Inconsistency-Tolerant Querying of Description Logic Knowledge Bases

M2 KNOWLEDGE REPRESENTATION

Meghyn Bienvenu (LaBRI - CNRS & Université de Bordeaux)

HANDLING DATA INCONSISTENCIES

In realistic settings, can expect some errors in the data

· ABox likely to be **inconsistent** with the TBox (ontology)

Standard semantics: everything is implied - not informative!

 \cdot when ${\mathcal K}$ unsatisfiable, ${\sf cert}(q,{\mathcal K})$ contains all possible tuples

HANDLING DATA INCONSISTENCIES

In realistic settings, can expect some errors in the data

· ABox likely to be **inconsistent** with the TBox (ontology)

Standard semantics: everything is implied - not informative!

 \cdot when ${\cal K}$ unsatisfiable, ${\sf cert}(q,{\cal K})$ contains all possible tuples

Two approaches to inconsistency handling:

- resolve the inconsistencies
 - · preferable, but not always applicable!
- · live with the inconsistencies adopt alternative semantics
 - · meaningful answers to queries despite inconsistencies

Note: focus on case where errors in ABox (assume TBox reliable)

EXAMPLE: REASONABLE INFERENCES

TBox \mathcal{T}_{univ} :

```
      Prof ☐ Fac
      Prof ☐ ∃teaches
      Prof ☐ ¬Lect
      Fac ☐ ¬Course

      Lect ☐ Fac
      Lect ☐ ∃teaches
      Prof ☐ ¬Fellow

      Fellow ☐ Fac
      ∃teaches ☐ Course
      Lect ☐ ¬Fellow
```

Consider following ABoxes:

```
\mathcal{A}_1 = \{ \mathsf{Prof}(\mathsf{anna}), \mathsf{Lect}(\mathsf{anna}), \mathsf{Fellow}(\mathsf{alex}) \}

\mathcal{A}_2 = \{ \mathsf{Prof}(\mathsf{anna}), \mathsf{Fellow}(\mathsf{alex}), \mathsf{Lect}(\mathsf{alex}) \}
```

Which assertions would be reasonable to infer from these two KBs?

```
Prof(anna) Lect(anna) Fac(anna)
Fellow(alex) Lect(alex) Fac(alex)
```

EXAMPLE: REASONABLE ANSWERS

TBox \mathcal{T}_{univ} :

```
      Prof ☐ Fac
      Prof ☐ ∃teaches
      Prof ☐ ¬Lect
      Fac ☐ ¬Course

      Lect ☐ Fac
      Lect ☐ ∃teaches
      Prof ☐ ¬Fellow

      Fellow ☐ Fac
      ∃teaches ☐ Course
      Lect ☐ ¬Fellow
```

ABox A_{univ} :

```
Prof(anna), Lect(anna), Fellow(anna), Prof(kim), Lect(kim), Fellow(julie), teaches(csc343, julie), Fellow(alex), teaches(alex, csc486)
```

Question: what are reasonable answers for our example queries?

```
\begin{array}{ll} q_1(x) = \operatorname{Fac}(x) & q_2(x) = \exists y \operatorname{teaches}(x,y) \\ q_3(x) = \exists y \operatorname{Fac}(x) \wedge \operatorname{teaches}(x,y) & q_4(x,y) = \operatorname{Fac}(x) \wedge \operatorname{teaches}(x,y) \end{array}
```

ALTERNATIVE SEMANTICS

In general: **no single best way** to define answers for inconsistent KBs ⇒ consider **many different inconsistency-tolerant semantics**

Formally: a semantics ${\mathcal S}$ associates a set of query answers to every KB and query

- \cdot if $\mathcal K$ is satisfiable, should return certain answers
- \cdot for unsatisfiable $\mathcal{K}\textsc{,}$ can give different answers than classical semantics

Write $\mathcal{K} \models_{\mathcal{S}} q(\vec{a})$ if \vec{a} answer to q w.r.t. \mathcal{K} under semantics \mathcal{S} (and use $\mathcal{K} \models q(\vec{a})$ for certain answer semantics, i.e. $\vec{a} \in \text{cert}(q, \mathcal{K})$)

Consider different ways of comparing semantics

CONSISTENCY PROPERTIES

An ABox \mathcal{A} is \mathcal{T} -consistent if the KB $(\mathcal{T}, \mathcal{A})$ is satisfiable

Call $C \subseteq A$ is a (consistent) \mathcal{T} -support of $q(\vec{a})$ if:

(i) C is \mathcal{T} -consistent (ii) $(\mathcal{T}, C) \models q(\vec{a})$

Semantics S satisfies the **Consistent Support property** if whenever $\mathcal{K} \models_S q(\vec{a})$, there **exists a** \mathcal{T} -support $\mathcal{C} \subseteq \mathcal{A}$ of $q(\vec{a})$

