TD: Tableau algorithms

Exercise 1: Concept satisfiability via tableau

Use the tableau algorithm to decide which of the following concepts is satisfiable:

1. $\exists r .(A \sqcap B) \sqcap \forall r .(\neg A \sqcup D)$
2. $(\exists r . \exists s . A) \sqcap(\forall r . \forall s . \neg A)$
3. $\exists r . B \sqcap(\forall r .(\forall r . A) \sqcap \forall r . \neg A)$

If a concept is found to be satisfiable, use the result to construct an interpretation in which the concept is non-empty.

Exercise 2: Adding acyclic terminologies

In this exercise, we see how to test concept satisfiability w.r.t. a special kind of TBox called an acyclic terminology. A terminology is a set of concept definitions

$$
A \equiv C
$$

where A is an atomic concept and C a (possibly complex) concept, and no two concept definitions have the same atomic concept on the left. A concept definition $A \equiv C$ corresponds to the pair of inclusions $A \sqsubseteq C$ and $C \sqsubseteq A$, and so it is satisfied by \mathcal{I} if $A^{\mathcal{I}}=C^{\mathcal{I}}$.

Given a terminology \mathcal{T} and concept C, the unfolding of C w.r.t. \mathcal{T} is obtained by applying the following operation as long as possible:

- replace any atomic concept A such that $A \equiv D \in \mathcal{T}$ by D

For example, the unfolding of $A \sqcap \exists r . B$ w.r.t. the terminology

$$
\{A \equiv \forall s . \forall r . B \quad B \equiv E \sqcap F \quad F \equiv \neg G\}
$$

is the concept $\forall s . \forall r .(E \sqcap \neg G) \sqcap \exists r .(E \sqcap \neg G)$. Note that for some terminologies, the unfolding process may never stop! For example, take $C=A$ and $\mathcal{T}=$ $\{A \equiv \exists r . A\}$.

A terminology is called acyclic if the unfolding procedure always halts. We can test satisfiability of C w.r.t. acyclic terminology \mathcal{T} as follows:

Step 1 Compute the unfolding U of C w.r.t. \mathcal{T}.
Step 2 Put U into negation normal form.

Step 3 Run CSat on U, and output the same answer as CSat.
Use the above procedure to test satisfiability of the concepts:

1. $B \sqcap \forall r . \neg G$
2. $A \sqcap \forall r . \exists r . G$
with respect to the following acyclic terminology:

$$
\{A \equiv \exists r . B \sqcap \exists s . \neg B \quad B \equiv \exists r . D \sqcap \exists r . E \quad G \equiv D \sqcap E\}
$$

Exercise 3: Using tableau to decide axiom entailment

Consider the following TBox (from a previous TD):

$$
\mathcal{T}=\{A \sqsubseteq \forall r . B, B \sqsubseteq \neg F, E \sqsubseteq G, A \sqsubseteq D \sqcup E, D \sqsubseteq \exists r . F, \exists r . \neg B \sqsubseteq G\}
$$

Use the KBSat algorithm to decide whether:

1. $\mathcal{T} \models A \sqsubseteq E$
2. $\mathcal{T} \models E \sqsubseteq G$
3. $\mathcal{T} \models E \sqsubseteq F$
4. $\mathcal{T} \models A \sqsubseteq G$
5. $\mathcal{T} \models D \sqsubseteq G$
6. $\mathcal{T} \models G \sqsubseteq F$

Please explain your steps. You are encouraged to use the optimizations introduced in the course.

