Handout: DL Basics

Syntax and semantics

Basic building blocks:

- concept names (unary predicates, classes)	A, B
– role names (binary predicates, properties)	r,s
- individuals names (constants)	a, b, c, \dots
Complex concepts (built using constructors: see below)	C, D
TBox (ontology) = set of terminological axioms	${\mathcal T}$
ABox (dataset) = set of ABox assertions $(A(a), r(a, b))$	${\mathcal A}$
Knowledge base $(KB) = TBox + ABox$	${\cal K}$

Name	Syntax	Semantics	
Top concept	Т	$\Delta^{\mathcal{I}}$	Concepts
Bottom concept	\perp	Ø	
Negation	$\neg C$	$\Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}$	
Conjunction	$C_1 \sqcap C_2$	$C_1^{\mathcal{I}} \cap C_2^{\mathcal{I}}$	
Disjunction	$C_1 \sqcup C_2$	$C_1^{\mathcal{I}} \cup C_2^{\mathcal{I}}$	
Existential restriction	$\exists r.C$	$\{d_1 \mid \text{there exists } (d_1, d_2) \in r^{\mathcal{I}} \text{ with } d_2 \in C^{\mathcal{I}}\}$	
Universal restriction	$\forall r.C$	$\{d_1 \mid d_2 \in C^{\mathcal{I}} \text{ for all } (d_1, d_2) \in r^{\mathcal{I}}\}\$	
(Qualified) number	$\geqslant m r.C$	$\{d_1 \mid m \le \{d_2 \mid (d_1, d_2) \in r^{\mathcal{I}} \text{ and } d_2 \in C^{\mathcal{I}}\} \}$	
restrictions	$\leqslant m r.C$	$\{d_1 \mid m \ge \{d_2 \mid (d_1, d_2) \in$	$r^{\mathcal{I}} $ and $d_2 \in C^{\mathcal{I}} \} \}$
Inverse	r^{-}	$\{(d_2, d_1) \mid (d_1, d_2) \in r^{\mathcal{I}}\}$	Roles
Concept inclusion	$C\sqsubseteq D$	$C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$	TBox Axioms
Role inclusion	$r \sqsubseteq s$	$r^{\mathcal{I}} \subseteq s^{\mathcal{I}}$	
Functionality axiom	funct(r)	$r^{\mathcal{I}}$ is a functional relation (if $(d, e) \in r^{\mathcal{I}}$	
		and $(d, f) \in r^{\mathcal{I}}$, then	e = f)
Transitivity axiom	trans(r)	$r^{\mathcal{I}}$ is a transitive relation (if $(d, e) \in r^{\mathcal{I}}$	
		and $(e, f) \in r^{\mathcal{I}}$, then	$(d,f)\in r^{\mathcal{I}})$
Concept assertion	C(a)	$a^{\mathcal{I}} \in A^{\mathcal{I}}$	ABox Assertions
Role assertion	r(a,b)	$(a^{\mathcal{I}}, b^{\mathcal{I}}) \in r^{\mathcal{I}}$	

Note: if the considered logic allows inverse roles, then we can use inverse roles in place of role names when building complex concepts and inclusions

Note: we use $C\equiv D$ as an abbreviation for the pair of axioms $C\sqsubseteq D$ and $D\sqsubseteq C$

Models, Satisfiability, Entailment

Models:

- \mathcal{I} is a model of a TBox \mathcal{T} if \mathcal{I} satisfies every statement in \mathcal{T}
- \mathcal{I} is a model of an ABox \mathcal{A} if \mathcal{I} satisfies every assertion in \mathcal{A}
- \mathcal{I} is a model of a KB $(\mathcal{T}, \mathcal{A})$ if \mathcal{I} is a model of \mathcal{T} and \mathcal{A}

Satisfiability:

- A concept C is satisfiable w.r.t. TBox \mathcal{T} if there exists a model \mathcal{I} of \mathcal{T} such that $C^{\mathcal{I}} \neq \emptyset$
- A KB $(\mathcal{T}, \mathcal{A})$ is satisfiable if $(\mathcal{T}, \mathcal{A})$ has at least one model

Entailment:

- A TBox \mathcal{T} entails an inclusion α (written $\mathcal{T} \models \alpha$) if every model of \mathcal{T} satisfies α
- A KB $(\mathcal{T}, \mathcal{A})$ entails an ABox assertion α (written $(\mathcal{T}, \mathcal{A}) \models \alpha$) if every model of $(\mathcal{T}, \mathcal{A})$ satisfies α

Reasoning tasks

Concept satisfiability: is C satisfiable w.r.t. \mathcal{T} ?

KB satisfiability: is $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ satisfiable?

Subsumption: does $\mathcal{T} \models C \sqsubseteq D$?

Classification: find all concept names A,B such that $\mathcal{T} \models A \sqsubseteq B$

Instance checking: does $(\mathcal{T}, \mathcal{A}) \models C(b)$?