· important for explaining / justifying query results to users

CONSISTENCY PROPERTIES

An ABox $\mathcal A$ is $\mathcal T$ -consistent if the KB $(\mathcal T,\mathcal A)$ is satisfiable

Call $C \subseteq A$ is a (consistent) T-support of $q(\vec{a})$ if:

(i) C is
$$\mathcal{T}$$
-consistent (ii) $(\mathcal{T}, C) \models q(\vec{a})$

Semantics S satisfies the **Consistent Support property** if whenever $\mathcal{K} \models_S q(\vec{a})$, there **exists a** \mathcal{T} -support $\mathcal{C} \subseteq \mathcal{A}$ of $q(\vec{a})$

· important for explaining / justifying query results to users

Semantics S satisfies the **Consistent Results property** if for every KB \mathcal{K} , there exists a model \mathcal{I} of \mathcal{T} such that $\mathcal{K} \models_S q(\vec{a})$ implies $\mathcal{I} \models q(\vec{a})$. set of query results is jointly consistent with TBox

· safe to combine query results

CONSISTENCY PROPERTIES

An ABox $\mathcal A$ is $\mathcal T$ -consistent if the KB $(\mathcal T,\mathcal A)$ is satisfiable

Call $C \subseteq A$ is a (consistent) T-support of $q(\vec{a})$ if:

(i) C is
$$\mathcal{T}$$
-consistent (ii) $(\mathcal{T}, C) \models q(\vec{a})$

Semantics S satisfies the **Consistent Support property** if whenever $\mathcal{K} \models_S q(\vec{a})$, there **exists a** \mathcal{T} -support $\mathcal{C} \subseteq \mathcal{A}$ of $q(\vec{a})$

· important for explaining / justifying query results to users

Semantics S satisfies the **Consistent Results property** if for every KB \mathcal{K} , there exists a model \mathcal{I} of \mathcal{T} such that $\mathcal{K} \models_S q(\vec{a})$ implies $\mathcal{I} \models q(\vec{a})$. set of query results is jointly consistent with TBox

· safe to combine query results

Note: neither property implies the other

COMPARING DIFFERENT SEMANTICS

Given two semantics S and S', we say that:

 \cdot S' is an under-approximation (or: sound approximation) of S just in the case that

$$\mathcal{K} \models_{S'} q(\vec{a}) \Rightarrow \mathcal{K} \models_{S} q(\vec{a})$$

· S' is an over-approximation (or: complete approximation) of S just in the case that

$$\mathcal{K} \models_{S} q(\vec{a}) \Rightarrow \mathcal{K} \models_{S'} q(\vec{a})$$

Consistency properties are preserved by under-approximations:

S' is an under-approximation of S & S satisfies $P \Rightarrow S'$ also satisfies P here $P \in \{\text{Consistent Support, Consistent Results}\}$

REPAIRS

Many semantics are based upon the notion of repair

Repair of an ABox \mathcal{A} w.r.t. a TBox \mathcal{T} = inclusion-maximal subset of \mathcal{A} that is \mathcal{T} -consistent

Intuition: different ways of achieving consistency while retaining as much of the original data as possible

Denote by $Rep(\mathcal{A}, \mathcal{T})$ the set of repairs of \mathcal{A} w.r.t. \mathcal{T} abbreviate to $Rep(\mathcal{K})$ when $\mathcal{K} = (\mathcal{T}, \mathcal{A})$

Every KB has at least one repair

inconsistent KB ⇒ typically multiple repairs

EXAMPLE: REPAIRS

Reconsider the TBox \mathcal{T}_{univ} :

```
      Prof ☐ Fac
      Prof ☐ ∃teaches
      Prof ☐ ¬Lect
      Fac ☐ ¬Course

      Lect ☐ Fac
      Lect ☐ ∃teaches
      Prof ☐ ¬Fellow

      Fellow ☐ Fac
      ∃teaches ☐ Course
      Lect ☐ ¬Fellow
```

and ABox A_{univ} :

```
Prof(anna), Lect(anna), Fellow(anna), Prof(kim), Lect(kim), Fellow(julie), teaches(csc343, julie), Fellow(alex), teaches(alex, csc486)
```

Recall the minimal $\mathcal{T}_{\mathsf{univ}}$ -inconsistent subsets:

```
 \begin{array}{ll} \{ Prof(anna), Lect(anna) \} & \{ Prof(anna), Fellow(anna) \} \\ \{ Lect(anna), Fellow(anna) \} & \{ Prof(kim), Lect(kim) \} \\ \{ Fellow(julie), teaches(csc343, julie) \} \end{array}
```

Question: How many repairs of A_{univ} w.r.t. T_{univ} ?

