Ontologies & Description Logics

KNOWLEDGE REPRESENTATION

Meghyn Bienvenu (LaBRI - CNRS & Université de Bordeaux)

REASONING IN EXPRESSIVE DLS

TABLEAU METHOD

Tableau method: popular approach for reasoning in expressive DLs

· implemented in state-of-the-art DL reasoners

Tableau algorithms are used to decide satisfiability

· solve other tasks (e.g. entailment) by reducing them to satisfiability

TABLEAU METHOD

Tableau method: popular approach for reasoning in expressive DLs

· implemented in state-of-the-art DL reasoners

Tableau algorithms are used to decide satisfiability

· solve other tasks (e.g. entailment) by reducing them to satisfiability

Idea: to determine whether a given (concept or KB) Ψ is satisfiable, try to construct a (representation of a) model of Ψ

- \cdot if we succeed, then we have shown that Ψ is satisfiable
- \cdot if we fail despite having considered all possibilities, then we have proven that Ψ is unsatisfiable

ALC CONCEPTS

Recall that \mathcal{ALC} concepts are built using the following constructors:

 \top \bot \neg \sqcup \sqcap $\forall r.C$ $\exists r.C$

ALC CONCEPTS

Recall that \mathcal{ALC} concepts are built using the following constructors:

$$\top$$
 \bot \neg \sqcup \sqcap $\forall r.C$ $\exists r.C$

We say that an \mathcal{ALC} concept C is in negation normal form (NNF) if the symbol \neg only appears directly in front of atomic concepts.

- · in NNF: $A \sqcap \neg B$, $\exists r. \neg A$, $\neg A \sqcup \neg B$
- · not in NNF: $\neg (A \sqcap B)$, $\exists r. \neg (\forall s.B)$, $A \sqcup \neg \forall r.B$, $\neg \top$

ALC CONCEPTS

Recall that \mathcal{ALC} concepts are built using the following constructors:

$$\top$$
 \bot \neg \sqcup \sqcap $\forall r.C$ $\exists r.C$

We say that an \mathcal{ALC} concept C is in negation normal form (NNF) if the symbol \neg only appears directly in front of atomic concepts.

- · in NNF: $A \sqcap \neg B$, $\exists r. \neg A$, $\neg A \sqcup \neg B$
- · not in NNF: $\neg (A \sqcap B)$, $\exists r. \neg (\forall s.B)$, $A \sqcup \neg \forall r.B$, $\neg \top$

Fact. Every \mathcal{ALC} concept C can be transformed into an equivalent concept in NNF in linear time by applying the following rewrite rules:

$$\neg \top \leadsto \bot \qquad \neg (C \sqcap D) \leadsto \neg C \sqcup \neg D \qquad \neg (\forall r.C) \leadsto \exists r.\neg C$$

$$\neg \bot \leadsto \top \qquad \neg (C \sqcup D) \leadsto \neg C \sqcap \neg D \qquad \neg (\exists r.C) \leadsto \forall r.\neg C$$

Note: say C and D are equivalent if the empty TBox entails $C \equiv D$.

We begin by presenting a tableau algorithm for deciding satisfiability of \mathcal{ALC} -concepts (in NNF) w.r.t. the empty TBox

Procedure for testing satisfiability of C_0 :

- · We work with a set S of ABoxes
- · Initially, S contains a single ABox $\{C_0(a_0)\}$

We begin by presenting a tableau algorithm for deciding satisfiability of \mathcal{ALC} -concepts (in NNF) w.r.t. the empty TBox

Procedure for testing satisfiability of C_0 :

- · We work with a set S of ABoxes
- · Initially, S contains a single ABox $\{C_0(a_0)\}$
- At each stage, we apply a tableau rule to some $A \in S$ (note: rules are detailed on next slide)

We begin by presenting a tableau algorithm for deciding satisfiability of \mathcal{ALC} -concepts (in NNF) w.r.t. the empty TBox

Procedure for testing satisfiability of C_0 :

- · We work with a set S of ABoxes
- · Initially, S contains a single ABox $\{C_0(a_0)\}$
- At each stage, we apply a tableau rule to some $A \in S$ (note: rules are detailed on next slide)
- · A rule application involves replacing ${\cal A}$ by one or two ABoxes that extend ${\cal A}$ with new assertions

We begin by presenting a tableau algorithm for deciding satisfiability of \mathcal{ALC} -concepts (in NNF) w.r.t. the empty TBox

Procedure for testing satisfiability of C_0 :

- · We work with a set S of ABoxes
- · Initially, S contains a single ABox $\{C_0(a_0)\}$
- At each stage, we apply a tableau rule to some $A \in S$ (note: rules are detailed on next slide)
- · A rule application involves replacing ${\mathcal A}$ by one or two ABoxes that extend ${\mathcal A}$ with new assertions
- · Stop applying rules when either:
 - every $A \in S$ contains a **clash**, i.e. an assertion $\bot(b)$ or a pair of assertions $\{B(b), \neg B(b)\}$
 - · some $A \in S$ is clash-free and complete: no rule can be applied to A

We begin by presenting a tableau algorithm for deciding satisfiability of \mathcal{ALC} -concepts (in NNF) w.r.t. the empty TBox

Procedure for testing satisfiability of C_0 :

- · We work with a set S of ABoxes
- · Initially, S contains a single ABox $\{C_0(a_0)\}$
- At each stage, we apply a tableau rule to some $A \in S$ (note: rules are detailed on next slide)
- · A rule application involves replacing ${\mathcal A}$ by one or two ABoxes that extend ${\mathcal A}$ with new assertions
- · Stop applying rules when either:
 - every $A \in S$ contains a clash, i.e. an assertion $\bot(b)$ or a pair of assertions $\{B(b), \neg B(b)\}$
 - · some $A \in S$ is clash-free and complete: no rule can be applied to A
- Return 'yes, satisfiable' if some $A \in S$ is clash-free, else "no".

rule: if $(C_1 \sqcap C_2)(a) \in \mathcal{A}$ and $\{C_1(a), C_2(a)\} \not\subseteq \mathcal{A}$ then replace \mathcal{A} with $\mathcal{A} \cup \{C_1(a), C_2(a)\}$

¬-rule: if $(C_1 \sqcap C_2)(a) \in \mathcal{A}$ and $\{C_1(a), C_2(a)\} \not\subseteq \mathcal{A}$ then replace \mathcal{A} with $\mathcal{A} \cup \{C_1(a), C_2(a)\}$

then reptace \mathcal{A} with $\mathcal{A} \cup \{C_1(a), C_2(a)\}$

 \sqcup -rule: if $(C_1 \sqcup C_2)(a) \in \mathcal{A}$ and $\{C_1(a), C_2(a)\} \cap \mathcal{A} = \emptyset$

then replace $\mathcal A$ with $\mathcal A \cup \{\mathcal C_1(a))\}$ and $\mathcal A \cup \{\mathcal C_2(a))\}$

```
□-rule: if (C_1 \sqcap C_2)(a) \in \mathcal{A} and \{C_1(a), C_2(a)\} \not\subseteq \mathcal{A} then replace \mathcal{A} with \mathcal{A} \cup \{C_1(a), C_2(a)\}
```

⊔-rule: if $(C_1 \sqcup C_2)(a) \in \mathcal{A}$ and $\{C_1(a), C_2(a)\} \cap \mathcal{A} = \emptyset$

then replace A with $A \cup \{C_1(a)\}$ and $A \cup \{C_2(a)\}$

 \forall -rule: if $\{\forall r.C(a), r(a, b)\} \in \mathcal{A} \text{ and } C(b) \notin \mathcal{A}$

then replace A with $A \cup \{C(b)\}$

```
□-rule: if (C_1 \sqcap C_2)(a) \in \mathcal{A} and \{C_1(a), C_2(a)\} \not\subseteq \mathcal{A} then replace \mathcal{A} with \mathcal{A} \cup \{C_1(a), C_2(a)\} 

□-rule: if (C_1 \sqcup C_2)(a) \in \mathcal{A} and \{C_1(a), C_2(a)\} \cap \mathcal{A} = \emptyset then replace \mathcal{A} with \mathcal{A} \cup \{C_1(a)\} and \mathcal{A} \cup \{C_2(a)\} 

□-rule: if \{\forall r.C(a), r(a, b)\} \in \mathcal{A} and C(b) \not\in \mathcal{A} then replace \mathcal{A} with \mathcal{A} \cup \{C(b)\} 

□-rule: if \{\exists r.C(a)\} \in \mathcal{A} and no b with \{r(a, b), C(b)\} \subseteq \mathcal{A}, then pick a new individual name d and replace \mathcal{A} with \mathcal{A} \cup \{r(a, d), C(d)\}
```

Test satisfiability of concept $C_0 = (A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A)$

