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REASONING WITH LIGHTWEIGHT DLS



LIGHTWEIGHT ONTOLOGY LANGUAGES

Some applications require
Scalability concerns led to proposal of DLs with lower complexity

EL family of DLs (basis for OWL 2 EL)
- designed to allow efficient reasoning with large ontologies

- key technique: saturation (~ forward chaining)
DL-Lite family of DLs (basis for OWL 2 QL)
- designed for ontology-mediated query answering

- key technique: query rewriting (~ backward chaining)
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REASONING IN DL-LITE




USING ONTOLOGIES TO ACCESS DATA

Aim: enrich databases (DBs) with ontologies

- convenient vocabulary for users to specify queries
- link multiple datasets with different schemas

- knowledge in ontology can vyield additional answers to queries
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Aim: enrich databases (DBs) with ontologies

- convenient vocabulary for users to specify queries
- link multiple datasets with different schemas

- knowledge in ontology can vyield additional answers to queries

Desiderata:

- must scale up to
- instance queries too simple — want expressive queries like in DBs
- conjunctive queries ~ select-project-join queries in SQL

DL-Lite family: designed for efficient conjunctive query answering
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DL-LITE

We consider the dialect DL-Liter (basis for OWL 2 QL profile

- sometimes abbreviate to just ‘DL-Lite’

DL-Liteg axioms:

- concept inclusions By C By, B; C =B,
- role inclusions 5, C S,, S C =S,

where
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DL-LITE

We consider the dialect DL-Liter (basis for OWL 2 QL profile

- sometimes abbreviate to just ‘DL-Lite’

DL-Liteg axioms:
- concept inclusions By C By, B; C =B,

- role inclusions 5, C S,, S C =S,

where

Example axioms:

- Every professor teaches something: Prof C Jteaches

- Everything that is taught is a course:

- Director of dept implies member of dept: directorOf C memberOf

Note: only basic ABox assertions (A(c), r(c, d), st. A, r concept & role names)
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CONJUNCTIVE QUERIES

An atom takes the form A(ty) or r(ty, ;) or t; = t, where:
- Ais a concept name, r a role name
- each is either a
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CONJUNCTIVE QUERIES

An atom takes the form A(ty) or r(ty, ;) or t; = t, where:
- Ais a concept name, r a role name
- each is either a

A conjunctive query (CQ) has the form

q(X1,. s Xg) = W, s¥m o A Ay

where each «; is an atom with variables drawn from

X17--'aXf?7y17"'7ym-
- Vi,...,Ym are called quantified / existential variables
- Xq,...,Xp are called answer variables

Note: where convenient, may treat CQs as sets of atoms, e.g.
notation o € g means « is a conjunct of g
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SEMANTICS OF CONJUNCTIVE QUERIES

= CQ that has

Satisfaction of a Boolean CQ in an interpretation:

Interpretation 7 satisfies a Boolean CQ g if there exists a function =
mapping each term of g to an element of AZ such that:

- for every individual a in g:  w(a) = a*
- for every atom A(t) € g: | w(t) € AT

- for every atom r(t;,t2) € g: * (7(t1), 7(t2)) € rF

- foreveryatomty =t € g1 w(ty) = w(t2)
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EXAMPLE: SATISFACTION IN AN INTERPRETATION

Reconsider the example interpretation Z:

AT
tudent® Professor”
& e, Athlete® f
@il
fo) &‘\%s -—
pete’é’ Musician™
e o 2
5 10 & “14
o‘/o €4 maria e,
€ 5
o ': o ‘)0/7
es “12

——> represents supervises

Which of the following Boolean CQs are satisfied in Z?
(1) supervises(maria, peter)
(2) 3Ixsupervises(x, peter) A Student(x)
(3) 3x,yMusician(x) A supervises(x,y) A Athlete(y)

(4) 3x,y,zsupervises(x,y) A supervises(y, z)
9/25



SEMANTICS OF CONJUNCTIVE QUERIES

Entailment of a Boolean CQ:
Boolean CQ q is entailed from K (written K g )

if and only if every model of K satisfies g.
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SEMANTICS OF CONJUNCTIVE QUERIES

Entailment of a Boolean CQ:
Boolean CQ q is entailed from K (written K g )

if and only if every model of K satisfies g.

Certain answers to a CQ:
Atuple d = (ay,...,ag) of individuals from A is a certain answer to
q(x1,...,Xp) w.r.t. K if and only if

K = q(a)
where g(d) is the Boolean CQ g with every x; replaced by a;.

