Handout: Description logic \mathcal{EL}

Syntax of \mathcal{EL}

 \mathcal{EL} allows complex concepts of the following form:

$$C := \top \mid A \mid C_1 \sqcap C_2 \mid \exists r.C$$

where A is a concept and r a role name.

An \mathcal{EL} TBox contain concept inclusions $C_1 \sqsubseteq C_2$ (with C_1, C_2 as above)

We say that an \mathcal{EL} TBox \mathcal{T} is in *normal form* if it contains only inclusions of the following forms:

$$A \sqsubseteq B \quad A_1 \sqcap A_2 \sqsubseteq B \quad A \sqsubseteq \exists r.B \quad \exists r.A \sqsubseteq B$$

where A, A_1, A_2, B are concept names (or \top).

Saturation rules

$$\frac{A \sqsubseteq B}{A \sqsubseteq A} \stackrel{\mathbf{T1}}{\mathbf{T1}} \qquad \frac{A \sqsubseteq B}{A \sqsubseteq D} \stackrel{\mathbf{B} \sqsubseteq D}{\mathbf{T3}} \stackrel{\mathbf{T3}}{\underline{A \sqsubseteq D}} \frac{A \sqsubseteq B}{A \sqsubseteq D} \stackrel{\mathbf{B} \sqsubseteq D}{\mathbf{T3}} \stackrel{\mathbf{T4}}{\underline{A \sqsubseteq D}} \stackrel{\mathbf{T4}}{\underline{A \sqsubseteq D}} \stackrel{\mathbf{T5}}{\mathbf{T5}} \frac{A \sqsubseteq B}{A \sqsubseteq D} \stackrel{\mathbf{B} \sqsubseteq D}{\mathbf{T5}} \stackrel{\mathbf{T5}}{\underline{A \sqsubseteq D}} \stackrel{\mathbf{T5}}{\underline{A \sqsubset D}} \stackrel{\mathbf{T5}}{\underline{A \sqsubset D}} \stackrel{\mathbf{T5}}{\underline{A \sqsubseteq D}} \stackrel{\mathbf{T5}}{\underline{A \sqsubset D}} \stackrel{\mathbf{T5}}{\underline{A \sqsubseteq D}} \stackrel{\mathbf{T5}}{\underline{A \sqsubset D}} \stackrel{\mathbf{T5}}{\underline{A \sqsubseteq D}} \stackrel{\mathbf{T5}}{\underline{A \amalg D}} \stackrel{\mathbf{T5}}{\underline{A \sqsubseteq D}} \stackrel{\mathbf{T5}}{\underline{A \sqsubseteq D}} \stackrel{\mathbf{T5}}{\underline{A \sqsubseteq D}} \stackrel{\mathbf{T5}}{\underline{A \amalg D}} \stackrel{\mathbf{T5}}$$

$$\frac{A \sqsubseteq B \quad A(c)}{B(c)} \text{ al } \frac{A_1 \sqcap A_2 \sqsubseteq B \quad A_1(c) \quad A_2(c)}{B(c)} \text{ al } \frac{\exists r.A \sqsubseteq B \quad r(c,d) \quad A(d)}{B(c)} \text{ al } \frac{\exists r.A \sqsubseteq B \quad r(c,d) \quad A(d)}{B(c)} \text{ al } \frac{\exists r.A \sqsubseteq B \quad r(c,d) \quad A(d)}{B(c)} \text{ al } \frac{\exists r.A \sqsubseteq B \quad r(c,d) \quad A(d)}{B(c)} \text{ al } \frac{\exists r.A \sqsubseteq B \quad r(c,d) \quad A(d)}{B(c)} \text{ al } \frac{\exists r.A \sqsubseteq B \quad r(c,d) \quad A(d)}{B(c)} \text{ al } \frac{\exists r.A \sqsubseteq B \quad r(c,d) \quad A(d)}{B(c)} \text{ al } \frac{\exists r.A \sqsubseteq B \quad r(c,d) \quad A(d)}{B(c)} \text{ al } \frac{\exists r.A \sqsubseteq B \quad r(c,d) \quad A(d)}{B(c)} \text{ al } \frac{\exists r.A \sqsubseteq B \quad r(c,d) \quad A(d)}{B(c)} \text{ al } \frac{\exists r.A \sqsubseteq B \quad r(c,d) \quad A(d)}{B(c)} \text{ al } \frac{\exists r.A \sqsubseteq B \quad r(c,d) \quad A(d)}{B(c)} \text{ al } \frac{\exists r.A \sqsubseteq B \quad r(c,d) \quad A(d)}{B(c)} \text{ al } \frac{\exists r.A \sqsubseteq B \quad r(c,d) \quad A(d)}{B(c)} \text{ al } \frac{\exists r.A \sqsubseteq B \quad r(c,d) \quad A(d)}{B(c)} \text{ al } \frac{\exists r.A \sqsubseteq B \quad r(c,d) \quad A(d)}{B(c)} \text{ al } \frac{\exists r.A \sqsubseteq B \quad r(c,d) \quad A(d)}{B(c)} \text{ al } \frac{\exists r.A \sqsubseteq B \quad r(c,d) \quad A(d)}{B(c)} \text{ al } \frac{\exists r.A \sqsubseteq B \quad r(c,d) \quad A(d)}{B(c)} \text{ al } \frac{\exists r.A \sqsubseteq B \quad r(c,d) \quad A(d)}{B(c)} \text{ al } \frac{\exists r.A \sqsubseteq B \quad r(c,d) \quad A(d)}{B(c)} \text{ al } \frac{\exists r.A \sqsubseteq B \quad r(c,d) \quad A(d)}{B(c)} \text{ al } \frac{\exists r.A \sqsubseteq B \quad r(c,d) \quad A(d)}{B(c)} \text{ al } \frac{\exists r.A \sqsubseteq B \quad r(c,d) \quad A(d)}{B(c)} \text{ al } \frac{\exists r.A \sqsubseteq B \quad r(c,d) \quad A(d)}{B(c)} \text{ al } \frac{\exists r.A \sqsubseteq B \quad r(c,d) \quad A(d)}{B(c)} \text{ al } \frac{\exists r.A \sqsubseteq B \quad r(c,d) \quad A(d)}{B(c)} \text{ al } \frac{\exists r.A \sqsubseteq B \quad r(c,d) \quad A(d)}{B(c)} \text{ al } \frac{\exists r.A \sqsubseteq B \quad r(c,d) \quad A(d)}{B(c)} \text{ al } \frac{d}{B(c)} \text{ a$$