Test satisfiability of concept $C_0 = (A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A)$

Start with $S = \{ A_0 \}$ where $A_0 = \{ ((A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A))(a_0) \}.$

```
Test satisfiability of concept C_0 = (A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A)

Start with S = \{A_0\} where A_0 = \{((A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A))(a_0)\}.

Apply \sqcap-rule to A_0:

get S = \{A'_0\} where A'_0 = A_0 \cup \{(A \sqcup B)(a_0), ((\neg B \sqcup D) \sqcap \neg A)(a_0)\}\}.
```

Test satisfiability of concept $C_0 = (A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A)$

Start with $S = \{ A_0 \}$ where $A_0 = \{ ((A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A))(a_0) \}.$

Apply \sqcap -rule to \mathcal{A}_0 :

 $\text{get } S = \{\, \mathcal{A}_0' \,\} \text{ where } \mathcal{A}_0' = \mathcal{A}_0 \cup \{ (\text{A} \sqcup \text{B})(a_0), ((\neg \text{B} \sqcup \text{D}) \sqcap \neg \text{A})(a_0) \} \}.$

```
Test satisfiability of concept C_0 = (A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A)

Start with S = \{A_0\} where A_0 = \{((A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A))(a_0)\}.

Apply \sqcap-rule to A_0:

get S = \{A'_0\} where A'_0 = A_0 \cup \{(A \sqcup B)(a_0), ((\neg B \sqcup D) \sqcap \neg A)(a_0)\}\}.

Apply \sqcup-rule to A'_0:

get S = \{A_1, A_2\} where A_1 = A'_0 \cup \{A(a_0)\} and A_2 = A'_0 \cup \{B(a_0)\}.
```

```
Test satisfiability of concept C_0 = (A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A)
```

Start with
$$S = \{ A_0 \}$$
 where $A_0 = \{ ((A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A))(a_0) \}.$

Apply \sqcap -rule to A_0 :

$$\text{get } S = \{\, \mathcal{A}_0' \,\} \text{ where } \mathcal{A}_0' = \mathcal{A}_0 \cup \{ (A \sqcup B)(a_0), ((\neg B \sqcup D) \sqcap \neg A)(a_0) \} \}.$$

Apply \sqcup -rule to \mathcal{A}'_0 :

get
$$S = \{ A_1, A_2 \}$$
 where $A_1 = A'_0 \cup \{A(a_0)\}$ and $A_2 = A'_0 \cup \{B(a_0)\}$.

```
Test satisfiability of concept C_0 = (A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A)

Start with S = \{A_0\} where A_0 = \{((A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A))(a_0)\}.

Apply \sqcap-rule to A_0:

get S = \{A'_0\} where A'_0 = A_0 \cup \{(A \sqcup B)(a_0), ((\neg B \sqcup D) \sqcap \neg A)(a_0)\}\}.

Apply \sqcup-rule to A'_0:

get S = \{A_1, A_2\} where A_1 = A'_0 \cup \{A(a_0)\} and A_2 = A'_0 \cup \{B(a_0)\}.

Apply \sqcap-rule to A_1:

get S = \{A'_1, A_2\} where A'_1 = A_1 \cup \{(\neg B \sqcup D)(a_0), \neg A(a_0)\}
```

```
Test satisfiability of concept C_0 = (A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A)

Start with S = \{A_0\} where A_0 = \{((A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A))(a_0)\}.

Apply \sqcap-rule to A_0:

get S = \{A'_0\} where A'_0 = A_0 \cup \{(A \sqcup B)(a_0), ((\neg B \sqcup D) \sqcap \neg A)(a_0)\}\}.

Apply \sqcup-rule to A'_0:

get S = \{A_1, A_2\} where A_1 = A'_0 \cup \{A(a_0)\} and A_2 = A'_0 \cup \{B(a_0)\}.

Apply \sqcap-rule to A_1:

get S = \{A'_1, A_2\} where A'_1 = A_1 \cup \{(\neg B \sqcup D)(a_0), \neg A(a_0)\}

A'_1 contains clash \{A(a_0), \neg A(a_0)\}!
```

```
Test satisfiability of concept C_0 = (A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A)

Start with S = \{A_0\} where A_0 = \{((A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A))(a_0)\}.

Apply \sqcap-rule to A_0:

get S = \{A'_0\} where A'_0 = A_0 \cup \{(A \sqcup B)(a_0), ((\neg B \sqcup D) \sqcap \neg A)(a_0)\}\}.

Apply \sqcup-rule to A'_0:

get S = \{A_1, A_2\} where A_1 = A'_0 \cup \{A(a_0)\} and A_2 = A'_0 \cup \{B(a_0)\}.

Apply \sqcap-rule to A_1:

get S = \{A'_1, A_2\} where A'_1 = A_1 \cup \{(\neg B \sqcup D)(a_0), \neg A(a_0)\}
```

```
Test satisfiability of concept C_0 = (A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A)
Start with S = \{ A_0 \} where A_0 = \{ ((A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A))(a_0) \}.
Apply \sqcap-rule to \mathcal{A}_0:
get S = \{ \mathcal{A}'_0 \} where \mathcal{A}'_0 = \mathcal{A}_0 \cup \{ (A \sqcup B)(a_0), ((\neg B \sqcup D) \sqcap \neg A)(a_0) \} \}.
Apply \sqcup-rule to \mathcal{A}'_0:
get S = \{A_1, A_2\} where A_1 = A'_0 \cup \{A(a_0)\}\ and A_2 = A'_0 \cup \{B(a_0)\}\.
Apply \sqcap-rule to \mathcal{A}_1:
get S = \{ A'_1, A_2 \} where A'_1 = A_1 \cup \{ (\neg B \sqcup D)(a_0), \neg A(a_0) \}
Apply \sqcap-rule to \mathcal{A}_2:
get S = \{ \mathcal{A}'_1, \mathcal{A}'_2 \} where \mathcal{A}'_2 = \mathcal{A}_2 \cup \{ (\neg B \sqcup D)(a_0), \neg A(a_0) \}
```

```
Test satisfiability of concept C_0 = (A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A)
Start with S = \{ A_0 \} where A_0 = \{ ((A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A))(a_0) \}.
Apply \sqcap-rule to \mathcal{A}_0:
get S = \{ \mathcal{A}'_0 \} where \mathcal{A}'_0 = \mathcal{A}_0 \cup \{ (A \sqcup B)(a_0), ((\neg B \sqcup D) \sqcap \neg A)(a_0) \} \}.
Apply \sqcup-rule to \mathcal{A}'_0:
get S = \{A_1, A_2\} where A_1 = A'_0 \cup \{A(a_0)\}\ and A_2 = A'_0 \cup \{B(a_0)\}\.
Apply \sqcap-rule to \mathcal{A}_1:
get S = \{ A'_1, A_2 \} where A'_1 = A_1 \cup \{ (\neg B \sqcup D)(a_0), \neg A(a_0) \}
Apply \sqcap-rule to \mathcal{A}_2:
get S = \{ \mathcal{A}'_1, \mathcal{A}'_2 \} where \mathcal{A}'_2 = \mathcal{A}_2 \cup \{ (\neg B \sqcup D)(a_0), \neg A(a_0) \}
```

```
Test satisfiability of concept C_0 = (A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A)
Start with S = \{ A_0 \} where A_0 = \{ ((A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A))(a_0) \}.
Apply \sqcap-rule to \mathcal{A}_0:
get S = \{ A'_0 \} where A'_0 = A_0 \cup \{ (A \sqcup B)(a_0), ((\neg B \sqcup D) \sqcap \neg A)(a_0) \} \}.
Apply \sqcup-rule to \mathcal{A}'_0:
get S = \{A_1, A_2\} where A_1 = A'_0 \cup \{A(a_0)\}\ and A_2 = A'_0 \cup \{B(a_0)\}\.
Apply \sqcap-rule to \mathcal{A}_1:
get S = \{ A'_1, A_2 \} where A'_1 = A_1 \cup \{ (\neg B \sqcup D)(a_0), \neg A(a_0) \}
Apply \sqcap-rule to \mathcal{A}_2:
get S = \{ \mathcal{A}'_1, \mathcal{A}'_2 \} where \mathcal{A}'_2 = \mathcal{A}_2 \cup \{ (\neg B \sqcup D)(a_0), \neg A(a_0) \}
Apply \sqcup-rule to \mathcal{A}_2':
get S = \{ A'_1, A_3, A_4 \} where A_3 = A'_2 \cup \{ \neg B(a_0) \}, A_4 = A'_2 \cup \{ D(a_0) \}
```

```
Test satisfiability of concept C_0 = (A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A)
Start with S = \{A_0\} where A_0 = \{((A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A))(a_0)\}.
Apply \sqcap-rule to \mathcal{A}_0:
get S = \{ A'_0 \} where A'_0 = A_0 \cup \{ (A \sqcup B)(a_0), ((\neg B \sqcup D) \sqcap \neg A)(a_0) \} \}.
Apply \sqcup-rule to \mathcal{A}'_0:
get S = \{A_1, A_2\} where A_1 = A'_0 \cup \{A(a_0)\}\ and A_2 = A'_0 \cup \{B(a_0)\}\.
Apply \sqcap-rule to \mathcal{A}_1:
get S = \{ A'_1, A_2 \} where A'_1 = A_1 \cup \{ (\neg B \sqcup D)(a_0), \neg A(a_0) \}
Apply \sqcap-rule to \mathcal{A}_2:
get S = \{ A'_1, A'_2 \} where A'_2 = A_2 \cup \{ (\neg B \sqcup D)(a_0), \neg A(a_0) \}
Apply \sqcup-rule to \mathcal{A}_2':
get S = \{ A'_1, A_3, A_4 \} where A_3 = A'_2 \cup \{ \neg B(a_0) \}, A_4 = A'_2 \cup \{ D(a_0) \}
A_3 contains clash \{B(a_0), \neg B(a_0)\}!
```

