Handout: Description logic $\mathcal{E} \mathcal{L}$

Syntax of $\mathcal{E L}$

$\mathcal{E} \mathcal{L}$ allows complex concepts of the following form:

$$
C:=\top|A| C_{1} \sqcap C_{2} \mid \exists r . C
$$

where A is a concept and r a role name.
An $\mathcal{E L}$ TBox contain concept inclusions $C_{1} \sqsubseteq C_{2}$ (with C_{1}, C_{2} as above)
We say that an $\mathcal{E L}$ TBox \mathcal{T} is in normal form if it contains only inclusions of the following forms:

$$
A \sqsubseteq B \quad A_{1} \sqcap A_{2} \sqsubseteq B \quad A \sqsubseteq \exists r . B \quad \exists r . A \sqsubseteq B
$$

where A, A_{1}, A_{2}, B are concept names (or T).

Saturation rules

$\overline{A \sqsubseteq A}^{\mathbf{T 1}} \quad \overline{A \sqsubseteq \top}^{\mathbf{T 2}}$	$\frac{A \sqsubseteq B \quad B \sqsubseteq D}{A \sqsubseteq D} \mathbf{T 3}$
$\frac{A \sqsubseteq B_{1}}{} A \sqsubseteq B_{2} \quad B_{1} \sqcap B_{2} \sqsubseteq D$	
$A \sqsubseteq D$	$\mathbf{T 4}$

Instantiated rule:

- obtained from one of the 'abstract' saturation rules above by replacing A, B, D by $\mathcal{E} \mathcal{L}$-concepts and r by some role name
- important: after replacement, can only contain axioms that are in normal form and concept assertions using (non-complex) concept names

Premises of (instantiated) rule $=$ axioms $/$ assertions above the line
Conclusion of (instantiated) rule $=$ axiom $/$ assertion below the line

Saturation procedure

Assume w.l.o.g. that start from KB whose TBox is in normal form \& whose ABox contains $\top(a)$ for each of its individuals a
Call an instantiated rule with applicable in \mathcal{K} if its premises belong to \mathcal{K} and its conclusion is not already in \mathcal{K}
Apply an instantiated rule (if applicable) = add its conclusion to the KB
Saturation procedure: exhaustively apply instantiated rules until no rule is applicable
Denote by $\operatorname{sat}(\mathcal{K})$ or $\operatorname{sat}(\mathcal{T}, \mathcal{A})$ (resp. $\operatorname{sat}(\mathcal{T}))$ the (unique) result of applying saturation procedure to $\mathrm{KB} \mathcal{K}=(\mathcal{T}, \mathcal{A})$ (resp. TBox $\mathcal{T})$

Using saturated KB for reasoning

To find all instances of concept name A w.r.t. $\mathcal{K}=(\mathcal{T}, \mathcal{A})$:

1. Normalize \mathcal{T}, yielding \mathcal{T}^{\prime}, then construct $\operatorname{sat}\left(\mathcal{T}^{\prime}, \mathcal{A}\right)$
2. Return all individuals c such that $A(c) \in \operatorname{sat}\left(\mathcal{T}^{\prime}, \mathcal{A}\right)$.

To test whether $\mathcal{T} \models A \sqsubseteq B$ (A, B concept names):

1. Normalize \mathcal{T}, yielding \mathcal{T}^{\prime}, then construct $\operatorname{sat}\left(\mathcal{T}^{\prime}\right)\left(\operatorname{or} \operatorname{sat}\left(\mathcal{T}^{\prime}, \mathcal{A}\right)\right.$ if have an ABox \mathcal{A})
2. Check if $\operatorname{sat}\left(\mathcal{T}^{\prime}\right)$ contains $A \sqsubseteq B$, return yes if so, else no.

For assertions / inclusions involving complex concepts:

- Use new concept names to represent complex concepts, e.g. if C is a complex concept, add $X_{C} \sqsubseteq C$ and $C \sqsubseteq X_{C}$ to \mathcal{T} (with X_{C} fresh).
- Proceed as above but use X_{C} in place of C.

Canonical model

Define canonical model $\mathcal{C}_{\mathcal{K}}$ of \mathcal{K} as follows:

- $\Delta^{\mathcal{C}_{\mathcal{K}}}=\operatorname{Ind}(\mathcal{A}) \cup\left\{w_{A} \mid A\right.$ concept name appearing in $\left.\mathcal{K}\right\} \cup\left\{w_{\top}\right\}$
- $A^{\mathcal{C}_{\mathcal{K}}}=\{b \mid A(b) \in \operatorname{sat}(\mathcal{K})\} \cup\left\{w_{B} \mid B \sqsubseteq A \in \operatorname{sat}(\mathcal{K})\right\}$
- $r^{\mathcal{C}_{\mathcal{K}}}=\{(a, b) \mid r(a, b) \in \mathcal{K}\} \cup\left\{\left(w_{A}, w_{B}\right) \mid A \sqsubseteq \exists r . B \in \operatorname{sat}(\mathcal{K})\right\}$
$\cup\left\{\left(a, w_{B}\right) \mid A \sqsubseteq \exists r . B \in \operatorname{sat}(\mathcal{K}), A(a) \in \operatorname{sat}(\mathcal{K})\right.$ for some $\left.A\right\}$
where $\operatorname{Ind}(\mathcal{A})$ is set of individual names in \mathcal{A}