EXAMPLE: REPAIRS (CONT.)

Twelve repairs of \mathcal{A}_{univ} w.r.t. \mathcal{T}_{univ} :

```
\mathcal{R}_1
             \{Prof(anna), Prof(kim), Fellow(julie)\} \cup A_{Int}
             \{\text{Lect}(\text{anna}), \text{Lect}(\text{kim}), \text{Fellow}(\text{julie})\} \cup \mathcal{A}_{\text{Int}}
 \mathcal{R}_2 =
 \mathcal{R}_3 =
             \{Fellow(anna), Prof(kim), Fellow(julie)\} \cup A_{Int}
             \{Prof(anna), Lect(kim), Fellow(julie)\} \cup A_{Int}
 \mathcal{R}_4 =
 \mathcal{R}_5 =
             {Lect(anna), Prof(kim), Fellow(julie)} \cup A_{Int}
 \mathcal{R}_6 =
             \{Fellow(anna), Lect(kim), Fellow(julie)\} \cup A_{Int}
\mathcal{R}_7 =
             \{Prof(anna), Prof(kim), teaches(csc343, julie)\} \cup A_{Int}
             {Lect(anna), Lect(kim), teaches(csc343, julie)} \cup A_{Int}
 \mathcal{R}_8 =
\mathcal{R}_9 =
             {Fellow(anna), Prof(kim), teaches(csc343, julie)} \cup A_{Int}
             \{Prof(anna), Lect(kim), teaches(csc343, julie)\} \cup A_{int}
R_{10} =
\mathcal{R}_{11} =
             {Lect(anna), Prof(kim), teaches(csc343, julie)} \cup A_{Int}
             {Fellow(anna), Lect(kim), teaches(csc343, julie)} \cup A_{Int}
\mathcal{R}_{12}
```

where the ABox \mathcal{A}_{Int} that is common to all the repairs is as follows:

```
A_{Int} = \{Fellow(alex), teaches(alex, csc486)\}
```

Repair: ⊆-maximal subset of the data consistent with the ontology

· ways to achieve consistency, keeping as much information as possible

Repair: ⊆-maximal subset of the data consistent with the ontology

· ways to achieve consistency, keeping as much information as possible

Plausible answers: hold no matter which repair is chosen

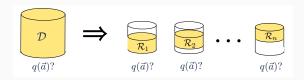
Repair: ⊆-maximal subset of the data consistent with the ontology

· ways to achieve consistency, keeping as much information as possible

Plausible answers: hold no matter which repair is chosen

AR semantics: query each repair separately, intersect results

$$\mathcal{K} \models_{\mathsf{AR}} q(\vec{a}) \Leftrightarrow (\mathcal{T}, \mathcal{B}) \models q(\vec{a}) \text{ for every repair } \mathcal{B} \in \mathit{Rep}(\mathcal{K})$$



Reconsider our **example KB** $\mathcal{K}_{univ} = (\mathcal{T}_{univ}, \mathcal{A}_{univ})$

For the query $q_1(x) = Fac(x)$, we have:

Reconsider our example KB $\mathcal{K}_{univ} = (\mathcal{T}_{univ}, \mathcal{A}_{univ})$

For the query $q_1(x) = Fac(x)$, we have:

- · $\mathcal{K}_{univ} \models_{AR} q_1(anna)$, as every repair contains one of Prof(anna), Lect(anna), and Fellow(anna)
- \cdot $\mathcal{K}_{\mathsf{univ}} \models_{\mathsf{AR}} q_1(\mathsf{kim})$, as every repair contains $\mathsf{Prof}(\mathsf{kim})$ or $\mathsf{Lect}(\mathsf{kim})$
- $\cdot \mathcal{K}_{univ} \models_{AR} q_1(alex)$, as every repair contains Fellow(alex)

Reconsider our example KB $\mathcal{K}_{univ} = (\mathcal{T}_{univ}, \mathcal{A}_{univ})$

For the query $q_1(x) = Fac(x)$, we have:

- · $\mathcal{K}_{univ} \models_{AR} q_1(anna)$, as every repair contains one of Prof(anna), Lect(anna), and Fellow(anna)
- \cdot $\mathcal{K}_{\mathsf{univ}} \models_{\mathsf{AR}} q_1(\mathsf{kim})$, as every repair contains $\mathsf{Prof}(\mathsf{kim})$ or $\mathsf{Lect}(\mathsf{kim})$
- $\cdot \mathcal{K}_{univ} \models_{AR} q_1(alex)$, as every repair contains Fellow(alex)