Test satisfiability of concept $C_0 = (A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A)$

Start with
$$S = \{ \mathcal{A}_0 \}$$
 where $\mathcal{A}_0 = \{ ((A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A))(a_0) \}$. Apply \sqcap -rule to \mathcal{A}_0 : get $S = \{ \mathcal{A}'_0 \}$ where $\mathcal{A}'_0 = \mathcal{A}_0 \cup \{ (A \sqcup B)(a_0), ((\neg B \sqcup D) \sqcap \neg A)(a_0) \} \}$. Apply \sqcup -rule to \mathcal{A}'_0 : get $S = \{ \mathcal{A}_1, \mathcal{A}_2 \}$ where $\mathcal{A}_1 = \mathcal{A}'_0 \cup \{ A(a_0) \}$ and $\mathcal{A}_2 = \mathcal{A}'_0 \cup \{ B(a_0) \}$. Apply \sqcap -rule to \mathcal{A}_1 : get $S = \{ \mathcal{A}'_1, \mathcal{A}_2 \}$ where $\mathcal{A}'_1 = \mathcal{A}_1 \cup \{ (\neg B \sqcup D)(a_0), \neg A(a_0) \}$ Apply \sqcap -rule to \mathcal{A}_2 : get $S = \{ \mathcal{A}'_1, \mathcal{A}'_2 \}$ where $\mathcal{A}'_2 = \mathcal{A}_2 \cup \{ (\neg B \sqcup D)(a_0), \neg A(a_0) \}$ Apply \sqcup -rule to \mathcal{A}'_2 : get $S = \{ \mathcal{A}'_1, \mathcal{A}_3, \mathcal{A}_4 \}$ where $\mathcal{A}_3 = \mathcal{A}'_2 \cup \{ \neg B(a_0) \}$, $\mathcal{A}_4 = \mathcal{A}'_2 \cup \{ D(a_0) \}$ \mathcal{A}_4 is complete, so we can stop.

Test satisfiability of concept $C_0 = (A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A)$ Start with $S = \{A_0\}$ where $A_0 = \{((A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A))(a_0)\}.$ Apply \sqcap -rule to \mathcal{A}_0 : get $S = \{ A_0' \}$ where $A_0' = A_0 \cup \{ (A \sqcup B)(a_0), ((\neg B \sqcup D) \sqcap \neg A)(a_0) \} \}$. Apply \sqcup -rule to \mathcal{A}'_0 : get $S = \{A_1, A_2\}$ where $A_1 = A'_0 \cup \{A(a_0)\}$ and $A_2 = A'_0 \cup \{B(a_0)\}$. Apply \sqcap -rule to \mathcal{A}_1 : get $S = \{ A'_1, A_2 \}$ where $A'_1 = A_1 \cup \{ (\neg B \sqcup D)(a_0), \neg A(a_0) \}$ Apply \sqcap -rule to \mathcal{A}_2 : get $S = \{ A'_1, A'_2 \}$ where $A'_2 = A_2 \cup \{ (\neg B \sqcup D)(a_0), \neg A(a_0) \}$ Apply \sqcup -rule to \mathcal{A}'_2 : get $S = \{ A'_1, A_3, A_4 \}$ where $A_3 = A'_2 \cup \{ \neg B(a_0) \}, A_4 = A'_2 \cup \{ D(a_0) \}$ A_4 is complete and contains no clash $\Rightarrow C_0$ is satisfiable

Test satisfiability of concept
$$C_0 = (A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A)$$

$$(A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A) (a_0)$$

Test satisfiability of concept $C_0 = (A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A)$

$$(A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A) (a_0)$$
$$((\neg B \sqcup D) \sqcap \neg A) (a_0) \qquad \sqcap \textbf{-rule}$$
$$(A \sqcup B) (a_0)$$

Test satisfiability of concept $C_0 = (A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A)$

$$(A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A) (a_0)$$
$$((\neg B \sqcup D) \sqcap \neg A) (a_0)$$
$$(A \sqcup B) (a_0)$$

$$A\left(a_{0}\right)$$

 $B\left(a_{0}\right)$

⊔-rule

Test satisfiability of concept $C_0 = (A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A)$

$$(A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A) (a_0)$$

$$((\neg B \sqcup D) \sqcap \neg A) (a_0)$$

$$(A \sqcup B) (a_0)$$

$$A (a_0)$$

$$B (a_0)$$

$$\neg A (a_0)$$

$$\neg A (a_0)$$

Test satisfiability of concept $C_0 = (A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A)$

$$(A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A) (a_0)$$

$$((\neg B \sqcup D) \sqcap \neg A) (a_0)$$

$$(A \sqcup B) (a_0)$$

$$A (a_0)$$

$$B (a_0)$$

$$(\neg B \sqcup D) (a_0)$$
$$\neg A (a_0)$$

$$B(a_0)$$

 $(\neg B \sqcup D)(a_0)$ \sqcap -rule
 $\neg A(a_0)$

Test satisfiability of concept $C_0 = (A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A)$

$$(A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A) (a_0)$$

$$((\neg B \sqcup D) \sqcap \neg A) (a_0)$$

$$(A \sqcup B) (a_0)$$

$$(\neg B \sqcup D) (a_0)$$

$$(\neg B \sqcup D) (a_0)$$

$$(\neg A (a_0))$$

$$(\neg B \sqcup D) (a_0)$$

$$(\neg B \sqcup D$$

Test satisfiability of concept $C_0 = (A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A)$

$$(A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A) (a_0)$$

$$((\neg B \sqcup D) \sqcap \neg A) (a_0)$$

$$(A \sqcup B) (a_0)$$

$$A (a_0)$$

$$(\neg B \sqcup D) (a_0)$$

$$\neg A (a_0)$$

$$\neg A (a_0)$$

$$\neg B (a_0)$$

$$\neg B (a_0)$$

$$D (a_0)$$

Test satisfiability of concept $C_0 = (A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A)$

$$(A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A) (a_0)$$

$$((\neg B \sqcup D) \sqcap \neg A) (a_0)$$

$$(A \sqcup B) (a_0)$$

$$(\neg B \sqcup D) (a_0)$$

$$(\neg A \sqcup a_0)$$

$$(\neg A \sqcup a_0)$$

$$(\neg B \sqcup D) (a_0)$$

$$(\neg A \sqcup a_0)$$

$$(\neg B \sqcup D) (a_0)$$

EXAMPLE: WITNESSING INTERPRETATION

In our example, we had the complete and clash-free ABox A_4 :

$$((A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A))(a_0) \quad (A \sqcup B)(a_0)$$

$$((\neg B \sqcup D) \sqcap \neg A)(a_0) \quad B(a_0) \quad (\neg B \sqcup D)(a_0) \quad \neg A(a_0) \quad D(a_0)$$

Can build from A_4 the interpretation \mathcal{I} with:

$$\Delta^{\mathcal{I}} = \{a_0\}$$
 use individuals from \mathcal{A}_4

$$\cdot A^{\mathcal{I}} = \emptyset$$
 since \mathcal{A}_4 does not contain $A(a_0)$

$$\cdot B^{\mathcal{I}} = D^{\mathcal{I}} = \{a_0\}$$
 since \mathcal{A}_4 contains $B(a_0)$ and $D(a_0)$

We can verify that $(A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A)^{\mathcal{I}} = \{a_0\}.$

· \mathcal{I} witnesses the satisfiability of $C_0 = (A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A)$

ANOTHER EXAMPLE: ∀ AND ∃

Let's use the tableau procedure to test satisfiability of

$$C_0 = \exists r. A \sqcap \forall r. \neg A$$

ANOTHER EXAMPLE: ∀ AND ∃

Let's use the tableau procedure to test satisfiability of

$$C_0 = \exists r. A \sqcap \forall r. \neg A$$

Start with
$$S = \{ A_0 \}$$
 where $A_0 = \{ (\exists r.A \sqcap \forall r. \neg A)(a_0) \}.$

Let's use the tableau procedure to test satisfiability of

$$C_0 = \exists r. A \sqcap \forall r. \neg A$$

Start with $S = \{ \mathcal{A}_0 \}$ where $\mathcal{A}_0 = \{ (\exists r.A \sqcap \forall r. \neg A)(a_0) \}$. Apply \sqcap -rule to \mathcal{A}_0 : get $S = \{ \mathcal{A}'_0 \}$ where $\mathcal{A}'_0 = \mathcal{A}_0 \cup \{ (\exists r.A)(a_0), (\forall r. \neg A)(a_0) \} \}$.

