A(b)

Proof strategy:
∙ build an interpretation CK from sat(K)

∙ show that CK is a model of K
∙ show that CK ̸|= A ⊑ B when A ⊑ B ̸∈ sat(K)

∙ show that CK ̸|= A(b) when A(b) ̸∈ sat(K)

16/21

completeness of saturation 1/3

We prove the contrapositive, namely:
∙ if A ⊑ B ̸∈ sat(K), then T ̸|= A ⊑ B
∙ if A(b) ̸∈ sat(K), then K ̸|= A(b)

Proof strategy:
∙ build an interpretation CK from sat(K)

∙ show that CK is a model of K
∙ show that CK ̸|= A ⊑ B when A ⊑ B ̸∈ sat(K)

∙ show that CK ̸|= A(b) when A(b) ̸∈ sat(K)

16/21

completeness of saturation 2/3

Define CK, as follows:

∙ ∆CK = Ind(A) ∪ {wA | A concept name appearing in K} ∪ {w⊤}

∙ ACK = {b | A(b) ∈ sat(K)} ∪ {wB | B ⊑ A ∈ sat(K)}

∙ rCK = {(a,b) | r(a,b) ∈ K} ∪ {(wA,wB) | A ⊑ ∃r.B ∈ sat(K)}
∪ {(a,wB) | A ⊑ ∃r.B ∈ sat(K),A(a) ∈ sat(K) for some A}

∙ aCK = a for all a ∈ Ind(A)

where Ind(A) is set of individual names in A

Observe that by construction, we have:

∙ CK ̸|= A ⊑ B when A ⊑ B ̸∈ sat(K) wA ∈ ACK but wA ̸∈ BCK

∙ CK ̸|= A(b) when A(b) ̸∈ sat(K)

for all concept names A,B and individuals b occurring in K

17/21

completeness of saturation 2/3

Define CK, as follows:

∙ ∆CK = Ind(A) ∪ {wA | A concept name appearing in K} ∪ {w⊤}

∙ ACK = {b | A(b) ∈ sat(K)} ∪ {wB | B ⊑ A ∈ sat(K)}

∙ rCK = {(a,b) | r(a,b) ∈ K} ∪ {(wA,wB) | A ⊑ ∃r.B ∈ sat(K)}
∪ {(a,wB) | A ⊑ ∃r.B ∈ sat(K),A(a) ∈ sat(K) for some A}

∙ aCK = a for all a ∈ Ind(A)

where Ind(A) is set of individual names in A

Observe that by construction, we have:

∙ CK ̸|= A ⊑ B when A ⊑ B ̸∈ sat(K) wA ∈ ACK but wA ̸∈ BCK

∙ CK ̸|= A(b) when A(b) ̸∈ sat(K)

for all concept names A,B and individuals b occurring in K
17/21

completeness of saturation 3/3

By definition, CK is a model of A

To show it is a model of T , consider different kinds of axioms:

∙ Case 1: A ⊑ B ∈ T and e ∈ ACK

∙ If e ∈ Ind(A), then A(e) ∈ sat(K). Due to A1, B(e) ∈ sat(K), so e ∈ BCK .
∙ If e = wD, then D ⊑ A ∈ sat(T). Due to T3, D ⊑ B ∈ sat(T), so e ∈ BCK .

∙ Case 2: A1 ⊓ A2 ⊑ B ∈ T and e ∈ (A1 ⊓ A2)CK

∙ similar argument using A2 and T4
∙ Case 3: A ⊑ ∃r.B ∈ T and e ∈ ACK

∙ argument uses T3
∙ Case 4: ∃r.A ⊑ B, e′ ∈ ACK , and (e, e′) ∈ rCK

∙ argument uses A3 and T5

Call CK the (compact) canonical model for K

18/21

completeness of saturation 3/3

By definition, CK is a model of A

To show it is a model of T , consider different kinds of axioms:

∙ Case 1: A ⊑ B ∈ T and e ∈ ACK

∙ If e ∈ Ind(A), then A(e) ∈ sat(K). Due to A1, B(e) ∈ sat(K), so e ∈ BCK .
∙ If e = wD, then D ⊑ A ∈ sat(T). Due to T3, D ⊑ B ∈ sat(T), so e ∈ BCK .

∙ Case 2: A1 ⊓ A2 ⊑ B ∈ T and e ∈ (A1 ⊓ A2)CK

∙ similar argument using A2 and T4
∙ Case 3: A ⊑ ∃r.B ∈ T and e ∈ ACK

∙ argument uses T3
∙ Case 4: ∃r.A ⊑ B, e′ ∈ ACK , and (e, e′) ∈ rCK

∙ argument uses A3 and T5

Call CK the (compact) canonical model for K

18/21

completeness of saturation 3/3

By definition, CK is a model of A

To show it is a model of T , consider different kinds of axioms:

∙ Case 1: A ⊑ B ∈ T and e ∈ ACK

∙ If e ∈ Ind(A), then A(e) ∈ sat(K). Due to A1, B(e) ∈ sat(K), so e ∈ BCK .
∙ If e = wD, then D ⊑ A ∈ sat(T). Due to T3, D ⊑ B ∈ sat(T), so e ∈ BCK .

