
TP: OWL & Protégé

Exploring Protégé with the Pizza Ontology

This series of exercises is based upon the pizza tutorial, developed by the University
of Manchester.

1. Load the pizza ontology file (from the course website).

2. Browse class and property tabs.

3. Compare the axioms for Margherita and VegetarianPizza.

• Write the definition of VegetarianPizza as a DL axiom.

• Likewise, translate the subclass statements for Margherita into DL inclu-
sions.

• Is a Margherita pizza a VegetarianPizza? Why / why not?

4. Compare the axioms for InterestingPizza and Mushroom.

• Is a Mushroom pizza an InterestingPizza? Why / why not?

5. Examine the property hasIngredient.

• What is the domain and range of this property?

• What are its subproperties?

• What is the inverse property of hasIngredient?

• What property characteristics does hasIngredient have?

6. Examine the definitions of the following three classes: VegetarianPizza, Vege-
tarianPizzaEquivalent1, and VegetarianPizzaEquivalent2.

• Are any of these classes equivalent? Why or why not?

7. Start the reasoner (with Hermit selected as the reasoner).

• Browse the inferred class hierarchy. Observe what new information is now
present (indicated by light yellow background).

• Check whether you correctly predicted whether Margherita is a Vegetari-
anPizza, and whether Mushroom is an InterestingPizza.

• Check which of the classes VegetarianPizza, VegetarianPizzaEquivalent1,
and VegetarianPizzaEquivalent2 are equivalent.

8. Pick a pizza which is classified as an InterestingPizza, use the explanation
facility (button ‘?’) to understand why.

9. Locate the two unsatisfiable classes (these are listed under owl:Nothing and
marked in red).

• For each unsatisfiable class, determine what caused the problem. Try to
solve this first by inspecting the axioms, and otherwise, use the explana-
tion facility.

• Modify the ontology as needed so that there are no unsatisfiable classes
(to launch the reasoner again, you can use ”Synchronize reasoner” in the
Reasoner menu).



10. Add a new pizza with the name and definition you choose.

• Add annotations (using comment annotation property) to provide a tex-
tual descriptions of your pizza, in both English and French.

• Try to determine whether your pizza is a Meaty / Interesting / Cheesey
Pizza, then run the reasoner to check.

11. Add a data property hasPrice.

• Mark hasPrice as functional and with range integer.

• State that every pizza has a positive price using the following class ex-
pression: hasPrice some xsd:integer[> 0]

• State that FourSeasons has a price of 19.

• State that Margherita has a price of 10.

• Define new classes PremiumPizza and BasicPizza, defined as those pizzas
having a price of >= 15 and < 15, respectively.

• Run the reasoner to check that FourSeasons is a PremiumPizza, Margherita
is a BasicPizza, and PremiumPizza is disjoint with BasicPizza.

Ontology Construction

Now that you’ve mastered the basics, you can explore how to build your own ontology
on a new topic. (Alternatively, you can extend the pizza ontology, e.g. to cover a
new category of foods (pasta, sandwiches, ...).

1. Pick a domain to model, and make a list of important terms.

2. Decide which terms should be classes, which should be properties.

3. Organize classes into hierarchy (recall that ‘C subClassOf D’ means that every
individual in C must belong to D).

4. Enter your class hierarchy in Protégé.

• Also add any appropriate disjointness statements.

5. Add the properties into Protégé.

• Specify any relationships that hold between them (inverse? subproperty?)
and any relevant characteristics (functional? transitive?).

• Specify the domain and/or range, whenever appropriate.

• Run the reasoner to make sure there are no problems.

6. Return to your class hierarchy and consider what further axioms should be
added to capture the meaning of the classes.

• Add your axioms into Protégé, regularly running the reasoner to check for
problems.

7. What individuals and assertions make sense in your domain?

• Add a few individuals and assertions.

• Run the reasoner to see what you can infer about the named individuals.