Let's use the tableau procedure to test satisfiability of

$$C_0 = \exists r. A \sqcap \forall r. \neg A$$

Start with $S = \{ \mathcal{A}_0 \}$ where $\mathcal{A}_0 = \{ (\exists r.A \sqcap \forall r. \neg A)(a_0) \}$. Apply \sqcap -rule to \mathcal{A}_0 : get $S = \{ \mathcal{A}'_0 \}$ where $\mathcal{A}'_0 = \mathcal{A}_0 \cup \{ (\exists r.A)(a_0), (\forall r. \neg A)(a_0) \} \}$.

Let's use the tableau procedure to test satisfiability of

$$C_0 = \exists r. A \sqcap \forall r. \neg A$$

```
Start with S = \{ \mathcal{A}_0 \} where \mathcal{A}_0 = \{ (\exists r.A \sqcap \forall r. \neg A)(a_0) \}.

Apply \sqcap-rule to \mathcal{A}_0:

get S = \{ \mathcal{A}_0' \} where \mathcal{A}_0' = \mathcal{A}_0 \cup \{ (\exists r.A)(a_0), (\forall r. \neg A)(a_0) \} \}.

Apply \exists-rule to \mathcal{A}_0':

get S = \{ \mathcal{A}_0'' \} where \mathcal{A}_0'' = \mathcal{A}_0' \cup \{ r(a_0, a_1), A(a_1) \}.
```

Let's use the tableau procedure to test satisfiability of

$$C_0 = \exists r. A \sqcap \forall r. \neg A$$

Start with
$$S = \{ \mathcal{A}_0 \}$$
 where $\mathcal{A}_0 = \{ (\exists r.A \sqcap \forall r. \neg A)(a_0) \}$.
Apply \sqcap -rule to \mathcal{A}_0 :
get $S = \{ \mathcal{A}_0' \}$ where $\mathcal{A}_0' = \mathcal{A}_0 \cup \{ (\exists r.A)(a_0), (\forall r. \neg A)(a_0) \} \}$.
Apply \exists -rule to \mathcal{A}_0' :
get $S = \{ \mathcal{A}_0'' \}$ where $\mathcal{A}_0'' = \mathcal{A}_0' \cup \{ r(a_0, a_1), A(a_1) \}$.

Let's use the tableau procedure to test satisfiability of

$$C_0 = \exists r. A \sqcap \forall r. \neg A$$

Start with
$$S = \{ \mathcal{A}_0 \}$$
 where $\mathcal{A}_0 = \{ (\exists r.A \sqcap \forall r. \neg A)(a_0) \}$.
Apply \sqcap -rule to \mathcal{A}_0 :
get $S = \{ \mathcal{A}_0' \}$ where $\mathcal{A}_0' = \mathcal{A}_0 \cup \{ (\exists r.A)(a_0), (\forall r. \neg A)(a_0) \} \}$.
Apply \exists -rule to \mathcal{A}_0' :
get $S = \{ \mathcal{A}_0'' \}$ where $\mathcal{A}_0'' = \mathcal{A}_0' \cup \{ r(a_0, a_1), A(a_1) \}$.
Apply \forall -rule to \mathcal{A}_0'' :
get $S = \{ \mathcal{A}_0''' \}$ where $\mathcal{A}_0''' = \mathcal{A}_0'' \cup \{ \neg A(a_1) \}$.

Let's use the tableau procedure to test satisfiability of

$$C_0 = \exists r. A \sqcap \forall r. \neg A$$

```
Start with S = \{ \mathcal{A}_0 \} where \mathcal{A}_0 = \{ (\exists r.A \sqcap \forall r. \neg A)(a_0) \}.

Apply \sqcap-rule to \mathcal{A}_0:

get S = \{ \mathcal{A}_0' \} where \mathcal{A}_0' = \mathcal{A}_0 \cup \{ (\exists r.A)(a_0), (\forall r. \neg A)(a_0) \} \}.

Apply \exists-rule to \mathcal{A}_0':

get S = \{ \mathcal{A}_0'' \} where \mathcal{A}_0'' = \mathcal{A}_0' \cup \{ r(a_0, a_1), A(a_1) \}.

Apply \forall-rule to \mathcal{A}_0':

get S = \{ \mathcal{A}_0''' \} where \mathcal{A}_0''' = \mathcal{A}_0'' \cup \{ \neg A(a_1) \}.

\mathcal{A}_0''' contains clash \{ A(a_1), \neg A(a_1) \}!
```

Let's use the tableau procedure to test satisfiability of

$$C_0 = \exists r. A \sqcap \forall r. \neg A$$

Start with
$$S = \{ \mathcal{A}_0 \}$$
 where $\mathcal{A}_0 = \{ (\exists r.A \sqcap \forall r. \neg A)(a_0) \}$.
Apply \sqcap -rule to \mathcal{A}_0 :
get $S = \{ \mathcal{A}_0' \}$ where $\mathcal{A}_0' = \mathcal{A}_0 \cup \{ (\exists r.A)(a_0), (\forall r. \neg A)(a_0) \} \}$.
Apply \exists -rule to \mathcal{A}_0' :
get $S = \{ \mathcal{A}_0'' \}$ where $\mathcal{A}_0'' = \mathcal{A}_0' \cup \{ r(a_0, a_1), A(a_1) \}$.
Apply \forall -rule to \mathcal{A}_0'' :
get $S = \{ \mathcal{A}_0''' \}$ where $\mathcal{A}_0''' = \mathcal{A}_0'' \cup \{ \neg A(a_1) \}$.

The only set in S contains a clash $\Rightarrow C_0$ is unsatisfiable

Test satisfiability of concept $C_0 = \exists r.A \sqcap \forall r. \neg A$

$$(\exists r.A \sqcap \forall r.\neg A)(a_0)$$

Test satisfiability of concept $C_0 = \exists r.A \sqcap \forall r. \neg A$

$$(\exists r.A \sqcap \forall r.\neg A)(a_0)$$

 $(\exists r.A)(a_0) \qquad \Box -\mathbf{rule}$
 $(\forall r.\neg A)(a_0)$

$$C_0 = \exists r. A \sqcap \forall r. \neg A$$

$$(\exists r.A \sqcap \forall r. \neg A)(a_0)$$

$$(\exists r.A)(a_0)$$

$$(\forall r. \neg A)(a_0)$$

$$r(a_0, a_1) \quad \exists \textbf{-rule}$$

$$A(a_1)$$

$$C_0 = \exists r. A \sqcap \forall r. \neg A$$

$$(\exists r.A \sqcap \forall r. \neg A)(a_0)$$

$$(\exists r.A)(a_0)$$

$$(\forall r. \neg A)(a_0)$$

$$r(a_0, a_1)$$

$$A(a_1)$$

$$\neg A(a_1) \quad \forall \textbf{-rule}$$

$$C_0 = \exists r. A \sqcap \forall r. \neg A$$

$$(\exists r.A \sqcap \forall r. \neg A)(a_0)$$

$$(\exists r.A)(a_0)$$

$$(\forall r. \neg A)(a_0)$$

$$r(a_0, a_1)$$

$$A(a_1)$$

$$\neg A(a_1)$$

$$C_0 = \exists r. A \sqcap \forall r. \neg A$$

$$(\exists r.A \sqcap \forall r. \neg A)(a_0)$$

$$(\exists r.A)(a_0)$$

$$(\forall r. \neg A)(a_0)$$

$$r(a_0, a_1)$$

$$A(a_1)$$

$$\neg A(a_1)$$

FURTHER EXAMPLE WITH ∀ AND ∃

Suppose that we consider a slightly different concept

$$C_0 = \exists r. A \sqcap \forall r. \neg \mathbf{B}$$

Now the algorithm yields the following complete, clash-free ABox:

$$(\exists r.A \sqcap \forall r.\neg B)(a_0) \quad (\exists r.A)(a_0) \quad (\forall r.\neg B)(a_0) \quad r(a_0,a_1) \quad A(a_1) \quad \neg B(a_1)$$

FURTHER EXAMPLE WITH ∀ AND ∃

Suppose that we consider a slightly different concept

$$C_0 = \exists r. A \sqcap \forall r. \neg \mathbf{B}$$

Now the algorithm yields the following complete, clash-free ABox:

$$(\exists r.A \sqcap \forall r.\neg B)(a_0) \quad (\exists r.A)(a_0) \quad (\forall r.\neg B)(a_0) \quad r(a_0,a_1) \quad A(a_1) \quad \neg B(a_1)$$

Corresponding interpretation \mathcal{I} :

- $\Delta^{\mathcal{I}} = \{a_0, a_1\}$
- $\cdot A^{\mathcal{I}} = \{a_1\}$
- $\cdot B^{\mathcal{I}} = \emptyset$
- $\cdot r^{\mathcal{I}} = \{(a_0, a_1)\}$

Can check that \mathcal{I} is such that $C_0^{\mathcal{I}} = \{a_0\}$.

