Handout: Description logic \mathcal{EL}

Syntax of \mathcal{EL}

\mathcal{EL} allows complex concepts of the following form:

$$C := \top | A | C_1 \cap C_2 | \exists r.C$$

where A is a concept and r a role name.

An \mathcal{EL} TBox contain concept inclusions $C_1 \sqsubseteq C_2$ (with C_1, C_2 as above)

We say that an \mathcal{EL} TBox \mathcal{T} is in normal form if it contains only inclusions of the following forms:

$$A \sqsubseteq B \quad A_1 \sqcap A_2 \sqsubseteq B \quad A \sqsubseteq \exists r.B \quad \exists r.A \sqsubseteq B$$

where A, A_1, A_2, B are concept names (or \top).

Saturation rules

$$\frac{}{A \sqsubseteq A} \text{ T1} \quad \frac{}{A \sqsubseteq \top} \text{ T2} \quad \frac{A \sqsubseteq B \quad B \sqsubseteq D}{A \sqsubseteq D} \text{ T3}$$

$$\frac{A \sqsubseteq B_1 \quad A \sqsubseteq B_2 \quad B_1 \sqcap B_2 \sqsubseteq D}{A \sqsubseteq D} \text{ T4} \quad \frac{A \sqsubseteq \exists r.B_1 \quad B_1 \sqsubseteq B_2 \quad \exists r.B_2 \sqsubseteq D}{A \sqsubseteq D} \text{ T5}$$

$$\frac{A \sqsubseteq B \quad A(c)}{B(c)} \text{ A1} \quad \frac{A_1 \sqcap A_2 \sqsubseteq B \quad A_1(c) \quad A_2(c)}{B(c)} \text{ A2} \quad \frac{\exists r.A \sqsubseteq B \quad r(c, d) \quad A(d)}{B(c)} \text{ A3}$$

Instantiated rule:

- obtained from one of the ‘abstract’ saturation rules above by replacing A, B, D by \mathcal{EL}-concepts and r by some role name

- important: after replacement, can only contain axioms that are in normal form and concept assertions using (non-complex) concept names

Premises of (instantiated) rule = axioms / assertions above the line

Conclusion of (instantiated) rule = axiom / assertion below the line
Saturation procedure

Assume w.l.o.g. that start from KB whose TBox is in normal form & whose ABox contains \(\top(a) \) for each of its individuals \(a \)

Call an instantiated rule with *applicable in* \(\mathcal{K} \) if its premises belong to \(\mathcal{K} \) and its conclusion is not already in \(\mathcal{K} \)

Apply an instantiated rule (if applicable) = add its conclusion to the KB

Saturation procedure: *exhaustively apply* instantiated rules until no rule is applicable

Denote by \(\text{sat}(\mathcal{K}) \) or \(\text{sat}(\mathcal{T}, \mathcal{A}) \) (resp. \(\text{sat}(\mathcal{T}) \)) the (unique) result of applying saturation procedure to KB \(\mathcal{K} = (\mathcal{T}, \mathcal{A}) \) (resp. TBox \(\mathcal{T} \))

Using saturated KB for reasoning

To *find all instances of concept name* \(A \) w.r.t. \(\mathcal{K} = (\mathcal{T}, \mathcal{A}) \):

1. Normalize \(\mathcal{T} \), yielding \(\mathcal{T}' \), then construct \(\text{sat}(\mathcal{T}', \mathcal{A}) \)
2. Return all individuals \(c \) such that \(A(c) \in \text{sat}(\mathcal{T}', \mathcal{A}) \).

To *test whether* \(\mathcal{T} \models A \sqsubseteq B \) (\(A, B \) concept names):

1. Normalize \(\mathcal{T} \), yielding \(\mathcal{T}' \), then construct \(\text{sat}(\mathcal{T}') \) (or \(\text{sat}(\mathcal{T}', \mathcal{A}) \) if have an ABox \(\mathcal{A} \))
2. Check if \(\text{sat}(\mathcal{T}') \) contains \(A \sqsubseteq B \), return yes if so, else no.

For *assertions / inclusions involving complex concepts*:

- Use new concept names to represent complex concepts, e.g. if \(C \) is a complex concept, add \(X_C \sqsubseteq C \) and \(C \sqsubseteq X_C \) to \(\mathcal{T} \) (with \(X_C \) fresh).
- Proceed as above but *use* \(X_C \) *in place of* \(C \).

Canonical model

Define canonical model \(\mathcal{C}_\mathcal{K} \) of \(\mathcal{K} \) as follows:

- \(\Delta^{\mathcal{C}_\mathcal{K}} = \text{Ind}(\mathcal{A}) \cup \{ w_A \mid A \text{ concept name appearing in } \mathcal{K} \} \cup \{ w_\top \} \)
- \(A^{\mathcal{C}_\mathcal{K}} = \{ b \mid A(b) \in \text{sat}(\mathcal{K}) \} \cup \{ w_B \mid B \sqsubseteq A \in \text{sat}(\mathcal{K}) \} \)
- \(r^{\mathcal{C}_\mathcal{K}} = \{ (a, b) \mid r(a, b) \in \mathcal{K} \} \cup \{ (w_A, w_B) \mid A \sqsubseteq \exists r. B \in \text{sat}(\mathcal{K}) \}
\cup \{ (a, w_B) \mid A \sqsubseteq \exists r. B \in \text{sat}(\mathcal{K}), A(a) \in \text{sat}(\mathcal{K}) \text{ for some } A \} \)

where \(\text{Ind}(\mathcal{A}) \) is set of individual names in \(\mathcal{A} \)