Instantiated rule:

- obtained from one of the 'abstract' saturation rules above by replacing A, B, D by \mathcal{EL} -concepts and r by some role name
- important: after replacement, can only contain axioms that are in normal form and concept assertions using (non-complex) concept names

Premises of (instantiated) rule = axioms / assertions above the line Conclusion of (instantiated) rule = axiom / assertion below the line

Saturation procedure

Assume w.l.o.g. that start from KB whose TBox is in normal form & whose ABox contains $\top(a)$ for each of its individuals a

Call an instantiated rule with *applicable in* \mathcal{K} if its premises belong to \mathcal{K} and its conclusion is not already in \mathcal{K}

Apply an instantiated rule (if applicable) = add its conclusion to the KB

Saturation procedure: *exhaustively apply* instantiated rules until no rule is applicable

Denote by $sat(\mathcal{K})$ or $sat(\mathcal{T}, \mathcal{A})$ (resp. $sat(\mathcal{T})$) the (unique) result of applying saturation procedure to KB $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ (resp. TBox \mathcal{T})

Using saturated KB for reasoning

To find all instances of concept name A w.r.t. $\mathcal{K} = (\mathcal{T}, \mathcal{A})$:

- 1. Normalize \mathcal{T} , yielding \mathcal{T}' , then construct $sat(\mathcal{T}', \mathcal{A})$
- 2. Return all individuals c such that $A(c) \in sat(\mathcal{T}', \mathcal{A})$.

To test whether $\mathcal{T} \models A \sqsubseteq B$ (A, B concept names):

- 1. Normalize \mathcal{T} , yielding \mathcal{T}' , then construct $sat(\mathcal{T}')$ (or $sat(\mathcal{T}', \mathcal{A})$ if have an ABox \mathcal{A})
- 2. Check if $sat(\mathcal{T}')$ contains $A \sqsubseteq B$, return yes if so, else no.

For assertions / inclusions involving complex concepts:

- Use new concept names to represent complex concepts, e.g. if C is a complex concept, add $X_C \sqsubseteq C$ and $C \sqsubseteq X_C$ to \mathcal{T} (with X_C fresh).
- Proceed as above but use X_C in place of C.

Canonical model

Define canonical model $\mathcal{C}_{\mathcal{K}}$ of \mathcal{K} as follows:

- $\Delta^{\mathcal{C}_{\mathcal{K}}} = \mathsf{Ind}(\mathcal{A}) \cup \{w_A \mid A \text{ concept name appearing in } \mathcal{K}\} \cup \{w_{\top}\}$
- $A^{\mathcal{C}_{\mathcal{K}}} = \{ b \mid A(b) \in sat(\mathcal{K}) \} \cup \{ w_B \mid B \sqsubseteq A \in sat(\mathcal{K}) \} \}$
- $r^{\mathcal{C}_{\mathcal{K}}} = \{(a,b) \mid r(a,b) \in \mathcal{K}\} \cup \{(w_A, w_B) \mid A \sqsubseteq \exists r.B \in sat(\mathcal{K})\} \cup \{(a,w_B) \mid A \sqsubseteq \exists r.B \in sat(\mathcal{K}), A(a) \in sat(\mathcal{K}) \text{ for some } A\}$

where $\mathsf{Ind}(\mathcal{A})$ is set of individual names in \mathcal{A}