PROPERTIES OF THE TABLEAU ALGORITHM

Let's call our tableau algorithm CSat (for concept satisfiability).

To show that CSat is a decision procedure, we must show:

Termination: The algorithm **CSat** always terminates.

Soundness: **CSat** outputs "yes" on input $C_0 \Rightarrow C_0$ is satisfiable.

Completeness: C_0 satisfiable \Rightarrow **CSat** will output "yes".

PRELIMINARY DEFINITIONS

Subconcepts of a concept:

$$sub(A) = \{A\}$$

$$sub(\neg C) = \{\neg C\} \cup sub(C)$$

$$sub(\exists r.C) = \{\exists r.C\} \cup sub(C)$$

$$sub(\forall r.C) = \{\forall r.C\} \cup sub(C)$$

$$sub(C_1 \sqcup C_2) = \{C_1 \sqcup C_2\} \cup sub(C_1) \cup sub(C_2)$$

$$sub(C_1 \sqcap C_2) = \{C_1 \sqcap C_2\} \cup sub(C_1) \cup sub(C_2)$$

PRELIMINARY DEFINITIONS

Subconcepts of a concept:

$$sub(A) = \{A\}$$

$$sub(\neg C) = \{\neg C\} \cup sub(C)$$

$$sub(\exists r.C) = \{\exists r.C\} \cup sub(C)$$

$$sub(\forall r.C) = \{\forall r.C\} \cup sub(C)$$

$$sub(C_1 \sqcup C_2) = \{C_1 \sqcup C_2\} \cup sub(C_1) \cup sub(C_2)$$

$$sub(C_1 \sqcap C_2) = \{C_1 \sqcap C_2\} \cup sub(C_1) \cup sub(C_2)$$

Role depth of a concept:

$$\begin{split} \operatorname{depth}(A) &= \operatorname{depth}(\top) = \operatorname{depth}(\bot) = 0 \\ \operatorname{depth}(\neg C) &= \operatorname{depth}(C) \\ \operatorname{depth}(\exists r.C) &= \operatorname{depth}(\forall r.C) = \operatorname{depth}(C) + 1 \\ \operatorname{depth}(C_1 \sqcup C_2) &= \operatorname{depth}(C_1 \sqcap C_2) = \max(\operatorname{depth}(C_1), \operatorname{depth}(C_2)) \end{split}$$

PRELIMINARY DEFINITIONS

Subconcepts of a concept: $|sub(C)| \le |C|$

```
sub(A) = \{A\}
sub(\neg C) = \{\neg C\} \cup sub(C)
sub(\exists r.C) = \{\exists r.C\} \cup sub(C)
sub(\forall r.C) = \{\forall r.C\} \cup sub(C)
sub(C_1 \sqcup C_2) = \{C_1 \sqcup C_2\} \cup sub(C_1) \cup sub(C_2)
sub(C_1 \sqcap C_2) = \{C_1 \sqcap C_2\} \cup sub(C_1) \cup sub(C_2)
```

Role depth of a concept: $depth(C) \leq |C|$

$$\begin{split} \operatorname{depth}(A) &= \operatorname{depth}(\top) = \operatorname{depth}(\bot) = 0 \\ \operatorname{depth}(\neg C) &= \operatorname{depth}(C) \\ \operatorname{depth}(\exists r.C) &= \operatorname{depth}(\forall r.C) = \operatorname{depth}(C) + 1 \\ \operatorname{depth}(C_1 \sqcup C_2) &= \operatorname{depth}(C_1 \sqcap C_2) = \max(\operatorname{depth}(C_1), \operatorname{depth}(C_2)) \end{split}$$

Suppose we run CSat starting from $S = \{\{C_0(a_0)\}\}.$

Suppose we run CSat starting from $S = \{\{C_0(a_0)\}\}$. We observe that for every ABox $\mathcal A$ generated by the procedure:

Suppose we run **CSat** starting from $S = \{\{C_0(a_0)\}\}$. We observe that for every ABox \mathcal{A} generated by the procedure:

1. if $D(b) \in \mathcal{A}$, then $D \in \text{sub}(C_0)$

Suppose we run **CSat** starting from $S = \{\{C_0(a_0)\}\}.$

- 1. if $D(b) \in \mathcal{A}$, then $D \in \text{sub}(C_0)$
 - \cdot $\,{\cal A}$ contains at most $|{\cal C}_0|$ concept assertions per individual

Suppose we run **CSat** starting from $S = \{\{C_0(a_0)\}\}.$

- 1. if $D(b) \in \mathcal{A}$, then $D \in \text{sub}(C_0)$
 - · \mathcal{A} contains at most $|C_0|$ concept assertions per individual
- 2. the set of role assertions in ${\cal A}$ forms a tree

Suppose we run **CSat** starting from $S = \{\{C_0(a_0)\}\}.$

- 1. if $D(b) \in \mathcal{A}$, then $D \in \text{sub}(C_0)$
 - \cdot $\,{\cal A}$ contains at most $|{\it C}_0|$ concept assertions per individual
- 2. the set of role assertions in \mathcal{A} forms a tree
- 3. if $D(b) \in \mathcal{A}$ and the unique path from a_0 to b has length k, then $depth(D) \leq depth(C_0) k$

Suppose we run **CSat** starting from $S = \{\{C_0(a_0)\}\}.$

- 1. if $D(b) \in \mathcal{A}$, then $D \in \text{sub}(C_0)$
 - \cdot $\,{\cal A}$ contains at most $|{\cal C}_0|$ concept assertions per individual
- 2. the set of role assertions in \mathcal{A} forms a tree
- 3. if $D(b) \in \mathcal{A}$ and the unique path from a_0 to b has length k, then depth $(D) \leq \operatorname{depth}(C_0) k$
 - each individual in \mathcal{A} is at distance \leq depth(C_0) from a_0

Suppose we run **CSat** starting from $S = \{\{C_0(a_0)\}\}.$

- 1. if $D(b) \in \mathcal{A}$, then $D \in \text{sub}(C_0)$
 - \cdot $\,{\cal A}$ contains at most $|{\it C}_0|$ concept assertions per individual
- 2. the set of role assertions in \mathcal{A} forms a tree
- 3. if $D(b) \in \mathcal{A}$ and the unique path from a_0 to b has length k, then $depth(D) \leq depth(C_0) k$
 - each individual in \mathcal{A} is at distance \leq depth(\mathcal{C}_0) from a_0
- 4. for every individual b in \mathcal{A} , there are at most $|C_0|$ individuals c such that $r(b,c) \in \mathcal{A}$ for some r (at most one per existential concept)

Suppose we run **CSat** starting from $S = \{\{C_0(a_0)\}\}.$

We observe that for every ABox ${\cal A}$ generated by the procedure:

- 1. if $D(b) \in \mathcal{A}$, then $D \in \text{sub}(C_0)$
 - \cdot $\,{\cal A}$ contains at most $|{\it C}_0|$ concept assertions per individual
- 2. the set of role assertions in \mathcal{A} forms a tree
- 3. if $D(b) \in \mathcal{A}$ and the unique path from a_0 to b has length k, then $depth(D) \leq depth(C_0) k$
 - each individual in A is at distance \leq depth(C_0) from a_0
- 4. for every individual b in A, there are at most $|C_0|$ individuals c such that $r(b,c) \in A$ for some r (at most one per existential concept)

Thus: bound on the size of ABoxes generated by the procedure

Suppose we run **CSat** starting from $S = \{\{C_0(a_0)\}\}.$

We observe that for every ABox ${\cal A}$ generated by the procedure:

- 1. if $D(b) \in \mathcal{A}$, then $D \in \text{sub}(C_0)$
 - · \mathcal{A} contains at most $|C_0|$ concept assertions per individual
- 2. the set of role assertions in \mathcal{A} forms a tree
- 3. if $D(b) \in \mathcal{A}$ and the unique path from a_0 to b has length k, then $depth(D) \leq depth(C_0) k$
 - · each individual in \mathcal{A} is at distance $\leq \operatorname{depth}(C_0)$ from a_0
- 4. for every individual b in A, there are at most $|C_0|$ individuals c such that $r(b,c) \in A$ for some r (at most one per existential concept)

Thus: bound on the size of ABoxes generated by the procedure
The tableau procedure only adds assertions to ABoxes
⇒ eventually all ABoxes will contain a clash or will be complete

SOUNDNESS OF CSAT (1)

Suppose that ${\sf CSat}$ returns "yes" on input ${\sf C}_0$.