These are the only answers under AR semantics:

Reconsider our example KB $\mathcal{K}_{univ} = (\mathcal{T}_{univ}, \mathcal{A}_{univ})$

For the query $q_1(x) = Fac(x)$, we have:

- · $\mathcal{K}_{univ} \models_{AR} q_1(anna)$, as every repair contains one of Prof(anna), Lect(anna), and Fellow(anna)
- \cdot $\mathcal{K}_{\mathsf{univ}} \models_{\mathsf{AR}} q_1(\mathsf{kim})$, as every repair contains $\mathsf{Prof}(\mathsf{kim})$ or $\mathsf{Lect}(\mathsf{kim})$
- $\cdot \mathcal{K}_{univ} \models_{AR} q_1(alex)$, as every repair contains Fellow(alex)

These are the only answers under AR semantics:

- $\cdot \mathcal{K}_{univ} \not\models_{AR} q_1(julie)$ as $(\mathcal{T}_{univ}, \mathcal{R}_7) \not\models Fac(julie)$
- · can similarly show $\mathcal{K}_{univ} \not\models_{AR} q_1(csc486)$ and $\mathcal{K}_{univ} \not\models_{AR} q_1(csc343)$

Reconsider our example KB $\mathcal{K}_{univ} = (\mathcal{T}_{univ}, \mathcal{A}_{univ})$

For the query $q_2 = \exists y \, \text{teaches}(x, y)$, we have:

Reconsider our **example KB** $\mathcal{K}_{univ} = (\mathcal{T}_{univ}, \mathcal{A}_{univ})$

For the query $q_2 = \exists y \text{ teaches}(x, y)$, we have:

- \cdot $\mathcal{K}_{\mathsf{univ}} \models_{\mathsf{AR}} q_2(\mathsf{kim})$, as every repair contains $\mathsf{Prof}(\mathsf{kim})$ or $\mathsf{Lect}(\mathsf{kim})$
- · $\mathcal{K}_{univ} \models_{AR} q_2(alex)$, as every repair contains teaches(alex, csc486)

Reconsider our **example KB** $\mathcal{K}_{univ} = (\mathcal{T}_{univ}, \mathcal{A}_{univ})$

For the query $q_2 = \exists y \text{ teaches}(x, y)$, we have:

- \cdot $\mathcal{K}_{\mathsf{univ}} \models_{\mathsf{AR}} q_2(\mathsf{kim})$, as every repair contains $\mathsf{Prof}(\mathsf{kim})$ or $\mathsf{Lect}(\mathsf{kim})$
- · $\mathcal{K}_{univ} \models_{AR} q_2(alex)$, as every repair contains teaches(alex, csc486)

These are the only answers under AR semantics:

- · $\mathcal{K}_{univ} \not\models_{AR} q_1(anna)$ as $(\mathcal{T}_{univ}, \mathcal{R}_3) \not\models \exists y \, teaches(anna, y)$
- · can similarly show julie, csc486, and csc343 are not answers

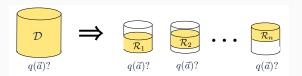
Repair: ⊆-maximal subset of the data consistent with the ontology

· ways to achieve consistency, keeping as much information as possible

Plausible answers: hold no matter which repair is chosen

AR semantics: query each repair separately, intersect results

$$\mathcal{K} \models_{\mathsf{AR}} q(\vec{a}) \Leftrightarrow (\mathcal{T}, \mathcal{B}) \models q(\vec{a}) \text{ for every repair } \mathcal{B} \in \mathit{Rep}(\mathcal{K})$$



Satisfies both Consistent Support and Consistent Results

SUREST ANSWERS: IAR SEMANTICS

Idea: only use the surest assertions to answer queries

· disregard assertions involved in some contradiction

SUREST ANSWERS: IAR SEMANTICS

Idea: only use the surest assertions to answer queriesdisregard assertions involved in some contradiction

IAR semantics: query the intersection of the repairs

$$\mathcal{K} \models_{\mathsf{IAR}} q(\vec{a}) \quad \Leftrightarrow \quad (\mathcal{T}, \mathcal{D}) \models q(\vec{a}) \text{ where } \mathcal{D} = \bigcap_{\mathcal{B} \in \mathit{Rep}(\mathcal{K})} \mathcal{B}$$

```
Reconsider our example KB (\mathcal{T}_{univ}, \mathcal{A}_{univ})
Intersection of the repairs of (\mathcal{T}_{univ}, \mathcal{A}_{univ}):
\mathcal{A}_{Int} = \{\text{Fellow}(\text{alex}), \text{teaches}(\text{alex}, \text{csc486})\}
For the query q_1(x) = \text{Fac}(x), we have:
```

```
Reconsider our example KB (\mathcal{T}_{univ}, \mathcal{A}_{univ})

Intersection of the repairs of (\mathcal{T}_{univ}, \mathcal{A}_{univ}):

\mathcal{A}_{Int} = \{\text{Fellow(alex)}, \text{teaches(alex, csc486)}\}

For the query q_1(x) = \text{Fac}(x), we have:

\cdot \mathcal{K}_{univ} \models_{\mathsf{AR}} q_1(\text{alex}), as (\mathcal{T}_{univ}, \mathcal{A}_{Int}) \models_{\mathsf{Fac}}(\text{alex})
```

