TD: Lightweight description logics

Exercise 9: Reasoning in \mathcal{EL}

Consider an \mathcal{EL} KB whose TBox \mathcal{T} contains the following inclusions:

$$A \sqsubseteq B \qquad \exists r. \top \sqsubseteq D \qquad H \sqsubseteq \exists t. A \qquad D \sqsubseteq M \\ B \sqsubseteq \exists r. E \qquad D \sqcap M \sqsubseteq H \qquad A \sqsubseteq \exists s. B \qquad \exists s. M \sqsubseteq G$$

and the ABox \mathcal{A} consists of the following assertions:

$$D(a)$$
 $s(a,b)$ $r(b,a)$

- 1. Compute the saturated KB.
- 2. Construct the associated canonical model.
- 3. Use your results to decide which of the following are entailed from $(\mathcal{T}, \mathcal{A})$, and explain how you obtained your answers.

$$D(a)$$
 $D(b)$ $D(w_A)$ $A \subseteq H$ $H \subseteq A$ $B \subseteq D$ $D \subseteq B$

Exercise 10: Conservative extensions

We call a TBox \mathcal{T}_2 a conservative extension of \mathcal{T}_1 if

- $sig(\mathcal{T}_1) \subseteq sig(\mathcal{T}_2)$
- every model of \mathcal{T}_2 is a model of \mathcal{T}_1
- for every model \mathcal{I}_1 of \mathcal{T}_1 , there exists a model \mathcal{I}_2 of \mathcal{T}_2 such that \mathcal{I}_1 and \mathcal{I}_2 interpret all concept and role names in $sig(\mathcal{T}_1)$ identically.

where $sig(\mathcal{T})$ denotes the *signature* of \mathcal{T} , i.e. the set of concept and role names occurring in \mathcal{T} .

- (a) Let $\mathcal{T}_1 = \{A \sqsubseteq B, E \sqsubseteq \exists s.D\}$, $\mathcal{T}_2 = \mathcal{T}_1 \cup \{A \sqsubseteq G\}$, $\mathcal{T}_3 = \mathcal{T}_1 \cup \{A \sqsubseteq E\}$, and $\mathcal{T}_4 = \{A \sqsubseteq B, D \sqsubseteq E\}$. Determine which of the TBoxes \mathcal{T}_2 , \mathcal{T}_3 , and \mathcal{T}_4 are conservative extensions of \mathcal{T}_1 . Explain your answer.
- (b) Prove the following statement: if \mathcal{T}_1 and \mathcal{T}_2 are \mathcal{EL} -TBoxes, \mathcal{T}_2 is a conservative extension of \mathcal{T}_1 , and C and D are \mathcal{EL} -concepts containing only concept and role names from $sig(\mathcal{T}_1)$, then

$$\mathcal{T}_1 \models C \sqsubseteq D$$
 iff $\mathcal{T}_2 \models C \sqsubseteq D$

Exercise 11: Query answering in DL-Lite

Consider the following DL-Lite TBox \mathcal{T} :

$$A \sqsubseteq D \quad \exists s \sqsubseteq \neg A \quad s^- \sqsubseteq r \quad C \sqsubseteq A \quad E \sqsubseteq \exists s^-$$

the ABox \mathcal{A} with the following assertions:

$$A(a)$$
 $s(b,a)$ $C(d)$ $r(d,c)$ $r(f,d)$ $r(c,e)$ $A(g)$ $E(g)$

and the conjunctive query

$$q(x,z) = \exists y \ A(x) \land r(x,y) \land r(z,y)$$

- 1. Give a query that can be used to test satisfiability w.r.t. \mathcal{T} .
 - Use your result to decide whether $(\mathcal{T}, \mathcal{A})$ is satisfiable.
- 2. Compute a rewriting of q and $\mathcal{T}' = \mathcal{T} \setminus \{\exists s \sqsubseteq \neg A\}$.
 - Use your result to determine the certain answers to q w.r.t. $(\mathcal{T}', \mathcal{A})$.