Then S must contain a complete and clash-free ABox \mathcal{A} .

SOUNDNESS OF CSAT (1)

Suppose that **CSat** returns "yes" on input C_0 .

Then S must contain a complete and clash-free ABox \mathcal{A} .

Use A to define an interpretation \mathcal{I} as follows:

$$\cdot \Delta^{\mathcal{I}} = \{ a \mid a \text{ is an individual in } \mathcal{A} \}$$

$$\cdot A^{\mathcal{I}} = \{ a \mid A(a) \in \mathcal{A} \}$$

$$\cdot r^{\mathcal{I}} = \{(a,b) \mid r(a,b) \in \mathcal{A}\}\$$

Claim: \mathcal{I} is such that $C_0^{\mathcal{I}} \neq \emptyset$

SOUNDNESS OF CSAT (1)

Suppose that **CSat** returns "yes" on input C_0 .

Then S must contain a complete and clash-free ABox A.

Use A to define an interpretation \mathcal{I} as follows:

$$\cdot \Delta^{\mathcal{I}} = \{a \mid a \text{ is an individual in } \mathcal{A}\}$$

$$\cdot A^{\mathcal{I}} = \{a \mid A(a) \in \mathcal{A}\}$$

$$\cdot r^{\mathcal{I}} = \{(a,b) \mid r(a,b) \in \mathcal{A}\}\$$

Claim: \mathcal{I} is such that $C_0^{\mathcal{I}} \neq \emptyset$

To show the claim, we prove by induction on the size of concepts:

$$D(b) \in \mathcal{A} \quad \Rightarrow \quad b \in D^{\mathcal{I}}$$

14

SOUNDNESS OF CSAT (2)

Base case: D = A or $D = \neg A$ or $D = \top$ or $D = \bot$

1

SOUNDNESS OF CSAT (2)

Base case: D = A or $D = \neg A$ or $D = \top$ or $D = \bot$ If D = A, then $b \in A^{\mathcal{I}}$. If $D = \neg A$, then $A(b) \not\in \mathcal{A}$, so $b \in \neg A^{\mathcal{I}}$. If $D = \top$, trivially $b \in \top^{\mathcal{I}} = \Delta^{\mathcal{I}}$. Cannot have $D = \bot$ since clash-free. Induction hypothesis (IH): suppose holds whenever $|D| \le k$ Induction step: show statement holds for D with |D| = k + 1Again, many cases to consider:

- · $D = E \sqcap F$: since \mathcal{A} is complete, it must contain both E(b) and F(b). Applying the IH, we get $b \in E^{\mathcal{I}}$ and $b \in F^{\mathcal{I}}$, hence $b \in (E \sqcap F)^{\mathcal{I}}$
- · $D = \exists r.E$: since \mathcal{A} is complete, there exists c such that $r(b,c) \in \mathcal{A}$ and $E(c) \in \mathcal{A}$. Then $(b,c) \in r^{\mathcal{I}}$. From IH, get $c \in E^{\mathcal{I}}$, so $b \in (\exists r.E)^{\mathcal{I}}$
- $\cdot D = E \sqcup F$: left as practice
- $\cdot D = \forall r.E$: left as practice

COMPLETENESS OF CSAT

Suppose that the concept C_0 is satisfiable.

Then the ABox $\{C_0(a_0)\}$ must be satisfiable too.

COMPLETENESS OF CSAT

Suppose that the concept C_0 is satisfiable.

Then the ABox $\{C_0(a_0)\}$ must be satisfiable too.

We observe that the tableau rules are satisfiability-preserving:

- · If an ABox \mathcal{A} is satisfiable and \mathcal{A}' is the result of applying a rule to \mathcal{A} , then \mathcal{A}' is also satisfiable.
- · If \mathcal{A} is satisfiable and \mathcal{A}_1 and \mathcal{A}_2 are obtained when applying a rule to \mathcal{A} , then either \mathcal{A}_1 is satisfiable or \mathcal{A}_2 is satisfiable.

COMPLETENESS OF CSAT

Suppose that the **concept** C_0 is satisfiable.

Then the ABox $\{C_0(a_0)\}$ must be satisfiable too.

We observe that the tableau rules are satisfiability-preserving:

- · If an ABox \mathcal{A} is satisfiable and \mathcal{A}' is the result of applying a rule to \mathcal{A} , then \mathcal{A}' is also satisfiable.
- · If A is satisfiable and A_1 and A_2 are obtained when applying a rule to A, then either A_1 is satisfiable or A_2 is satisfiable.

We start with a satisfiable ABox and the rules are satisfiability-preserving, so eventually we will reach a complete, satisfiable (thus: clash-free) ABox and output 'yes'.

COMPLEXITY OF CSAT

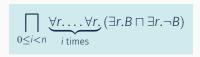
Bad news: our algorithm may require exponential time and space... To see why, consider what happens if we run CSat on the concept

$$\bigcap_{0 \le i < n} \underbrace{\forall r \dots \forall r}_{i \text{ times}} (\exists r.B \sqcap \exists r. \neg B)$$

17

COMPLEXITY OF CSAT

Bad news: our algorithm may require exponential time and space...
To see why, consider what happens if we run CSat on the concept



Good news: can modify algorithm so it runs in polynomial space

- · instead of set of ABoxes, keep only 1 ABox in memory at a time
 - \cdot when apply the \sqcup -rule, first examine \mathcal{A}_1 , then afterwards examine \mathcal{A}_2
 - · remember that second disjunct stills needs to be checked
- · explore the children of an individual one at a time
 - · possible because no interaction between the different "branches"
 - · store which $\exists r.C$ concepts have been tested, which are left to do
- \cdot this allows us to keep at most $|C_0|$ individuals in memory at a time

17

COMPLEXITY OF ALC CONCEPT SATISFIABILITY

Hierarchy of complexity classes

 $\mathsf{PTIME} \subseteq \mathsf{NP} \subseteq ... \subseteq \mathsf{PSPACE} \subseteq \mathsf{EXPTIME} \subseteq \mathsf{NEXPTIME} \subseteq ... \subseteq \mathsf{EXPSPACE} \ ...$

(it is believed that all inclusions are strict)

COMPLEXITY OF ALC CONCEPT SATISFIABILITY

Hierarchy of complexity classes

PTIME CNP C... C PSPACE CEXPTIME CNEXPTIME C... CEXPSPACE ...

(it is believed that all inclusions are strict)

PSPACE = class of decision problems solvable in polynomial space PSPACE-complete problems = hardest problems in PSPACE

COMPLEXITY OF ALC CONCEPT SATISFIABILITY

Hierarchy of complexity classes

PTIME⊆NP⊆...⊆ PSPACE⊆EXPTIME⊆NEXPTIME⊆...⊆EXPSPACE ...

(it is believed that all inclusions are strict)

PSPACE = class of decision **problems solvable in polynomial space** PSPACE-complete problems = hardest problems in PSPACE

Theorem: ALC concept satisfiability (no TBox) is PSPACE-complete.

- \cdot Membership in PSPACE shown using modified tableau procedure
- · Hardness for PSPACE shown by giving a reduction from some known PSPACE-hard problem (e.g. QBF validity)

EXTENSION TO KB SATISFIABILITY

Now we want to modify the algorithm to handle KB satisfability.

Adding an ABox is easy: simply start with $\{\mathcal{A}\}$ instead of $\{\mathcal{C}_0(a_0)\}$

EXTENSION TO KB SATISFIABILITY

Now we want to modify the algorithm to handle KB satisfability.

Adding an ABox is easy: simply start with $\{\mathcal{A}\}$ instead of $\{C_0(a_0)\}$

Adding a TBox is a bit more tricky...

Idea: if $C \sqsubseteq D$, then every element must satisfy either $\neg C$ or D

19

EXTENSION TO KB SATISFIABILITY

Now we want to modify the algorithm to handle KB satisfability.

Adding an ABox is easy: simply start with $\{\mathcal{A}\}$ instead of $\{C_0(a_0)\}$

Adding a TBox is a bit more tricky...