We denote by cert(g,K) the certain answers to g w.rt. K
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EXAMPLE: CERTAIN ANSWERS

DL-Lite ontology:

Prof C Faculty Researcher C Faculty Faculty © =Course
Prof C dteaches dteaches™ C Course

ABoOX:

A = {Prof(anna), Researcher(tom), teaches(tom, cs101)}

Conjunctive query: q(x) = Jy.Faculty(x) A teaches(x, y)
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EXAMPLE: CERTAIN ANSWERS

DL-Lite ontology:

Prof C Faculty Researcher C Faculty Faculty © =Course
Prof C dteaches dteaches™ C Course

ABoOX:

A = {Prof(anna), Researcher(tom), teaches(tom, cs101)}

Conjunctive query: q(x) = Jy.Faculty(x) A teaches(x, y)

Get the following
anna Prof(anna) + Prof C Faculty + Prof C Jteaches
tom Researcher(tom) + Researcher C Faculty + teaches(tom, cs101)
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QUERY REWRITING

Idea: reduce to standard database (DB) query evaluation
- rewriting step: TBox T + query g ~ first-order (SQL) query g’
- evaluation step: evaluate query g’ using relational DB system

Advantage: harness efficiency of relational database systems
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QUERY REWRITING

Idea: reduce to standard database (DB) query evaluation
- rewriting step: TBox T + query g ~ first-order (SQL) query g’
- evaluation step: evaluate query g’ using relational DB system

Advantage: harness efficiency of relational database systems

Key notion:
isan iff
, we have:

decert(q,(T,A) <  IukEq(d)

where 7 4 is the interpretation based upon A, defined by setting
AT = Ind(A), AT = {c | A(c) € A}, rF = {(c,d) | r(c,d) € A}.

In words: evaluating g’ over A (viewed as DB) yields certain answers
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EXAMPLE: QUERY REWRITING IN DL-LITE

Reconsider the DL-Lite ontology T

Prof C Faculty Researcher C Faculty Faculty © =Course
Prof C Jteaches dteaches™ L Course

and the query g(x) = Jy.Faculty(x) A teaches(x, y)
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EXAMPLE: QUERY REWRITING IN DL-LITE

Reconsider the DL-Lite ontology T
Prof C Faculty Researcher C Faculty Faculty © =Course

Prof C Jteaches 3dteaches™ L Course

and the query g(x) = Jy.Faculty(x) A teaches(x, y)

The following query is an FO-rewriting of g(x) w.rt. T:

q’'(x) = 3y.Faculty(x) Ateaches(x,y) VvV Prof(x)
Vv 3y.Researcher(x) A teaches(x, y)

Evaluating the rewritten query over the earlier dataset

{Prof(anna), Researcher(tom), teaches(tom, cs101)}

produces the two certain answers: anna and tom
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REWRITING ALGORITHM: APPLICABLE AXIOMS

Now we consider how to compute rewritings.

Idea: apply positive inclusions (PIs) in TBox from right to left
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REWRITING ALGORITHM: APPLICABLE AXIOMS

Now we consider how to compute rewritings.
Idea: apply positive inclusions (PIs) in TBox from right to left
APl Iis applicable to an atom A(x) if it has A in its right-hand side.

A Pl |'is applicable to an atom r(x;, x,) if:

- X, = _ and the right-hand side of | is 3r, or

- X; = _and the right-hand side of I'is dr—, or

- l'is a role inclusion and its right-hand side is either r or r~.

Note: , represents
, .e. which doesn’t occur in any other position of the query
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REWRITING ALGORITHM: ATOMS

Let | be an inclusion that is applicable to atom «a.

The rewriting ra(a, I) of atom «a using inclusion I is as follows:
- ifa=A(x)and | = BLC A, then ra(a,!) = B(x)
~ifa=A(x)and | =3rC A thenra(a,l) =r(x,_)
~ifa=A(X)and | =3r~ C A thenra(a,l) = r(_,x)
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- ifa=A(Kx)and I =3rC A thenra(a,l) = r(x,_)

- ifa=A(x)and I =3r C A thenra(a,l) =r(_,x)
)=

- ifa=r(x,_)and | =AC Jr, then ra(e, A(x)

- ifa=r(x,_)and | =3s C 3r, then ra(a,!) = s(x,_)

- ifa=r(x,_)and I =3s~ C 3r, then ra(a, ) = s(_,X)

~ifa=r(_x)and I =ALC 3r, then ra(e,!) = A(x)
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REWRITING ALGORITHM: ATOMS

Let | be an inclusion that is applicable to atom «a.