Reconsider our **example KB** $(\mathcal{T}_{univ}, \mathcal{A}_{univ})$

Intersection of the repairs of $(\mathcal{T}_{univ}, \mathcal{A}_{univ})$:

$$A_{Int} = \{Fellow(alex), teaches(alex, csc486)\}$$

For the query $q_1(x) = Fac(x)$, we have:

$$\cdot \mathcal{K}_{\mathsf{univ}} \models_{\mathsf{AR}} q_1(\mathsf{alex})$$
, as $(\mathcal{T}_{\mathsf{univ}}, \mathcal{A}_{\mathsf{Int}}) \models \mathsf{Fac}(\mathsf{alex})$

This is the **only answer to** q_1 under **IAR semantics**:

 anna and kim are no longer considered answers since needed to reason by cases (e.g., kim is either Prof or Lect)

SUREST ANSWERS: IAR SEMANTICS

Idea: only use the surest assertions to answer queries

· disregard assertions involved in some contradiction

IAR semantics: query the intersection of the repairs

$$\mathcal{K}\models_{\mathsf{IAR}} q(\vec{a}) \quad \Leftrightarrow \quad (\mathcal{T},\mathcal{D})\models q(\vec{a}) \; \mathsf{where} \; \mathcal{D}=\bigcap_{\mathcal{B}\in \mathit{Rep}(\mathcal{K})} \mathcal{B}$$

Under-approximation of the AR semantics

Satisfies both Consistent Support and Consistent Results

POSSIBLE ANSWERS: BRAVE SEMANTICS

Idea: return all answers supported by consistent part of data

 \cdot can view them as possible answers, having coherent justification

POSSIBLE ANSWERS: BRAVE SEMANTICS

Idea: return all answers **supported by consistent part of data**can view them as possible answers, having coherent justification

Brave semantics: query the repairs, take union of their answers

$$\mathcal{K} \models_{\mathsf{brave}} q(\vec{a}) \quad \Leftrightarrow \quad (\mathcal{T}, \mathcal{B}) \models q(\vec{a}) \text{ for some repair } \mathcal{B} \in \mathit{Rep}(\mathcal{K})$$

EXAMPLE: BRAVE SEMANTICS

Reconsider the KB $\mathcal{K}_{univ} = (\mathcal{T}_{univ}, \mathcal{A}_{univ})$ and query $q_1(x) = Fac(x)$.

EXAMPLE: BRAVE SEMANTICS

Reconsider the KB
$$|\mathcal{K}_{\mathsf{univ}} = (\mathcal{T}_{\mathsf{univ}}, \mathcal{A}_{\mathsf{univ}})|$$
 and $|\mathbf{query}||q_1(x) = \mathsf{Fac}(x)$.

Moving from AR to brave semantics yields an additional answer:

$$\cdot \mathcal{K}_{\mathsf{univ}} \models_{\mathsf{brave}} q_1(\mathsf{anna})$$
 AR-answer

$$\cdot \mathcal{K}_{univ} \models_{brave} q_1(kim)$$
 AR-answer

$$\cdot \mathcal{K}_{\mathsf{univ}} \models_{\mathsf{brave}} q_1(\mathsf{alex})$$
 AR-answer

$$\mathcal{K}_{\mathsf{univ}} \models_{\mathsf{brave}} q_1(\mathsf{julie})$$
 $(\mathcal{T}_{\mathsf{univ}}, \mathcal{R}_i) \models q_1(\mathsf{julie}) \text{ for } 1 \leq i \leq 6$

EXAMPLE: BRAVE SEMANTICS

Reconsider the KB
$$\mathcal{K}_{\mathsf{univ}} = (\mathcal{T}_{\mathsf{univ}}, \mathcal{A}_{\mathsf{univ}})$$
 and query $q_1(x) = \mathsf{Fac}(x)$.

