TD: Tableau algorithms

Exercise 1: Concept satisfiability via tableau

Use the tableau algorithm to decide which of the following concepts is satisfiable:

- 1. $\exists r.(A \sqcap B) \sqcap \forall r.(\neg A \sqcup D)$
- 2. $(\exists r. \exists s. A) \sqcap (\forall r. \forall s. \neg A)$
- 3. $\exists r.B \sqcap (\forall r.(\forall r.A) \sqcap \forall r.\neg A)$

If a concept is found to be satisfiable, use the result to construct an interpretation in which the concept is non-empty.

Exercise 2: Adding acyclic terminologies

In this exercise, we see how to test concept satisfiability w.r.t. a special kind of TBox called an acyclic terminology. A *terminology* is a set of *concept definitions*

$$A \equiv C$$

where A is an atomic concept and C a (possibly complex) concept, and no two concept definitions have the same atomic concept on the left. A concept definition $A \equiv C$ corresponds to the pair of inclusions $A \sqsubseteq C$ and $C \sqsubseteq A$, and so it is satisfied by \mathcal{I} if $A^{\mathcal{I}} = C^{\mathcal{I}}$.

Given a terminology \mathcal{T} and concept C, the unfolding of C w.r.t. \mathcal{T} is obtained by applying the following operation as long as possible:

• replace any atomic concept A such that $A \equiv D \in \mathcal{T}$ by D

For example, the unfolding of $A \sqcap \exists r.B$ w.r.t. the terminology

$$\{A \equiv \forall s. \forall r. B \quad B \equiv E \sqcap F \quad F \equiv \neg G\}$$

is the concept $\forall s. \forall r. (E \sqcap \neg G) \sqcap \exists r. (E \sqcap \neg G)$. Note that for some terminologies, the unfolding process may never stop! For example, take C = A and $\mathcal{T} = \{A \equiv \exists r. A\}$.

A terminology is called *acyclic* if the *unfolding procedure always halts*. We can test satisfiability of C w.r.t. acyclic terminology \mathcal{T} as follows:

Step 1 Compute the unfolding U of C w.r.t. \mathcal{T} .

Step 2 Put U into negation normal form.

Step 3 Run CSat on U, and output the same answer as CSat.

Use the above procedure to test satisfiability of the concepts:

- 1. $B \sqcap \forall r. \neg G$
- 2. $A \sqcap \forall r. \exists r. G$

with respect to the following acyclic terminology:

$$\{ A \equiv \exists r.B \sqcap \exists s. \neg B \quad B \equiv \exists r.D \sqcap \exists r.E \quad G \equiv D \sqcap E \}$$

Exercise 3: Using tableau to decide axiom entailment

Consider the following TBox (from a previous TD):

$$\mathcal{T} = \{ A \sqsubseteq \forall r.B, B \sqsubseteq \neg F, E \sqsubseteq G, A \sqsubseteq D \sqcup E, D \sqsubseteq \exists r.F, \exists r. \neg B \sqsubseteq G \}$$

Use the KBSat algorithm to decide whether:

1. $\mathcal{T} \models A \sqsubseteq E$ 2. $\mathcal{T} \models E \sqsubseteq G$ 3. $\mathcal{T} \models E \sqsubseteq F$ 4. $\mathcal{T} \models A \sqsubseteq G$ 5. $\mathcal{T} \models D \sqsubseteq G$ 6. $\mathcal{T} \models G \sqsubseteq F$

Please explain your steps. You are encouraged to use the optimizations introduced in the course.