The rewriting ra(a, I) of atom «a using inclusion I is as follows:

- ifa=A(x)and | =B C A, then ra(a, ) = B(x)

- ifa=A(Kx)and I =3rC A thenra(a,l) = r(x,_)

- ifa=A(x)and I =3r C A thenra(a,l) =r(_,x)
)=

- ifa=r(x,_)and | =AC Jr, then ra(e, A(x)

- ifa=r(x,_)and | =3s C 3r, then ra(a,!) = s(x,_)

- ifa=r(x,_)and I =3s~ C 3r, then ra(a, ) = s(_,X)

~ifa=r(_,x)and I =ALC 3r, then ra(a,!) = A(X)

- ifa=r(_,x)and | =3s C 3r, then ra(a, ) = s(x,_)

~ifa=r(_,x)and | =3s~ C 3r , thenra(a,l) =s(_,x)

~ifa=r(x,y)andl=sCrorl=s- Cr,thenra(a,l) =5s(x,y)
fa=r(x,y)and=sCr orl=s" Crthenra(a,l) =s(y,x)

Note: x and v can be
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REWRITING ALGORITHM PERFECTREF

Input: TBox T, conjunctive query go (w.Lo.g. assume no =-atom with 3-var)
Output: finite set of CQs (which may use special symbol '_")

PR = {r(q0)}
repeat until PR’ = PR
PR' := PR
for each g € PR’ that has not yet been considered do
foreach a« € gand /e T do
if ra(a, /) is defined
PR := PRU {g[a/ra(e, )]}
for each o, € g do
if & and S unify
PR := PRU {r(merge(q, o, 58))}
return PR

Functions 7 and merge described on next slide
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REWRITING ALGORITHM PERFECTREF

- takes as input a query g
- returns the query obtained from g by

Atoms « and 3 unify: exists a substitution » mapping variables to
terms such that v(a) = v(B)

Function merge:
- input: query g and pair of unifiable atoms o, 8 € g
- returns the query @’ obtained from g by:

- applying the most general unifier of « and 3 to q
- adding atom x = t if answer variable x was replaced by term t

Note: merge decreases number of concept and role atoms and
doesn’t add any new terms
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EXAMPLE: PERFECTREF ALGORITHM

Let T ={rCs,AC3s~,BC A} and go(y) = 3x s(x,y)
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EXAMPLE: PERFECTREF ALGORITHM

Let 7= {rCs,AC 3s~,BC A} and qo(y) = 3x s(x,y)
Initially, PR = {7(q0)} = {s(_,¥)}-
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EXAMPLE: PERFECTREF ALGORITHM

Let 7= {rCs,AC 3s~,BC A} and qo(y) = 3x s(x,y)
Initially, PR = {7(q0)} = {s(_,¥)}-

PerfectRef first adds the following queries:

a(y)=r(_,y) apply r C s to only atom of 7(qo)
g2(y)=A(y) apply A C 3s~ to only atom of 7(qo)

No queries are produced from gy, but we get a further query from g,:
g3(y)= B(y) apply B C A to only atom of g,

Algorithm returns the set of queries {7(q0), g1, G2, G3 }-

This gives following rewriting:  3xs(x,y) V 3Ixr(x,y) VA(Y) Vv B(y)
(replacing _in 7(qo) and gy by 3-var x)
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EXAMPLE: PERFECTREF ALGORITHM

Let 7= {AC 3r} and qo(x,2) = 3y r(x,y) Ar(z,y) A B(2)

Initially, PR = {7(q0)} = {qo}-
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EXAMPLE: PERFECTREF ALGORITHM

Let 7= {AC 3r} and qo(x,2) = 3y r(x,y) Ar(z,y) A B(2)

Initially, PR = {7(q0)} = {q0}
First iteration of PerfectRef adds the following query:

gr=r(x,_) AB(X) ANz=x merge operation followed by 7
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EXAMPLE: PERFECTREF ALGORITHM

Let 7= {AC 3r} and qo(x,2) = 3y r(x,y) Ar(z,y) A B(2)

Initially, PR = {7(q0)} = {q0}
First iteration of PerfectRef adds the following query:
gr=r(x,_) AB(X) ANz=x merge operation followed by
In second iteration, we consider g, and add
G=AX) AB(X) Az=xX apply A C Jrto r-atom of gy
Outputis {qo,q1,92}

This gives the following rewriting: (replacing _in gq by 3-vary)

By r(x,y) Ar(z,y) AB(2)) V 3y r(x,¥) AB(X) Az=X) V (A(X) AB(X) Az =X)
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EXAMPLE: PERFECTREF ALGORITHM 3/3

Consider T = { 3LectOf C Prof  LectOf C InvWith ~ 100S C IntroC}
and qo(x,y) = Prof(x) A InvWith(x,y) A IntroC(y) (note: 7(qo) = qo)
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Consider T = { 3LectOf C Prof  LectOf C InvWith ~ 100S C IntroC}
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From preceding queries, we get:
gs(x,y) = LectOf(x, _) A LectOf(x,y) A IntroC(y)

gs(x,y) = LectOf(x, _) A InvWith(x,y) A 100S(y)
gs(X,y) = Prof(x) A LectOf(x,y) A 100S(y)

Further queries obtained when considering qs:
q7(x,y) = LectOf(x, _) A LectOf(x, y) A 100S(y)

gs(x,y) = LectOf(x,y) A IntroC(y) (unifying atoms in gs)

Final iteration yields:
go(X,y) = LectOf(x,y) A 100S(y) (unifying atoms in g7)

20/25



PROPERTIES OF REWRITING ALGORITHM

Lemma The algorithm PerfectRef always terminates.