Moving from AR to brave semantics yields an additional answer:

$$\cdot \mathcal{K}_{univ} \models_{brave} q_1(anna)$$
 AR-answer

$$\cdot \mathcal{K}_{univ} \models_{brave} q_1(kim)$$
 AR-answer

$$\cdot \mathcal{K}_{univ} \models_{brave} q_1(alex)$$
 AR-answer

$$\mathcal{K}_{\mathsf{univ}} \models_{\mathsf{brave}} q_1(\mathsf{julie})$$
 $(\mathcal{T}_{\mathsf{univ}}, \mathcal{R}_i) \models q_1(\mathsf{julie}) \text{ for } 1 \leq i \leq 6$

These are the only answers to q_1 under brave semantics:

· csc486 and csc343 cannot be obtained as answers from any repair

POSSIBLE ANSWERS: BRAVE SEMANTICS

Idea: return all answers supported by consistent part of data

· can view them as possible answers, having coherent justification

Brave semantics: query the repairs, take union of their answers

$$\mathcal{K} \models_{\mathsf{brave}} q(\vec{a}) \quad \Leftrightarrow \quad (\mathcal{T}, \mathcal{B}) \models q(\vec{a}) \text{ for some repair } \mathcal{B} \in \mathit{Rep}(\mathcal{K})$$

Over-approximation of the AR semantics

· ... and every semantics that satisfies CONSISTENT SUPPORT

Does not satisfy Consistent Results

Why?

SEMANTICS BASED UPON PREFERRED REPAIRS

Idea: some repairs are more likely than others

· exploit knowledge about relative reliability of ABox assertions

SEMANTICS BASED UPON PREFERRED REPAIRS

Idea: some repairs are more likely than others

· exploit knowledge about relative reliability of ABox assertions

Formally: use preference relation \leq to compare repairs

- · compare w.r.t. **cardinality (≤)**
- · partition ABox into **priority levels** $\mathcal{P} = (\mathcal{P}_1, \dots, \mathcal{P}_n)$
 - · compare level-by-level using set inclusion ($\subseteq_{\mathcal{P}}$)
 - · compare level-by-level using cardinality ($\leq_{\mathcal{P}}$)
- · assign weights to ABox assertions
 - · compare repairs by **total weight** (\leq_w)

SEMANTICS BASED UPON PREFERRED REPAIRS

Idea: some repairs are more likely than others

· exploit knowledge about relative reliability of ABox assertions

Formally: use preference relation \leq to compare repairs

- · compare w.r.t. cardinality (\leq)
- · partition ABox into **priority levels** $\mathcal{P} = (\mathcal{P}_1, \dots, \mathcal{P}_n)$
 - · compare level-by-level using set inclusion ($\subseteq_{\mathcal{P}}$)
 - · compare level-by-level using cardinality $(\leq_{\mathcal{P}})$
- · assign weights to ABox assertions
 - · compare repairs by **total weight** (\leq_w)

AR / IAR / brave semantics based upon most preferred repairs $(\preceq$ -AR, \preceq -IAR, \preceq -brave)

Today: mainly focus on DL-Lite, important DL for OMQA

Today: mainly focus on DL-Lite, important DL for OMQA

Results apply to DL-Lite $_{\mathcal{R}}$ and all DL-Lite dialects that satisfy:

· every minimal support for $q(\vec{a})$ contains at most |q| assertions

Today: mainly focus on DL-Lite, important DL for OMQA

- · every minimal support for $q(\vec{a})$ contains at most |q| assertions
- \cdot every minimal \mathcal{T} -inconsistent subset has cardinality at most two

Today: mainly focus on DL-Lite, important DL for OMQA

- · every minimal support for $q(\vec{a})$ contains at most |q| assertions
- \cdot every minimal \mathcal{T} -inconsistent subset has cardinality at most two
- CQ answering, instance checking, and KB consistency can be performed by FO query rewriting (so in AC⁰ in data complexity)

Today: mainly focus on DL-Lite, important DL for OMQA

- · every minimal support for $q(\vec{a})$ contains at most |q| assertions
- \cdot every minimal \mathcal{T} -inconsistent subset has cardinality at most two
- CQ answering, instance checking, and KB consistency can be performed by FO query rewriting (so in AC⁰ in data complexity)
- · CQ answering is NP-complete for combined complexity

Today: mainly focus on DL-Lite, important DL for OMQA

- · every minimal support for $q(\vec{a})$ contains at most |q| assertions
- \cdot every minimal \mathcal{T} -inconsistent subset has cardinality at most two
- CQ answering, instance checking, and KB consistency can be performed by FO query rewriting (so in AC⁰ in data complexity)
- · CQ answering is NP-complete for combined complexity
- instance checking is NL-complete in combined complexity

BAD NEWS: INTRACTABILITY OF AR SEMANTICS

Theorem CQ and IQ answering under AR semantics are coNP-complete in data complexity

