Handout: DL Basics

Syntax and semantics

Basic building blocks:	
- concept names (unary predicates, classes)	A, B
- role names (binary predicates, properties)	r,s
– possibly inverse roles – <i>individuals names</i> (constants)	a, b, c, \dots
Complex concepts (built using constructors: see below)	C, D
TBox (ontology) = set of terminological axioms	${\mathcal T}$
ABox (dataset) = set of ABox assertions $(C(a), r(a, b))$	\mathcal{A}
Knowledge base $(KB) = TBox + ABox$	\mathcal{K}

Name	Syntax	Semantics	
Top concept	Т	$\Delta^{\mathcal{I}}$	Concepts
Bottom concept	\perp	Ø	
Negation	$\neg C$	$\Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}$	
Conjunction	$C_1 \sqcap C_2$	$C_1^{\mathcal{I}} \cap C_2^{\mathcal{I}}$	
Disjunction	$C_1 \sqcup C_2$	$C_1^{\mathcal{I}} \cup C_2^{\mathcal{I}}$	
Existential restriction	$\exists r.C$	$\{d_1 \mid \text{there exists } (d_1, d_2) \in r^{\mathcal{I}} \text{ with } d_2 \in C^{\mathcal{I}}\}$	
Universal restriction	$\forall r.C$	$\{d_1 \mid d_2 \in C^{\mathcal{I}} \text{ for all } (d_1, d_2) \in r^{\mathcal{I}}\}$	
(Qualified) number	$\geqslant m r.C$	$\{d_1 \mid m \leq \{d_2 \mid (d_1, d_2) \in r^{\mathcal{I}} \text{ and } d_2 \in C^{\mathcal{I}}\} \}$	
restrictions	$\leqslant m r.C$	$\{d_1 \mid m \ge \{d_2 \mid (d_1, d_2) \in$	$r^{\mathcal{I}}$ and $d_2 \in C^{\mathcal{I}}\} \}$
Inverse	r^{-}	$\{(d_2, d_1) \mid (d_1, d_2) \in r^{\mathcal{I}}\}$	Roles
Concept inclusion	$C \sqsubseteq D$	$C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$	TBox Axioms
Role inclusion	$r \sqsubseteq s$	$r^{\mathcal{I}} \subseteq s^{\mathcal{I}}$	
Functionality axiom	funct(r)	$r^{\mathcal{I}}$ is a functional relation (if $(d, e) \in r^{\mathcal{I}}$	
and $(d, f) \in r^{\mathcal{I}}$, then $e = f$			e = f)
Transitivity axiom	trans(r)	$r^{\mathcal{I}}$ is a transitive relation	(if $(d, e) \in r^{\mathcal{I}}$
		and $(e, f) \in r^{\mathcal{I}}$, then $(d, f) \in r^{\mathcal{I}}$)	
Concept assertion	C(a)	$a^{\mathcal{I}} \in C^{\mathcal{I}}$	ABox Assertions
Role assertion	r(a, b)	$(a^{\mathcal{I}}, b^{\mathcal{I}}) \in r^{\mathcal{I}}$	

Note: $C\equiv D$ is an abbreviation for the pair of axioms $C\sqsubseteq D$ and $D\sqsubseteq C$

Models:

- \mathcal{I} is a model of a TBox \mathcal{T} if \mathcal{I} satisfies every statement in \mathcal{T}
- \mathcal{I} is a model of an ABox \mathcal{A} if \mathcal{I} satisfies every assertion in \mathcal{A}
- \mathcal{I} is a model of a KB $(\mathcal{T}, \mathcal{A})$ if \mathcal{I} is a model of \mathcal{T} and \mathcal{A}

Satisfiability:

- A concept C is satisfiable w.r.t. TBox \mathcal{T} if there exists a model \mathcal{I} of \mathcal{T} with $C^{\mathcal{I}} \neq \emptyset$
- A KB $(\mathcal{T}, \mathcal{A})$ is satisfiable if $(\mathcal{T}, \mathcal{A})$ has at least one model

Entailment:

- TBox \mathcal{T} entails axiom α (written $\mathcal{T} \models \alpha$) if every model of \mathcal{T} satisfies α
- KB (*T*, *A*) entails ABox assertion / TBox axiom α (written (*T*, *A*) ⊨ α) if every model of (*T*, *A*) satisfies α

Reasoning tasks

Concept satisfiability: is C satisfiable w.r.t. \mathcal{T} ?

KB satisfiability: is $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ satisfiable?

Axiom entailment: does $\mathcal{T} \models \alpha$? (with α a TBox axiom)

Subsumption: does $\mathcal{T} \models C \sqsubseteq D$?

Classification: find all concept names A,B such that $\mathcal{T} \models A \sqsubseteq B$

Instance checking: does $(\mathcal{T}, \mathcal{A}) \models C(b)$?

Translation from \mathcal{ALC} to first-order logic

Translating complex concepts into FOL formula with one free variable:

 $\begin{aligned} \pi_x(A) &= A(x) & \pi_y(A) &= A(y) \\ \pi_x(\neg C) &= \neg \pi_x(C) & \pi_y(\neg C) &= \neg \pi_y(C) \\ \pi_x(C \sqcap D) &= \pi_x(C) \land \pi_x(D) & \pi_y(C \sqcap D) &= \pi_y(C) \land \pi_x(D) \\ \pi_x(C \sqcup D) &= \pi_x(C) \lor \pi_x(D) & \pi_y(C \sqcup D) &= \pi_y(C) \lor \pi_y(D) \\ \pi_x(\exists r.C) &= \exists y.r(x,y) \land \pi_y(C) & \pi_y(\exists r.C) &= \exists x.r(y,x) \land \pi_x(C) \\ \pi_x(\forall r.C) &= \forall y.r(x,y) \rightarrow \pi_y(C) & \pi_y(\forall r.C) &= \forall x.r(y,x) \rightarrow \pi_x(C) \end{aligned}$

Translating knowledge base $\mathcal{K} = (\mathcal{T}, \mathcal{A})$:

$$\pi(\mathcal{K}) = \pi(\mathcal{T}) \cup \pi(\mathcal{A})$$

$$\pi(\mathcal{T}) = \{ \forall x.\pi_x(C) \to \pi_x(D) \mid C \sqsubseteq D \in \mathcal{T} \}$$

$$\pi(\mathcal{A}) = \{ \pi_x(C) [x/a] \mid C(a) \in \mathcal{A} \} \cup \{ r(a,b) \mid r(a,b) \in \mathcal{A} \}$$

where $\pi_x(C)[x/a]$ means replacing x by a in $\pi_x(C)$