∙ Case 2: A1 ⊓ A2 ⊑ B ∈ T and e ∈ (A1 ⊓ A2)CK

∙ similar argument using A2 and T4
∙ Case 3: A ⊑ ∃r.B ∈ T and e ∈ ACK

∙ argument uses T3
∙ Case 4: ∃r.A ⊑ B, e′ ∈ ACK , and (e, e′) ∈ rCK

∙ argument uses A3 and T5

Call CK the (compact) canonical model for K

18/21

completeness of saturation 3/3

By definition, CK is a model of A

To show it is a model of T , consider different kinds of axioms:

∙ Case 1: A ⊑ B ∈ T and e ∈ ACK

∙ If e ∈ Ind(A), then A(e) ∈ sat(K). Due to A1, B(e) ∈ sat(K), so e ∈ BCK .
∙ If e = wD, then D ⊑ A ∈ sat(T). Due to T3, D ⊑ B ∈ sat(T), so e ∈ BCK .

∙ Case 2: A1 ⊓ A2 ⊑ B ∈ T and e ∈ (A1 ⊓ A2)CK

∙ similar argument using A2 and T4
∙ Case 3: A ⊑ ∃r.B ∈ T and e ∈ ACK

∙ argument uses T3
∙ Case 4: ∃r.A ⊑ B, e′ ∈ ACK , and (e, e′) ∈ rCK

∙ argument uses A3 and T5

Call CK the (compact) canonical model for K

18/21

complexity of reasoning in el

Theorem. Axiom entailment and instance checking over EL KBs are
PTIME-complete
∙ upper bound: saturation procedure from previous slides

∙ lower bound: entailment from propositional Horn theories

Note: with only ⊓ and ∀r.C, same problems are EXPTIME-complete!

Further advantage of saturation approach: ‘single-pass’ reasoning

∙ compute saturation once, then read off all entailed assertions
and inclusions involving concept names

In practice:

∙ huge ontologies like SNOMED can be classified in a few seconds

19/21

complexity of reasoning in el

Theorem. Axiom entailment and instance checking over EL KBs are
PTIME-complete
∙ upper bound: saturation procedure from previous slides

∙ lower bound: entailment from propositional Horn theories

Note: with only ⊓ and ∀r.C, same problems are EXPTIME-complete!

Further advantage of saturation approach: ‘single-pass’ reasoning

∙ compute saturation once, then read off all entailed assertions
and inclusions involving concept names

In practice:

∙ huge ontologies like SNOMED can be classified in a few seconds

19/21

complexity of reasoning in el

Theorem. Axiom entailment and instance checking over EL KBs are
PTIME-complete
∙ upper bound: saturation procedure from previous slides

∙ lower bound: entailment from propositional Horn theories

Note: with only ⊓ and ∀r.C, same problems are EXPTIME-complete!

Further advantage of saturation approach: ‘single-pass’ reasoning

∙ compute saturation once, then read off all entailed assertions
and inclusions involving concept names

In practice:

∙ huge ontologies like SNOMED can be classified in a few seconds

19/21

complexity of reasoning in el

Theorem. Axiom entailment and instance checking over EL KBs are
PTIME-complete
∙ upper bound: saturation procedure from previous slides

∙ lower bound: entailment from propositional Horn theories

Note: with only ⊓ and ∀r.C, same problems are EXPTIME-complete!

Further advantage of saturation approach: ‘single-pass’ reasoning

∙ compute saturation once, then read off all entailed assertions
and inclusions involving concept names

In practice:

∙ huge ontologies like SNOMED can be classified in a few seconds

19/21

extensions of el

We can add all of the following without losing tractability:

∙ ⊥

∙ dom(r) ⊑ C, range(r) ⊑ C

∙ r1 ◦ ... ◦ rn ⊑ rn+1 (complex role inclusions)

But adding any of the following makes reasoning EXPTIME-hard:

∙ negation ¬

∙ disjunction ⊔

∙ at-least or at-most restrictions: ≥ 2r, ≤ 1r

∙ functional roles (funct r)

∙ inverse roles r−

20/21

extensions of el

We can add all of the following without losing tractability:

∙ ⊥

∙ dom(r) ⊑ C, range(r) ⊑ C

∙ r1 ◦ ... ◦ rn ⊑ rn+1 (complex role inclusions)

But adding any of the following makes reasoning EXPTIME-hard:

∙ negation ¬

∙ disjunction ⊔

∙ at-least or at-most restrictions: ≥ 2r, ≤ 1r

∙ functional roles (funct r)

∙ inverse roles r−

20/21

glimpse at eli

The DL ELI is obtained by adding inverse roles to EL

Reasoning in ELI is much more difficult (EXPTIME-complete)

However, ELI retains some nice properties:
∙ admits a canonical model, hence no ‘case-based’ reasoning

Can extend saturation procedure to ELI
∙ still deterministic
∙ may be exponential since need to consider sets of concept names
∙ deduce A ⊓ D ⊑ ∃r.(B ⊓ E) from A ⊑ ∃r.B and ∃r−.D ⊑ E

In practice: ELI and other ‘Horn DLs’ easier to handle than ALC

21/21

	Reasoning with Lightweight DLs
	Reasoning in EL