BAD NEWS: INTRACTABILITY OF AR SEMANTICS

Theorem CQ and IQ answering under AR semantics are coNP-complete in data complexity

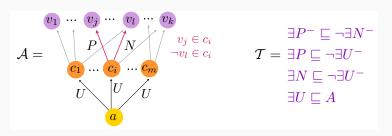
Upper bound: guess $A' \subseteq A$, verify A' is repair and $(\mathcal{T}, A') \not\models q(\vec{a})$

BAD NEWS: INTRACTABILITY OF AR SEMANTICS

Theorem CQ and IQ answering under AR semantics are coNP-complete in data complexity

Upper bound: guess $A' \subseteq A$, verify A' is repair and $(T, A') \not\models q(\vec{a})$

Lower bound: reduction from UNSAT $\varphi = c_1 \wedge ... \wedge c_m$ over $v_1, ..., v_k$



Can show φ unsatisfiable $\Leftrightarrow \mathcal{T}, \mathcal{A} \models_{AR} A(a)$

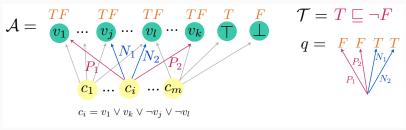
BAD NEWS: INTRACTABILITY OF AR SEMANTICS (CONT.)

In fact: CQ answering is coNP-hard for simple TBox $\mathcal{T} = \{T \sqsubseteq \neg F\}$

BAD NEWS: INTRACTABILITY OF AR SEMANTICS (CONT.)

In fact: CQ answering is coNP-hard for simple TBox $T = \{T \sqsubseteq \neg F\}$

Reduction from 2+2UNSAT: $\varphi = c_1 \wedge ... \wedge c_m$ over $v_1, ..., v_k, \top, \bot$ each clause has two positive and two negative literals



Can show φ unsatisfiable $\Leftrightarrow \mathcal{T}, \mathcal{A} \models_{AR} q$

GOOD NEWS: IAR AND BRAVE

For IAR and brave semantics, have same low data complexity as classical semantics

Theorem CQ answering under IAR semantics are in AC⁰ in data complexity

Theorem CQ answering under brave semantics are in AC⁰ in data complexity

GOOD NEWS: IAR AND BRAVE

For IAR and brave semantics, have same low data complexity as classical semantics

Theorem CQ answering under IAR semantics are in AC⁰ in data complexity

Theorem CQ answering under brave semantics are in AC⁰ in data complexity

Can use FO-query rewriting to compute IAR- and brave-answers

Idea: modify UCQ-rewriting to ensure ABox assertions matching disjuncts are not involved in any contradictions

Idea: modify UCQ-rewriting to ensure ABox assertions matching disjuncts are not involved in any contradictions

(Normal) rewriting of
$$q_2(x) = \exists y \text{ teaches}(x, y) \text{ w.r.t. } \mathcal{T}_{\text{univ}}$$
:

$$q_2'(x) = \text{Prof}(x) \vee \text{Lect}(x) \vee \exists y. \text{teaches}(x,y)$$

Idea: modify UCQ-rewriting to ensure ABox assertions matching disjuncts are not involved in any contradictions

(Normal) rewriting of
$$q_2(x) = \exists y \text{ teaches}(x, y) \text{ w.r.t. } \mathcal{T}_{\text{univ}}$$
:
$$\mathbf{q_2'}(\mathbf{x}) = \text{Prof}(\mathbf{x}) \lor \text{Lect}(\mathbf{x}) \lor \exists \mathbf{y}. \text{teaches}(\mathbf{x}, \mathbf{y})$$

Rewriting of q_2 for IAR semantics:

$$\mathbf{q_2''}(\mathbf{x}) = \operatorname{Prof}(\mathbf{x}) \wedge \left(\neg \operatorname{Lect}(x) \wedge \neg \operatorname{Fellow}(x) \wedge \neg \operatorname{Course}(x) \wedge \neg \exists z. \operatorname{teaches}(z, x) \right) \vee \\ \operatorname{Lect}(\mathbf{x}) \wedge \left(\neg \operatorname{Prof}(x) \wedge \neg \operatorname{Fellow}(x) \wedge \neg \operatorname{Course}(x) \wedge \neg \exists z. \operatorname{teaches}(z, x) \right) \vee \\ \exists \mathbf{y}. (\operatorname{teaches}(\mathbf{x}, \mathbf{y}) \wedge \left(\neg \operatorname{Prof}(y) \wedge \neg \operatorname{Lect}(y) \wedge \neg \operatorname{Fellow}(y) \right) \right)$$

Idea: modify UCQ-rewriting to ensure each disjunct can only match \mathcal{T} -consistent subset of ABox