Proof idea: Can bound number of queries produced, as generated
queries have at most as many concept and role atoms as input query
and only use symbols from query or TBox (or special symbol ‘_").
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PROPERTIES OF REWRITING ALGORITHM

Lemma The algorithm PerfectRef always terminates.

Proof idea: Can bound number of queries produced, as generated
queries have at most as many concept and role atoms as input query
and only use symbols from query or TBox (or special symbol ‘_").

Let rewrite(q, T') be the disjunction of all queries in PerfectRef(q, T),
with replaced by a

The following result shows the correctness of PerfectRef:

Theorem. Let q(X) be a CQ (without 3-vars in equality atoms),
(T,A) be a satisfiable DL-Liteg KB, d be a tuple of individuals
from A with |X| = |d|, and q" = rewrite(q, T). Then

decert(q,(T,A) e ZikEqg|(d)
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SATISFIABILITY VIA QUERY REWRITING

Our query rewriting approach only works if the input KB is satisfiable.
- thus: also
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Our query rewriting approach only works if the input KB is satisfiable.
- thus: also

Satisfiability in DL-Liteg can also be reduced to database querying.

Given a negative inclusion B C —C, we denote by unsat(B C —C) the
CQ that describes when B C —C is not satisfied. For example:

- unsat(A C —=D) = Ix A(x) A D(X)
- unsat(3r C —3s7) = 3x, ¥,z r(x,y) A s(z,x)
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SATISFIABILITY VIA QUERY REWRITING

Our query rewriting approach only works if the input KB is satisfiable.
- thus: also

Satisfiability in DL-Liteg can also be reduced to database querying.

Given a negative inclusion B C —C, we denote by unsat(B C —C) the
CQ that describes when B C —C is not satisfied. For example:

- unsat(A C —=D) = Ix A(x) A D(X)
- unsat(3r C —3s7) = 3x, ¥,z r(x,y) A s(z,x)

Evaluate the following disjunction of Boolean CQs in Z4:

\/ rewrite(unsat(B  ~C),T)
BC—CeT

Evaluation returns yes < (7, .A) is unsatisfiable
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COMPLEXITY OF REASONING IN DL-LITE

and are

Theorem. For DL-Liteg, satisfiability and instance checking are
NLOGSPACE-complete.
NLOGSPACE C
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COMPLEXITY OF REASONING IN DL-LITE

and are

Theorem. For DL-Liteg, satisfiability and instance checking are
NLOGSPACE-complete.
NLOGSPACE C

What about ontology-mediated query answering?

Conjunctive query answering is NP-complete already for databases
(no TBox). The same is true in DL-Lite:

Theorem. For DL-Liter, CQ answering is NP-complete.
(note: widely believed NP ¢ PTIME)
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DATA COMPLEXITY OF QUERYING IN DL-LITE

usually means ,yet

Distinguish two ways of measuring complexity:
- combined complexity: in terms of the size of KB and query
- data complexity: only in terms of the size of the ABox

- appropriate when |.A| much bigger than |7, |q| (often the case)

Results stated so far: combined complexity measure
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DATA COMPLEXITY OF QUERYING IN DL-LITE

usually means ,yet

Distinguish two ways of measuring complexity:
- combined complexity: in terms of the size of KB and query
- data complexity: only in terms of the size of the ABox

- appropriate when |.A| much bigger than |7, |q| (often the case)

Results stated so far: combined complexity measure

For the data complexity measure, querying in DL-Lite is tractable:

Theorem. For DL-Liteg, CQ answering is in AC® for data complexity.
Note: AC” € LOGSPACE C NLOGSPACE C PTIME

Follows from AC® data complexity of FO-query evaluation
24/25



PRACTICAL QUERYING ALGORITHMS

Adopt to avoid combinatorial
explosion
Optimizations to further reduce rewriting size

- exploit structure of data (e.g. satisfied constraints) which make
some parts of rewriting superfluous

Pre-computation when possible

- add all inferred ABox assertions

- combined approach: store compact canonical model, then filter
answers to remove false positives

Example system: (ontop-vkg.org)
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