Idea: if $C \sqsubseteq D$, then every element must satisfy either $\neg C$ or D

Concretely, we might try adding the following rule:

TBox rule if a is in \mathcal{A} , $C \sqsubseteq D \in \mathcal{T}$, & $(\mathsf{NNF}(\neg C) \sqcup \mathsf{NNF}(D))(a) \not\in \mathcal{A}$ then replace \mathcal{A} with $\mathcal{A} \cup \{(\mathsf{NNF}(\neg C) \sqcup \mathsf{NNF}(D))(a)\}$

19

EXAMPLE: NON-TERMINATION

Let's try the modified procedure on the KB $(\{F \sqsubseteq \exists s.F\}, \{F(a)\})$

EXAMPLE: NON-TERMINATION

Let's try the modified procedure on the KB $(\{F \sqsubseteq \exists s.F\}, \{F(a)\})$

Seems we have a problem... How can we ensure termination?

BLOCKING

Basic idea: if two individuals "look the same", then it is unnecessary to explore both of them

BLOCKING

Basic idea: if two individuals "look the same", then it is unnecessary to explore both of them

Formally: given individuals a, b from A, we say that b blocks a if:

- $\cdot \{C \mid C(a) \in A\} \subseteq \{C \mid C(b) \in A\}$
- \cdot b was present in \mathcal{A} before a was introduced

Say that individual a is blocked (in A) if some b blocks a.

BLOCKING

Basic idea: if two individuals "look the same", then it is unnecessary to explore both of them

Formally: given individuals a, b from A, we say that b blocks a if:

- $\cdot \{C \mid C(a) \in A\} \subseteq \{C \mid C(b) \in A\}$
- \cdot b was present in A before a was introduced

Say that individual a is blocked (in A) if some b blocks a.

Modify rules so that they only apply to unblocked individuals.

21

TABLEAU RULES FOR KBS

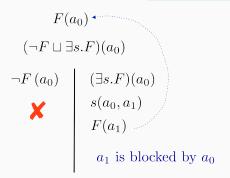
```
\sqcap-rule: if (C_1 \sqcap C_2)(a) \in \mathcal{A}, a is not blocked, and \{C_1(a), C_2(a)\} \not\subseteq \mathcal{A},
              then replace \mathcal{A} with \mathcal{A} \cup \{C_1(a), C_2(a)\}
\sqcup-rule: if (C_1 \sqcup C_2)(a) \in \mathcal{A}, a is not blocked, and \{C_1(a), C_2(a)\} \cap \mathcal{A} = \emptyset,
              then replace \mathcal{A} with \mathcal{A} \cup \{C_1(a)\} and \mathcal{A} \cup \{C_2(a)\}
\forall-rule: if \{\forall r.C(a), r(a,b)\}\in \mathcal{A}, a is not blocked, and C(b)\notin \mathcal{A},
              then replace \mathcal{A} with \mathcal{A} \cup \{C(b)\}
\exists-rule: if \{\exists r.C(a)\}\in\mathcal{A}, a is not blocked, and no \{r(a,b),C(b)\}\subseteq\mathcal{A},
              then pick a new individual name d and replace A with
              \mathcal{A} \cup \{r(a,d), C(d)\}
\sqsubseteq-rule: if a appears in \mathcal{A} and a is not blocked, C \sqsubseteq D \in \mathcal{T}, and
              (\mathsf{NNF}(\neg C) \sqcup \mathsf{NNF}(D))(a) \not\in \mathcal{A},
              then replace \mathcal{A} with \mathcal{A} \cup \{(\mathsf{NNF}(\neg C) \sqcup \mathsf{NNF}(D))(a)\}
```

EXAMPLE: BLOCKING

Let's try blocking on the problematic KB $(\{F \sqsubseteq \exists s.F\}, \{F(a)\})$

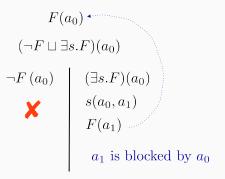
EXAMPLE: BLOCKING

Let's try blocking on the problematic KB $(\{F \sqsubseteq \exists s.F\}, \{F(a)\})$



EXAMPLE: BLOCKING

Let's try blocking on the problematic KB $(\{F \sqsubseteq \exists s.F\}, \{F(a)\})$



We obtain a complete and clash-free ABox ⇒ the KB is satisfiable

ANOTHER BLOCKING EXAMPLE

Consider the TBox $\mathcal{T} = \{A \sqsubseteq \exists r.A, A \sqsubseteq B, \exists r.B \sqsubseteq D\}$ and suppose we want to test whether $\mathcal{T} \models A \sqsubseteq D$.

We can do this by running the algorithm on $(\mathcal{T}, \{(A \sqcap \neg D)(a_0)\})$.

ANOTHER BLOCKING EXAMPLE

Consider the TBox $\mathcal{T} = \{A \sqsubseteq \exists r.A, A \sqsubseteq B, \exists r.B \sqsubseteq D\}$ and suppose we want to test whether $\mathcal{T} \models A \sqsubseteq D$.

We can do this by running the algorithm on $(\mathcal{T}, \{(A \sqcap \neg D)(a_0)\})$.

Result: the KB is unsatisfiable $\Rightarrow T \models A \sqsubseteq D$

ANOTHER BLOCKING EXAMPLE

Consider the TBox $\mathcal{T} = \{A \sqsubseteq \exists r.A, A \sqsubseteq B, \exists r.B \sqsubseteq D\}$ and suppose we want to test whether $\mathcal{T} \models A \sqsubseteq D$.

We can do this by running the algorithm on $(\mathcal{T}, \{(A \sqcap \neg D)(a_0)\})$.

Result: the KB is unsatisfiable $\Rightarrow T \models A \sqsubseteq D$

Observe: individual can be blocked, then later become unblocked

Let's call our new tableau algorithm KBSat (for KB satisfiability).

Termination: The algorithm KBSat always terminates.

· similar to before: bound the size of generated ABoxes

Let's call our new tableau algorithm KBSat (for KB satisfiability).

Termination: The algorithm KBSat always terminates.

· similar to before: bound the size of generated ABoxes

Soundness: KBSat outputs "yes" on $(\mathcal{T}, \mathcal{A}) \Rightarrow (\mathcal{T}, \mathcal{A})$ is satisfiable.

- · again, we use complete, clash-free ABox to build a model
- · tricky part: need to handle the blocked individuals

Let's call our new tableau algorithm KBSat (for KB satisfiability).

Termination: The algorithm KBSat always terminates.

· similar to before: bound the size of generated ABoxes

Soundness: KBSat outputs "yes" on $(\mathcal{T}, \mathcal{A}) \Rightarrow (\mathcal{T}, \mathcal{A})$ is satisfiable.

- · again, we use complete, clash-free ABox to build a model
- · tricky part: need to handle the blocked individuals

Completeness: $(\mathcal{T}, \mathcal{A})$ satisfiable \Rightarrow **KBSat** will output "yes".

· again, show rules satisfiability-preserving

Let's call our new tableau algorithm KBSat (for KB satisfiability).

Termination: The algorithm KBSat always terminates.

· similar to before: bound the size of generated ABoxes

Soundness: KBSat outputs "yes" on $(\mathcal{T}, \mathcal{A}) \Rightarrow (\mathcal{T}, \mathcal{A})$ is satisfiable.

- · again, we use complete, clash-free ABox to build a model
- · tricky part: need to handle the blocked individuals

Completeness: $(\mathcal{T}, \mathcal{A})$ satisfiable \Rightarrow **KBSat** will output "yes".

· again, show rules satisfiability-preserving

So: KBSat is a decision procedure for KB satisfiability.

COMPLEXITY OF REASONING IN EXPRESSIVE DLS

Tableau procedure takes exponential time and space

· can have exponentially long 'branches' to explore

Complexity results tell us this is unavoidable in worst case:

Theorem: In \mathcal{ALC} , KB satisfiability is **EXPTIME-complete**

· for highly expressive DLs (\leadsto OWL 2): complexity even higher

Despite high worst-case complexity, tableau algorithms for \mathcal{ALC} and other expressive DLs can work well in practice.

Despite high worst-case complexity, tableau algorithms for \mathcal{ALC} and other expressive DLs can work well in practice.

However, good performance crucially depends on optimizations!

Despite high worst-case complexity, tableau algorithms for \mathcal{ALC} and other expressive DLs can work well in practice.

However, good performance crucially depends on optimizations!

Many types of optimizations:

· explore only one branch of one ABox at a time

Despite high worst-case complexity, tableau algorithms for \mathcal{ALC} and other expressive DLs can work well in practice.

However, good performance crucially depends on optimizations!