Idea: modify UCQ-rewriting to ensure each disjunct can only match \mathcal{T} -consistent subset of ABox

Modified **TBox** \mathcal{T}'_{univ} : add \exists teaches \sqsubseteq Fac to \mathcal{T}_{univ}

Idea: modify UCQ-rewriting to ensure each disjunct can only match \mathcal{T} -consistent subset of ABox

Modified TBox \mathcal{T}'_{univ} : add \exists teaches \sqsubseteq Fac to \mathcal{T}_{univ}

(Normal) rewriting of
$$q_2(x) = \exists y \text{ teaches}(x, y) \text{ w.r.t. } \mathcal{T}'_{\text{univ}}$$
:

$$q_2'(x) = \text{Prof}(x) \vee \text{Lect}(x) \vee \exists y. \text{teaches}(x,y)$$

Idea: modify UCQ-rewriting to ensure each disjunct can only match \mathcal{T} -consistent subset of ABox

Modified TBox \mathcal{T}'_{univ} : add \exists teaches \sqsubseteq Fac to \mathcal{T}_{univ}

(Normal) rewriting of $q_2(x) = \exists y \text{ teaches}(x, y) \text{ w.r.t. } \mathcal{T}'_{\text{univ}}$:

$$q_2'(x) = \mathsf{Prof}(x) \lor \mathsf{Lect}(x) \lor \exists y.\mathsf{teaches}(x,y)$$

Rewriting of q_2 for brave semantics:

$$\mathbf{q_2'}(\mathbf{x}) = \mathsf{Prof}(\mathbf{x}) \lor \mathsf{Lect}(\mathbf{x}) \lor (\exists \mathbf{y}.\mathsf{teaches}(\mathbf{x},\mathbf{y}) \land \mathbf{x} \neq \mathbf{y}\)$$

to **disallow** using assertions of the form teaches(a, a)

COMPLEXITY LANDSCAPE FOR DL-LITE

Semantics	Data complexity		Combined complexity	
	CQs	IQs	CQs	IQs
classical AR	in AC ⁰	in AC ⁰ coNP	$\begin{array}{c} NP \\ \Pi_2^{\rho} \end{array}$	NL coNP
IAR brave	in AC ⁰	in AC ⁰ in AC ⁰	NP NP	NL NL

Note: IQs is for "instance queries", aka instance checking

TOWARDS PRACTICAL SYSTEMS FOR INCONSISTENCY HANDLING

CQAPri first system for AR query answering in DL-Lite

Implements hybrid approach:

- · compute IAR and brave answers
 - · gives upper and lower bounds on AR answers
- · use SAT solvers to identify remaining AR answers
- · three categories of answers : possible, likely, (almost) sure

polytime

TOWARDS PRACTICAL SYSTEMS FOR INCONSISTENCY HANDLING

CQAPri first system for AR query answering in DL-Lite

Implements hybrid approach:

- · compute IAR and brave answers
 - · gives upper and lower bounds on AR answers
- · use SAT solvers to identify remaining AR answers
- · three categories of answers : possible, likely, (almost) sure

Encouraging experimental results:

- in most cases, IAR and brave enough to decide if tuple is AR-answer ⇒ few calls to SAT solvers
- · SAT encodings are typically small and easy to solve

polytime

BEYOND DL-LITE: LIGHTWEIGHT DLS

Lightweight DL \mathcal{EL}_{\perp} : constructors $\top, \bot, \sqcap, \exists r.C$

Semantics	Data complexity		Combined complexity	
	CQs	IQs	CQs	IQs
classical	Р	Р	NP	Р
AR	coNP	coNP	Π_2^p	coNP
IAR	coNP	coNP	$\Delta_2^p[O(\log n)]$	coNP
brave	NP	NP	NP	NP

Observe: IAR and brave are no longer tractable

· no bound on size of minimal \mathcal{T} -inconsistent subsets

BEYOND DL-LITE: EXPRESSIVE DLS

Expressive DL \mathcal{ALC} : constructors $\top, \bot, \neg, \sqcap, \sqcup, \exists r.C, \forall r.C$

Semantics	Data complexity		Combined complexity	
	CQs	IQs	CQs	IQs
classical	coNP	coNP	Exp	Ехр
AR	Π_2^p	Π_2^p	Exp	Exp
IAR	$\Pi_2^{ ilde{p}}$	$\Pi_2^{ ilde{p}}$	Exp	Exp
brave	$\Sigma_2^{ar{p}}$	$\Sigma_2^{ar ho}$	EXP	Ехр

Observe:

- · IAR and brave no easier than AR
- · increased data complexity, no increase in combined complexity