Many types of optimizations:

- · explore only one branch of one ABox at a time
- · strategies / heuristics for choosing next rule to apply

Despite high worst-case complexity, tableau algorithms for \mathcal{ALC} and other expressive DLs can work well in practice.

However, good performance crucially depends on optimizations!

- · explore only one branch of one ABox at a time
- · strategies / heuristics for choosing next rule to apply
- · caching of results to reduce redundant computation

Despite high worst-case complexity, tableau algorithms for \mathcal{ALC} and other expressive DLs can work well in practice.

However, good performance crucially depends on optimizations!

- · explore only one branch of one ABox at a time
- · strategies / heuristics for choosing next rule to apply
- · caching of results to reduce redundant computation
- · examine source of conflicts to prune search space (backjumping)

Despite high worst-case complexity, tableau algorithms for \mathcal{ALC} and other expressive DLs can work well in practice.

However, good performance crucially depends on optimizations!

- · explore only one branch of one ABox at a time
- · strategies / heuristics for choosing next rule to apply
- · caching of results to reduce redundant computation
- · examine source of conflicts to prune search space (backjumping)
- reduce number of □'s created by TBox inclusions (absorption)

Despite high worst-case complexity, tableau algorithms for \mathcal{ALC} and other expressive DLs can work well in practice.

However, good performance crucially depends on optimizations!

- · explore only one branch of one ABox at a time
- · strategies / heuristics for choosing next rule to apply
- · caching of results to reduce redundant computation
- · examine source of conflicts to prune search space (backjumping)
- reduce number of □'s created by TBox inclusions (absorption)
- · reduce number of satisfiability checks during classification

When $\mathcal{T} = \{C_i \sqsubseteq D_i \mid 1 \le i \le n\}$, we get n disjunctions per individual:

$$(\mathsf{NNF}(\neg C_1) \sqcup \mathsf{NNF}(D_1))(a), \ldots, (\mathsf{NNF}(\neg C_n) \sqcup \mathsf{NNF}(D_n))(a)$$

When $\mathcal{T} = \{C_i \sqsubseteq D_i \mid 1 \le i \le n\}$, we get n disjunctions per individual:

$$(\mathsf{NNF}(\neg C_1) \sqcup \mathsf{NNF}(D_1))(a), \ldots, (\mathsf{NNF}(\neg C_n) \sqcup \mathsf{NNF}(D_n))(a)$$

Observation: if have $A \sqsubseteq D$ with A a concept name

- · if don't have A(a), can satisfy the inclusion by choosing $\neg A(a)$
- · if have A(a), then must have D(a)

When $\mathcal{T} = \{C_i \sqsubseteq D_i \mid 1 \le i \le n\}$, we get n disjunctions per individual:

$$(\mathsf{NNF}(\neg C_1) \sqcup \mathsf{NNF}(D_1))(a), \ldots, (\mathsf{NNF}(\neg C_n) \sqcup \mathsf{NNF}(D_n))(a)$$

Observation: if have $A \sqsubseteq D$ with A a concept name

- · if don't have A(a), can satisfy the inclusion by choosing $\neg A(a)$
- · if have A(a), then must have D(a)

So for inclusions with atomic left-hand side, can replace ⊑-rule by:

 \sqsubseteq^{at} -rule: if $A(a) \in \mathcal{A}$, a is not blocked, $A \sqsubseteq D \in \mathcal{T}$ (with A atomic), and $D(a) \notin \mathcal{A}$, then replace \mathcal{A} with $\mathcal{A} \cup \{D(a)\}$

28

When $\mathcal{T} = \{C_i \sqsubseteq D_i \mid 1 \le i \le n\}$, we get n disjunctions per individual:

$$(\mathsf{NNF}(\neg C_1) \sqcup \mathsf{NNF}(D_1))(a), \ldots, (\mathsf{NNF}(\neg C_n) \sqcup \mathsf{NNF}(D_n))(a)$$

Observation: if have $A \sqsubseteq D$ with A a concept name

- · if don't have A(a), can satisfy the inclusion by choosing $\neg A(a)$
- · if have A(a), then must have D(a)

So for inclusions with atomic left-hand side, can replace \sqsubseteq -rule by:

 \sqsubseteq^{at} -rule: if $A(a) \in \mathcal{A}$, a is not blocked, $A \sqsubseteq D \in \mathcal{T}$ (with A atomic), and $D(a) \notin \mathcal{A}$, then replace \mathcal{A} with $\mathcal{A} \cup \{D(a)\}$

Good news: we've lowered the number of disjunctions!

Second observation: can **transform** some inclusions with complex concept on left into **equivalent inclusions with atomic left-hand side**

Second observation: can **transform** some inclusions with complex concept on left into **equivalent inclusions with atomic left-hand side**

$$(A\sqcap C)\sqsubseteq D\quad\rightsquigarrow\quad A\sqsubseteq (\neg C\sqcup D)$$

20

Second observation: can **transform** some inclusions with complex concept on left into **equivalent inclusions with atomic left-hand side**

$$(A \sqcap C) \sqsubseteq D \quad \leadsto \quad A \sqsubseteq (\neg C \sqcup D)$$

Absorption technique:

- 1. **preprocess the TBox** by replacing inclusions with equivalent inclusions with atomic concept on left, whenever possible
- 2. when running tableau algorithm
 - use new \sqsubseteq^{at} -rule for inclusions $A \sqsubseteq D$ with A a concept name
 - · use regular ⊑-rule for the other TBox inclusions

EXAMPLE: ABSORPTION

Let's use absorption on the KB $(\mathcal{T}, \{A(a)\})$ with:

$$\{ A \sqsubseteq \exists r.B \quad B \sqsubseteq D \quad \exists r.D \sqsubseteq \neg A \}$$

EXAMPLE: ABSORPTION

Let's use absorption on the KB $(\mathcal{T}, \{A(a)\})$ with:

$$\{A \sqsubseteq \exists r.B \quad B \sqsubseteq D \quad \exists r.D \sqsubseteq \neg A \}$$

- \cdot first two inclusions in ${\mathcal T}$ already have concept name on left
- · third inclusion in \mathcal{T} can be equivalently written as $A \sqsubseteq \forall r. \neg D$
- · so: only need to use \sqsubseteq^{at} -rule

EXAMPLE: ABSORPTION

Let's use absorption on the KB $(\mathcal{T}, \{A(a)\})$ with:

$$\{A \sqsubseteq \exists r.B \quad B \sqsubseteq D \quad \exists r.D \sqsubseteq \neg A \}$$

- \cdot first two inclusions in ${\mathcal T}$ already have concept name on left
- · third inclusion in \mathcal{T} can be equivalently written as $A \sqsubseteq \forall r. \neg D$
- · so: only need to use \sqsubseteq^{at} -rule

Result: avoid disjunction, algorithm terminates much faster!

Classification: find all pairs of concept names A, B with $\mathcal{T} \models A \sqsubseteq B$ Naïve approach: test satisfiability of $A \sqcap \neg B$ w.r.t. \mathcal{T} for all pairs A, B \cdot but \mathcal{T} may contain hundreds or thousands of concept names....

Classification: find all pairs of concept names A, B with $T \models A \sqsubseteq B$

Naïve approach: test satisfiability of $A \sqcap \neg B$ w.r.t. \mathcal{T} for all pairs A, B

 \cdot but ${\mathcal T}$ may contain hundreds or thousands of concept names....

Each check is costly ⇒ want to reduce number of checks

Classification: find all pairs of concept names A, B with $T \models A \sqsubseteq B$

Naïve approach: test satisfiability of $A \sqcap \neg B$ w.r.t. \mathcal{T} for all pairs A, B

 \cdot but ${\mathcal T}$ may contain hundreds or thousands of concept names....

Each check is costly ⇒ want to reduce number of checks

Some ideas:

- · some cases are obvious
 - · $A \sqsubseteq A$ and inclusions that are explicitly stated in \mathcal{T}

Classification: find all pairs of concept names A, B with $T \models A \sqsubseteq B$

Naïve approach: test satisfiability of $A \sqcap \neg B$ w.r.t. \mathcal{T} for all pairs A, B

 \cdot but ${\mathcal T}$ may contain hundreds or thousands of concept names....

Each check is costly ⇒ want to reduce number of checks

Some ideas:

- · some cases are obvious
 - · $A \sqsubseteq A$ and inclusions that are explicitly stated in T
- · use simple reasoning to obtain new (non-)entailments
 - · if know $\mathcal{T} \models A \sqsubseteq B$ and $\mathcal{T} \models B \sqsubseteq D$, then $\mathcal{T} \models A \sqsubseteq D$
 - · if know $\mathcal{T} \models A \sqsubseteq B$ and $\mathcal{T} \not\models A \sqsubseteq D$, then $\mathcal{T} \not\models B \sqsubseteq D$